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Abstract

In this paper we apply model predictive control (MPC), rollout, and

reinforcement learning (RL) methodologies to computer chess. We intro-

duce a new architecture for move selection, within which available chess

engines are used as components. One engine is used to provide position

evaluations in an approximation in value space MPC/RL scheme, while

a second engine is used as nominal opponent, to emulate or approximate

the moves of the true opponent player.

We show that our architecture improves substantially the performance

of the position evaluation engine. In other words our architecture provides

an additional layer of intelligence, on top of the intelligence of the engines

on which it is based . This is true for any engine, regardless of its strength:

top engines such as Stockfish and Komodo Dragon (of varying strengths),

as well as weaker engines.

Structurally, our basic architecture selects moves by a one-move looka-

head search, with an intermediate move generated by a nominal opponent

engine, and followed by a position evaluation by another chess engine.

Simpler schemes that forego the use of the nominal opponent, also per-

form better than the position evaluator, but not quite by as much. More

complex schemes, involving multistep lookahead, may also be used and

generally tend to perform better as the length of the lookahead increases.

∗This work was carried out at the Fulton School of Computing, and Augmented Intelligence,

Arizona State University, Tempe, AZ.
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Theoretically, our methodology relies on generic cost improvement

properties and the superlinear convergence framework of Newton’s method,

which fundamentally underlies approximation in value space, and related

MPC/RL and rollout/policy iteration schemes. A critical requirement of

this framework is that the first lookahead step should be executed exactly.

This fact has guided our architectural choices, and is apparently an im-

portant factor in improving the performance of even the best available

chess engines.

1 Introduction

The fundamental paper on which computer chess programs are based was writ-

ten in 1950 by one of the most illustrious modern-day applied mathematicians,

C. Shannon [Sha50]. It was argued by Shannon that whether the starting chess

position is a win, loss, or draw is a question that can be answered in principle

through exact minimax search that extends up to game termination with a win

by one of the players or a draw.1 However, the answer will probably never

be known because this would require extraordinarily long computation. As an

alternative, Shannon proposed a limited lookahead of a few moves and evaluat-

ing the end positions by means of some scoring function. This is the principle

on which all current major computer chess programs are based: they involve a

search through a tree, which is rooted at the current position and extends to a

certain depth. The positions at the leaves of the tree are evaluated using the

scoring function, and the move chosen at the root of the tree is the one with

best backed-up score.

The tree may be pruned selectively to save computation time and to extend

the length of the search within the given time constraint: this was called a type

B strategy by Shannon, to differentiate it from what he called type A strategy

that does not resort to any kind of pruning (except to enhance computational

efficiency in executing an exact minimax strategy, as in alpha-beta pruning

[KnM75]). Chess-playing computer programs typically use a combination of

Shannon’s type A and type B strategies, but over the years the balance has

1The minimax search is simply dynamic programming for minimax control problems, which
is used more broadly in optimization and control, in the presence of set uncertainty (see
e.g., the books [Ber17], [Ber20], [Ber22a], [Ber23]). In this paper, we do not discuss control
problems and the related theoretic issues. However, the ideas of the present paper extend to
that context; see [Ber23], Section 2.12.
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shifted towards the type B strategy, with the aim to extend the search to deeper

levels. The paper by van den Herik [Her18] provides an overview of the history of

computer chess, and notes the contributions of many researchers since Shannon’s

paper.

Tree search and tree pruning heuristics have been researched extensively in

computer chess, and more generally in machine learning, since the 1960s. How-

ever, the position evaluation methodology was transformed dramatically in 2017

with the introduction of the AlphaZero chess program (Silver et al. [SHS17]),

which used a deep neural network to provide a position evaluator that was

trained off-line through self-play and self-improvement. This training method-

ology is couched on the algorithm of policy iteration, which is fundamental in

dynamic programming (DP) and reinforcement learning (RL).2 It is also couched

on Monte Carlo tree search ideas to enhance pruning of the lookahead tree, in

the spirit of the type B strategy. The success of AlphaZero was replicated by

other chess engines such as Leela Chess Zero; see e.g., the relevant Wikipedia

article, and the book by Klein [Kle22]. The Stockfish program, which was de-

feated by AlphaZero in 2017, was improved substantially later by modifying its

manually-tuned position evaluator to incorporate neural network-based evalua-

tions. The present form of Stockfish is widely viewed as exceptionally strong,

and capable of almost perfect chess play. Another very strong engine, which

uses similar principles to Stockfish, is Komodo Dragon, the winner of several

computer chess world championship tournaments. There is extensive literature

and documentation on Stockfish and Komodo Dragon, including open source

codes; see e.g., the relevant Wikipedia articles.

In this paper, we propose a new type of computer chess architecture, which

is based on model predictive control (MPC), a methodology that originated in

the control system design and optimal control contexts in the 1960s. There is

a strong relation between MPC, and ideas of approximation in value space and

rollout (a single policy iteration) that form a major part of RL (see the recent

tutorial survey by Bertsekas [Ber24]). Our framework harnesses existing chess

engines (with no modification) into a search scheme that involves a combination

of Shannon’s type A and type B strategies: the MPC portion uses a type A

strategy, and the chess engine portion uses whatever type B strategy is built

into the engine. We may view our architecture as a meta algorithm that uses

traditional chess engines as lower level procedures; hence we adopt the acronym

2This is also true of similarly structured programs by Lai [Lai15] for chess, and by Tesauro
[Tes94], [Tes95] for backgammon.
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MPC-MC (Model Predictive Control-Meta Chess).3

From a theoretical point of view, MPC-MC allows a synergism of off-line

training of the position evaluation function and the on-line search process that

is couched on the algorithmic framework of Newton’s method. This theoretical

view is discussed at length in the recent books by Bertsekas [Ber20], [Ber22a],

[Ber23], and the related survey papers [Ber22b] and [Ber24], and will not be

explained at any depth in this paper. However, it is fundamentally responsi-

ble for the results that we are reporting here. These results suggest that by

incorporating any chess engine into our MPC framework, we can improve the

performance of that engine, and often dramatically so. As an example, MPC-

MC based on Stockfish engines defeats the Stockfish engines on which it is based

by overwhelming margins for fast time limits, and by lesser margins for longer

time limits (at which the Stockfish play is nearly optimal).

Finally, we note that the structure and characteristics of our architecture

apply not only to chess, but also to any two-person zero-sum game, not involving

stochastic uncertainty, such as Shogi, Xiangqi, Checkers, Go, Reversi, etc. It

is likely that similar results to the ones reported here can be obtained in the

context of these games.

The paper is organized as follows. In the next section we describe our MPC-

MC architecture in its one-step lookahead form. In Section 3, we introduce

the two main variants of MPC-MC, which apply to the cases of a determin-

istic/known and a stochastic/unknown opponent. We also discuss a so-called

fortified variant, which is motivated by experience with rollout algorithms, and

is effective against very strong, world champion-caliber opponent engines. In

Section 4, we provide detailed experimentation results, which support the theo-

retical development of Section 3. Moreover, we discuss experiments with another

variant of MPC-MC, which uses a “half-step” lookahead and does not involve a

nominal opponent (only a position evaluation for each legal move at the current

position, see Section 4.2). Consistent with theoretical predictions, this variant

of MPC-MC improves the performance of the position evaluation engine, but

not by as much as the one-step lookahead variants. In Section 5, we discuss

multistep lookahead versions of MPC-MC, which achieve somewhat better re-

sults that their one-step lookahead variants, at the expense of more intensive

computation.

3A meta algorithm is a broad term that applies to an algorithm that operates on other
algorithms, often by modifying or combining them; hence the name “Meta Chess.”
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2 The MPC-MC Architecture

Given a chess position x, a typical chess engine will select a move on the basis

of some calculations that involve multistep minimax search (likely approximate,

because of pruning of the lookahead tree).4 In particular, it will produce a

numerical evaluation Q(x, u) of the position resulting from x after each of the

legal moves u, and it will play a move ũ that produces the best evaluation.5

Thus, for the purposes of this paper, a chess engine can be viewed as a function

µ, which when faced with a position x, plays the move µ(x) = ũ, where

ũ ∈ arg min
u∈L(x)

Q(x, u),

with L(x) denoting the set of legal moves at x. The function

E(x) = min
u∈L(x)

Q(x, u).

will be called the evaluation function of the engine; it provides a numerical

evaluation of any given position x (castling and record keeping to detect a

drawn chess position, such as a three-move repetition, are incorporated as part

of the position).6 In this paper, we assume that an engine is memoryless, so that

Q(x, u) depends only on the pair (x, u) and not on the earlier game calculations.7

To play against an opponent, our MPC-MC architecture also selects a move

in response to a given position. However, to compute this move it uses two

engines, such as Stockfish (SK for short), Komodo Dragon (KD for short),

Leela Chess Zero (LC0 for short), etc.

(a) The position evaluator . This is a chess engine, which produces a numerical

evaluation of any given position.

(b) The nominal opponent . This is either an exact replica or an approximation

4For a recent example of implementation of a grandmaster-level chess program without
search, see Ruoss et al. [RDM24]. This implementation uses a huge-size (270 M parameters)
trained neural network position evaluator, and is well suited for use within the MPC-MC
architecture; see Section 4.

5In RL terms, we can view Q(x, u) as the Q-factor of the pair (x, u). We adopt the
convention that smaller Q-factors correspond to better moves.

6For some engines the formula for E(x) is not strictly correct, because some of the legal
moves at x are pruned, so the minimization defining E(x) is approximate.

7Some chess engines are not truly memoryless; for example they build hash tables of
evaluated positions, which are carried from one move to the next in the course of a game. The
effect of engine memory on the performance of MPC-MC is a complex issue that has yet to
be fully assessed.
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to the true opponent (engine or human), whom we intend to play against.

It outputs deterministically a move to play at any given chess position. In

the absence of knowledge of the true opponent, a reasonable choice is to

use a competent chess engine as nominal opponent, such as for example

the one used to provide position evaluations.8

The nominal opponent and the position evaluator engines may be different.

Moreover, the nominal opponent engine may be changed from game to game to

adapt to the true opponent at hand. Note that stored knowledge of the eval-

uator and nominal opponent engines, such as an opening book or an endgame

database, are indirectly incorporated into the MPC-MC player.

To describe mathematically the move selection of MPC-MC at a position xk,

and to make the connection with the optimal control and MPC/RL framework,

we use the following notation:

• xk is the chess position at time/move k.

• uk is a legal move at time k in response to position xk.

• wk is the move choice of the nominal opponent at time k in response to

position xk followed by move uk.

The resulting position at time k + 1 is given by

xk+1 = f(xk, uk, wk),

where f is a known function. This corresponds to a dynamic system in the

standard MPC framework, where xk is viewed as the state, uk is viewed as the

control, and wk is viewed as a known or unknown (possibly random) disturbance.

The structure of the MPC-MC architecture with one-step lookahead is shown

in Fig. 1. Here is the sequence of calculations by which it selects a move uk at

a given position xk:

(1) We generate all legal moves uk at xk.

(2) For each pair (xk, uk), we use the nominal opponent engine to evaluate the

position (xk, uk) and to generate the corresponding best move ν(xk, uk),

where ν is a given function.

8We will argue later that it is important not to use a relatively poor nominal opponent ,
which would lead us to underestimate the true opponent.
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(3) For each uk, we use the position evaluator engine to evaluate the position

xk+1 = f(xk, uk, w̃k)

corresponding to the nominal opponent move

w̃k = ν(xk, uk).

(4) We select the move uk that corresponds to the position xk+1 that has best

evaluation.

Current Position xk Player Move uk Nominal Opponent Move wk

Next Position xk+1 Position Evaluation
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Figure 1: Schematic illustration of the MPC-MC framework with one-step looka-
head. The position evaluator and the nominal opponent in the figure are SK engines.

Note that to select a move, MPC-MC requires a total of roughly m nominal

opponent move generations and m position evaluations, where m is a typical

number of legal moves at x. Thus, MPC-MC requires roughly 2m times more
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computation than a single position evaluation by one of the engines. However,

it is important to note that MPC-MC is very well suited for parallelization, and

given sufficient parallel computation resources, it roughly requires only twice

the amount of computation time of a single engine evaluation.9

3 Deterministic and Stochastic Variants of MPC-

MC

We will now discuss two basic variants of our MPC-MC architecture. In the

first variant, called deterministic, we can predict exactly the response of the true

opponent, and use this prediction as the nominal opponent move. This variant

can be viewed as a special case of a standard MPC architecture. In the second

variant, called stochastic, we can generate only an approximate prediction. This

variant can be viewed as an approximation to an MPC architecture.

Deterministic MPC-MC

In the deterministic variant of MPC-MC, we are able to predict exactly the

move of the true opponent in response to a position xk and legal move uk, and

use the prediction as the nominal opponent move. We thus assume that the

nominal opponent engine replicates the play of the true opponent. In this case,

if ν(x, u) denotes the nominal opponent move in response to x followed by u,

the sequence of positions generated during the actual game evolves according

to

xk+1 = F (xk, uk), (1)

where

F (xk, uk) = f(xk, uk, ν(xk, uk)). (2)

Here ν(xk, uk) is the move generated by both nominal and true opponent engines

in response to position xk and MPC-MC moves uk.

In optimal control terms, Eqs. (1)-(2) represent a chess game as the evolution

of a deterministic controlled system with state x and control u. Regarding the

cost function, a nonzero cost is incurred only at the terminal positions where

9If the nominal opponent and position evaluator engines use parallelization for search,
then MPC-MC uses implicitly the same parallelization. However, MPC-MC uses additional
parallelization: at each stage of lookahead, multiple nominal opponent moves and positions
evaluations can be executed in parallel, with nearly 100 percent efficiency.

8



one of the opponents wins the game. The optimal cost function J∗(x) is the

solution of the Bellman equation, the fundamental equation of exact DP:

J∗(x) = min
u∈L(x)

J∗(F (x, u)), (3)

with

J∗(x) ̸= 0

for all positions x where one of the players can win, regardless of the play of the

other player, and with

J∗(x) = 0

for all other positions x, which are theoretical draws.

Of course the optimal cost function J∗ is unknown at the starting chess

position (and most other positions),10 and is unlikely to be calculated in the

near future, in view of the complexity of the chess game. In the approximation

in value space approach of RL, which is very similar to the MPC methodology,

we approximate the unknown function J∗ with an approximation. Accordingly,

in the MPC-MC architecture, J∗ is approximated by the evaluation function

E of the position evaluator engine. In particular, at position x, the MPC-MC

player selects the move

ũ ∈ arg min
u∈L(x)

E(F (x, u)), (4)

where the needed values of F are calculated by using the nominal opponent

engine (also true opponent), and the needed values of E are calculated by the

position evaluator engine.

An important fact is that the performance of the MPC-MC player is better

than the performance of the position evaluator engine, provided the evaluator

engine’s play is relatively close to optimal. This follows from a theoretical frame-

work, which applies more broadly than chess, and explains the performance of

MPC and RL schemes that are based on approximation in value space. The

development, justification, and visualization of this framework is the focal point

of the books [Ber20], [Ber22a], [Ber23], and the survey papers [Ber22b] and

[Ber24], which were noted earlier. The performance improvement property also

10Many grandmasters believe that the starting position s is a theoretical draw [J∗(s) = 0],
based on the near perfect play of top engines, which are virtually unbeatable by other engines
(let alone humans) when the time limit per move is relatively long.

9



relates to Newton’s method applied to the Bellman Eq. (3).

In this paper, we will not discuss further the theoretical backdrop just

sketched, but instead we will demonstrate experimentally in Section 4 how the

performance of the MPC-MC player is superior to the performance of its position

evaluator engine. This performance improvement is generally significant, but

tends to diminish in absolute terms as the position evaluator engine approaches

optimality; after all if the position evaluator engine plays perfect/optimal chess,

its performance cannot be improved. However, in theory, the performance im-

provement of the MPC-MC player increases in relative terms as the position

evaluator engine approaches optimality. In particular, we have

Jµ̃(x)− J∗(x)

J̃(x)− J∗(x)
→ 0, as J̃ → J∗, (5)

where µ̃ represents the move selection policy of the MPC-MC player, Jµ̃(x) is its

performance starting from any position x, and J̃(x) is the position evaluation,

as given by the position evaluator engine.11 This is a superlinear performance

improvement relation that is typical of Newton’s method; see the sources cited

earlier. Our experimental results are consistent with this relation.

We finally note that the use of the position evaluator engine to approximate

the optimal cost function is reminiscent of the rollout algorithm from DP/RL,

whereby the optimal cost function is approximated by the cost function of some

policy known as the base policy ; see the sources cited earlier for an extensive

account of rollout algorithms, and for many references to their remarkable effec-

tiveness. In our case, the base policy is the move selection policy of the position

evaluator engine, and its cost function is approximated by the corresponding

engine evaluations.

Stochastic MPC-MC

In the stochastic variant of MPC-MC, we cannot predict exactly the move of the

true opponent in response to (xk, uk), and we use instead the move generated

by a nominal opponent engine that approximates the play of the true opponent.

Again, if ν(x, u) is the nominal opponent move in response to x followed by u,

11For the superlinear relation (5) to make sense, Jµ̃(x) and J̃(x) must be suitably normalized
to be comparable to J∗. A popular normalization convention is to set J∗(x) = 0 for a loss,
J∗(x) = 1 for a win, and to view J̃(x) as a “probability” of winning starting from the current
position x.
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the MPC-MC player calculates its move according to

ũ ∈ arg min
u∈L(x)

E(F (x, u)), (6)

cf. Eq. (4), where

F (x, u) = f(x, u, ν(x, u)). (7)

However, the positions generated during the actual game will occasionally de-

viate from the positions generated by the equation

xk+1 = F (xk, uk), (8)

because the play of the true opponent can deviate from the play of the nominal

opponent.

While the performance improvement property of Eq. (5) cannot be estab-

lished for the stochastic MPC-MC player, it evidently holds approximately,

provided that the nominal opponent is a strong player. In fact our experiments

indicate that the nominal opponent engine should play at least as well or better

than the true opponent. As an explanation of why we need a strong nominal

opponent, we note that the MPC-MC architecture may select a poor and even

catastrophic move uk because the nominal opponent produces a poor response

ν(xk, uk), leading to xk+1 which is favorably judged by the position evaluator

engine. It is thus essential that the nominal opponent does not underestimate

the true opponent.

Fortified Move Generation

While the MPC-MC architecture has worked well in our computational exper-

iments, it may make occasional errors, even when it uses very strong nominal

opponent and position evaluator engines. In particular, we have observed rare

mistakes, which seem to be due to the approximation of minimax play of the

opponent with the moves produced by the nominal opponent. This type of

situation is common in truncated rollout algorithms for general approximate

DP/RL settings, where the search with a base policy is extended to only a lim-

ited depth of lookahead. A useful supplement to truncated rollout algorithms

is fortification, whereby we follow the base policy at states where the rollout

policy appears to be ineffective (we refer to sources given earlier, such as the

books [Ber19] and [Ber20], for a detailed discussion).
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We have thus considered an MPC-MC fortification strategy, which works

as follows. For a given position xk, once a move ũk is computed by using the

MPC-MC policy of Eq. (4) or Eq. (6), it is compared with the move suggested

by the position evaluator at xk, call it ûk. The MPC-MC fortification strategy

then is to play ûk if its evaluation Q(xk, ûk) is better than the one of ũk, and

to play ũk otherwise.

As the preceding discussion suggests, the fortification strategy is conserva-

tive, but provides some safeguards against overambitious play by the (unforti-

fied) MPC-MC architecture. Our computational experiments, given in the next

section, indicate that fortification is effective against very strong opponents, such

as powerful SK engines, which can exploit even small errors by MPC-MC. On

the other hand, fortification may lead to a relatively small performance degra-

dation against weak opponents, against which MPC-MC has an overwhelming

advantage.

4 Computational Results

In this section, we will present our computational results for the MPC-MC

architecture applied to two different types of chess engines. We will first use

SK and/or KD chess engines of varying strengths as the nominal opponent and

the position evaluator.12 These engines are specially designed for playing chess,

and they are incorporated into the MPC-MC architecture without modification.

The strongest versions of these engines have won prominent computer chess

competitions in recent years. Still, our results show that MPC-MC with one-

step lookahead can improve their performance. Moreover, our results indicate

that fortification in MPC-MC is beneficial against very strong opponents.

We have also used the chess engines developed by Ruoss et al [RDM24] (at

Google DeepMind) within the MPC-MC architecture. These are engines that

rely exclusively on (off-line trained) transformer neural networks to provide po-

sition evaluations without further search. At the current position and for each

legal move, they calculate a Q-factor and then they choose the move with best

Q-factor. These engines attain a strong grandmaster-level performance against

human opponents, but are generally weaker than the SK and KD engines. Still,

in a limited set of experiments, we have verified that MPC-MC can provide

12The preliminary Python implementation of MPC-MC with one-step lookahead, and the
SK and KD engines, can be downloaded at https://yuchaotaigu.github.io/research/MPC_
MC_1step.ipynb.
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a significant performance improvement, consistently with our experience with

the SK and KD engines.13 Note that the transformers that we used in these

experiments have similar structure with versatile large language models, which

can be used in a broad range of applications. This suggests that we can expect

offline-trained transformers to be well-suited for use within our MPC-based ar-

chitecture in a variety of settings, which involve minimax sequential decision

making (including two-person zero-sum games other than chess). Further re-

search in this direction appears to be promising.

4.1 MPC-MC with Stockfish and Komodo Dragon Chess

Engines

We will first provide some computational details of the MPC-MC architec-

ture with one-step lookahead, when the specialized chess engine Stockfish (SK)

and/or the freely available version of Komodo Dragon (KD) are used as nominal

opponent and/or position evaluator. We will not repeat the generic procedures

of MPC-MC introduced in Section 3. Instead, we will focus on describing how

the engines can be incorporated into MPC-MC, to play against themselves or

against each other. We will then describe the setup of our computational studies,

where we test both the deterministic and the stochastic MPC-MC architectures,

and evaluate the effect of fortification.

Given the chess position xk at time k and a legal move uk, both the SK and

KD engines select a move ν(xk, uk) via some built-in function. In addition, these

engines can be used to provide scalar evaluations E(xk+1) of any chess position

xk+1 with some additional calculation. Both the quality of move selection and

the position evaluation can be affected by a variety of factors. In our tests, we

have relied solely on the computational time limit to affect the performance of

these engines. In particular, given two engines of the same type (be it SK or

KD), we view the one with higher time limit as “stronger.”

We have tested both the deterministic and stochastic MPC-MC architecture,

where the engines’ time limits are set to 0.5, 2, and 5 seconds (at 5 secs, the

play of KD is very strong, while the play of SK is nearly perfect). To eliminate

the effect of stored hash tables on the performance, only engines without stored

13We have used these engines for only part of a game. In particular, the first 12 moves
of each game were generated using SK (playing against itself) in order to reach a variety of
middlegame positions from which to start using the MPC-MC architecture. Also, because
the transformer engines have not been trained to handle endgames well, we have substituted
instead the SK engine once the number of pieces reached 12 or less.
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data are used in our computation. In the deterministic version of MPC-MC, the

moves selected by the nominal opponent corresponding to the selected rollout

moves are played in the actual game. In the stochastic MPC-MC version, the

moves of the true opponent are selected by an independent engine that has the

same strength as the nominal opponent. Due to various reasons, engines with

the same strength and no hash tables can still select different moves given the

same pair (xk, uk). Therefore, the nominal opponent may predict moves that

are different from those selected by the true opponent, which makes the move

selected by MPC-MC a stochastic one. Since the engines also take advantage

of available computational resources effectively, for fairness we have limited the

computing resources of the true opponent to be equal to that used for evaluating

one legal move in MPC-MC.

Our test results for deterministic MPC-MC are summarized in Table 1, where

we considered three different engine configurations. In the games listed in the

column “SK vs SK,” both the nominal opponent, the position evaluator, and the

true opponent are SK. Similarly, the nominal opponent, the position evaluator,

and the true opponent are KD for those listed in the “KD vs KD” column. For

the games in the column “SK vs KD,” the nominal and the true opponent are

KD, while the position evaluator is SK.

In each setting, we tested MPC-MC (results of which are listed under “Std.”)

and its fortified variant (under “Fort.”), where a win, a draw, or a loss count

for 1, 0.5, and 0 points, respectively. In all the games we tested, MPC-MC did

not lose a single game, and the performance improvement is most clear when

the engines used are relatively weak. When competing against a very strong

opponent, such as SK at time limit 5 secs, our results show that fortification

can be beneficial. Note that the freely available version of KD that we used is

a weaker engine than SK at the same time limit, and our computational results

bear this out.

Table 1: Test Results for Deterministic MPC-MC

Strength (secs)
SK vs SK KD vs KD SK vs KD

Std. Fort. Std. Fort. Std. Fort.
0.5 7.5-2.5 8-2 8.5-1.5 8-2 10-0 10-0
2 5-5 5.5-4.5 6.5-3.5 8.5-1.5 9.5-0.5 9-1
5 5-5 5.5-4.5 6.5-3.5 7.5-2.5 10-0 9-1

Unlike a deterministic MPC-MC, its stochastic counterpart cannot predict

the moves of true opponent exactly. In our stochastic MPC-MC tests, the
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nominal and the true opponent were represented by two engines of the same

strength, which, however, for reasons of internal implementation, can select

different moves given the same position. Our computational results are shown in

Table 2, where again MPC-MC did not lose a single game, as in the deterministic

case. Moreover, the scores obtained also lead to similar conclusions as those in

deterministic MPC-MC. Since MPC-MC is strongly favored in the games “KD

vs KD” and “SK vs KD,” we did not test the fortified variant for these cases.

Table 2: Test Results for Stochastic MPC-MC

Strength (secs)
SK vs SK KD vs KD SK vs KD

Std. Fort. Std. Fort. Std. Fort.
0.5 8-2 7-3 7-3 NA 8-2 NA
2 5.5-4.5 6.5-3.5 6.5-3.5 NA 8-2 NA
5 10-10 10.5-9.5 6-4 NA 9-1 NA

4.2 Comparison with a Half-Step Lookahead Version of

MPC-MC

Let us also consider a simpler version of MPC-MC, which does not use a nominal

opponent engine, only a position evaluator. We call this the half-step lookahead

version, and we illustrate it in Fig. 2. Here the evaluator engine considers all

legal moves at the current position, and evaluates them from the point of view

of the opponent. The half-step version of MPC-MC then selects the legal move

that results in the position that is worst from the opponent’s point of view.

Theoretically, this version also has a Newton step interpretation, but the

Newton step is somewhat less reliable. The reason has to do with the lack of

concavity of the minimax form of the Bellman operator (see [Ber22a], Section

3.9, [Ber22c], Chapter 5). We will not go into further details, but we will

instead discuss briefly our computational results. These results are favorable

but not as favorable as the ones we presented earlier for MPC-MC with one-

step lookahead against the SK engine. In particular, half-step MPC-MC (using

the SK evaluator at 0.5 sec) vs SK won a ten-game match by 6.5-3.5, while

for one-step MPC-MC, the corresponding result was 8-2. Against SK at 2 sec,

half-step MPC-MC drew a ten-game match (5-5), while for one-step MPC-MC,

the result was 5.5-4.5; see the left side of Table 3.

Similar results have been obtained when using the chess engines developed
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(ũ0, . . . ũk�1) Possible Next Words uk u
0
k u

00
k Transformer Heuristic Approximate Policy Iteration

aij = C > 0 for i = 1, 2, 3 and j = 1, 2 Alternating Path
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Figure 2: Schematic illustration of the MPC-MC framework with half-step looka-
head. Here the SK engine is used to evaluate (from the opponent’s point of view) all
legal moves at the current position. Then MPC-MC selects the move that is most
difficult for the opponent, i.e., the one that results in the worst evaluation according
to SK.

by Ruoss et al [RDM24] as position evaluators.14 In particular, in 10-game

matches with 136 M and 270 M transformers, MPC-MC won by scores of 7.0-

3.0 and 7.5-2.5, respectively (with one loss in each case); see the right side of

Table 3.

Note that the half-step lookahead version of MPC-MC can also be viewed

as a variant of the evaluator engine, which involves deeper lookahead by a half

14The paper by Ruoss et al [RDM24] provides three different chess engines based on trans-
former neural networks, representing a Q-factor evaluation, a position evaluation, and a policy,
respectively. We have used the one that provides a Q-factor evaluation.
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Table 3: Test Results for MPC-MC with Half-Step Lookahead. The two left
columns represent 10-game match results for playing MPC-MC with SK as po-
sition evaluator against SK. The two right columns represent results for playing
MPC-MC with the transformer-based engine by Ruoss et al [RDM24] (abbrevi-
ated TF) as position evaluator against TF.

Strength SK vs SK Strength TF vs TF
0.5 secs 6.5-3.5 136 M 7-3
2 secs 5-5 270 M 7.5-2.5

move. On the other hand, the lookahead of strong engines is very long (over 20),

so the computational results that we have presented cannot be explained merely

by the lengthening of the lookahead by a half move. Our speculation is that

making the initial half-step lookahead exact (without any pruning) implements

a Newton iteration for solving the Bellman equation associated with the under-

lying minimax problem, and is likely responsible for our favorable computational

results.

5 MPC-MC with Multistep Lookahead

We next consider the structure of the MPC-MC scheme with two-step lookahead

(the case of lookahead longer than two is similar); see Fig. 3:

(1) At the current position xk, we generate all legal moves uk (say m in

number).

(2) For each pair (xk, uk), we use the nominal opponent to generate a single

best move wk, resulting in the position

xk+1 = f(xk, uk, wk).

(3) For each of the resulting positions xk+1, we generate all legal moves uk+1.

(4) For each pair (xk+1, uk+1), we use the nominal opponent to generate a

single best move wk+1, resulting in the position

xk+2 = f(xk+1, uk+1, wk+1).

(5) We evaluate each of the possible positions xk+2 by using the position

evaluator engine, and select as next move uk the one that leads to the
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position xk+2 with best evaluation.
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Figure 3: Schematic illustration of the MPC-MC framework with two-step looka-
head, and a deterministic nominal opponent. The position evaluator and the nominal
opponent in the figure are SK engines.

Thus, there are roughly a total of at mostm2 position evaluations andm2+m

nominal opponent move generations, where m is representative of the number of

possible legal moves at the positions that may result from the two-step lookahead

process. These calculations can be expedited by using parallel computation,

but they can also be expedited by pruning the tree that corresponds to the

second level of lookahead. One way to do this is to consider the evaluations

of the positions xk+1 following the first layer of nominal opponent moves wk.

Then prune some of the less promising positions xk+1, i.e., those xk+1 that

have relatively low evaluation, as provided by the local opponent engine. This

is consistent with MPC theory, which suggests that it is important to execute
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exactly the first level of lookahead minimization, but not nearly as accurately for

the second and subsequent levels of lookahead (see the books [Ber20], [Ber22a],

and [Ber23] cited earlier). Some testing results of MPC-MC with two-step

lookahead for “SK vs SK” are summarized in Table 4. Comparing with the

corresponding results of Tables 1 and 2, it appears that longer lookahead indeed

produces a performance improvement, as expected. We are planning a more

extensive evaluation that will allow us to reach reliable quantitative conclusions

in this regard.

Table 4: MPC-MC with Two-Step Lookahead

Strength (secs) Deterministic Stochastic
0.5 6-0 5.5-0.5
2 1.5-0.5 1-1

6 Concluding Remarks

The ideas of this paper were motivated by theoretical insights from the MPC,

RL, approximation in value space, and rollout methodologies. These ideas cen-

ter around Newton’s method for solving Bellman’s equation associated with an

underlying DP problem, and apply very generally to discrete and continuous

spaces sequential decision problems (see the books and papers noted earlier).

They apply to computer chess in particular, after its minimax two-player struc-

ture is changed to a one-player sequential decision structure through the use of

the nominal opponent engine. Consistent with the theoretical insights, we have

verified that the MPC-MC architecture provides a boost in the performance

of existing chess engines, including engines that play near perfect chess, like

Stockfish at a 5 secs per move time limit.

We distinguished between a deterministic architecture, where the nominal

opponent replicates exactly the actual opponent, and a stochastic architecture,

where it does not. An interesting observation from our experiments is that

the performance difference between the deterministic and stochastic versions

of MPC-MC is relatively small, as long as the nominal opponent does not sig-

nificantly underestimate the strength of the actual opponent. We believe that

multistep lookahead will provide an additional boost in performance, but this

remains to be confirmed with additional testing.

While each move of MPC-MC requires many position evaluations with the
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nominal opponent and position evaluation engines, these evaluations can be

done in parallel with near perfect efficiency (twice as long engine time for one-

step lookahead and three times as long for two-step lookahead, given enough

parallel computing resources). This was verified approximately with the use of

cloud-based parallel computations, and we expect that it can be verified using

dedicated parallel computing hardware, as well.

We finally note that the structure of the MPC-MC architecture can be ap-

plied to a host of other two-person games for which computer engines are avail-

able. Key ideas in this regard are:

• The first step of lookahead is done exactly (all legal moves should be

considered in the context of computer chess and MPC-MC).

• The actual opponent is replaced by a nominal opponent, in order to apply

one-player MPC methods.

These ideas apply more generally to deterministic minimax problems with

arbitrary state space and finite control space; see the textbook [Ber23], Section

2.12. Further research will be necessary to explore the potential of the ideas of

this paper within this broader domain.
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