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Multinode Broadcast in Hypercubes and Rings
with Randomly Distributed Length of Packets

Emmanouel A. Varvarigos and Dimitri P. Bertsekas, Fellow, IEEE

Abstract— We consider a multinode broadcast (MNB) in a
hypercube and in a ring network of processors. This is the
communication task where we want each node of the network to
broadcast a packet to all the other nodes. The communication
model that we use is different than those considered in the
literature so far. In particular, we assume that the lengths of
the packets that are broadcast are not fixed, but are distributed
according to some probabilistic rule, and we compare the optimal
times required to execute the MNB for variable and for fixed
packet lengths. For large hypercubes we show under very general
probabilistic assumptions on the packet lengths, that the MNB is
completed in essentially the same time as when the packet lengths
are fixed. In particular, we show that the MNB is completed by
time (1 + &)T, with probability at least 1 — ¢, for any positive
e and 6, where T, is the optimal time required to execute the
MNB when the packet lengths are fixed at their mean, provided
that the size of the hypercube is large enough. In the case of the
ring we prove that the average time required to execute a MNB
when the packet lengths are exponentially distributed exceeds by
a factor of In n the corresponding time for the case where the
packet lengths are fixed at their mean, where n is the number
of nodes of the ring.

Index Terms—Hypercube, multinode broadcast, random packet
lengths.

I. INTRODUCTION

HE processors of a multiprocessor system, when doing

computations, often have to communicate intermediate
results. The interprocessor communication time may be sub-
stantial relative to the time needed exclusively for computa-
tions, so it is important to carry out the information exchange
as efficiently as possible.

One of the most frequent communication tasks is the
multinode broadcast (MNB). In this task we want each node
to broadcast a packet (the same packet) to all the other nodes.
The MNB arises, for example, in interations of the form
241 = Axy, where A is a square matrix and z,.2,1 are
column vectors of appropriate dimensions. In this computation,
each processor computes a specific component of the vector
z¢41 and broadcasts it to all the other processors so that it can
be used during the next iteration.

Algorithms for routing messages between different proces-
sors have been studied by several authors under a variety
of assumptions on the communication network connecting
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the processors. Saad and Shultz [14], [15] have introduced
a number of generic communication problems that arise fre-
quently in numerical and other methods. They hav(e assumed
that all packets take unit time to traverse any communi-
cation link. Johnson and Ho [9] have developed minimum
and nearly minimum completion time algorithms for similar
routing problems as those of Saad and Schultz but used a
different communication model and a hypercube network.
Their model quantifies the effects of setup time (or overhead)
per packet, while it allows packets to have different lengths,
and to be split and be recombined prior to transmission on
any link in order to save on setup time. In the model of [9],
each packet may consist of data originating at different nodes
and/or destined for different nodes and the extra overhead
for splitting and combining packets is considered negligible.
Bertsekas et al. [2], and Bertsekas and Tsitsiklis [1] have
used the communication model of Saad and Shultz to derive
minimum completion time algorithms for several communica-
tion problems in a hypercube. In particular, they have given
an algorithm for the multinode broadcast that executes in a
minimum number of steps ([(n — 1)/d] for a hypercube with
n = 29 processors). Several other works deal with various
communication problems and network architectures related to
those discussed in the present paper; see [3]-[5], [7], [8].
[10]-[12], [16]-[20]), and [21].

In this paper we will be dealing with a multinode broadcast
in hypercubes and rings. The case where the packets broadcast
by the processors have equal deterministic lengths has been
studied in the literature for a variety of regular topologies.
Algorithms that execute the MNB in optimal time exist for
the case of the ring ([1]), the d-dimensional wraparound mesh
([12], [1]), the hypercube ([14], [15], [12], [1], [2], [9]), and
other topologies. A common assumption in the communication
model adopted by the previous authors is that all the packets
require one unit of time in order to travel over a link (i.e., the
transmission time plus the propagation delay over the link and
the processing delay at the node all sum up to one unit). As
a result the algorithms found were synchronous and assumed
the existence of a global clock.

In this paper we will relax some of the previous assump-
tions. The existence of a global clock is no longer assumed.
Furthermore, the lengths of the packets broadcast are not
deterministic, but they are distributed according to some
probabilistic rule. In order to be able to make comparisons
with the fixed packet length case, the mean value of the
packet lengths will be taken equal to one unit. Setup times
are included in the processing time.

1045-9219/93%03.00 © 1993 IEEE
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For both the hypercube and the ring network of processors
the number of nodes will be denoted by n. For the purposes
of this paper, a hypercube network (or d-cube) consists of
the set of points in d-dimensional space with each coordinate
equal to zero or one. There is a bidirectional communication
link for every two points differing in a single coordinate. We
thus obtain an undirected graph with the processors as nodes
and the communication links as arcs. The binary string of
length d that corresponds to the coordinates of a node of the
d-cube is referred to as the identity number (or ID) of the
node. When confusion cannot arise, we refer to a d-cube node
interchangeably in terms of its identity number (a binary string
of length d) and in terms of the decimal representation of its
identity number. Thus, for example, the nodes (00 - - - 0), (00
..+ 1), and (11 --- 1) will also be referred to as nodes 0, 1,
and 2¢ — 1. respectively. For any two binary strings .r and
y we denote by x @ y the bitwise exclusive or of x and y.
We also denote by log n and In n the base 2 and the Napier
logarithm of n. respectively.

The optimal completion time of the MNB in a d-dimensional
hypercube with n = 2¢ nodes, when each packet requires one
time unit (or slot) for transmission over a link, was found in
[2] (see also [1]) to be [(n — 1)/d] time slots, where by [2]
we denote the smallest integer which is greater or equal to .
We evaluate the time complexity of the optimal algorithm de-
scribed in [2] when the packet lengths are not constant, but are
distributed according to some probabilistic rule. We consider
the natural adaptation of the optimal deterministic algorithm
which can deal with the probabilistic case. In particular, we
assume that the same schedule of packet transmissions (i.e.,
order in which the packets are transmitted over the links)
with that of the optimal synchronous algorithm is followed;
however, the timing is not the same, since the model is no
longer deterministic. Note that no synchronization is needed
for the algorithm to work. Let Tasnp be the time required for
the completion of the MNB in the asynchronous probabilistic

case and let
T, = [n - 1—]
d

be the corresponding optimal time for the synchronous deter-
ministic case. For a given n,Tarnp is a random variable and
T, is a constant. We assume that the probability distribution
of the packet lengths has unit mean and that the corresponding
characteristic function ®(s) exists for some s > 0. We prove
that given any 6 > 0 and € > 0, we can find ng = no(b.€)
such that

Pr(Tayng <(1+8)Ts) 21 —¢ {for the hypercube)

for all n > ng. This means that as n — oc, the MNB
is completed with probability one in time less than 1+
§)T,, where & is arbitrarily small. Thus, the probabilistic
nature of the packet lengths does not deteriorate appreciably
the performance of the optimal MNB algorithm for large
hypercubes.

This is a rather surprising result. As shown in Section II,
in the case of the ring, the average completion time of the
MNB with random packet lengths increases substantially over

the corresponding deterministic case. In particular, the mean
time E(Tyr~p) required to complete the MNB in a ring for
exponentially distributed length of packets with mean one time
unit is

E(Tarxg) = (C + Inn)T,. (for the ring with 7 nodes)

where C = 0.577215 is Euler’s number, and

n—1
- |

is the time to execute the MNB in the case of unit packet
lengths.

The organization of the paper is the following. The MNB in
a ring is treated in Section II. The analysis found there is rather
straightforward, but it does give some insight for the case of
the hypercube. Sections I1I-V deal with the hypercube network
of processors. In Section Il we describe the communication
algorithm (scheduling) that will be used. Section IV derives
a loose upper bound for E(T;xp) when the packet lengths
are exponentially distributed. Our main result, which holds
for general distributions of the packet lengths, appears in
Propositions 3 and 4 of Section V. Finally, the appendices at
the end resolve some technical issues arising in our analysis.

[I. MULTINODE BROADCAST IN A RING

Consider a multinode broadcast in a ring. In the case
when all the packets require one unit of time (or slot) to be
transmitted over a link, the optimal time to perform the task is
[(n —1)/2], where n is the number of processors of the ring.
The following algorithm, found in [1], achieves this optimal
time.

At the first slot, each node sends its packet to its clockwise
and counterclockwise neighbors. During slots 2, [(n -
1)/2], every node sends to its clockwise (counterclockwise)
neighbor the packet received from its counterclockwise (re-
spectively, clockwise neighbor) at the previous slot (Fig. 1).

We are interested in the case where the lengths of the
packets generated by the nodes (and therefore the time required
to transmit them over a link) are not constant but follow
some probability distribution. We will evaluate the mean time
E(Tx~p) required to complete the MNB.

The remainder of this section consists of two parts. In
Section II-A we derive a general expression for E(TunB)
and apply it to the case where the packet lengths follow a
uniform distribution. In Section 1I-B we calculate E(TrxnB)
for the case of exponentially distributed length of packets.

A. General Expression for E(Ty~p)—Uniform
Distribution and Bounded Distribution of Lengths

Let z;.i = L.---.n, be the time required to transmit the
packet generated at node i over a link of the ring. Since for
each processor i there is a processor which is [(n—1)/2] links
away from i, and since the packet from ¢z has to be broadcast
to all the other nodes, we have Tayyp > [(n — 1)/2]z;, for
all 7. Thus,

n
Th~NB > [——2 -] max ;.
1
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Fig. 1.

Broadcast in a ring.

On the other hand, it can be seen that
n—1
Tane < {T-I max ;.

by observing that a MNB in a ring with packets of lengths (in
time units) z;,¢ = 1,---.n. cannot require more time than the
time required when all the packets are equal to the largest of
them. An alternative way to prove this inequality, is to note
that the largest packet generated by a node is the bottleneck
of the algorithm, in the sense that by the time it arrives to the
node opposite to its source on the ring, all the other packets
of smaller length have already arrived to the node opposite
to their source.
Thus Tarvp = [(n — 1)/2] max; ;. and

n—1

2

E(Ta~B) = { “E(HlaXJI?,‘). 1)

This equation holds for any probability distribution of the x;’s.
In what follows we will examine specific distributions.

We first note that if the x;’s are bounded by a constant B.
then the time required to execute the MNB is bounded by
[(n—1)/2]B. Assume now that the lengths of the packets are
independent and uniformly distributed over the interval (0, u).
Then, straightforward calculation yields

un
n+1"

E(maxz;) =
1
and the desired time is

E(Tx~p) =

un (n—1
n+1 2 ’

If w = 2 so that the mean transmission time F/(x;) of a packet

is one time unit, the preceding formula becomes

2 n - ]
_ n o |[n-—1 _ 2n T,
n+1 2 n+1

where T denotes the optimal completion time for the corre-
sponding deterministic case.

E(TxnB)

B. Exponentially Distributed Length of Packets

Assume now that the transmission times z; over a single link
are exponentially distributed independent random variables
with mean one time unit. Then we have

Pr(z; < X)=1- e Y.

Since Pr(max; x; < X) = Pr(r; < X220 < X,---.7, <
X) and the z;’s are independent and identically distributed
random variables, we obtain

Pr(maxr; < X) = (1 - e~ Yy,

On the other hand we have

o<
E(maxz;) = / Pr(maxz; > X)dX
7 . 0 1

= /x(l—(l—e_‘\—)")dX.
J0

By calculating this integral, we get, after some manipulation,
that

1
ot

1
E(maxz;) =1+ =
(m;txr) 3 "

Therefore,

n—1 1 1
E(TmB):[ . K”i*“*;)-

For large n, the sum of the n first terms of the harmonic
series is approximately In n. In order to see that, we integrate
1/x from 1 to n, and bound the integral from above and below
by discretizing it. Then we find that

1 1
=t

2 3

1 nl 1 1
'+—S/ Zdr=lnn<l+=+ - 4+ ——
n 1 @& 2 n—1

which gives

n

1 +1 !
nn+— k
k=

<lnn+1. 2)

=

If more accuracy is required, the following formula ([6, p. 2])
can be used:

n

Ma

1
—=C+1 +* 3
;k nn Zon(n+ 1 (n-l—k 5 &
where
s
Ak:E/ r(l—-z)2—-x)3—-2) - (k—=1-2xz)dx
Jo

and C = 0.577215 is Euler’s constant. It is shown in Appendix
1 that

= A
JH‘;(Zn (n—|—k—1)>_0'

2

Therefore, for large n, we obtain the following approximation:

n—1 1 1

~ [”;11((7—{—111 n).
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By comparing the results for the uniform and the exponen-
tial distributions, one can see an interesting difference. For the
uniform distribution with unit mean packet length (u = 2). the
expected time for the completion of the multinode broadcast is

T ot

n+1
where T, is the completion time for the corresponding syn-
chronous deterministic case; for the exponential distribution
the corresponding mean value of the completion time is
approximately In n - T,. Thus, the mean completion time
for a MNB in a ring strongly depends upon the particular
distribution of the packet lengths. It is not only the mean, but
also the tail of the distribution that plays a significant role. We
will see that in the hypercube, the particular distribution of the
packet lengths plays a less important role. All that matters in
this case is the mean of the packet lengths.

IIl. MODIFIED ALGORITHM FOR THE MNB IN A HYPERCUBE

In the remainder of the paper we will be dealing with a
multinode broadcast in a hypercube network of processors. In
order to obtain complexity results for the MNB in the random
packet length case, we will analyze a slightly modified version
of the optimal synchronous algorithm found in [2] and [1]. The
results obtained for the modified algorithm will hold for the
optimal algorithm as well. In this section, we first explain why
a modified algorithm is analyzed instead of the asynchronous
version of the optimal algorithm. We then give the description
of the modified algorithm.

The optimal synchronous algorithm of [2] can be viewed
as consisting of d phases. During phase i the packet that
originates at node s. where s = 0.---.n — 1. arrives at
the nodes that are located ¢ links away from s. When d
is not prime, the phases may have to overlap in order for
the completion time of the MNB to be strictly optimal. This
complicates the analysis of the asynchronous case, since the
time required to complete a phase will be affected by previous
phases that have not finished yet. The reason is that in phase
i+ 1, a packet of some origin node may be scheduled to be
transmitted over some link after the packet of another origin,
but the latter packet may not have yet completed phase i

To circumvent this difficulty. we modify the algorithm so
that its phases are not allowed to overlap. The modified
algorithm, is the same with the optimal algorithm except that
there is a constraint that each packet begins phase / + 1 only
after all packets have completed phase 7. The completion time
of the modified algorithm is slightly larger than the actual
T~ B achieved by the optimal algorithm. Note, however, that
the modified algorithm is introduced strictly for the purposes
of analysis. In practice one would prefer to use the optimal
algorithm whose running time is (slightly) superior to the one
of the modified algorithm.

We now describe briefly the modified algorithm, assuming
the reader is somewhat familiar with the optimal synchronous
version given in 2] and [1]. We first note that if we find n
synchronous single node broadcast algorithms in a hypercube,
each one originating at a different node, and such that no two

of them use the same link during a slot, then we have a MNB
algorithm.

Let A;(0) be the set of links on which the packet originated
at node 00 - - -0 is transmitted during the Ith slot. Obviously,
each link in A;(0) connects two nodes with ID’s that differ
in a specific bit position. Our aim will be to define A{(0) in
a way that no two links in A;(0) connect nodes whose 1D’s
differ in the same bit position. If we do so, then the sets

As) = {(s@x.s@yllr.y) € A0} =12,

can be the sets of links on which the packet generated at node
s is transmitted during the [th slot, foralls =0.,1,---n—1.
[t can be seen that A;(s) N A;(u) = @ since s@ z and s © y
differ in a particular bit if and only if = and y differ in the
same bit. Thus for s = 0.1.---.n — 1. the sets A;(s) do not
have common elements for a specific [, provided of course that
A4,(0) satisfies the condition mentioned above. In this way it
is guaranteed that no two packets will claim the same link
during the same slot. We now proceed to specify A;(0).

Fori = 1.---.d. we denote with N; the set of d-bit binary
numbers with exactly i ones. The cardinality of N is (4). Each
set N, is in turn partitioned in disjoint subsets Rii,- . Rin,

which are equivalence classes under a single bit rotation to the
left. R, is selected to be the class of the element of N; whose
i rightmost bits are unity. Then each node ID is associated with
a distinct number m(t) € {1.2.---.n — 1} in the order

RiiRo1 - Romy - Ria—2yna_s Ria—11(11---1). (4

The first element in each set R;; is chosen so that its bit in
position 1 + [(m(t) — 1)(mod d)] from the right, is a one.
The subsequent elements of R;; are found by rotating the first
element to the left. We successively group together d elements
of the set N; into sets Ej;.j = 1.---.[(¢)/d] in the order
they appear in (4). When d is a prime integer, each one of
the equivalence classes 1;; (except for Ro1 and Rg1) has d
elements. This happens because when d is prime, all left shifts
of less than d positions produce distinct d bit binary numbers.
Then there are (¢)/d equivalence classes in N;, each with d
elements, and the sets R;; and E;; coincide. If d is not prime,
then for cach i we will have [(¢)/d] sets Eq; which we order
as in (4).

Consider now the following graph consisting of nodes
0.1.---.n — 1. Every element of E;; is connected to an
element in N,_; so that each connection corresponds to a
reversal of a different bit. Every element of E;; is connected
to exactly one element of V;_y. In this way a graph is obtained
which is the single node broadcast tree for node 0. The links
connecting layers [ — 1 and { of this graph constitute the links
of 4;(0). By construction, these links satisfy the conditions
that we have set for A4;(0) (see also [1, p. 60]). Then, the
broadcast tree of node s can be obtained from the broadcast
tree of node 0 by simply adding s to the ID of each node of the
tree. The broadcast tree of node 0 for d = 5 is shown in Fig. 2.

IV. A LOOSE UPPER BOUND FOR E(TmnB)

Assume that the lengths of the packets that are broadcast
by the nodes are independent exponentially distributed ran-
dom variables, and consider the asynchronous version of the
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Fig. 2. The broadcast tree of node 0 for d = 5.

algorithm presented in Section III. This algorithm should be
interpreted as specifying the order in which the packets are
transmitted over the links and not the exact timing. We are
interested in the completion time Tasnp of the algorithm.

The following upper bound for the average time required
for the MNB can be found using the reasoning developed in
Section II for the ring topology:

E(Tung) <(1+1/241/3+---+1/n)T, = (In n+ C)T,
where C is Euler’s constant and
n—1

|

is the time required by the deterministic optimal algorithm.

Relation (5) can be proved by arguing that the time for
the MNB when the packets which are broadcast by nodes
0,1,---,n —1 have variable lengths ¢, z1,---,z,_1. cannot
be longer than the time for a MNB in which all packets have
lengths equal to max; x;. This gives

T,

Tyng < (maxz;)Ts.
and by using the relation
E(maxz;)=1+1/2+---4+1/n~Inn+C.

used in Section II, we obtain the bound (5).

However, this bound is not tight as in the case of the ring,
because the packet with the greatest length is not necessarily
the one that determines the completion time of the MNB in a
hypercube. The reason is that, during the MNB in hypercubes,
a packet is wasting most of the time waiting behind other
packets that were scheduled to use a link before it. Thus,
although the bound in (5) is valid, it is not tight because it

corresponds to a case in which the packet having the maximum
length among all the packets has to wait behind other packets
which also have maximum length. This is not a typical scenario
and the mean completion time is considerably overestimated.

V. ASYMPTOTIC BEHAVIOR OF ThynB AS N — o0

To obtain a tighter estimate of Tysn g, a different approach
based on Markoff’s inequality will be used. We will look at
the asymptotic behavior of the Ty v p as the dimension of the
hypercube increases.

During phase ¢ of the synchronous modified algorithm,
the packets are received by all the destinations that are at
a Hamming distance ¢ from the source of the packets. Phase
¢ consists of

?)W

5= |2

d

steps.

As already mentioned, in order to analyze the case of
random packet lengths, the scheduling of the asynchronous
modified algorithm described in Section III will be used. Phase
i of the algorithm is considered to have been completed only
when all the packets have completed phase i. There are d
copies of each packet, which upon completing transmission,
mark the end of phase ¢ of this packet. These are the r4((¢))
copies which are transmitted during step Zj»:l B; (last step
of phase i), and d — r4((¢)) copies which are transmitted
during step E§~=1 B; — 1 (next to the last step of phase )
of the synchronous algorithm, where we denote by r,(y) the
remainder of the division of y by x. We will refer to these
packets as the terminal packets of phase i. In Fig. 2 we show
the terminal packets of phase 2 for the broadcast tree rooted
at node 0. Let us number the terminal packets of phase ¢ as
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j=1,2,--- nd (there are d terminal packets per origin node,
so the total is nd). Let us also denote by w;; the time that
elapses between the beginning of phase ¢ and the time the jth
of these terminal packets completes phase 7. For every terminal
packet of phase ¢, the time required for the packet to complete
phase ¢ consists of at most 3; packet transmissions; J; — 1 or
i — 2 transmissions of other packets that were scheduled to
use the link before it, and one transmission of the copy of the
packet under consideration. Then we can write

Wi; = E Iy

e,

where A;; is a set of distinct integers between 0 and n — 1
which has cardinality less or equal to [3;, and «; is the length
of the packet which originates from node [. In particular, a
node belongs to set A;; if a packet generated at that node
is scheduled to use during the ith phase the same link that
terminal packet j of phase i will use.

Let

O(s) = E(e®)

be the characteristic function of the distribution of the packet
lengths and let

D = {5 > 0|E(e*") exists}

be the positive portion of its domain. Since w;; is the sum
of at most /3; independent and identically distributed random
variables, we have (since ®(s) > 1 for s € DT)

E(esv) < ®(s)*.  Vse DY,

Also, from Markoff’s inequality [13] we have

E(es%)
a

Pr(e’™v >a) < Ya > 0.s € D*.

From the last two relations we obtain

i3,
Pr<wu < hl_a) >q_ 2067
S

VYa>0.5s €D, (6)
a

The time required for the completion of the ith phase by
the nd terminal packets of that phase is

T = it
s, b}
Therefore, for all s € D and a > 0.

1 ,
Pr(Ti < ﬂﬂ) = Pr(wij < ln_aJ = 1.-~~«nd>. 7
s s

The w;;’s that appear at the right hand side of (7) are not
independent random variables, so we cannot readily use (6) to
estimate Pr(T; < Ina/s). To proceed further with the analysis,
the following two propositions are needed:

Proposition 1: Let IJ C N x N be a subset of the set of
index pairs (i, ) with 1 < ¢ < d.and 1 < j < nd. Then for
all m e {1,---,d},k € {1.---.nd}. and all a > 0, we have

Pr(wi; < a,(4,J) € IJ|wmi < a)
> Pr(w; <a.(icg)eld).

Proof: We know that w;; = Xjcs 7. Let T =
(29, Ty, .Txn—1) be the random vector of packet lengths.
We define the sets

E; ={T € R™|w;; = max wpe}
i =1 = A e

> @

TeER" E T = max
q)el
(p.9)€ Jlequ

€A,

In order for the sets E;;. (4. j) € IJ to be disjoint, we say that
if for some T there are two pairs (i1,71) and (i2,J2) in I.J,
with (i1.71) < (42, J2) (< is any order in N x N, for example
the lexicographic order), such that w;, ;, = w;,;,, then this T
will be considered to belong to E;,;, and not to E;,;,. Then

Z PI‘(? € Ei]‘)PI‘(wij < (117 c Eij,'ll)mk < (I,).
(i.g)yelJ

Pr(w;; < a.(i.j) € IJ|wme < a) =

®)

In Appendix 2 we prove that Pr(w;; < alwme < b) >

Pr(w;; < a) for all a,b > 0. It can be seen that the proof
of the last inequality is not altered if both probabilities are
conditioned on the fact T € E;;. Thus,

Pr(w;j < alwme < a.T € Eyj) > Pr(w;;a|z € Ejj).
The last relation together with (8) yields
Pr(w; < a.(i.j) € IJ|wmp < a)
> Z PI‘(T c Ei]) Pr(w,-j < (Llf € Eij)
(i.j)eld
= Pr(w;; <a.(i.j) € I.J).

Note that if in the preceding proof we replace w;; by w;; +
a — a;; we get the more general relation

Pr(w;; < ai;.(i,7) € IJ|wmk
S amk) > Pr(wlj S aij»(iaj) € IJ) (9)
Q.E.D.
As noted already, the w;;’s are not independent and their
joint distribution is not equal to the product of the marginal

distributions. However, the following proposition holds.
Proposition 2: For all ¢ > 0 and k € {1,---,nd},

k
Pr(wij <a.j=1.--.k) > [[ Pr(w; <a). 10)
J=1

Proof: The proof will be given by induction on k. For
k = 2, we know from Appendix 2 that Pr(w;; < alw;z <
a) > Pr(w;; < a). which by using Bayes’ rule yields

Pr(w;; < a,wiz < a) > Pr(w;; < a)Pr(wiz < a).

Suppose that the proposition is true for k£ — 1 or equivalently

k—1
Pr(w;; <a.j=1.--.k—1)2 [] Pr(wi; < a).
j=1

an
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Then

Pr(wijga,j:1,~~.
Pr(wj; <a,j=1,--,

k) =

k — 1w < a)Pr(wix < a).
(12)

By using this equation together with Proposition 1 we obtain

Pr(w;; <a,j=1,--- k)

ZPr(wijSa,j:1,~-,k—1)Pr(w1~k §a)

which with the aid of (11) yields

Pr(w;; <a,j=1,--, r(wi; < a)

= [T ee
thus completing the induction. Q.E.D.

The next proposition is an intermediate result leading to our
main result. It is a lower bound on the probability that Ty g
is less than some appropriate expression.

Proposition 3: Let s be a scalar in the positive portion D
of the domain of ®(s). Assume that 4 > 0, > 0 are any
scalars such that

def et def eHs

Cam Tt Ve

Then for each sg € P* and § > 1, we have

> 2.

d-3
PI‘(TMNB < /\Zﬂ1 + 2uf + 38—0111 n)

=3 4

1 2nd
2 (l - C—lnlc‘g2 ()

L _ %(s0) 3n . 1
n9 n(1/7)d log; §

for sufficiently large dimension d.
Proof: By combining (7) and (10) we get

) nd?

nd

Pr(T < -—) > HPr(wu < ln_a)

which with the aid of (6) gives

3 nd
Pr(]’iglig>z(1—¢(i> )
S a

Inequality (13) is valid for any a > 0 and any s € D*. We
select A > 0 so that £ = ¢**/®(s) > 1 and let a = **% . By
substituting these values of a and £ in (13), we obtain

(13)

1 nd
Pr(T; < AB;) < (1 - Eﬁ—> . (14)

By using the obvious inequality

q 9
Pr(Shi<S ] 2PTi<cii=p,--,0)

i=p 1=p

we further obtain

d-3 d-3
Pr(ZTi < )\Zﬂi) > Pr(T; < ABjvi = 3,4,--+,d = 3).
i=3 i=3
(15)
Note that the T;’s are not independent. However, we prove in
Appendix 3 that for all a; > 0,
Pr(T; <a;,i=1,2,--
>Pr(T; <a;i=1.2,---,m

m = 1T < am)

-1).

(Relation (16) is intuitively clear, since the knowledge that the

duration of the mth phase is less than a,,, cannot decrease the

probability that the duration of phases 7 = 1,2,---,m — 1 is

less than a;,i = 1,2,---,m — 1 below its a priori value.)
By successive use of (16), we obtain from (15) that

d—3 d-3 d-3
Pr(Zn < AZ@-) > > Pr(Ti < AG).
=3 =3 i=3

,d—3 we get

(16)

By combining the relations (14) for: = 3,4, - - -
d-3 d—3 d-3
Pr (ZT,- < AZ@-) > [ Pr(T < A8)
i=3 i=3 i=3
an

Since ¢ > 1 and 8; = [($)/d] > B3 for 3 < i < d— 3, we
get 55’ > 5"3 and (17) can be transformed to

d—3 d—3 1 nd?
Pr(;Ti < AZ%@) > (1— 57) . (18)

Furthermore , we have that 83 = [(d — 1)(d — 2)/6] > d?/7
for sufficiently large d. This in turn gives £ > 24" log; €/7 —
nd1o828/7 since £ > 1. Using this, relation (18) gives

1 nd?
Pr(ZT <AZ&> > ( m) a9

=3

with £ > 1.

Note that Zf;f T; is the time required for the completion
of phases 3,4, ---,d —4,d — 3. Phases 1,2,d — 2,d — 1 and
d will be treated separately.

The time to complete phases 1,d — 1 and d is determined
by the length of the longest packet. This is so because these
phases consist of one step and, therefore, T; = max; z;, for
it =1,d — 1,d. Then by using Markoff’s inequality we obtain

Pr(T < ln_a) :Pr(:mg l—n—g.l:O,l,'--,n——1>
s

> (1—-‘1?) , fori € {1,d — 1,d}.

If we select @ = n? with § > 1 and we let s be equal to any
so € DT, the preceding inequality yields:

Pr(Ti < ilnn) > (1 - (I)(ZO)> , forie {1,d—-1,d}.
So n
(20)
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For the phases i = 2 and ¢ = d — 2, we get from relation
(13) and the fact 32 = B4-2, that

82\ ™4
Pr(ngm—a)z(l—&) ‘
S a

If we select @ = e#*%2 then (21) is transformed to

fori € {2.d - 2}.
@1

nd
Pr(T; < pB) > (1 - %) . forie {2.d-2} (22)

where

ers .
(= @>2.

Since 23, = 2[(d — 1)/2] > d — 1, we get

1 nd
Pr(T; < pufo) 2 <1 - F)

nd
1
= (1 — FW) . fori € {2d — 2}(23)

By combining (19), (20), and (23), and by using the fact
E;izl T, = Thnpg, we finally obtain

d-3
(4
Pr(T\[NB < )\ZL% +3—lnn + Qp,ﬁz)

1=3

e 1 2nd . @(60) 3n
- - —lnlcug2 ¢ - 719
. 1 nd?
n(1/7)‘“°82 [3

with 8 > 1,80 € DY, ¢ > 2, and £ = */®(s) > 1. QED.

Now we are in a position to prove the main result of the
paper.

Proposition 4: Let Thynvp be the completion time of the
MNB when the lengths of the packets are distributed according
to some probabilistic rule with unit mean, and let 7 =
[(n—1)/d] be the completion time of the MNB when packets
have deterministic length equal to one time unit. Assume
also that the positive portion D* of the domain of @(s) is
nonempty. Then given any § > 0 and ¢ > 0. we can find
no = no(d,€) such that

24

PI‘(T}\[NB < (1 + 5)Ts) >1—ce, Vn > ng.

Proof: Since ®(s) < oc for s € D, there exists a A > 0
such that e** > ®(s) for some s > 0, and a x> 0 such that
et > 49(s). Let

e)\s ons

§:m>1- (= ‘1)—(5>2'

Consider also some sg € DT and 6 > 1. Then the conditions

of Proposition 3 are satisfied and (24) holds. In Appendix 4
we prove that for

E>1, (>2. 6>1 (25)

the right hand side of (24) goes to one as the number of
processors n goes to infinity. Thus, for all € > 0, we can
find n1(e) such that for all n > ni(e)

d-3

Pr(TM;\B <A B +3—1nn+2uﬂ2) >1—ec (26)

=3

We denote
d-3 p
To( _)\Zﬁl+3—lnn+2uﬁg
=3
and

Ty(n) = fo]

T.(n) is the optimal completion time of the MNB for the
synchronous (deterministic) case. Since n — 1 = d @it
can be seen that

4 n—1+d
ERE IR
From this fact, it follows with some additional calculation that

im La(n)
w0 To(n)

= A

Therefore, given some § > 0 we can find n(8) such that

g)Ts(n)
for all n > ng(6).

We define ng(6. €) = max(ni(e). n2(8)). For n > ng(6¢€),
both (26) and (27) hold. Thus for any § > 0 and any € > 0
there always exists a ng = ng(6,¢). defined as above, such
that for all n > ng(d,€)

PI‘(TMNB < ()\ + g)TS> >1—ce

We will now prove that A can always be chosen to be equal
to 1+ (6/2) for any § > 0. It is enough to prove that there
exists an s € D¥ such that

elHE/2]s 5 @(s).

d-3 6
AZ@+3—mn+2uﬂ2 ( @7

=3

(28)

F(s) = ®(s)e [1H6/2s,

Since F(0) = ®(0) = 1, it is enough to prove that F(s) is
strictly decreasing in a neighborhood of 0. Since ®(s) is dif-
ferentiable (because the exponential function is differentiable),

we have
F'(s) = e‘[1+(‘5/2)13<¢'(s) - (1 + g) @(s))
—(8/2) < 0 (we used the fact that

which gives F'(0) =
®/(0) = 1, since the packet lengths have unit mean). There-
fore, there exits an s € DT such that F'(s) < 1 or equivalently
el1+(8/2)s 5 &(s). Thus, we can always choose X = 1+(6/2).
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By substituting this value of A in (28) the proof is completed.
Q.E.D.

The last theorem constitutes the main result of this paper.
It indicates that in hypercubes of large dimension, the factor
by which the completion time of the MNB increases when
the packet lengths have essentially any probability distribu-
tion over the corresponding case where all the packets have
constant lengths, is very close to one. This result should be
compared with the case of the ring with n processors, where
the average time required for the MNB when the lengths of
the packets are exponentially distributed is In n times that of
the corresponding deterministic case.

An intuitive explanation of this result is the following.
Loosely speaking, as d increases, the number of steps within
each phase (except phases 1. 2. d—2.d—1. d) grows faster than
d. Therefore, the number of packets that are transmitted one
after the other within some phase increases more rapidly than
the number of phases. The sum of the lengths of the packets
which are transmitted over some link during phase i is then
forced by the central limit theorem to come close to its mean
value b;. As a result the total time required for the MNB
of the asynchronous probabilistic case approaches the time
complexity of the synchronous deterministic case. Therefore,
although the result may seem unexpected, it is not counter-
intuitive. We also remark that the MNB algorithm of [9] and
[14] have different properties than those of the algorithms
presented here (the phases are of different durations). Thus
a result analogous to the one proved here may not hold for
these algorithms.

We finally note that the existence of a global clock was
not assumed at any point throughout the analysis. The only
exception is the initialization of the algorithm, which was
assumed to take place synchronously for all the processors.
If this assumption is relaxed the additional overhead for the
initialization using a naive scheme (single node broadcast of
a start signal) will be O(d) which is small, so the result still
holds.

APPENDIX 1

In this Appendix we will prove that

i a =0.
n—oc (27l Zn (n+1)-- 71+k1)>

lim

Denote

fe o)
kZ:z n( (n+k—-1)
Since A > 0, obviously F'(n) > 0 for all n > 0. From (2) and
(3) we get that C—F(n) > 1/2n > 0. which gives F(n) < C.
for all » > 0. Therefore, for n = 1. F(1) < C. It can also
be seen from the definition of F'(n) that F(n) < F(1)/n.
This gives

il

C
0< F(n) < —.
n

Therefore, lim,,_.o F(n) = 0 and

1
lim <‘— - F(n)) = 0.
n—oc \ 27,

Q.E.D.
APPENDIX 2
In this Appendix we prove the inequality
Pr(w;; < ajwme < b) > Pr(w;; < a) (29)

which was used to prove Proposition 1.

We have
wij = E rp. Wk = E .

leA,; €A mi

The dependence between w;; and w,,, comes from the fact
that some indexes ! are common in A,,; and A4;;. Let C =
Apk N Aj;,A = A;; — C and B = Apy — C. Then if we
denote y = Yiec a1z = Ejeam. and r = Xepay, the
random variables y, z. r are independent, since for distinct [’s,
the random variables ; are independent.

By using the above notation, it is enough to prove that

Pry+z<aly+r <b)>Pr(y+z2<a) (30)

Bayes’ rule gives

Priy+z<ay+r<bh)

Pr(y +z <aly+r <b) = Pr(y +r < b)

We have that
Prily+z<aly+r<ba—z<b-r)
_Priy+z<ala-2<b-r)
T Pr(y+r<bla—z<b-r)
Priy+z<ala—z<b-r7)

A%

and
Priy+z<aly+r<ba—-z>b-—r)
Priy+r<bla—z>b-r)
:Pr(y-f-rgb\a—zzb—-r) -
>Priy+z<ala—z>b-r).

These relations give

Pr(y+z<aly+7r <)
=Priy+z<aly+r<ba-—-z<b-r)
Prla—2<b-7r)
+Pry+z<aly+r<ba—-2z>b—r)
‘Prla—22>b-r)
>Pry+z<ala—z2<b—r)Prla—z<b-r)
+Pr(y+z<ala—z>b—7r)Prla—z2>b—r)
=Pr(y+z<a)

As a result, relation (30), which is equivalent to relation (29)
holds. Q.E.D.
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APPENDIX 3

In this Appendix, we prove (16), repeated below for con-
venience,

Pr(T; < a;,i=1,2.---.m— 1T, < an)

>Pr(T; <a;i=1.2.---.m—1). 31)
By definition we have
=, e
Let k;,4 = 1,2,---,m, be the arguments that attain the

maximum above for ¢ = 1.2,..-,m, and let Pr(k;,i =
1,---,m) be the corresponding probability. By substituting
these equations in (31), we have to prove the equivalent
relation

ZPr(ki.i =1,---.m)
k.

“Pr(wik, <a;,i =1.2.---.m—1lk;i=12.-.m.
Wik, < @m)

> Z Pr(k;,i=1,---.m)Pr(wiy, < a;.
k;

i=1,2--m—1lk.i=1.2---.m). (32)
In Proposition 1 we proved [cf. (16)] that
Pr(wir, € a0 =1.2.---.m — Hwpi,, < am)
> Pr(wi, <a;i=1.2,---.m—1). (33)

It can be seen from the proof of this proposition that the same
result holds even if all the probabilities in (33) are conditioned
on the event {k;,z = 1.2,---.m} and therefore

Pr(wi, <a;i=1.2.---.m—1lki.i=1.2.---.m.

Wmk,y, S am)
> Pr(wy, <a;.i=1.2,---.m— 1|k;.
1=1,2.---,m).

Using this, (32) is proved and from there (31) follows imme-
diately. Q.E.D.

APPENDIX 4

In this Appendix we will show that the right hand side of
inequality (24) goes to 1 as n — oc, i.e.,

) 1 2nd (I)(S(]) 3n
nh—r»Iolc(l B C‘lnlogz() (1 B ne )

1 nd?
‘ (1 - n(l/?)dlog2§> =1

when £ > 1,{ > 2, and 6 > 1. We recall that d = log, n.
The proof consists of two steps. At first we show that all
the terms of the product in (34) are of the form

oY
(1-75)

(34

where r = z(n) goes to infinity as n goes to infinity and
Q(z) is a function of x such that

lim = 0.

e Q)

(35)

As a second step we will prove that for a function Q(z)
satisfying (35), we have that

1 ! ’ =
i (- atn) -

lim

Step 1: In order to prove that all the terms in (34) are of the
desired form, we will use successive applications of L.’Hospital
rule. This rule states that if f(x).g(x) are differentiable
functions in the neighborhood of > (i.e., for sufficiently large
x) with the property that lim, .o« f(z) = lim;_ g(z) = o0
then lim,_ o f(r)/g(xz) = lim, . f'(z)/g'(x). Although
the number of processors n is an integer, we will treat it
as a continuous variable here and allow differentiation with
respect to it. This is permitted since we are interested in the
limit » — oc and we are dealing with continuous functions
of n. Thus

1) Since ¢ > 2,

logs Cdéf(x > 1L

Thus
lim 2nd im 2(1+1nn)¢
ngoc (~1na T n—oc (aln 2)n‘1_1
2¢

5 @l 2)ne T
as n — o0 and « > 1. Thus
¢Tinlog2 ¢ = Q(2nd).
2) Obviously

lim 3n®(so)

n—oc n

:07

since # > 1 and ®(sg) is a constant.

3) We denote o = log, £/7In2 > 0 for £ > 1 and take
into account that d = log, n = Inn/In2. Then for the
third term of (34) to be of the desired form it is enough
to prove that

. n(ln n)Q
lim —————=0.
,1526 (11’1 2)2710 Inn
By successive applications of L Hospital rule we find
that
n(lnn)?

li[n —_—Y =
n—oc p&lnn

n(lnn + 2)
n—»olo 200m® Inn

) n(lnn + 3)
oo 402(Inn)pxlnn

Therefore

pli/Nd lo: & — O(nd?).
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Step 2: For the second step we note that

1 @ 1 Q)
w(l‘m) - ("m)

lim
Since lim, o (1 —1/Q(2))%) = e~V and lim, ., 2/Q(x)
= 0, we finally obtain that

TR L
Px( _Q(:r)> B

lim
Steps 1 and 2 together give (34).

2/Qx)
lim

Tr—oC

Q.E.D.
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