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O Chaerephon, many arts among men have been
discovered through practice, empirically;
for experience makes our life proceed deliberately,
but inexperience unpredictably.

(Plato, Gorgias 448c)

Preface

A few years ago our curiosity was aroused by reports on new methods in
reinforcement learning, a field that was developed primarily within the ar-
tificial intelligence community, starting a few decades ago. These methods
were aiming to provide effective suboptimal solutions to complex problems
of planning and sequential decision making under uncertainty, that for a
long time were thought to be intractable. Our first impression was that
the new methods were ambitious, overly optimistic, and lacked firm foun-
dation. Yet there were claims of impressive successes and indications of a
solid core to the modern developments in reinforcement learning, suggest-
ing that the correct approach to their understanding was through dynamic
programming.

Three years later, after a lot of study, analysis, and experimentation,
we believe that our initial impressions were largely correct. This is indeed
an ambitious, often ad hoc, methodology, but for reasons that we now un-
derstand much better, it does have the potential of success with important
and challenging problems. With a good deal of justification, it claims to
deal effectively with the dual curses of dynamic programming and stochas-
tic optimal control: Bellman’s curse of dimensionality (the exponential
computational explosion with the problem dimension is averted through
the use of parametric approximate representations of the cost-to-go func-
tion), and the curse of modeling (an explicit system model is not needed,
and a simulator can be used instead). Furthermore, the methodology has a
logical structure and a mathematical foundation, which we systematically
develop in this book. It draws on the theory of function approximation,

xi



xii Preface

the theory of iterative optimization and neural network training, and the
theory of dynamic programming. In view of the close connection with
both neural networks and dynamic programming, we settled on the name
“neuro-dynamic programming” (NDP), which describes better in our opin-
ion the nature of the subject than the older and more broadly applicable
name “reinforcement learning.”

Our objective in this book is to explain with mathematical analysis,
examples, speculative insight, and case studies, a number of computational
ideas and phenomena that collectively can provide the foundation for un-
derstanding and applying the NDP methodology. We have organized the
book in three major parts.

(a) The first part consists of Chapters 2-4 and provides background. It in-
cludes a detailed introduction to dynamic programming (Chapter 2),
a discussion of neural network architectures and methods for training
them (Chapter 3), and the development of general convergence the-
orems for stochastic approximation methods (Chapter 4), which will
provide the foundation for the analysis of various NDP algorithms
later.

(b) The second part consists of the next three chapters and provides the
core NDP methodology, including many mathematical results and
methodological insights that were developed as this book was written
and which are not available elsewhere. Chapter 5 covers methods in-
volving a lookup table representation. Chapter 6 discusses the more
practical methods that make use of function approximation. Chap-
ter 7 develops various extensions of the theory in the preceding two
chapters.

(c) The third part consists of Chapter 8 and discusses the practical as-
pects of NDP through case studies.

Inevitably, some choices had to be made regarding the material to be
covered. Given that the reinforcement learning literature often involves a
mixture of heuristic arguments and incomplete analysis, we decided to pay
special attention to the distinction between factually correct and incorrect
statements, and to rely on rigorous mathematical proofs. Because some of
these proofs are long and tedious, we have made an effort to organize the
material so that most proofs can be omitted without loss of continuity on
the part of the reader. For example, during a first reading, a reader could
omit all of the proofs in Chapters 2-5, and proceed to subsequent chapters.

However, we wish to emphasize our strong belief in the beneficial in-
terplay between mathematical analysis and practical algorithmic insight.
Indeed, it is primarily through an effort to develop a mathematical struc-
ture for the NDP methodology that we will ever be able to identify promis-
ing or solid algorithms from the bewildering array of speculative proposals
and claims that can be found in the literature.



Preface xiii

The fields of neural networks, reinforcement learning, and approxi-
mate dynamic programming have been very active in the last few years
and the corresponding literature has greatly expanded. A comprehensive
survey of this literature is thus beyond our scope, and we wish to apologize
in advance to researchers in the field for not citing their works. We have
confined ourselves to citing the sources that we have used and that con-
tain results related to those presented in this book. We have also cited a
few sources for their historical significance, but our references are far from
complete in this regard.

Finally, we would like to express our thanks to a number of individu-
als. Andy Barto and Michael Jordan first gave us pointers to the research
and the state of the art in reinforcement learning. Our understanding
of the reinforcement learning literature and viewpoint gained significantly
from interactions with Andy Barto, Satinder Singh, and Rich Sutton. The
first author collaborated with Vivek Borkar on the average cost Q-learning
research discussed in Chapter 7, and with Satinder Singh on the dynamic
channel allocation research discussed in Chapter 8. The first author also
benefited a lot through participation in an extensive NDP project at Al-
phatech, Inc., where he interacted with David Logan and Nils Sandell,
Jr. Our students contributed substantially to our understanding through
discussion, computational experimentation, and individual research. In
particular, they assisted with some of the case studies in Chapter 8, on
parking (Keith Rogers), football (Steve Patek), tetris (Sergey Ioffe and
Dimitris Papaioannou), and maintenance and combinatorial optimization
(Cynara Wu). The joint researches of the first author with Jinane Abounadi
and with Steve Patek are summarized in Sections 7.1 and 7.2, respectively.
Steve Patek also offered tireless and invaluable assistance with the exper-
imental implementation, validation, and interpretation of a large variety
of untested algorithmic ideas. The second author has enjoyed a fruitful
collaboration with Ben Van Roy that led to many results, including those
in Sections 6.3, 6.7, 6.8, and 6.9. We were fortunate to work at the Labo-
ratory for Information and Decision Systems at M.I.T., which provided us
with a stimulating research environment. Funding for our research that is
reported in this book was provided by the National Science Foundation, the
Army Research Office through the Center for Intelligent Control Systems,
the Electric Power Research Institute, and Siemens. We are thankful to
Prof. Charles Segal of Harvard’s Department of Classics for suggesting the
original quotation that appears at the beginning of this preface. Finally,
we are grateful to our families for their love, encouragement, and support
while this book was being written.

Dimitri P. Bertsekas
John N. Tsitsiklis

Cambridge, August 1996





Learning without thought is labour lost;
thought without learning is perilous.

(Confucian Analects)
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2 Introduction Chap. 1

This book considers systems where decisions are made in stages. The
outcome of each decision is not fully predictable but can be anticipated
to some extent before the next decision is made. Each decision results in
some immediate cost but also affects the context in which future decisions
are to be made and therefore affects the cost incurred in future stages. We
are interested in decision making policies that minimize the total cost over
a number of stages. Such problems are challenging primarily because of
the tradeoff between immediate and future costs. Dynamic programming
(DP for short) provides a mathematical formalization of this tradeoff.

Generally, in DP formulations we have a discrete-time dynamic sys-
tem whose state evolves according to given transition probabilities that
depend on a decision/control u. In particular, if we are in state i and we
choose control u, we move to state j with given probability pij(u). The
control u depends on the state i and the rule by which we select the controls
is called a policy or feedback control policy (see Fig. 1.1). Simultaneously
with a transition from i to j under control u, we incur a cost g(i, u, j).
In comparing, however, the available controls u, it is not enough to look
at the magnitude of the cost g(i, u, j); we must also take into account the
desirability of the next state j. We thus need a way to rank or rate states j.
This is done by using the optimal cost (over all remaining stages) starting
from state j, which is denoted by J∗(j) and is referred to as the optimal
cost-to-go of state j. These costs-to-go can be shown to satisfy some form
of Bellman’s equation

J∗(i) = min
u

E
[
g(i, u, j) + J∗(j) | i, u

]
, for all i,

where j is the state subsequent to i, and E[· | i, u] denotes expected value
with respect to j, given i and u. Generally, at each state i, it is optimal
to use a control u that attains the minimum above. Thus, controls are
ranked based on the sum of the expected cost of the present period and
the optimal expected cost of all subsequent periods.

Stochastic System
Transition Probabilities

State 
i

Decision/Control
u = µ(i )

Feedback Control
Policy µ

Figure 1.1: Structure of a discrete-time dynamic system under feedback control.
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The objective of DP is to calculate numerically the optimal cost-to-
go function J∗. This computation can be done off-line, i.e., before the real
system starts operating. An optimal policy, that is, an optimal choice of
u for each i, is computed either simultaneously with J∗, or in real time by
minimizing in the right-hand side of Bellman’s equation. It is well known,
however, that for many important problems the computational require-
ments of DP are overwhelming, because the number of states and controls
is very large (Bellman’s “curse of dimensionality”). In such situations a
suboptimal solution is required.

1.1 COST-TO-GO APPROXIMATIONS IN DYNAMIC
PROGRAMMING

In this book, we primarily focus on suboptimal methods that center around
the evaluation and approximation of the optimal cost-to-go function J∗,
possibly through the use of neural networks and/or simulation. In partic-
ular, we replace the optimal cost-to-go J∗(j) with a suitable approxima-
tion J̃(j, r), where r is a vector of parameters, and we use at state i the
(suboptimal) control µ̃(i) that attains the minimum in the (approximate)
right-hand side of Bellman’s equation, that is,

µ̃(i) = arg min
u

E
[
g(i, u, j) + J̃(j, r) | i, u

]
.

The function J̃ will be called the scoring function or approximate cost-to-
go function, and the value J̃(j, r) will be called the score or approximate
cost-to-go of state j (see Fig. 1.2). The general form of J̃ is known and is
such that once the parameter vector r is fixed, the evaluation of J̃(j, r) for
any state j is fairly simple.

State j

Parameter vector  r
J(j,r )
~

Score or  approximate
cost-to-go of state  jNeural network/

Approximation map

Figure 1.2: Structure of cost-to-go approximation.

We are interested in problems with a large number of states and in
scoring functions J̃ that can be described with relatively few numbers (a
vector r of small dimension). Scoring functions involving few parameters
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will be called compact representations, while the tabular description of J∗

will be called the lookup table representation. In a lookup table represen-
tation, the values J∗(j) for all states j are stored in a table. In a typical
compact representation, only the vector r and the general structure of the
scoring function J̃(·, r) are stored; the scores J̃(j, r) are generated only
when needed. For example, if J̃(j, r) is the output of some neural network
in response to the input j, then r is the associated vector of weights or
parameters of the neural network; or if J̃(j, r) involves a lower dimensional
description of the state j in terms of its “significant features,” then r could
be a vector of relative weights of the features. Naturally, we would like to
choose r algorithmically so that J̃(·, r) approximates well J∗(·). Thus, de-
termining the scoring function J̃(j, r) involves two complementary issues:
(1) deciding on the general structure of the function J̃(j, r), and (2) cal-
culating the parameter vector r so as to minimize in some sense the error
between the functions J∗(·) and J̃(·, r).

We note that in some problems the evaluation of the expression

E
[
g(i, u, j) + J̃(j, r) | i, u

]
,

for each u, may be too complicated or too time-consuming for making deci-
sions in real-time, even if the scores J̃(j, r) are simply calculated. There are
a number of ways to deal with this difficulty (see Section 6.1). An impor-
tant possibility is to approximate the expression minimized in Bellman’s
equation,

Q∗(i, u) = E
[
g(i, u, j) + J∗(j) | i, u

]
,

which is known as the Q-factor corresponding to (i, u). In particular, we
can replace Q∗(i, u) with a suitable approximation Q̃(i, u, r), where r is a
vector of parameters. We can then use at state i the (suboptimal) control
that minimizes the approximate Q-factor corresponding to i:

µ̃(i) = arg min
u

Q̃(i, u, r).

Much of what will be said about the approximation of the optimal costs-
to-go also applies to the approximation of Q-factors. In fact, we will see
later that the Q-factors can be viewed as optimal costs-to-go of a related
problem. We thus focus primarily on approximation of the optimal costs-
to-go.

Approximations of the optimal costs-to-go have been used in the past
in a variety of DP contexts. Chess playing programs represent an interest-
ing example. A key idea in these programs is to use a position evaluator
to rank different chess positions and to select at each turn a move that
results in the position with the best rank. The position evaluator assigns
a numerical value to each position according to a heuristic formula that
includes weights for the various features of the position (material balance,
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piece mobility, king safety, and other factors); see Fig. 1.3. Thus, the posi-
tion evaluator corresponds to the scoring function J̃(j, r) above, while the
weights of the features correspond to the parameter vector r. Usually, some
general structure is selected for the position evaluator (this is largely an
art that has evolved over many years, based on experimentation and hu-
man knowledge about chess), and the numerical weights are chosen by trial
and error or (as in the case of the champion program Deep Thought) by
“training” using a large number of sample grandmaster games. It should
be mentioned that in addition to the use of sophisticated position evalua-
tors, much of the success of chess programs can be attributed to the use
of multimove lookahead, which has become deeper and more effective with
the use of increasingly fast hardware.

Figure 1.3: Structure of the position evaluator of a chess program.

As the chess program paradigm suggests, intuition about the problem,
heuristics, and trial and error are all important ingredients for constructing
cost-to-go approximations in DP. However, it is important to supplement
heuristics and intuition with more systematic techniques that are broadly
applicable and retain as much as possible of the nonheuristic characteristics
of DP. This book will focus on several recent efforts to develop a method-
ological foundation for a rational approach to complex stochastic decision
problems, which combines dynamic programming, function approximation,
and simulation.

1.2 APPROXIMATION ARCHITECTURES

An important issue in function approximation is the selection of an ar-
chitecture, that is, the choice of a parametric class of functions J̃(·, r) or



6 Introduction Chap. 1

Q̃(·, ·, r) that suits the problem at hand. One possibility is to use a neu-
ral network architecture of some type. We should emphasize here that in
this book we use the term “neural network” in a very broad sense, essen-
tially as a synonym to “approximating architecture.” In particular, we do
not restrict ourselves to the classical multilayer perceptron structure with
sigmoidal nonlinearities. Any type of universal approximator of nonlinear
mappings could be used in our context. The nature of the approximating
structure is left open in our discussion, and it could involve, for example,
radial basis functions, wavelets, polynomials, splines, aggregation, etc.

Cost-to-go approximation can often be significantly enhanced through
the use of feature extraction, a process that maps the state i into some vec-
tor f(i), called the feature vector associated with i. Feature vectors sum-
marize, in a heuristic sense, what are considered to be important character-
istics of the state, and they are very useful in incorporating the designer’s
prior knowledge or intuition about the problem and about the structure
of the optimal controller. For example, in a queueing system involving
several queues, a feature vector may involve for each queue a three-valued
indicator that specifies whether the queue is “nearly empty,” “moderately
busy,” or “nearly full.” In many cases, analysis can complement intuition
to suggest the right features for the problem at hand.

Feature vectors are particularly useful when they can capture the
“dominant nonlinearities” in the optimal cost-to-go function J∗. By this
we mean that J∗(i) can be approximated well by a “relatively smooth”
function J̃

(
f(i)

)
; this happens for example, if through a change of vari-

ables from states to features, J∗ becomes a (nearly) linear or low-order
polynomial function of the features. When a feature vector can be chosen
to have this property, it is appropriate to use approximation architectures
where features and (relatively simple) neural networks are used together.
In particular, the state is mapped to a feature vector, which is then used as
input to a neural network that produces the score of the state (see Fig. 1.4).
More generally, it is possible that both the state and the feature vector are
provided as inputs to the neural network (see the second diagram in Fig.
1.4).

1.3 SIMULATION AND TRAINING

Some of the most successful applications of neural networks are in the areas
of pattern recognition, nonlinear regression, and nonlinear system identi-
fication. In these applications the neural network is used as a universal
approximator: the input-output mapping of the neural network is matched
to an unknown nonlinear mapping F of interest using a least-squares op-
timization, known as training the network . To perform training, one must
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State i
Feature vector 

f(i ) J(f(i ),r )
Feature extraction

mapping

~

State i J(i,f(i ),r )
Feature extraction

mapping

~Feature vector 
f(i ) Neural network/

Approximation map
Parameter r

Neural network/
Approximation map

Parameter r

Figure 1.4: Approximation architectures involving feature extraction and neural
networks.

have some training data, that is, a set of pairs
(
i, F (i)

)
, which is represen-

tative of the mapping F that is approximated.
It is important to note that in contrast with these neural network

applications, in the DP context there is no readily available training set of
input-output pairs

(
i, J∗(i)

)
that could be used to approximate J∗ with a

least squares fit. The only possibility is to evaluate (exactly or approxi-
mately) by simulation the cost-to-go functions of given (suboptimal) poli-
cies, and to try to iteratively improve these policies based on the simulation
outcomes. This creates analytical and computational difficulties that do
not arise in classical neural network training contexts. Indeed the use of
simulation to evaluate approximately the optimal cost-to-go function is a
key new idea that distinguishes the methodology of this book from earlier
approximation methods in DP.

Simulation offers another major advantage: it allows the methods
of this book to be used for systems that are hard to model but easy to
simulate, i.e., problems where a convenient explicit model is not available,
and the system can only be observed, either through a software simulator or
as it operates in real time. For such problems, the traditional DP techniques
are inapplicable, and estimation of the transition probabilities to construct
a detailed mathematical model is often cumbersome or impossible.

There is a third potential advantage of simulation: it can implicitly
identify the “most important” or “most representative” states of the sys-
tem. It appears plausible that these states are the ones most often visited
during the simulation, and for this reason the scoring function will tend to
approximate better the optimal cost-to-go for these states, and the subop-
timal policy obtained will on the average perform better.
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1.4 NEURO-DYNAMIC PROGRAMMING

In view of the reliance on both DP and neural network concepts, we use the
name neuro-dynamic programming (NDP for short) to describe collectively
the methods of this book. In the artificial intelligence community, where
the methods originated, the name reinforcement learning is also used. In
common artificial intelligence terms, the methods of this book allow sys-
tems to “learn how to make good decisions by observing their own be-
havior, and use built-in mechanisms for improving their actions through
a reinforcement mechanism.” In the less anthropomorphic DP terms used
in this book, “observing their own behavior” relates to simulation, and
“improving their actions through a reinforcement mechanism” relates to
iterative schemes for improving the quality of approximation of the opti-
mal costs-to-go, or the Q-factors, or the optimal policy. There has been a
gradual realization that reinforcement learning techniques can be fruitfully
motivated and interpreted in terms of classical DP concepts such as value
and policy iteration.

In this book, we attempt to clarify some aspects of the current NDP
methodology, we suggest some new algorithmic approaches, and we iden-
tify some open questions. Despite the great interest in NDP, the theory of
the subject is only now beginning to take shape, and the corresponding lit-
erature is often confusing. Yet, there have been many reports of successes
with problems too large and complex to be treated in any other way. A
particularly impressive success that greatly motivated subsequent research,
was the development of a backgammon playing program by Tesauro [Tes92]
(see Section 8.6). Here a neural network was trained to approximate the
optimal cost-to-go function of the game of backgammon by using simula-
tion, that is, by letting the program play against itself. After training for
several months, the program nearly defeated the human world champion.
Unlike chess programs, this program did not use lookahead of many stages,
so its success can be attributed primarily to the use of a properly trained
approximation of the optimal cost-to-go function.

Our own experience has been that NDP methods can be impressively
effective in problems where traditional DP methods would be hardly ap-
plicable and other heuristic methods would have limited potential. In this
book, we outline some engineering applications, and we use a few compu-
tational studies for illustrating the methodology and some of the art that
is often essential for success.

We note, however, that the practical application of NDP is compu-
tationally very intensive, and often requires a considerable amount of trial
and error. Furthermore, success is often obtained using methods whose
properties are not fully understood. Fortunately, all of the computation
and experimentation with different approaches can be done off-line. Once
the approximation is obtained off-line, it can be used to generate decisions
fast enough for use in real time. In this context, we mention that in the
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artificial intelligence literature, reinforcement learning is often viewed as
an “on-line” method, whereby the cost-to-go approximation is improved
as the system operates in real time. This is reminiscent of the methods
of traditional adaptive control. We will not discuss this viewpoint in this
book, as we prefer to focus on applications involving a large and complex
system. A lot of training data are required for such systems. These data
often cannot be obtained in sufficient volume as the system is operating;
even if they can, the corresponding processing requirements are often too
large for effective use in real time.

We finally mention an alternative approach to NDP, known as ap-
proximation in policy space, which, however, we will not consider in this
book. In this approach, in place of an overall optimal policy, we look
for an optimal policy within some restricted class that is parametrized by
some vector s of relatively low dimension. In particular, we consider poli-
cies of a given form µ̃(i, s). We then minimize over s the expected cost
Ei

[
J µ̃(·,s)(i)

]
, where the expectation is with respect to some suitable prob-

ability distribution of the initial state i. This approach applies to complex
problems where there is no explicit model for the system and the cost,
as long as the cost corresponding to a given policy can be calculated by
simulation. Furthermore, insight and analysis can sometimes be used to
select simple and effective parametrizations of the policies. On the other
hand, there are many problems where such parametrizations are not easily
obtained. Furthermore, the minimization of Ei

[
J µ̃(·,s)(i)

]
can be very dif-

ficult because the gradient of the cost with respect to s may not be easily
calculated; while methods that require cost values (and not gradients) may
be used, they tend to require many cost function evaluations and to be
slow in practice.

The general organizational plan of the book is to first develop some
essential background material on DP, and on deterministic and stochastic
iterative optimization algorithms (Chs. 2-4), and then to develop the main
algorithmic methods of NDP in Chs. 5 and 6. Various extensions of the
methodology are discussed in Ch. 7. Finally, we present case studies in Ch.
8. Many of the ideas of the book extend naturally to continuous-state sys-
tems, although the NDP theory is far from complete for such systems. To
keep the exposition simple, we have restricted ourselves to the case where
the number of states is finite and the number of available controls at each
state is also finite. This is consistent with the computational orientation
of the book.

1.5 NOTES AND SOURCES

1.1. The origins of our subject can be traced to the early works on DP
by Bellman, who used the term “approximation in value space,” and
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to the works by Shannon [Sha50] on computer chess and by Samuel
[Sam59], [Sam67] on computer checkers.

1.4. The works by Barto, Sutton, and Anderson [BSA83] on adaptive
critic systems, by Sutton [Sut88] on temporal difference methods,
and by Watkins [Wat89] on Q-learning initiated the modern develop-
ments which brought together the ideas of function approximation,
simulation, and DP. The work of Tesauro [Tes92], [Tes94], [Tes95]
on backgammon was the first to demonstrate impressive success on
a very complex and challenging problem. Much research followed
these seminal works. The extensive survey by Barto, Bradtke, and
Singh [BBS95], and the overviews by Werbös [Wer92a], [Wer92b], and
other papers in the edited volume by White and Sofge [WhS92] point
out the connections between the artificial intelligence/reinforcement
learning viewpoint and the control theory/DP viewpoint, and give
many references. The DP textbook by Bertsekas [Ber95a] describes
a broad variety of suboptimal control methods, including some of the
NDP approaches that are treated in much greater depth in the present
book.
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