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Preface to the First Edition

Nonlinear programming is a mature field that has experienced major devel-
opments in the last ten years. The first such development is the merging
of linear and nonlinear programming algorithms through the use of interior
point methods. This has resulted in a profound rethinking of how we solve
linear programming problems, and in a major reassessment of how we treat
constraints in nonlinear programming. A second development, less visible
but still important, is the increased emphasis on large-scale problems, and
the associated algorithms that take advantage of problem structure as well as
parallel hardware. A third development has been the extensive use of itera-
tive unconstrained optimization to solve the difficult least squares problems
arising in the training of neural networks. As a result, simple gradient-like
methods and stepsize rules have attained increased importance.

The purpose of this book is to provide an up-to-date, comprehensive, and
rigorous account of nonlinear programming at the beginning graduate student
level. In addition to the classical topics, such as descent algorithms, Lagrange
multiplier theory, and duality, some of the important recent developments
are covered: interior point methods for linear and nonlinear programs, major
aspects of large-scale optimization, and least squares problems and neural
network training.

A further noteworthy feature of the book is that it treats Lagrange
multipliers and duality using two different and complementary approaches: a
variational approach based on the implicit function theorem, and a convex
analysis approach based on geometrical arguments. The former approach
applies to a broader class of problems, while the latter is more elegant and
more powerful for the convex programs to which it applies.

The chapter-by-chapter description of the book follows:

Chapter 1: This chapter covers unconstrained optimization: main concepts,
optimality conditions, and algorithms. The material is classic, but there are
discussions of topics frequently left untreated, such as the behavior of al-
gorithms for singular problems, neural network training, and discrete-time
optimal control.

xi



xii Preface to the First Edition

Chapter 2: This chapter treats constrained optimization over a convex set
without the use of Lagrange multipliers. I prefer to cover this material before
dealing with the complex machinery of Lagrange multipliers because I have
found that students absorb easily algorithms such as conditional gradient,
gradient projection, and coordinate descent, which can be viewed as natural
extensions of unconstrained descent algorithms. This chapter contains also a
treatment of the affine scaling method for linear programming.

Chapter 3: This chapter gives a detailed treatment of Lagrange multipliers,
the associated necessary and sufficient conditions, and sensitivity analysis.
The first three sections deal with nonlinear equality and inequality constraints.
The last section deals with linear constraints and develops a simple form
of duality theory for linearly constrained problems with differentiable cost,
including linear and quadratic programming.

Chapter 4: This chapter treats constrained optimization algorithms that use
penalties and Lagrange multipliers, including barrier, augmented Lagrangian,
sequential quadratic programming, and primal-dual interior point methods
for linear programming. The treatment is extensive, and borrows from my
1982 research monograph on Lagrange multiplier methods.

Chapter 5: This chapter provides an in-depth coverage of duality theory
(Lagrange and Fenchel). The treatment is totally geometric, and everything
is explained in terms of intuitive figures.

Chapter 6: This chapter deals with large-scale optimization methods based
on duality. Some material is borrowed from my Parallel and Distributed
Algorithms book (coauthored by John Tsitsiklis), but there is also an ex-
tensive treatment of nondifferentiable optimization, including subgradient, e-
subgradient, and cutting plane methods. Decomposition methods such as
Dantzig-Wolfe and Benders are also discussed.

Appendixes: Four appendixes are given. The first gives a summary of calcu-
lus, analysis, and linear algebra results used in the text. The second is a fairly
extensive account of convexity theory, including proofs of the basic polyhedral
convexity results on extreme points and Farkas’ lemma, as well the basic facts
about subgradients. The third appendix covers one-dimensional minimization
methods. The last appendix discusses an implementation of Newton’s method
for unconstrained optimization.

Inevitably, some coverage compromises had to be made. The subject
of nonlinear optimization has grown so much that leaving out a number of
important topics could not be avoided. For example, a discussion of varia-
tional inequalities, a deeper treatment of optimality conditions, and a more
detailed development of Quasi-Newton methods are not provided. Also, a
larger number of sample applications would have been desirable. I hope that
instructors will supplement the book with the type of practical examples that
their students are most familiar with.



Preface to the First Edition xiii

The book was developed through a first-year graduate course that I
taught at the Univ. of Illinois and at M.I.T. over a period of 20 years. The
mathematical prerequisites are matrix-vector algebra and advanced calculus,
including a good understanding of convergence concepts. A course in analysis
and/or linear algebra should also be very helpful, and would provide the
mathematical maturity needed to follow and to appreciate the mathematical
reasoning used in the book. Some of the sections in the book may be ommited
at first reading without loss of continuity. These sections have been marked
by a star. The rule followed here is that the material discussed in a starred
section is not used in a non-starred section.

The book can be used to teach several different types of courses.

(a) A two-quarter course that covers most sections of every chapter.

(b) A one-semester course that covers Chapter 1 except for Section 1.9,
Chapter 2 except for Sections 2.4 and 2.5, Chapter 3 except for Section
3.4, Chapter 4 except for parts of Sections 4.2 and 4.3, the first three
sections of Chapter 5, and a selection from Section 5.4 and Chapter 6.
This is the course I usually teach at MIT.

(¢) A one-semester course that covers most of Chapters 1, 2, and 3, and
selected algorithms from Chapter 4. I have taught this type of course
several times. It is less demanding of the students because it does not
require the machinery of convex analysis, yet it still provides a fairly
powerful version of duality theory (Section 3.4).

(d) A one-quarter course that covers selected parts of Chapters 1, 2, 3, and
4. This is a less comprehensive version of (c¢) above.

(e) A one-quarter course on convex analysis and optimization that starts
with Appendix B and covers Sections 1.1, 2.1, 3.4, and Chapter 5.

There is a very extensive literature on nonlinear programming and to
give a complete bibliography and a historical account of the research that led
to the present form of the subject would have been impossible. I thus have
not attempted to compile a comprehensive list of original contributions to the
field. T have cited sources that I have used extensively, that provide important
extensions to the material of the book, that survey important topics, or that
are particularly well suited for further reading. I have also cited selectively a
few sources that are historically significant, but the reference list is far from
exhaustive in this respect. Generally, to aid researchers in the field, I have
preferred to cite surveys and textbooks for subjects that are relatively mature,
and to give a larger number of references for relatively recent developments.

Finally, I would like to express my thanks to a number of individuals for
their contributions to the book. My conceptual understanding of the subject
was formed at Stanford University while I interacted with David Luenberger
and I taught using his books. This experience had a lasting influence on my
thinking. My research collaboration with several colleagues, particularly Joe
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Dunn, Eli Gafni, Paul Tseng, and John Tsitsiklis, were very useful and are
reflected in the book. I appreciate the suggestions and insights of a number
of people, particularly David Castanon, Joe Dunn, Terry Rockafellar, Paul
Tseng, and John Tsitsiklis. I am thankful to the many students and collab-
orators whose comments led to corrections and clarifications. Steve Patek,
Serap Savari, and Cynara Wu were particularly helpful in this respect. David
Logan, Steve Patek, and Lakis Polymenakos helped me to generate the graph
of the cover, which depicts the cost function of a simple neural network train-
ing problem. My wife Joanna cheered me up with her presence and humor
during the long hours of writing, as she has with her companionship of over
30 years. I dedicate this book to her with my love.

Dimitri P. Bertsekas
November 1995



Preface to the Second Edition

The second edition has expanded by about 130 pages the coverage of the
original. Nearly 40% of the new material represents miscellaneous additions
scattered throughout the text. The remainder deals with three new topics.
These are:

(a) A new section in Chapter 3 that focuses on a simple but far-reaching
treatment of Fritz John necessary conditions and constraint qualifica-
tions, and also includes semi-infinite programming.

(b) A new section in Chapter 5 on the use of duality and Lagrangian relax-
ation for solving discrete optimization problems. This section describes
several motivating applications, and provides a connecting link between
continuous and discrete optimization.

(¢) A new section in Chapter 6 on approximate and incremental subgradient
methods. This material is the subject of ongoing joint research with
Angelia Nedic, but it was thought sufficiently significant to be included
in summary here.

One of the aims of the revision was to highlight the connections of nonlin-
ear programming with other branches of optimization, such as linear program-
ming, network optimization, and discrete/integer optimization. This should
provide some additional flexibility for using the book in the classroom. In
addition, the presentation was improved, the mathematical background ma-
terial of the appendixes has been expanded, the exercises were reorganized,
and a substantial number of new exercises were added.

A new internet-based feature was added to the book, which significantly
extends its scope and coverage. Many of the theoretical exercises, quite a few
of them new, have been solved in detail and their solutions have been posted
in the book’s www page

http://www.athenasc.com/nonlinbook.html

These exercises have been marked with the symbol WWW

The book’s www page also contains links to additional resources, such as
computer codes and my lecture slides from my MIT Nonlinear Programming
class.

XV



I would like to express my thanks to the many colleagues who con-
tributed suggestions for improvement of the second edition. I would like to
thank particularly Angelia Nedi¢ for her extensive help with the internet-
posted solutions of the theoretical exercises.

Dimitri P. Bertsekas
June 1999



Preface to the Third Edition

The third edition of the book is a thoroughly rewritten version of the 1999
second edition. New material was included, some of the old material was
discarded, and a large portion of the remainder was reorganized or revised.
The total number of pages has increased by about 10 percent.

Aside from incremental improvements, the changes aim to bring the
book up-to-date with recent research progress, and in harmony with the ma-
jor developments in convex optimization theory and algorithms that have
occurred in the meantime. These developments were documented in three
of my books: the 2015 book “Convex Optimization Algorithms,” the 2009
book “Convex Optimization Theory,” and the 2003 book “Convex Analysis
and Optimization” (coauthored with Angelia Nedié¢ and Asuman Ozdaglar).
A major difference is that these books have dealt primarily with convex, pos-
sibly nondifferentiable, optimization problems and rely on convex analysis,
while the present book focuses primarily on algorithms for possibly noncon-
vex differentiable problems, and relies on calculus and variational analysis.

Having written several interrelated optimization books, I have come to
see nonlinear programming and its associated duality theory as the lynchpin
that holds together deterministic optimization. I have consequently set as an
objective for the present book to integrate the contents of my books, together
with internet-accessible material, so that they complement each other and
form a unified whole. I have thus provided bridges to my other works with
extensive references to generalizations, discussions, and elaborations of the
analysis given here, and I have used throughout fairly consistent notation and
mathematical level.

Another connecting link of my books is that they all share the same style:
they rely on rigorous analysis, but they also aim at an intuitive exposition that
makes use of geometric visualization. This stems from my belief that success
in the practice of optimization strongly depends on the intuitive (as well as
the analytical) understanding of the underlying theory and algorithms.

Some of the more prominent new features of the present edition are:

(a) An expanded coverage of incremental methods and their connections to
stochastic gradient methods, based in part on my 2000 joint work with
Angelia Nedi¢; see Section 2.4 and Section 7.3.2.

(b) A discussion of asynchronous distributed algorithms based in large part
on my 1989 “Parallel and Distributed Computation” book (coauthored

xvii



xviii Preface to the Third Edition

with John Tsitsiklis); see Section 2.5.

(¢) A discussion of the proximal algorithm and its variations in Section 3.6,
and the relation with the method of multipliers in Section 7.3.

(d) A substantial coverage of the alternating direction method of multipliers
(ADMM) in Section 7.4, with a discussion of its many applications and
variations, as well as references to my 1989 “Parallel and Distributed
Computation” and 2015 “Convex Optimization Algorithms” books.

(e) A fairly detailed treatment of conic programming problems in Section
6.4.1.

(f) A discussion of the question of existence of solutions in constrained opti-
mization, based on my 2007 joint work with Paul Tseng [BeT07], which
contains further analysis; see Section 3.1.2.

(g) Additional material on network flow problems in Section 3.8 and 6.4.3,
and their extensions to monotropic programming in Section 6.4.2, with
references to my 1998 “Network Optimization” book.

(h) An expansion of the material of Chapter 4 on Lagrange multiplier theory,
using a strengthened version of the Fritz John conditions, and the notion
of pseudonormality, based on my 2002 joint work with Asuman Ozdaglar.

(i) An expansion of the material of Chapter 5 on Lagrange multiplier al-
gorithms, with references to my 1982 “Constrained Optimization and
Lagrange Multiplier Methods” book.

The book contains a few new exercises. As in the second edition, many
of the theoretical exercises have been solved in detail and their solutions have
been posted in the book’s internet site

http://www.athenasc.com/nonlinbook.html

These exercises have been marked with the symbols WWW. Many other ex-
ercises contain detailed hints and/or references to internet-accessible sources.
The book’s internet site also contains links to additional resources, such as
many additional solved exercises from my convex optimization books, com-
puter codes, my lecture slides from MIT Nonlinear Programming classes, and
full course contents from the MIT OpenCourseWare (OCW) site.

I would like to express my thanks to the many colleagues who con-
tributed suggestions for improvement of the third edition. In particular, let
me note with appreciation my principal collaborators on nonlinear program-
ming topics since the 1999 second edition: Angelia Nedi¢, Asuman Ozdaglar,
Paul Tseng, Mengdi Wang, and Huizhen (Janey) Yu.

Dimitri P. Bertsekas
June 2016
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2 Unconstrained Optimization: Basic Methods Chap. 1

Mathematical models of optimization can be generally represented by a
constraint set X and a cost function f that maps elements of X into real
numbers. The set X consists of the available decisions = and the cost f(z)
is a scalar measure of undesirability of choosing decision x. We want to
find an optimal decision, i.e., an z* € X such that

fz*) < f(x), VaoelX.

In this book we focus on the case where each decision z is an n-dimensional
vector; that is, x is an n-tuple of real numbers (z1,...,z,). Thus the
constraint set X is a subset of R, the n-dimensional Fuclidean space.
(We refer to Appendix A for an account of our terminology and notational
conventions.)

The optimization problem just stated is very broad and contains as
special cases several important classes of problems that have widely differ-
ing structures. Our focus will be on nonlinear programming problems, so
let us provide some orientation about the character of these problems and
their relations with other types of optimization problems.

Continuous and Discrete Problems

Perhaps the most important characteristic of an optimization problem is
whether it is continuous or discrete. Continuous problems are those where
the constraint set X is infinite and has a “continuous” character. Typical
examples of continuous problems are those where there are no constraints,
i.e., where X = R», or where X is specified by some equations and in-
equalities involving continuous functions. Generally, continuous problems
are analyzed using the mathematics of calculus and convexity.

Discrete problems are basically those that are not continuous, usu-
ally because of finiteness of the constraint set X. Typical examples arise
in scheduling, route planning, and matching, among many others. An im-
portant type of discrete problems is integer programming, where there is
a constraint that the optimization variables must take only integer values
from some range (such as 0 or 1). Discrete problems are addressed with
combinatorial and discrete mathematics, and other special methodology,
some of which relates to continuous problems.

Nonlinear programming, the case where either the cost function f is
nonlinear or the constraint set X is specified by nonlinear equations and
inequalities, lies squarely within the continuous problem category. Several
other important types of optimization problems have more of a hybrid
character, but are strongly connected with nonlinear programming.

In particular, linear programming problems, the case where f is lin-
ear and X is a polyhedral set specified by linear inequality constraints,
have many of the characteristics of continuous problems. However, they
also have in part a combinatorial structure: according to a fundamental
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theorem [Prop. B.20(c) in Appendix B], optimal solutions of a linear pro-
gram can be found by searching among the (finite) set of extreme points
of X. Thus the search for an optimum can be confined within this finite
set, and indeed one of the most popular methods for linear programming,
the simplex method, is based on this idea. We note, however, that other
important linear programming methods, such as the interior point methods
to be discussed in Section 5.1, and some of the duality-based methods in
Chapters 6 and 7, rely on the continuous structure of linear programs and
are based on nonlinear programming ideas.

Another major class of problems with a strongly hybrid character is
network optimization. Here the constraint set X is a polyhedral set that
is defined in terms of a graph consisting of nodes and directed arcs. The
salient feature of this constraint set is that its extreme points have integer
components, something that is not true for general polyhedral sets. As a
result, important combinatorial or integer programming problems, such as
for example some matching and shortest path problems, can be embedded
and solved within a continuous network optimization framework.

Our objective in this book is to focus on nonlinear programming prob-
lems, their continuous character, and the associated mathematical analysis.
However, we will maintain a view to other broad classes of problems that
have in part a discrete character. In particular, we will consider extensively
those aspects of linear programming that bear a close relation to nonlinear
programming methodology, such as interior point methods and polyhedral
convexity (see Section 5.1, and Sections B.3 and B.4 in Appendix B).

We will also discuss various aspects of network optimization problems
that relate to both their continuous and their discrete character in Sections
3.1, 3.8, and 6.4.3. A far more extensive treatment, which straddles the
boundary between continuous and discrete optimization, can be found in
the author’s network optimization textbook [Ber98].

Finally, we will discuss some of the major methods for integer pro-
gramming and combinatorial optimization, such as branch-and-bound and
Lagrangian relaxation. These methods rely on duality and the solution of
continuous optimization subproblems (see Sections 6.5 and 7.5).

Let us also note that there is a methodological division within the
class of continuous problems. On one hand we have problems where the
cost function f is a differentiable, or even twice differentiable. This allows a
calculus-based analysis, which will be the primary approach in our analysis
of Chapters 1-5. On the other hand we have problems where f is non-
differentiable but is convex. This requires a line of analysis that relies on
convexity (rather than differentiability). It will be our primary approach
in Chapters 6 and 7. Of course differentiability can also play an important
role within the context of convex problems. Moreover, nondifferentiable
(convex or nonconvex) problems can often be fruitfully converted to differ-
entiable ones by using smoothing transformations, as we will explain later
(see Section 2.7).
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Unconstrained Differentiable Optimization: An Outline

In this chapter and the next, we focus on unconstrained differentiable non-
linear programming problems. These are problems where f is at least once
continuously differentiable and where X = R7:

mln.lrmze flx) (UP)
subject to z € Rn.

The first and second derivatives of f play an important role in the char-
acterization of optimal solutions via necessary and sufficient conditions,
which are the main subject of Section 1.1. The first and second deriva-
tives are also central in numerical algorithms for computing approximately
optimal solutions. There is a broad range of such algorithms, with a rich
theory, which is discussed in Sections 1.2-1.4, and in Chapter 2.

In Chapter 2, we will also discuss two types of special problem struc-
tures. The first involves an additive cost function,

where the component functions f; are differentiable. Many problems of
interest, arising in signal processing, machine learning, and neural network
training have this form. For such problems, an incremental algorithmic
approach is often used, which involves sequential steps along the gradients
of the functions f;, with intermediate adjustment of = after processing each
fi- We will discuss algorithms of this type and their applications in Section
2.4. These methods include incremental versions of the gradient, Newton,
and Gauss-Newton methods, discussed in Chapter 1. In many important
contexts, some of the components f; are nondifferentiable. Incremental
methods for problems of this kind will also be developed in Chapter 7.
In Section 2.5, we will also discuss various methods in a distributed asyn-
chronous computation setting, involving multiple processors and commu-
nication delays between the processors.

The second type of special structure that we will discuss is optimal
control problems, which involve a discrete-time dynamic system (see Sec-
tion 2.6). These are problems of potentially very large dimension, whose
structure can be exploited for the convenient implementation of gradient
and Newton-like methods. An important characteristic of these problems
is that the gradient and Newton directions can be computed economically,
using the dynamic system structure.

Both additive cost and optimal control problems arise also in con-
strained settings, and on occasion we will pause to discuss constrained
variants in subsequent chapters. A third type of special structure that
arises primarily in a constrained setting is network optimization problems.
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We will discuss these problems in Sections 3.1 and 3.8, after the develop-
ment of the relevant constrained optimization algorithms.

Our analysis in this chapter will focus on explaining the basic prop-
erties of the various methods, and primarily their convergence and rate
of convergence properties. Many of these properties can be adequately
and intuitively explained using a quadratic problem. The rationale is that
behavior of an algorithm for a positive definite quadratic cost function is
typically a correct predictor of its behavior for a twice differentiable cost
function in the neighborhood of a minimum where the Hessian matrix is
positive definite. Since the gradient is zero at that minimum, the positive
definite quadratic term dominates the other terms in the series expansion
of f, and the asymptotic behavior of the method does not depend on terms
of order higher than two. This line of analysis underlies some of the most
widely used unconstrained optimization methods, such as Newton, Gauss-
Newton, quasi-Newton, and conjugate direction methods. However, the
rationale for these methods is weakened when the Hessian is singular at
the minimum, since in this case third and higher order terms may become
significant. Then it may be best to use first order methods and analysis
that relies primarily on the first order differentiability of the cost function.
Consistent with this idea, we will discuss both first and second order meth-
ods, in this and later chapters, and explain the circumstances under which
each type of method is most suitable.

OPTIMALITY CONDITIONS

1.1.1 Variational Ideas

The main ideas underlying optimality conditions in nonlinear programming
usually admit simple explanations although their detailed proofs are some-
times tedious. For this reason, we will first discuss informally these ideas in
the present subsection, and leave detailed statements of results and proofs
for the next subsection.

Local and Global Minima

A vector x* is an unconstrained local minimum of a function f : " — R if
it is no worse than its neighbors; that is, if there exists an € > 0 such thatf

fz*) < f(2), YV x € R with ||z — 2| <.

T Unless stated otherwise, we use the standard Euclidean norm ||z|| = va'z.
Appendix A describes in detail our mathematical notation and terminology.
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fz) 4

Py

Strict Local | Strict Global ~.1_ T

Minimum Minimum Local Minima

Figure 1.1.1. Unconstrained local and global minima in one dimension.

A vector x* is an unconstrained global minimum of f if it is no worse than
all other vectors; that is,

fz*) < f(a), Ve Rn.

The unconstrained local or global minimum x* is said to be strict if the
corresponding inequality above is strict for  # x*. Figure 1.1.1 illustrates
these definitions.

The definitions of local and global minima can be extended to the
case where minimization of f is subject to a constraint set X C $n, the
points of which are called feasible. In particular, we say that z* is a local
minimum of f over X if x* € X and there is an € > 0 such that

flz*) < f(z), Ve X with ||z —2*|| < ¢

see Fig. 1.1.2. The definitions of a global and a strict minimum of f over
X are analogous.

Local and global mazima are similarly defined. In particular, x* is
an unconstrained local (global) maximum of f, if * is an unconstrained
local (global) minimum of the function — f.

Necessary Conditions for Optimality

If the cost function is differentiable, we can use gradients to compare the
cost of a vector with the cost of its close neighbors. In particular, we
consider small variations Ax from a given vector x*, which approximately,
up to first order, yield a cost variation

flz* + Ax) — f(a*) = V f(2*) Az,
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Figure 1.1.2. Local and global minima of f over the constraint set X.

and, up to second order, yield a cost variation
f(@* + Az) — f(a*) = Vf(a*) Az + $A2'V2 f(z*) Az,

We expect that if z* is an unconstrained local minimum, the first
order cost variation due to a small variation Az is nonnegative:

Vf(z*) Ar = Z 8f(;*)

=1

In particular, by taking Az to be positive and negative multiples of the
unit coordinate vectors (all coordinates equal to zero except for one which
is equal to unity), we obtain df(x*)/0x; > 0 and 9f (x*)/0x; < 0, respec-
tively, for all i = 1,...,n. Equivalently, we have the necessary condition

Vf(z*) =0,

[originally formulated by Fermat in 1637 in the short treatise “Methodus
ad Disquirendam Maximam et Minimam” without proof (of course!)]. This
condition is proved formally in Prop. 1.1.1, given in the next subsection.

The idea that at a local minimum x*, the condition V f(z*)'Az > 0
should hold for small variations Az applies more broadly, including for
problems with convex constraint sets X, when it takes the form

Vf(x*)(x —ax*) >0, VzelX.

This condition will be shown in Prop. 1.1.2 for the case of a convex cost
function. In Chapter 3, it will become the basis for constrained versions of
the computational methods of the present chapter.
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We also expect that the second order cost variation due to a small
variation Az must also be nonnegative:

Vf(z*) Az + 1 Az'V2 f(a*) Az > 0.
Since V f(x*)'Ax = 0, we obtain
Ax'V2 f(x*)Az > 0, vV Az € R,
which implies that
V2 f(x*) : positive semidefinite.

We prove this necessary condition in the next subsection (Prop. 1.1.1).
Appendix A reviews the definition and properties of positive definite and
positive semidefinite matrices.

In what follows, we refer to a vector x* satisfying the condition
Vf(xz*) =0 as a stationary point.

The Case of a Convex Cost Function

Convexity plays a very important role in nonlinear programming.f One
reason is that when the cost function f is convex, there is no distinction
between local and global minima; every local minimum is also global. The
idea is illustrated in Fig. 1.1.3 and the formal proof is given in Prop. 1.1.2.

Another important fact is that the first order condition V f(z*) = 0
is also sufficient for optimality if f is convex. This is established in Prop.
1.1.3. The proof is based on a basic property of a convex function f: the
linear approximation at a point x* based on the gradient, i.e.,

f@) + Vf(a) (@ — %),

underestimates f(x), so if Vf(z*) = 0, then f(z*) < f(z) for all z (see
Prop. B.3 in Appendix B).

Sufficient Conditions for Optimality

If f is not convex, the first and second order necessary conditions can fail to
guarantee local optimality of z*. This is illustrated in Fig. 1.1.4. However,
by strengthening the second order condition we obtain sufficient conditions

T The theory of convex sets and functions, particularly as it relates to opti-
mization theory, is reviewed in Appendix B and is discussed extensively in the
author’s books [BNOO03] and [Ber09].
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Figure 1.1.3. Illustration of why a local minimum of a convex function must
also global. Suppose that f is convex and that z* is not a global minimum, so
that there exists Z with f(Z) < f(z*). By convexity, for all a € (0, 1),

flaa® + (1 - a)z) < af@®) + (1 - ) f@) < f(a*).

Thus, f has value strictly lower than f(z*) at every point on the line segment
connecting z* with Z, except *. Therefore * cannot be a local minimum.

f(@)|= [=? fl@)|=a? f@)|= —|z[?

I N

Figure 1.1.4. Illustration of the first order necessary optimality condition of
zero slope [V f(z*) = 0] and the second order necessary optimality condition of
nonnegative curvature [V2f(z*) > 0] for functions of one variable. The first
order condition is satisfied not only by local minima, but also by local maxima
and “inflection” points, such as the one on the middle figure above. In some cases
[e.g. f(z) = x2 and f(x) = —|z|] the second order condition is also satisfied by
local maxima and inflection points. If the function f is convex, the condition
V f(z*) = 0 is necessary and sufficient for global optimality of z*.

for optimality. In particular, consider a vector x* that satisfies the first
order necessary optimality condition

Vi(z*) =0, (1.1)
and also satisfies the following strengthened form of the second order nec-
essary optimality condition

V2 f(z*) : positive definite, (1.2)
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(i.e., the Hessian is positive definite rather than semidefinite). Then, for
all Ax # 0 we have
Ax'V2 f(x*)Azx > 0,

implying that at x* the second order variation of f due to a small nonzero
variation Az is positive. Thus, f tends to increase strictly with small
excursions from z*, suggesting that the above conditions (1.1) and (1.2)
are sufficient for local optimality of x*. This is indeed established in Prop.
1.1.5.

Local minima that don’t satisfy the positive definiteness sufficient
condition (1.2) are called singular; otherwise they are called nonsingular.
Singular local minima are harder to deal with for two reasons. First, in
the absence of convexity of f, their optimality cannot be ascertained using
easily verifiable sufficiency conditions. Second, in their neighborhood, the
behavior of the most commonly used optimization algorithms tends to be
slow and/or erratic, as we will see in the subsequent sections.

Quadratic Cost Functions
Consider the quadratic function
f(ilf) = ;.I/QZZ? - blIa

where @ is a symmetric n X n matrix and b is a vector in R*. If x* is a
local minimum of f, we must have, by the necessary optimality conditions,

Vi(z*) =Qa* —b=0, V2f(z*) = @ : positive semidefinite.

Thus, if @ is not positive semidefinite, f can have no local minima. If Q
is positive semidefinite, f is convex [Prop. B.4(d) of Appendix B], so any
vector x* satisfying the first order condition Vf(z*) = Qz* —b=01is a
global minimum of f. On the other hand there may not exist a solution
of the equation Vf(z*) = Qx* — b = 0 if Q is singular. If, however, @ is
positive definite (and hence invertible, by Prop. A.20 of Appendix A), the
equation Qz* — b = 0 can be solved uniquely and the vector x* = Q—1b
is the unique global minimum. This is consistent with Prop. 1.1.3(a) to
be given shortly, which asserts that strictly convex functions can have at
most one global minimum [f is strictly convex if and only if @ is positive
definite; Prop. B.4(d) of Appendix B]. Figure 1.1.5 illustrates the various
special cases considered.

Quadratic cost functions are important in nonlinear programming be-
cause they arise frequently in applications, but they are also important for
another reason. From the second order expansion around a local minimum
x*,

f@) = f(@*) + 5(x — ) V2 f(2*) (@ — 2*) + o(||lv — 2*]2),
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Figure 1.1.5. Illustration of the level sets {:c | f(z) < c} of the quadratic cost
function f : R2 — R given by

[
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f@,y) = §(a2® +By?) — =

for various values of a and S.

it is seen that a nonquadratic cost function can be approximated well by
a quadratic function if x* nonsingular [V2f(z*): positive definite]. This
means that we can carry out much of our analysis and experimentation
with algorithms using positive definite quadratic functions and expect that
the conclusions will largely carry over to more general cost functions near
convergence to such local minima. However, for local minima near which
the Hessian matrix either does not exist or is singular, the higher than
second order terms in the series expansion are not negligible and an algo-
rithmic analysis based on quadratic cost functions will likely be seriously
flawed.

Existence of Optimal Solutions

In many cases it is useful to know that there exists at least one global
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minimum of a function f over a set X. Generally, such a minimum need
not exist. For example, the scalar functions f(z) = 2 and f(z) = e have
no global minima over the set of real numbers. The first function decreases
without bound to —oco as x tends toward —oo, while the second decreases
toward 0 as z tends toward —oo but always takes positive values.

Existence of at least one global minimum is guaranteed if f is a con-
tinuous function and X is a compact subset of $t». This is the Weierstrass
theorem; see Prop. A.8 in Appendix A. By a related result, also shown in
Prop. A.8, existence of an optimal solution is guaranteed if f is continuous,
X is closed, and f is coercive over X, i.e., f(z*) — oo for any sequence
{zF} C X with ||z*|| — co. Section 3.1.2 presents a more advanced view
of the existence question, where X is not required to be bounded.

Why do we Need Optimality Conditions?

Hardly anyone would doubt that optimality conditions are fundamental to
the analysis of an optimization problem. In practice, however, optimality
conditions play an important role in a variety of contexts, some of which
may not be readily apparent.

The most straightforward method to use optimality conditions for
solving an optimization problem, is as follows: First, find all points satisfy-
ing the first order necessary condition V f(x) = 0; then (if f is not known
to be convex), check the second order necessary condition (V2 f is positive
semidefinite) for each of these points, filtering out those that do not satisfy
it; finally for the remaining candidates, check if V2 f is positive definite, in
which case we are sure that they are strict local minima.

A slightly different alternative is to find all points satisfying the nec-
essary conditions, and to declare as global minimum the one with smallest
cost value. However, here it is essential to know that a global minimum
exists. As an example, for the one-dimensional function

f(.’I]) =12 — :I;47
the points satisfying the necessary condition
Vfi(x)=2x—423=0

are 0, 1/ V2, and —1 / V2, and of these, 0 gives the smallest cost value.
Nonetheless, we cannot declare 0 as the global minimum, because we don’t
know if a global minimum exists. Indeed, in this example none of the
points 0, 1/4/2, and —1/4/2 is a global minimum, because f decreases to
—o00 as || — oo, and has no global minimum. Here is an example where
the approach can be applied.
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Example 1.1.1 (Arithmetic-Geometric Mean Inequality)

We want to show the following classical inequality [due to Cauchy (1821)]:

n
S

(:c1:cz~~~xn)1/n < Q
n

for any set of positive numbers z;, i = 1,...,n. By making the change of
variables
yi = In(x4), i=1,...,n,

we have x; = e¥i, so that this inequality is equivalently written as

Yy1+--+yn eY1 4+ eyn
n < -

= )

n

e

which must be shown for all scalars yi,...,yn. Note that with this transfor-
mation, the nonnegativity requirements on the variables have been eliminated.
One approach to proving the above inequality is to minimize the func-
tion
e¥l 4 ... 4 e¥n Y1+ tyn
- n

)
n

and to show that its minimal value is 0. An alternative, which works better
if we use optimality conditions, is to minimize instead

eyl +”._|_eyn7
over all y = (y1,...,Yn) such that
Y+t yn=s

for an arbitrary scalar s, and to show that the optimal value is no less than
ne®/™.

To this end, we use an elimination technique, a common device to con-
vert constrained optimization problems to unconstrained ones. In particular,
we use the constraint y1 + - - - + y» = s to eliminate the variable y,, thereby
obtaining the equivalent unconstrained problem of minimizing

g(yl7 ... 7yn71) = eyl + .-+ eynfl + eS*ylf"'*ynfl7

OVer yi,...,Yn—1. The necessary conditions dg/0y; = 0 yield the system of
equations
Yi

eVt = e V1T T Yn—1 i=1,...,n—1,

or
Yi =8— Y1 — ** — Yn—1, z:l,,n—l

This system has only one solution: y; = s/n for all i. The solution must
be the unique global minimum if we can show that that there exists a global
minimum. Indeed, it can be seen that the function g(y1, ..., yn—1) is coercive,
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so it has an unconstrained global minimum (Prop. A.8, in Appendix A).
Therefore, (s/n,...,s/n) is this minimum. Thus the optimal value of

6y1+--'+6y"

is ne®/™, which as argued earlier, is sufficient to show the arithmetic-geometric
mean inequality.

It is important to realize, however, that except under very favorable
circumstances, using optimality conditions to obtain a solution as described
above does not work. The reason is that solving for x the system of equa-
tions Vf(xz) = 0 is usually nontrivial; algorithmically, it is typically as
difficult as solving the original optimization problem.

The principal context in which optimality conditions become useful
will not become apparent until we consider iterative optimization algo-
rithms in subsequent sections. We will see that optimality conditions often
provide the basis for the development and the analysis of algorithms. In
particular, algorithms recognize solutions by checking whether they satisfy
various optimality conditions and terminate when such conditions hold ap-
proximately. Furthermore, the behavior of various algorithms in the neigh-
borhood of a local minimum often depends on whether various optimality
conditions are satisfied at that minimum. Thus, for example, sufficiency
conditions play a key role in assertions regarding the speed of convergence
of various algorithms.

There is one other important context, prominently arising in microe-
conomic theory, where optimality conditions provide the basis for analysis.
Here one is interested primarily not in finding an optimal solution, but
rather in how the optimal solution is affected by changes in the problem
data. For example, an economist may be interested in how the prices of
some raw materials will affect the availability of certain goods that are
produced by using these raw materials; the assumption here is that the
amounts produced are the variables of a profit optimization problem, which
is solved by the corresponding producers. This type of reasoning is known
as sensitivity analysis, and is discussed next.

Sensitivity

Suppose that we want to quantify the variation of the optimal solution as
a vector of parameters changes. In particular, consider the optimization
problem

minimize f(z,a)

subject to x € R,

where f : Rm+n — R is a twice continuously differentiable function in-
volving the m-dimensional parameter vector a. Let x(a) denote the global
minimum corresponding to a, assuming for the moment that it exists, is
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unique, and it is differentiable as a function of a. By the first order neces-
sary condition we have

me(:v(a),a) =0, Y a€ R™,
and by differentiating this relation with respect to a, we obtain
Va(a)Vis f(2(a),a) + Viaf(z(a),a) =0,

where the elements of the m x n gradient matrix Vz(a) are the first partial
derivatives of the components of x(a) with respect to the different compo-
nents of a. Assuming that the inverse below exists, we have

Vi(a) = —=Viaf(2(a),a) (V%If(a:(a),a))f1 ; (1.3)
which gives the first order variation of the components of the optimal x
with respect to the components of a.

For the preceding analysis to be precise, we must be sure that x(a)
exists and is differentiable with respect to a. The principal analytical frame-
work for this is the implicit function theorem (Prop. A.25 in Appendix A).
With the aid of this theorem, we can define x(a) in some sphere around
a minimum Z = z(a) corresponding to a nominal parameter value a, as-
suming that the Hessian matrix V2, f (f, d) is positive definite. Thus, the
preceding development and the formula (1.3) for the matrix Vz(a) can be
justified provided the nominal local minimum Z is nonsingular.

We postpone further discussion of sensitivity analysis for Sections
4.2.3, 4.3.2, and 4.3.6, where we will show constrained versions of the ex-
pression (1.3) for Vz(a).

1.1.2 Main Optimality Conditions

We now provide formal statements and proofs of the optimality conditions
discussed in the preceding section.

Proposition 1.1.1: (Necessary Optimality Conditions) Let z*
be an unconstrained local minimum of f : ®” — R, and assume that
f is continuously differentiable in an open set S containing x*. Then

Vf(x*)=0. (First Order Necessary Condition)

If in addition f is twice continuously differentiable within S, then

V2 f(x*): positive semidefinite. (Second Order Necessary Condition)
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Proof: Fix some d € £". Then, using the chain rule to differentiate the
function g(a) = f(z* + ad) of the scalar «, we have
fla* +ad) — f(z*) _ dg(0)

0<li — — d'V f(z*
< lim - o f(z*),

where the inequality follows from the assumption that z* is a local min-
imum. Since d is arbitrary, the same inequality holds with d replaced by
—d. Therefore, d’'V f(x*) = 0 for all d € R, which shows that V f(z*) = 0.

Assume that f is twice continuously differentiable, and let d be any
vector in 7. For all a € R, the second order expansion yields

flz* 4+ ad) — f(z*) = aV f(z*)'d + %2d’v2f(:v*)d+ o(a?).

Using the condition V f(2*) = 0 and the local optimality of x*, we see that
there is a sufficiently small € > 0 such that for all & with a € (0, ¢),

flz* + ad) — f(a

o2

0< ) _ LV f(an)d + %%,

Taking the limit as o — 0 and using the fact lima—00(a?)/a2 = 0, we
obtain d’'V2f(x*)d > 0, showing that V2f(z*) is positive semidefinite.
Q.E.D.

The Convex Case

We will now consider the case where both the cost function f and the
constraint set X are convex. The following proposition shows that a local
minimum of f over X is also a global minimum over X. The proposition
also deals with the cases where f is strictly convex and where it is strongly
convex (see Appendix B for the definition and properties of strictly and
strongly convex functions).

Proposition 1.1.2: If X is a convex subset of " and f : ®*» — R
is convex over X, then a local minimum of f over X is also a global
minimum. If in addition f is strictly convex over X, then f has at
most one global minimum over X. Moreover, if f is strongly convex
and X is closed, then f has a unique global minimum over X.

Proof: Assume, to arrive at a contradiction, that x is a local minimum
of f but not a global minimum. Then there exists some y # x such that
f(y) < f(x). Using the convexity of f, we have

flaz+ (1 —a)y) <af(z)+(1-a)f(y) < f(z), Vael01)
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This contradicts the assumption that x is a local minimum.

Assume, to arrive at a contradiction, that f is strictly convex, and
two distinct global minima x and y exist. Then their average (z + y)/2
must belong to X, since X is convex, and the value of f at the average
must be smaller than (f(z) + f(y))/2, by the strict convexity of f. Since
x and y are global minima, we obtain a contradiction.

A strongly convex function is coercive, so it has at least one minimum
over the closed set X by Prop. A.8 in Appendix A. It is also strictly convex
by Prop. B.5(a) of Appendix B, so the minimum is unique. Q.E.D.

The following proposition provides a simple necessary and sufficient
condition for optimality; see Fig. 1.1.6.

Proposition 1.1.3: (Convex Case - Necessary and Sufficient
Conditions) Let X be a convex set and let f : R — R be a convex
function over X.

(a) If f is continuously differentiable, then
Vi(x*) (z —ax*) >0, VaoelX,
is a necessary and sufficient condition for a vector z* € X to be

a global minimum of f over X.

(b) If X is open and f is continuously differentiable over X, then
Vf(z*) = 0 is a necessary and sufficient condition for a vector
x* € X to be a global minimum of f over X.

Proof: (a) Using the convexity of f and Prop. B.3(a) of Appendix B, we
have
f(@) > f(z*) + Vf(z*)(z—2z*), VazeX.

If the condition V f(z*) (x —x*) > 0 holds for all z € X, then f(z) > f(z*)
for all x € X, so x* minimizes f over X.

Conversely, assume to arrive at a contradiction that x* minimizes f
over X and that Vf(z*)'(z — x*) < 0 for some = € X. Then, we have

o +ale—a) - fa)

al0 «

= Vf(z*)(z —a*) <0,

SO f(x* +a(z — x*)) decreases strictly for sufficiently small a > 0, contra-
dicting the optimality of x*.

(b) If Vf(x*) = 0, the optimality of z* follows as a special case of part (a).
Conversely, assume to arrive at a contradiction that x* minimizes f over
X and that Vf(z*) # 0. Then, since X is open and z* € X, there must
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Level Sets of f

Figure 1.1.6. Illustration of the necessary and sufficient condition of Prop.
1.1.3(a) for z* to minimize f over X. The gradient Vf(z*) makes an angle
less or equal to /2 with any vector of the form z — z*, z € X.

exist an open ball centered at z* that is contained in X. Thus for some
x € X we have

Vi(z*) (z—a*) <O.

The proof now proceeds as in part (a). Q.E.D.

The following is an illustration of the use of the preceding optimality

conditions.

Example 1.1.2 (Arithmetic-Geometric Mean Inequality
Revisited)

As an application of the preceding proposition, let us provide an alternative
optimization-based proof of the arithmetic-geometric mean inequality, given
in Example 1.1.1. We argued there that showing the inequality is equivalent
to showing that for an arbitrary scalar s, the minimum value of the convex
function

gly) =€ + -4 e,

over all y = (y1,...,Yn) such that
y1++yn:3

s/n

is no less than ne®/™. We verified this by showing that the symmetric solution

is optimal, via conversion of the problem to an unconstrained problem through
elimination of one of the variables. Alternatively, we can prove the optimality
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of this solution by checking the sufficiency condition of Prop. 1.1.3(a) (the cost
function and constraint are easily verified to be convex). This condition is

written as
y1— s/n
Vo(y) (y—y") = (e, e/ : >0,
Yn — /N
or
ey + +yn—5) >0

for all y with y1 + - -+ 4+ y» = s, which is evidently true.

Let us use Prop. 1.1.2 and the optimality condition of Prop. 1.1.3(a)

to prove a basic theorem of analysis and optimization, which is illustrated

in Fig. 1.1.7 and will be used frequently in this book.

Proposition 1.1.4: (Projection Theorem) Let X be a closed con-
vex set and let || - || be the Euclidean norm.

(a) For every x € R, there exists a unique vector that minimizes
|ly — x|l over all y € X. This vector is called the projection of x
on X, and is denoted by [z]*, i.e.,

+ = i _
[]* = arg min |ly — .
(b) Given some z € R, a vector z* € X is equal to [z]* if and only
if
(y—z*)(z —2*) <0, VyeX. (1.4)

(¢) The mapping f : " — X defined by f(z) = [z]* is continuous
and nonexpansive, i.e.,

|zt =t <lle—yl, Va,yeRn

Proof: (a) Given z, minimizing ||y — z|| over y € X is equivalent to mini-
mizing the convex and differentiable function

fy) = 3ly— =2/

over X. Since, f is strongly convex, existence and uniqueness of the mini-
mizing vector follows from Prop. 1.1.2.

(b) By Prop. 1.1.3, z* minimizes f over X if and only if
Vi@ )(y-a)20, VyeX.
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Figure 1.1.7. Illustration of the condition
(1.4) of the projection theorem. For z* to
to be the projection of x on X, the vector
r — x* should make an angle greater or
equal to 7/2 with any vector of the form
y—z*, ye X.

Since V f(x*) = x* — x, this condition is equivalent to Eq. (1.4).
(c) Let x and y be elements of ®». From part (b), we have

(w—[x]*)l(:v— [z]t) <0, VweX.
Since [y]* € X, we can use w = [y]* in the preceding relation and obtain
([ = [21%) (& = [2]¥) <0.
Exchanging the roles of z and y, we also obtain
([ = ") (v - y)*) 0.

Adding these two inequalities, we have

/

(lyl+ = [2]+) (= = [2]+ —y + [y]*) <0.

By rearranging and by using the Schwarz inequality, we obtain

I = B < ([ = [214) =) < [+ = ] - lly - 2ll,

showing that [-]* is nonexpansive and a fortiori continuous. Q.E.D.

Sufficient Conditions without Convexity

In the absence of convexity, we have the following sufficiency conditions for
local optimality.
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Proposition 1.1.5: (Second Order Sufficient Optimality Con-
ditions) Let f : R — R be twice continuously differentiable over an
open set S. Suppose that a vector z* € S satisfies the conditions

Vf(z*) =0, V2 f(z*) : positive definite.

Then, z* is a strict unconstrained local minimum of f. In particular,
there exist scalars v > 0 and € > 0 such that

f@) 2 f@)+ Slle—a]2, Vo with |z-o] <e  (L5)

Proof: Denote by A the smallest eigenvalue of V2 f(z*). By Prop. A.20(b)
of Appendix A, X is positive since V2 f(z*) is positive definite. Further-
more, by Prop. A.18(b) of Appendix A,

d'V2 f(x*)d > A||d||?, Y de R
Using this relation, the hypothesis V f(z*) = 0, and a second order expan-
sion, we have for all d

flar +d) = f(z*) = Vf(a*)d+ 5d'V2 f(z*)d + o(||d]|2)
A
> Sl +o(lld]?)

- (3 2 e

2 |d?
Choose any € > 0 and v > 0 such that
dl2
AyollldlP) Sy i d]] < e.

27 Jdr T2
Then Eq. (1.5) is satisfied. Q.E.D.

EXERCISES

1.1.1

For each value of the scalar 3, find the set of all stationary points of the following
function of the two variables x and y

flz,y) =2 +y° + Bry + = + 2y.

Which of these stationary points are global minima?
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1.1.2
In each of the following problems fully justify your answer using optimality con-
ditions.

(a) Show that the 2-dimensional function f(z,y) = (2* — 4)*> + % has two
global minima and one stationary point, which is neither a local maximum
nor a local minimum.

b) Find all local minima of the 2-dimensional function f(z,y) = 122 +xz cosy.
2

(¢) Find all local minima and all local maxima of the 2-dimensional function
f(z,y) =sinz + siny + sin(z + y) within the set

{.y)|0<z<2m 0<y<2n}.

(d) Show that the 2-dimensional function f(x,y) = (y —2%)*> — 2 has only one
stationary point, which is neither a local maximum nor a local minimum.

(e) Consider the minimization of the function f in part (d) subject to no con-
straint on x and the constraint —1 < y < 1 on y. Show that there exists
at least one global minimum and find all global minima.

1.1.3 [Hes75]

Let f: R™ — R be a differentiable function. Suppose that a point z* is a local
minimum of f along every line that passes through z*; that is, the function

g(a) = f(z" + ad)
is minimized at o = 0 for all d € R".

(a) Show that V f(z*) =0.

(b) Show by example that 2* need not be a local minimum of f. Hint: Consider
the function of two variables

fly,2) = (z = py*) (2 — qy°),

where 0 < p < g¢; see Fig. 1.1.8. Show that (0,0) is a local minimum of f
along every line that passes through (0,0). Moreover, if p < m < ¢, then

flymy®) <0 Vy#0,
while f(0,0) =0, so (0,0) is not a local minimum of f.
1.1.4
Use optimality conditions to show that for all z > 0 we have

l—|—a¢22.
T
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Figure 1.1.8. Three-dimensional graph of the function f(y, z) = (z—py?)(z—qy?)
for p =1 and g = 4 (cf. Exercise 1.1.3). The origin is a local minimum with respect
to every line that passes through it, but is not a local minimum of f.

1.1.5

Find the rectangular parallelepiped of unit volume that has the minimum surface
area. Hint: By eliminating one of the dimensions, show that the problem is
equivalent to the minimization over z > 0 and y > 0 of

1 1
f(l’yy)—l’y“‘E‘Fg-

Show that the sets {(x, y) | flz,y) <v,z>0,y> ()} are compact for all scalars
.

1.1.6 (The Weber Point of a Set of Points)

We want to find a point x in the plane whose sum of weighted distances from a
given set of points yi, ..., yn is minimized. Mathematically, the problem is

m
minimize Z wi|lz — |
i=1

subject to = € R",

where w1, ..., w., are given positive scalars.

(a) Show that there exists a global minimum for this problem and that it can
be realized by means of the mechanical model shown in Fig. 1.1.9.
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(b) Is the optimal solution always unique?

(c) Show that an optimal solution minimizes the potential energy of the me-
chanical model of Fig. 1.1.9, defined as Zzl w;ihi, where h; is the height
of the ith weight, measured from some reference level.

Note: This problem stems from Weber’s work [Web29], which is generally viewed
as the starting point of location theory.

Figure 1.1.9. Mechanical model (known as the Varignon frame) associated with
the Weber problem (Exercise 1.1.6). It consists of a board with a hole drilled
at each of the given points y;. Through each hole, a string is passed with the
corresponding weight w; attached. The other ends of the strings are tied with a
knot as shown. In the absence of friction or tangled strings, the forces at the knot
reach equilibrium when the knot is located at an optimal solution x*.

1.1.7 (Fermat-Torricelli-Viviani Problem)

Given a triangle in the plane, consider the problem of finding a point whose sum
of distances from the vertices of the triangle is minimal. Show that such a point
is either a vertex, or else it is such that each side of the triangle is seen from that
point at a 120 degree angle (this is known as the Torricelli point). Note: This
problem, whose detailed history is traced in [BMS99], was suggested by Fermat
to Torricelli who solved it. Viviani also solved the problem a little later and
proved the following generalization: Suppose that x;, i = 1,...,m, are points in
the plane, and x is a point in their convex hull such that = # x; for all i, and
the angles z;xTit1, ¢ < m, and T,z are all equal to 27r/m. Then x minimizes
Yo llz— ]| over all z in the plane (show this as an exercise by using sufficient
optimality conditions; compare with the preceding exercise). Fermat is credited
with being the first to study systematically optimization problems in geometry.
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1.1.8 (Diffraction Law in Optics)

Let p and ¢ be two points on the plane that lie on opposite sides of a horizontal
axis. Assume that the speed of light from p and from ¢ to the horizontal axis is v
and w, respectively, and that light reaches a point from other points along paths
of minimum travel time. Find the path that a ray of light would follow from p
to q.

1.1.9

Let f: R" — R be a twice continuously differentiable function that satisfies
mlyl® <y'Vf(x)y < Mlly|*,  Vz,yeR",

where m and M are some positive scalars. Show that f has a unique global
minimum z*, which satisfies

Vi@ < fa) - 1) < = [Vr@N Veew,

— 2m
and
m * * M * n
glll’—l’HZSf(l’)—f(x)Sgl\fv—x||2, VaeR"

Hint: Use a second order expansion and the relation

min {V/@' -2+ Fly -’} = —5-[VF@[" Va0

1.1.10 (Nonconvex Level Sets [Dun87])
Let f: %2 — R be the function
f(z) = @3 — azs|lz||* + ||,

where 0 < a < 2 (see Fig. 1.1.10). Show that f(z) > 0 for all « # 0, so that the
origin is the unique global minimum. Show also that there exists a 4 > 0 such
that for all v € (0,7], the level set L, = {:c | f(z) < 7} is not convex. Hint:
Show that for v € (0,7], there is a p > 0 and a ¢ > 0 such that the vectors (—p, q)
and (p, ¢) belong to L+, but (0, q) does not belong to L.
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Figure 1.1.10. Level sets of the function f of Exercise 1.1.10 for the case where
a = 1.98. The unique global minimum is the origin, but the level sets of f are
NONConvex.

1.1.11 (Singular Strict Local Minima [Dun87])

Show that if z* is a nonsingular strict local minimum of a twice continuously
differentiable function f : R™ — R, then x* is an isolated stationary point; that
is, there is a sphere centered at z* such that z* is the only stationary point of f
within that sphere. Use the following example function f : 1 — R to show that
this need not be true if z* is a singular strict local minimum:

flx) = {xz (\/i—sin (E%r —\/gln(:cz))) 20,
0 if x =0.

In particular, show that * = 0 is the unique (singular) global minimum, while
the sequence {z*} of nonsingular local minima, where

(1—8k)m

converges to z* (cf. Fig. 1.1.11). Verify also that there is a sequence of nonsingular
local maxima that converges to z*.
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Figure 1.1.11. Illustration of the function f of Exercise 1.1.11 in progressively
finer scale. The point z* = 0 is the unique (singular) global minimum, but there
are sequences of nonsingular local minima and local maxima that converge to z*.

1.1.12 (Stability)

We are often interested in whether optimal solutions change radically when the
problem data are slightly perturbed. This issue is addressed by stability analysis,
to be contrasted with sensitivity analysis, which deals with how much optimal
solutions change when problem data change. An unconstrained local minimum
z* of a function f is said to be locally stable if there exists a § > 0 such that all
sequences {z*} with

f(z") = fla™), ||z —2*|| <6, Vk>o0,

converge to x*. Suppose that f is a continuous function and let z* be a local
minimum of f.

(a) Show that z* is locally stable if and only if z* is a strict local minimum.
(b) Let g be a continuous function. Show that if * is locally stable, there exists
a § > 0 such that for all sufficiently small € > 0, the function f(z) + eg(x)

has an unconstrained local minimum z. that lies within the sphere centered
at =¥ with radius §. Furthermore, z. — 2™ as ¢ — 0.
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1.1.13 (Sensitivity)

Let f: R" — R and g : R" — R be twice continuously differentiable functions,
and let * be a nonsingular local minimum of f. Show that there exists an € > 0
and a § > 0 such that for all € € [0,€) the function

f(@) +eg(x)

has a unique local minimum x. within the sphere {1: | |z — || < 5}7 and we
have

Te=2x" — e(V2f(x*))71Vg(m*) + o(e).

Hint: Use the implicit function theorem (Prop. A.25 in Appendix A).

GRADIENT METHODS — CONVERGENCE

We now start our development of computational methods for unconstrained
optimization. The conceptual framework of this section is fundamental in
nonlinear programming and applies to constrained optimization methods
as well, as we will see in Chapter 3.

1.2.1 Descent Directions and Stepsize Rules

As in the case of optimality conditions, the main ideas of unconstrained
optimization methods have simple geometrical explanations, but the cor-
responding convergence analysis is often complex. Thus, for pedagogical
reasons, we first discuss informally the methods and their behavior in the
present subsection, and we substantiate our conclusions with rigorous anal-
ysis in Section 1.2.2.

Consider the problem of unconstrained minimization of a continuously
differentiable function f : R” +— R. Most of the interesting algorithms for
this problem rely on an important idea, called iterative descent that works
as follows: We start at some point 0 (an initial guess) and successively
generate vectors x1,x2, ..., such that f is decreased at each iteration, i.e.,

flaktl)y < f(zF), k=0,1,...,

(cf. Fig. 1.2.1). In doing so, we successively improve our current solution
estimate and we hope to decrease f all the way to its minimum. In this
section, we introduce a general class of algorithms based on iterative de-
scent, and we analyze their convergence to local minima. In Section 1.3 we
examine their rate of convergence properties.
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fl@)=c <eo

Figure 1.2.1. Iterative descent for
minimizing a function f. Each vec-
tor in the generated sequence has a
lower cost than its predecessor.

Gradient Methods
Given a vector z € " with V f(z) # 0, consider the half line of vectors
To =z —aVf(x), Va>0.
From the first order expansion around x we have
f@a) = F(@) + V() (@0 — @) + o 20 — )
= /() = ||V 1(@)[* + oo VS @)]).

SO we can write

flaa) = f(2) — || V£ (@)]]” + o(a).

The term )
al| V()]

dominates o(a) for « near zero, so for positive but sufficiently small «,

f(za) is smaller than f(z) as illustrated in Fig. 1.2.2.

Vf(x)

Figure 1.2.2. If Vf(z) # 0, there
is an interval (0, d) of stepsizes such
that

fl—aVf(z)) < f(=z)

for all a € (0, 6).
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Carrying this idea one step further, consider the half line of vectors
To =T+ ad, Va>0,

where the direction vector d € ™ makes an angle with Vf(z) that is
greater than 90 degrees, i.e.,

Vf(z)d<0.

Again we have
f(@a) = f(2) + aVf(z)d+ o(a).
For « near zero, the term aV f(x)'d dominates o(a) and as a result, for

positive but sufficiently small o, f(z+ad) is smaller than f(z) as illustrated
in Fig. 1.2.3.

Figure 1.2.3. If the direction d ma-
kes an angle with V f(z) that is greater
than 90 degrees, i.e., Vf(z)'d < 0,
there is an interval (0, ) of stepsizes
such that

~—
ied f(z+ad) < f(z)

fl@)=¢e1 < co f@) = < e for all a € (0, 9).

The preceding observations form the basis for the broad and impor-
tant class of algorithms

ok+l = gk 4+ akdk, k=0,1,..., (1.6)
where, if V f(x*) # 0, the direction d* is chosen so that
Vf(ak)dk <0, (1.7)

and the stepsize a¥ is chosen to be positive. If Vf(z¥) = 0, the method
stops, i.e., xk+1 = xk (equivalently we choose d¥ = 0). In view of the rela-
tion (1.7) of the direction d* and the gradient V f(a*), we call algorithms
of this type gradient methods. [There is no universally accepted name for
these algorithms; some authors reserve the name “gradient method” for
the special case where d¥ = —V f(z¥), and we will occasionally follow the
same practice, when no confusion can arise.] The majority of the gradi-
ent methods that we will consider are also descent algorithms; that is, the
stepsize oF is selected so that

flak + akdr) < f(z%),  k=0,1,.... (1.8)
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However, there are some exceptions, which will be described shortly.

There is a large variety of possibilities for choosing the direction d
and the stepsize a* in a gradient method. Indeed there is no single gradient
method that can be recommended for all or even most problems. Other-
wise said, given any one of the numerous methods and variations thereof
that we will discuss, there are interesting types of problems for which this
method is well-suited. Our principal analytical aim is to develop a few
guiding principles for understanding the performance of broad classes of
methods and for appreciating the practical contexts in which their use is
most appropriate.

Selecting the Descent Direction

Many gradient methods are specified in the form
xktl = gk — ak DEV f(zF), (1.9)

where DF is a positive definite symmetric matrix. Since d¥ = —D*V f(zF),
the descent condition V f(x*)'dk < 0 is written as

V f(xk) DEV f(xk) > 0,

and holds thanks to the positive definiteness of DF.
Here are some examples of choices of the matrix DF, resulting in
methods that are widely used:

Steepest Descent

where [ is the n X n identity matrix. This is the simplest choice but it often
leads to slow convergence, as we will see in Section 1.3. The difficulty is illus-
trated in Fig. 1.2.4 and motivates the methods of the subsequent examples.
The name “steepest descent” is derived from an interesting property of the
(normalized) negative gradient direction

dF = _ \7i (xk)
[Vr@9)]
Among all directions d € R" that are normalized so that ||d|| = 1, it is the one

that minimizes the slope V f(z*)’d of the cost f(z" + ad) along the direction
d at o = 0. Indeed, by the Schwarz inequality (Prop. A.2 in Appendix A),
we have for all d with ||d|| = 1,

Vi@E)d > —[|V i@ ld] = —|| V")

I

and it is seen that equality is attained above for d equal to —V f(z*)/ ‘ ’ Vf(z") ‘ ’
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/

Figure 1.2.4. Slow convergence of the steepest descent method
Pt = gk — ok (k)

when the equal cost surfaces of f are very “elongated.” The difficulty is that the
gradient direction is almost orthogonal to the direction that leads to the minimum.
As a result the method is zig-zagging without making fast progress.

Newton’s Method

-1

D" = (V’f@a"), k=0,1,...,

provided V2f(z*) is positive definite. If V2f(x") is not positive definite,
some modification is necessary as will be explained in Section 1.4. The idea in
Newton’s method is to minimize at each iteration the quadratic approximation
of f around the current point z* given by

i) = f@") + VD (@ - ") + 5(z - ") V(") (@ - 2b),
(see Fig. 1.2.5). By setting the derivative of f*(z) to zero,

V") + Vif(")(z —2*) =0,

+

we obtain the next iterate "' as the minimum of f*(z):

Pt =gk — (VQf(xk))71 Vf(z").

This is the pure Newton iteration. It is the special case of the more general
iteration

P =t o (T() 7 O,

where the stepsize o = 1. Note that Newton’s method finds the global min-
imum of a positive definite quadratic function in a single iteration (assuming
ok = 1). For other cost functions, Newton’s method typically converges very
fast asymptotically and does not exhibit the zig-zagging behavior of steepest
descent, as we will show in Section 1.4. For this reason many other methods
try to emulate Newton’s method. Some examples will be given shortly.
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Quadratic Approximation
of f at a9

Quadratic Approximation

fx)=c1<co Bl = @ < & of f at x!

Figure 1.2.5. Illustration of the fast convergence rate of Newton’s method with
a stepsize o = 1. Given z*, the method obtains z*¥t! as the minimum of a
quadratic approximation of f based on a second order expansion around z*.

Diagonally Scaled Steepest Descent

d 0 o0 0 O 0
0 d5 o 0 0 0
D=1 o ., k=0,1,...,
0 0 0 0 d_, o
0 0 0 o o0 d

where d¥ are positive scalars, thus ensuring that D* is positive definite. A
popular choice, resulting in a method known as a diagonal approrimation to
Newton’s method, is to take d¥ to be an approximation to the inverted second
partial derivative of f with respect to x;, i.e.,

N CON
dl ~ ( (8$1)2 )

(making sure of course that d¥ > 0).

Modified Newton’s Method

D" = (V3 f(*)"",  k=01,...,

provided V2f(1:0) is positive definite. This method is the same as Newton’s
method except that to economize on overhead, the Hessian matrix is not
recalculated at each iteration. A related method is obtained when the Hessian
is recomputed every p > 1 iterations.
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Discretized Newton’s Method

D" = (H@") ", k=01,...,

where H(z¥) is a positive definite symmetric approximation of V2f(z¥),
formed by using finite difference approximations of the second derivatives,
based on first derivatives or values of f.

Gauss-Newton Method

This method applies to the problem of minimizing the sum of squares of real-
valued functions gi, ..., gm, a problem often encountered in statistical data
analysis and in the context of neural network training (see Section 1.4.4). By
denoting g = (g1,...,9m), the problem is written as

minimize f(z) = %Hg(:c)”2 =35> (gz(:c))2

subject to = € R".

We choose

-1

D = (Vg(:ck)Vg(mk)') , k=0,1,...,

assuming the matrix Vg(z*)Vg(x*)’ is invertible. The latter matrix is always
positive semidefinite, and it is positive definite and hence invertible if and only
if the matrix Vg(z*) has rank n (Prop. A.20 in Appendix A). Since

V(") = Vg(a")g(a"),
the Gauss-Newton method takes the form

P =t — oF (V") Vg (h)) T Vg(at)g(a"). (1.10)

We will see in Section 1.4.4 that the Gauss-Newton method may be viewed as
an approximation to Newton’s method, particularly when the optimal value

of Hg(m)”2 is small.

Other choices of D* yield the class of Quasi-Newton methods dis-
cussed in Section 2.2. There are also some interesting descent methods
where the direction d¥ is not usually expressed as d¥ = —DFV f(zF). Im-
portant examples are the conjugate gradient method and the coordinate
descent methods, which are discussed in Sections 2.1.1 and 2.3.1, respec-
tively.

Stepsize Selection

There are a number of rules for choosing the stepsize of in a gradient
method. We give some that are used widely in practice:
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Minimization Rule

Here o is such that the cost function is minimized along the direction d*,
ie., o satisfies

" +aFdh) = mil&f(:ck + ad®). (1.11)

Limited Minimization Rule

This is a version of the minimization rule, which is more easily implemented
in many cases. A fixed scalar s > 0 is selected and o is chosen to yield the
greatest cost reduction over all stepsizes in the interval [0, s], i.e.,

f@* +a*d") = rr}(i)n ] f(z* + ad").
aec|0, s

The minimization and limited minimization rules must typically be
implemented with the aid of one-dimensional line search algorithms (see
Appendix C). In general, the minimizing stepsize cannot be computed ex-
actly, and in practice, the line search is stopped once a stepsize a* satis-
fying some termination criterion is obtained. Some stopping criteria are
discussed in Exercise 1.2.15.

Generally, compared with other stepsize rules, the minimization rules
tend to require more function and/or gradient evaluations per iteration.
However, their use tends to reduce the number of required iterations for
practical convergence, because of the greater cost reduction per iteration
that they achieve. The minimization rules are also favored in cases where
the structure of the problem can be exploited to economize on the asso-
ciated computations. A prominent example arises when the cost function
has the form

f(z) = h(Axz),

where A is a matrix such that the calculation of the vector y = Ax for a
given x is far more expensive than the calculation of h(y) and its gradient
and Hessian (assuming it exists). In this case, calculation of values, first,
and second derivatives of the function g(a) = f(z + ad) = h(Axz + aAd)
requires just two expensive operations: the one-time calculation of the
matrix-vector products Az and Ad.

Successive Stepsize Reduction — Armijo Rule
To avoid the often considerable computation associated with the line min-

imization rules, it is natural to consider rules based on successive stepsize
reduction. In the simplest rule of this type an initial stepsize s is chosen, and
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if the corresponding vector z* +sd® does not yield an improved value of f, i.e.,
f(z* +sd®) > f(z"), the stepsize is reduced, perhaps repeatedly, by a certain
factor, until the value of f is improved. While this method often works in
practice, it is theoretically unsound because the cost improvement obtained
at each iteration may not be substantial enough to guarantee convergence to
a minimum. This is illustrated in Fig. 1.2.6.

The Armijo rule is essentially the successive reduction rule just de-
scribed, suitably modified to eliminate the theoretical convergence difficulty
shown in Fig. 1.2.6. Here, fixed scalars s, 8, and o, with 0 < § < 1, and
0 < o < 1 are chosen, and we set o = 8™k s, where my, is the first nonnega-
tive integer m for which

&™) = fa* + M sd¥) > —o sV f(2") d". (1.12)

In other words, the stepsizes f™s, m = 0,1, ..., are tried successively until
the above inequality is satisfied for m = my. Thus, the cost improvement
must not be just positive; it must be sufficiently large as per the test (1.12).
Figure 1.2.7 illustrates the rule.

Usually o is chosen close to zero, for example, o € [10757 1071]. The
reduction factor f is usually chosen from 1/2 to 1/10 depending on the con-
fidence we have on the quality of the initial stepsize s. We can always take
s = 1 and multiply the direction d* by a scaling factor. Many methods, such
as Newton-like methods, incorporate some type of implicit scaling of the di-
rection d*, which makes s = 1 a good stepsize choice (see the discussion on
rate of convergence in Section 1.3). If a suitable scaling factor for d* is not
known, one may use various ad hoc schemes to determine one. For example,
a simple possibility is based on quadratic interpolation of the function

g(@) = f(z" + ad"),

which is the cost along the direction d*, viewed as a function of the stepsize
a. In this scheme, we select some stepsize &, evaluate g(@), and perform
the quadratic interpolation of g on the basis of g(0) = f(z*), dg(0)/da =
Vf(z")d*, and g(&). If & minimizes the quadratic interpolation, we replace
d* by d* = ad®, and we use an initial stepsize s = 1. Of course some
safeguards are needed when implementing heuristics of this type; for example
if g() is linear or concave in the interval [0, @], the quadratic interpolation
scheme just described will fail; see also Exercise 1.2.15.

Constant Stepsize

Here a fixed stepsize s > 0 is selected and

ak:s, k=0,1,....

The constant stepsize rule is very simple. However, if the stepsize is too large,
divergence will occur, while if the stepsize is too small, the rate of convergence
may be very slow. Thus, the constant stepsize rule is useful only for problems
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Figure 1.2.6. Example of failure of the successive stepsize reduction rule for the one-
dimensional function

1— 2
3 4@ —2(1—g) ifz>1,
= 1 2
fw) = 3 Zm) —2(1+a2) ife<-1,
x? —1, if-1<z<1.

The gradient of f is given by

, ?Jr% ifz>1,
flz) = g—% if x < —1,
2z, if—1<z<l1.

It is seen that f is strictly convex, continuously differentiable, and is minimized at
z* = 0. Furthermore, f(z) < f(Z) if and only if |z| < |Z|. For > 1, we have

3= (145,

from which it can be verified that |z — V f(x)| < |z, so that f(:c — Vf(:c)) < f(z) and

z—V f(z) < —1. Similarly, for z < —1, we have f(:c—Vf(:c)) < f(z) and -V f(z) > 1.
Consider now the steepest descent iteration where the stepsize is successively reduced
from an initial stepsize s = 1 until descent is obtained. Let the starting point satisfy
|z°] > 1. From the preceding equations, it follows that f(:co —Vf(xo)) < f(29) and the
stepsize s = 1 will be accepted by the method. Thus, the next point is 2! = :EO—Vf(mO),
which satisfies |z1| > 1. By repeating the preceding argument, we see that the generated
sequence {z*} satisfies |2*| > 1 for all k, and cannot converge to the unique stationary
point z* = 0. In fact, it can be shown that {:ck} will have two limit points, Z = 1 and
Z = —1, for every z° with |20| > 1.
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. Unsuccessful Stepsize Trial
Set of acceptable stepsizes et b Lae
—— > —————>
L af = f% | \fs LI
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|
|

aV f(zk)dk oaV f(zk)'dk
f(aF+adk)—f(z*)

Figure 1.2.7. Line search by the Armijo rule. We start with the trial stepsize s
and continue with 8s, 82s, ..., until the first time that 8™s falls within the set of
stepsizes « satisfying the inequality

f@h) = f(@* + ad®) > —oaV f(a*)d*.

While this set need not be an interval, it will always contain an interval of the
form [0, 8] with § > 0, provided V f(z*)'d* < 0. For this reason the stepsize a*
chosen by the Armijo rule is well defined and will be found after a finite number
of trial evaluations of f at the points (z* + sd®), (z* 4+ Bsd¥), ...

where an appropriate constant stepsize value is known or can be determined
fairly easily.

For the case where f is convex, there are methods that attempt to
determine automatically an appropriate value of stepsize; see Exercise 1.2.19
and also [Berl5a], Section 6.1. In these methods an initial value of stepsize
is selected, and using the results of the computation over several iterations,
the stepsize is reduced to a level that eventually stays constant. Still the
convergence of a gradient method using a constant or eventually constant
stepsize requires that the gradient V f satisfies a Lipschitz condition (see the
subsequent Prop. 1.2.2 and the discussion that follows it). By contrast the
line minimization rules and the Armijo rule do not require this restriction.

Diminishing Stepsize

Here the stepsize converges to zero,
o = 0.
This stepsize rule is different than the preceding ones in that it does not

guarantee descent at each iteration, although descent becomes more likely as
the stepsize diminishes. One difficulty with a diminishing stepsize is that it
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may become so small that substantial progress cannot be maintained, even
when far from a stationary point. For this reason, we require that

The last condition guarantees that {z"} does not converge to a nonstationary
point. Indeed, if ¥ — Z, then for any large indexes m and n (m > n) we

have
m—1
2"~ T, 2"~ — (Zak> Viz),
k=n

which is a contradiction when Z is nonstationary and ZZ:: a” can be made
arbitrarily large. Generally, the diminishing stepsize rule has good theoretical
convergence properties (see Prop. 1.2.3, and Exercises 1.2.12 and 1.2.13). The
associated convergence rate tends to be slow, so this stepsize rule is used
primarily in situations where slow convergence is inevitable; for example,
in singular problems or when the gradient is calculated with error (see the
discussion later in this section).

k

The preceding stepsize rules are based on cost function reduction (or
eventual cost function reduction, in the case of a diminishing stepsize).
There are also some other rules, often called nonmonotonic, which do not
explicitly try to enforce cost function descent and have achieved some suc-
cess, but are based on ideas that we will not discuss in this book; see
[BaB88], [GLLI1], [Ray93], [Ray97], [BMRO00], [DHS06].

Convergence Issues

Let us now delineate the type of convergence issues that we would like to
clarify. We will first discuss informally these issues, and we will state and
prove the associated convergence results in Section 1.2.2.

Given a gradient method, ideally we would like the generated sequence
{z*} to converge to a global minimum. Unfortunately, however, this is too
much to expect, at least when f is not convex, because of the presence
of local minima that are not global. Indeed a gradient method is guided
downhill by the form of f near the current iterate, while being oblivious to
the global structure of f, and thus, can easily get attracted to any type of
minimum, global or not. Furthermore, if a gradient method starts or lands
at any stationary point, including a local maximum, it stops at that point.
Thus, the most we can expect from a gradient method is that it converges
to a stationary point. Such a point is a global minimum if f is convex,
but this need not be so for nonconvex problems. It must therefore be
recognized that gradient methods can be quite inadequate, particularly if
little is known about the location and/or other properties of global minima.
For such problems one should either try an often difficult and frustrating
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process of running a gradient method from multiple starting points, or else
resort to a fundamentally different approach.

Generally, depending on the nature of the cost function f, the se-
quence {x*} generated by a gradient method need not have a limit point;
in fact {z*¥} is typically unbounded if f has no local minima. If, however,
we know that the level set {z | f(z) < f(29)} is bounded, and the stepsize
is chosen to enforce descent at each iteration, then the sequence {a*} must
be bounded since it belongs to this level set. It must then have at least one
limit point; this is because every bounded sequence has at least one limit
point (see Prop. A.5 of Appendix A).

Even if {a*} is bounded, convergence to a single limit point may not
be easy to guarantee. However, it can be shown that local minima, which
are isolated stationary points (they are unique stationary points within
some open sphere), tend to attract most types of gradient methods, i.e.,
once a gradient method gets sufficiently close to such a local minimum, it
converges to it. This is the subject of a simple and remarkably powerful
result, the capture theorem, which is given in the next subsection (Prop.
1.2.4).

Another single limit convergence result for the steepest descent method
is given in Exercise 1.2.12 for the case where f is convex and the constant
or diminishing stepsize rule is used. Generally, if there are multiple global
minima, it is possible that {z*} has multiple limit points (see Exercise
1.2.17 from [Zou76]; also [Gon00]).

We now address the question whether each limit point of a sequence
{z*} generated by a gradient method is a stationary point. From the first
order expansion

Fla1) = £(a¥) + bV f @k dt + ofak),

we see that if the slope of f at «F along the direction d*, which is V f (z*)’d*,
has “substantial” magnitude, the rate of progress of the method will also
tend to be substantial. If on the other hand, the directions d*¥ tend to
become asymptotically orthogonal to the gradient direction,

V (k) d¥

_ VI 0,
[V 7GR |[lae]

as x* approaches a nonstationary point, there is a chance that the method

will get “stuck” near that point. To ensure that this does not happen, we

consider rather technical conditions on the directions d¥, which are either

naturally satisfied or can be easily enforced in most algorithms of interest.
One such condition for the case where

dF = — DV f(ak),

is to assume that the eigenvalues of the positive definite symmetric matrix
DF are bounded above and bounded away from zero, i.e., for some positive
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scalars ¢; and ¢z, we have
c1||z]]2 < 2/ Dk z < 22|12, VzeRr, E=0,1,... (1.13)
It can then be seen that

|V f (k) dk| = [V f(ab) DV f(ah)] > e1 ||V f(ab)]”
It follows that as long as V f(x*) does not tend to zero, V f(z¥) and dF
cannot become asymptotically orthogonal.

We will introduce another “nonorthogonality” type of condition, which
is more general than the “bounded eigenvalues” condition (1.13). Let us
consider the sequence {z*, d*k} generated by a given gradient method. We
say that the direction sequence {d*} is gradient related to {z*} if the fol-
lowing property can be shown:

For any subsequence {x*}cxc that converges to a nonstationary point,
the corresponding subsequence {d*}rcic is bounded and satisfies

limsup Vf(zF)'d* <0. (1.14)
k—o00, ke

In particular, if {d*} is gradient related to {x*}, it follows that if a subse-
quence {V f (:Ck)} ek tends to a nonzero vector, the corresponding subse-
quence of directions d* is bounded and does not tend to be orthogonal to
V f(x*). Roughly, this means that d* does not become “too small” or “too
large” relative to V f(zF), and that the angle between dF and V f(x*) does
not get “too close” to 90 degrees.

We can often guarantee a priori that {d¥} is gradient related. In
particular, if d¥ = —DkV f(z*) and the eigenvalues of D¥ are bounded as
in the “bounded eigenvalues” condition (1.13), it can be seen that {d*} is
gradient related. [The boundedness requirement of {d*}rex holds in view
of the relation
2

)

ld¥|[2 = [V f (k) (DR)2V f(2k)] < 3|V f(2F)]

which follows from Eq. (1.13), since ¢z is no less than the largest eigen-
value of D¥, and the eigenvalues of (D¥)2 are equal to the squares of the
corresponding eigenvalues of D¥ (Props. A.18 and A.13 in Appendix A).]

Two other examples of conditions that, if satisfied for some scalars
c1>0,c2>0,p1 >0, pa >0, and all k, guarantee that {d¥} is gradient
related are

(a)
al[ VR < =V fhyde,  |dk]| < o Vf k)|

(b)
dk = —DFV f(a*),
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with D¥ a positive definite symmetric matrix satisfying
EY||P1 2 1Dk kY)||P2 2 n
cl}’Vf(x )H Iz]|2 < 2'D zSCQHVf(:E )H 12112, YV z € Rn.

This condition generalizes the “bounded eigenvalues” condition (1.13),
which is obtained for p; = p2 = 0.

An important convergence result is that if {d¥} is gradient related
and the minimization rule, or the limited minimization rule, or the Armijo
rule is used, then all limit points of {a*} are stationary. This is shown in
Prop. 1.2.1, given in the next subsection. When a constant stepsize is used,
convergence can be proved assuming that the stepsize is sufficiently small
and that f satisfies some further conditions (cf. Prop. 1.2.2).

There is a common line of proof for these convergence results. The
main idea is that the cost function is improved at each iteration and that,
based on our assumptions, the improvement is “substantial” near a non-
stationary point, i.e., it is bounded away from zero. We then argue that
the algorithm cannot approach a nonstationary point, since in this case the
total cost improvement would accumulate to infinity.

Termination of Gradient Methods

Generally, gradient methods are not finitely convergent, so it is necessary
to have criteria for terminating the iterations with some assurance that we
are reasonably close to at least a local minimum. A typical approach is to
stop the computation when the norm of the gradient becomes sufficiently
small, i.e., when a point z* is obtained with

IV <«

where € is a small positive scalar. Unfortunately, it is not known a priori
how small one should take ¢ in order to guarantee that the final point z*
is a “good” approximation to a stationary point. The appropriate value of
€ depends on how the problem is scaled. In particular, if f is multiplied
by some scalar, the appropriate value of € is also multiplied by the same
scalar. It is possible to correct this difficulty by replacing the criterion
|V f(z*)|| < e with

IVi@H]

o =

Still, however, the gradient norm HV f(zF) H depends on all the components
of the gradient, and depending on how the optimization variables are scaled,
the preceding termination criterion may not work well. In particular, some
components of the gradient may be naturally much smaller than others,
thus requiring a smaller value of € than the other components.
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Assuming that the direction d* captures the relative scaling of the
optimization variables, it may be appropriate to terminate computation
when the norm of the direction d* becomes sufficiently small, i.e.,

k]| <e.

Still the appropriate value of ¢ may not be easy to guess, and it may
be necessary to experiment prior to settling on a reasonable termination
criterion for a given problem. Sometimes, other problem-dependent criteria
are used, in addition to or in place of HVf(x’f)H < eand ||dF| <.

When V2 f(z) is positive definite, the condition ||V f(z*)| < € yields
bounds on the distance from local minima. In particular, if z* is a local
minimum of f and there exists m > 0 such that for all  in a sphere S
centered at z* we have

mll2|2 < 2V f(r)z, ¥ ze R,
then every = € S satisfying HVf(x)H < € also satisfies
€

e =2 < —,  fla) = fla*) <

m

)

3%

(see Exercise 1.2.9).

In the absence of positive definiteness conditions on V2 f(z), it may
be very difficult to infer the proximity of the current iterate to the optimal
solution set by just using the gradient norm. We will return to this point
when we will discuss singular local minima in the next section.

Spacer Steps

Often, optimization problems are solved with complex descent algorithms
in which the rule used to determine the next point may depend on several
previous points or on the iteration index k. Some of the conjugate direction
algorithms discussed in Section 2.1 are of this type. Other algorithms
consist of a combination of different methods and switch from one method
to the other in a manner that may either be prespecified or may depend on
the progress of the algorithm. Such combinations are usually introduced
in order to improve speed of convergence or reliability. However, their
convergence analysis can become extremely complicated.

It is thus often valuable to know that if in such algorithms one in-
serts, perhaps irregularly but infinitely often, an iteration of a convergent
algorithm such as the gradient methods of this section, then the theoretical
convergence properties of the overall algorithm are quite satisfactory. Such
an iteration is known as a spacer step. The related convergence result is
given in Prop. 1.2.5. The only requirement imposed on the iterations of
the algorithm other than the spacer steps is that they do not increase the
cost; these iterations, however, need not strictly decrease the cost, and this
allows for flexibility in the design of algorithms.
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Figure 1.2.8. Illustration of the descent prop-

L, N S0 Leveflfsets erty of the direction g* = Vf(2*) 4+ €* of the
O
/ \

steepest descent method with error. If the
error e¥ has smaller norm than the gradient
V f(x*), then g* lies strictly within the sphere
centered at V f(z*) with radius ||Vf(xk) || , and
thus makes an angle less than 90 degrees with
Vf(zF).

Gradient Methods with Random and Nonrandom Errors

Frequently in optimization problems the gradient V f(z*) is not computed
exactly. Instead, one has available

gk =V [f(ak) + ek,

where e* is an uncontrollable error vector. There are several potential
sources of error; roundoff error, and discretization error due to finite dif-
ference approximations to the gradient are two possibilities, but there are
others that will be discussed in more detail later in Chapter 2, in the context
of incremental and asynchronous algorithms. Let us focus for concreteness
on the steepest descent method with errors,

zhtl = gk — akgk,

and let us consider several qualitatively different cases:

(a) ek is small relative to the gradient, i.e.,
ekl < [V f(R)]l. ¥k

Then, assuming V f(z*) # 0, —g* is a direction of cost improvement,
i.e., Vf(z¥)'gk > 0. This is illustrated in Fig. 1.2.8, and is verified
by the calculation
Vf(@hygh = | V@) + Vf(atyeh
2
> V@R[ = [V £ llek]
= |VFE@R)|[(IVF )]~ llek])

> 0.

(1.15)

In this case convergence results that are analogous to Props. 1.2.3
and 1.2.4 can be shown.

(b) {e*} is bounded, i.e.,

lek]| <4, Yk,
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where § is some scalar. Then by the preceding calculation (1.15), the
method operates like a descent method within the region

{z[IVf(@)] >4}

In the complementary region where HVf(x)H < §, the method can
behave quite unpredictably. For example, if the errors e* are constant,
say ek = e, then since g = Vf(a*) + e, the method will essentially
be trying to minimize f(z) 4+ e’z and will typically converge to a
point  with Vf(Z) = —e. If the errors ek vary substantially, the
method will tend to oscillate within the region where HVf(x)H <
(see Exercise 1.2.16 and also Exercise 1.3.5 in the next section). The
precise behavior will depend on the precise nature of the errors, and
on whether a constant or a diminishing stepsize is used (see also the
following cases).

{e¥} is proportional to the stepsize, i.e.,
[e¥]| < akq,  Vk,

where ¢ is some scalar. If the stepsize is constant, we come under case
(b), while if the stepsize is diminishing, the behavior described in case
(b) applies, but with § — 0, so the method will tend to converge to
a stationary point of f. Important situations where the condition
lle*|| < akq holds will be encountered in the context of incremental
methods in Section 2.4. A more general condition under which similar
behavior occurs is

lek]l < ak(q +p|VFER)), ¥k,

where ¢ and p are some scalars. Generally, under this condition and
with a diminishing stepsize, the convergence behavior is similar to
the case where there are no errors; see the following Prop. 1.2.3 (also
Exercise 1.2.20, whose solution is posted online).

{e¥} are independent zero mean random vectors with finite
variance. An important special case where such errors arise is when
f is of the form

f(@) = Eu{F(z,w)}, (1.16)

where F': ®m+n — R is some function, w is a random vector in ™,
and E,{-} denotes expected value. Under very mild assumptions it
can be shown that if F' is continuously differentiable, the same is true
of f and furthermore,

Vf(z) = Bw{V.F(z,w)}.
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Often an approximation gk to V f(z*) is computed by simulation or
by using a limited number of samples of VF(z,w), with potentially
substantial error resulting. In an extreme case, we have

gk = Vo F(ak,uk),
where wk is a single sample value corresponding to x¥. Then the error
ek = Vo F (2%, wh) — V f(2%) = Vo F(zb, wk) — By {V.F(zk,w)}

need not diminish with ||V f (a:’“)H, but has zero mean, and under ap-
propriate conditions, its effects are “averaged out.” What is roughly
happening here is that the descent condition Vf(x*)'g¥ > 0 holds
on the average at nonstationary points z*. It is still possible that
for some sample values of e*, the direction g* is “bad”, but with a
diminishing stepsize, the occasional use of a bad direction cannot de-
teriorate the cost enough for the method to oscillate, given that on
the average the method uses “good” directions (see also the discus-
sion of incremental gradient methods in Section 2.4.1). The detailed
analysis of gradient methods with random errors (also called stochas-
tic gradient methods) is beyond the scope of this text, and prop-
erly belongs to the algorithmic field of stochastic approzimation (see
e.g. [BeT89], [BeT96], [BeT00], [KuC78], [KuY97], [LPW92], [Pf196],
[PoT73a], [Pol87], [TBA8G]). We mention one representative conver-
gence result from [BeT00], which parallels the following Prop. 1.2.3
that deals with a gradient method without errors: if in the iteration

rhtl = gk — ok (Vf(:z:k) + ek)

the random variables €9 el ... are independent, zero mean, with
bounded variance, the stepsize is diminishing and satisfies
o0 o0
ak — 0, Zak = 00, Z(ak)z < 00,
k=0 k=0

and the gradient Vf is Lipschitz continuous, then with probability
one, we either have f(zF) — —oo or else Vf(z¥) — 0. Furthermore,
every limit point of {z*} is a stationary point of f.

The Role of Convergence Analysis

The following subsection gives a number of mathematical propositions re-
lating to the convergence properties of gradient methods. The meaning
of these propositions is usually quite intuitive but their statement often
requires complicated mathematical assumptions. Furthermore, their proof
often involves tedious e-0 arguments, so at first sight students may wonder
whether “we really have to go through all this.”
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When Euclid was faced with a similar question from king Ptolemy of
Alexandria, he replied that “there is no royal road to geometry.” In our
case, however, the answer is not so simple because we are not dealing with
a purely mathematical subject such as geometry that may be developed
without regard for its practical application. In the eyes of most people,
the value of an analysis or algorithm in nonlinear programming is judged
primarily by its practical utility in solving various types of problems. It
is therefore important to give some thought to the interface between con-
vergence analysis and its practical application. To this end it is useful to
consider two extreme viewpoints; most workers in the field find themselves
somewhere between the two.

In the first viewpoint, convergence analysis is considered primarily
a mathematical subject. The properties of an algorithm are quantified to
the extent possible through mathematical statements. General and broadly
applicable assertions, and simple and elegant proofs are at a premium here.
The rationale is that simple statements and proofs are more readily under-
stood at an intuitive level, and general statements apply not only to the
problems at hand but also to other problems that are likely to appear in
the future. On the negative side, one may remark that simplicity is not
always compatible with relevance, and broad applicability is often achieved
through assumptions that are hard to verify or appreciate.

The second viewpoint largely discounts the role of mathematical anal-
ysis. The rationale here is that the validity and the properties of an al-
gorithm for a given class of problems must be verified through practical
experimentation anyway, so if an algorithm looks promising on intuitive
grounds, why bother with a convergence analysis. Furthermore, there are
a number of important practical questions that are hard to address ana-
lytically, such as roundoff error, multiple local minima, and a variety of
finite termination and approximation issues. The main criticism of this
viewpoint is that mathematical analysis often reveals (and explains) fun-
damental flaws of algorithms that experimentation may miss. These flaws
often point the way to better algorithms or modified algorithms that are
tailored to the type of practical problem at hand. Similarly, analysis may
be more effective than experimentation in delineating the types of problems
for which particular algorithms are well-suited.

Our own mathematical approach is tempered by practical concerns,
but we note that the balance between theory and practice in nonlinear
programming is particularly delicate, subjective, and problem dependent.
Aside from the fact that the mathematical proofs themselves often provide
valuable insight into algorithms, here are some of our reasons for insisting
on a rigorous convergence analysis:

(a) We want to delineate the range of applicability of various methods.
In particular, we want to know for what type of cost function (once or
twice differentiable, convex or nonconvex, with singular or nonsingu-
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lar minima) each algorithm is best suited. If the cost function violates
the assumptions under which a given algorithm can be proved to con-
verge, it is reasonable to suspect that the algorithm is unsuitable for
this cost function.

(b) We want to understand the qualitative behavior of various methods.
For example, we want to know whether convergence of the method
depends on the availability of a good starting point, whether the iter-
ates ¥ or just the function values f(z*) are guaranteed to converge,
etc. This information, supplemented by theoretical examples and
counterexamples, may guide the computational experimentation.

(¢) We want to provide guidelines for choosing a few algorithms for fur-
ther experimentation out of the often bewildering array of candidate
algorithms that are applicable for the solution of a given type of prob-
lem. One of the principal means for this is the rate of convergence
analysis to be given in Section 1.3. Note here that while an algorithm
may provably converge, in practice it may be entirely inappropriate
for a given problem because it converges very slowly. Experience has
shown that without a good understanding of the rate of convergence
properties of algorithms it may be difficult to exclude bad candidates
from consideration without costly experimentation.

At the same time one should be aware of some of the limitations of
the mathematical results that we will provide. For example, some of the
assumptions under which an algorithm will be proved convergent may be
hard to verify for a given type of problem. Furthermore, our convergence
rate analysis of Section 1.3 is largely asymptotic; that is, it applies near the
eventual limit of the generated sequence. It is possible, that an algorithm
has a good asymptotic rate of convergence but it works poorly in practice
for a given type of problem because it is very slow in its initial phase.
Finally, some lines of mathematical analyses can be so dry and lacking in
intuition that they are of little use to all but a small number of theorists.

There is still another viewpoint, which is worth addressing because it
is often adopted by the casual user of nonlinear programming algorithms.
This user is interested in a particular application of nonlinear programming
in his/her special field, and is counting on an existing code or package to
solve the problem (several such packages are commercially or publicly avail-
able). Since the package will do most of the work, the user may hope that
a superficial acquaintance with the properties of the algorithms underlying
the package will suffice. This hope is sometimes realized but unfortunately
in many cases it is not. There are a number of reasons for this. First,
there are many packages implementing a lot of different methods, and to
choose the right package, one needs to have insight into the suitability of
different methods for the special features of the application at hand. Sec-
ond, to use a package one must often know how to suitably formulate the
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problem, how to set various parameters (e.g. termination criteria, stepsize
parameters, etc.), and how to interpret the results of the computation (par-
ticularly when things don’t work out as hoped initially, which is often the
case). For this, one needs considerable insight into the inner workings of
the algorithm underlying the package. Finally, for a challenging practical
optimization problem (e.g. one of large dimension), it may be essential to
exploit its special structure, and packages often do not have this capability.
As a result the user may have to modify the package or write an altogether
new code that is tailored to the application at hand. Both of these re-
quire an intimate understanding of the convergence properties and other
characteristics of the relevant nonlinear programming algorithms.

1.2.2 Convergence Results

We now provide an analysis of the convergence behavior of gradient meth-
ods. The following proposition is the main convergence result.

Proposition 1.2.1: (Stationarity of Limit Points for Gradient
Methods) Let {zF} be a sequence generated by a gradient method
axktl = gk + akdk, and assume that {d*¥} is gradient related [cf. Eq.
(1.14)] and a* is chosen by the minimization rule, or the limited min-
imization rule, or the Armijo rule. Then every limit point of {z*} is a
stationary point.

Proof: Consider first the Armijo rule and let Z be a limit point of {z¥}.
Since { f(x*)} is monotonically nonincreasing, { f(z*)} either converges to
a finite value or diverges to —oo. Since f is continuous, f(Z) is a limit
point of {f(xk)}, so it follows that the entire sequence {f(:bk)} converges
to f(Z), and

f(zk) — f(ak+1) = 0. (1.17)

Moreover, by the definition of the Armijo rule, we have
f(@k) = f(ahtl) 2 —oabV f(zk)'dk, (1.18)

so the right-hand side in the above relation tends to 0.
Let {zF}k be a subsequence converging to Z, and assume to arrive at
a contradiction that Z is nonstationary. Since {d*} is gradient related, we
have
limsup V f(zk)'dF < 0,

k—o0
ke

and therefore from Eqs. (1.17) and (1.18),

{ak}/c — 0.
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Hence, by the definition of the Armijo rule, we must have for some index
k>0
f@a®) = f(a* + (aF/B)dR) < —a(ak/B)V f(ak)ydr,  VkeK, k>F,

(1.19)
i.e., the initial stepsize s will be reduced at least once for all k € K, k >

k. Since {dk} is gradient related, {d¥}x is bounded, so there exists a
subsequence {d¥}g of {d*}x such that

(@} = d,
where d is some vector. From Eq. (1.19), we have

f(@k) — flat +akdh)
ak

< —oV f(zk)dF, VkeK, k>k,  (1.20)

where @k = ok /. By using the mean value theorem, this relation is written
as
—Vf(ak 4+ akdk)dk < —oV f(xk) dF, Vkek, k>k,

where &% is a scalar in the interval [0,a*]. Taking limits in the above
relation we obtain - -
—Vf(@)d < —-oVf(Z)d

or
0< (1—0)VfE)d.

Since o < 1, it follows that
0 < Vf(z)d, (1.21)

which contradicts the assumption that {d*} is gradient related. This proves
the result for the Armijo rule.

Consider next the minimization rule, and let {ax*}x converge to T
with Vf(Z) # 0. Again we have that {f(2*)} decreases monotonically to
f(@). Let £F+1 be the point generated from z* via the Armijo rule, and
let &% be the corresponding stepsize. We have

f(@F) = fahth) = fzk) — f(@*H1) 2 —oaPV f(zh)db. (1.22)

By repeating the arguments of the earlier proof following Eq. (1.18), re-
placing a* by &k, we can obtain a contradiction. In particular, we have

{a&F} — 0,
and by the definition of the Armijo rule, we have for some index k > 0

fak) = f (2% + (aF/B)dr) < —o(a*/B)V f(ak)dr,  VEkeK, k=>k,
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[cf. Eq. (1.19)]. Proceeding as earlier, we obtain Egs. (1.20) and (1.21)
(with ak = &k /B), and a contradiction of Eq. (1.21).

The line of argument just used [cf. Eq. (1.22)] establishes that any
stepsize rule that gives a larger reduction in cost at each iteration than
the Armijo rule inherits the convergence properties of the latter. This also
proves the proposition for the limited minimization rule. Q.E.D.

The next proposition establishes, among other things, convergence
for the case of a constant stepsize. The idea is that if the rate of growth
of the gradient of f is bounded from above (i.e., the curvature of f is
bounded), then one can construct a quadratic function that majorizes f;
see Fig. 1.2.9. Given z* and d*, an appropriate constant stepsize a* can
then be obtained within an interval around the scalar a&* that minimizes
this quadratic function along the direction d*. The proposition requires
that for some constant L > 0, we have

V(@) =V <Llz—yll, VazyeR, (1.23)

which insures the boundedness of the curvature of f in every direction.
This is called Lipschitz continuity of V f.

Proposition 1.2.2: (Constant Stepsize) Let {z*} be a sequence
generated by a gradient method zF+1 = zF + okdk, where {d*} is
gradient related. Assume that the Lipschitz condition (1.23) holds,
and that for all k& we have d¥ # 0 and

e < ak < (2—e)ak, (1.24)

where
| VSf(ah)ydr]

~ Lfdk|2

and € € (0,1] is a fixed scalar. Then every limit point of {z*} is a
stationary point of f.

Proof: By using the descent lemma (Prop. A.24 of Appendix A), we obtain

Flak) = F(oh +akdb) > —akV (k) dt — d(ab)2 L dk 2

1.25
= ok (|Vf(ak)dk| — zakL||d¥|?). (1:29)

The right-hand side of Eq. (1.24) yields

IV f(ak)dt| — SakLldv|2 > Le|Vf(ak)dt].
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—k _ W Quadratic Overestimate
Ljjd*|? aV f(azk)dk 4 La2 L d||?
/

N\

av'f(ﬁ)/dk f(xF 4+ adk) — f(xk)

Figure 1.2.9. The idea of the proof of Prop. 1.2.2. Given z* and the descent
direction d*, the cost difference f(z* 4+ ad®) — f(x*) is majorized by

aV f(@*) d* + La?L|d"|?

(see the proof of Prop. 1.2.2). Minimization of this function over « yields the
stepsize
o Ll T

which reduces the cost function f as well (see the proof of Prop. 1.2.2).

Using this relation together with the condition a* > € in the inequality
(1.25), we obtain the following bound on the cost improvement obtained
at iteration k:

F(a¥) = f(ah + akd¥) > 12|V (k) db|.

Now if a subsequence {x*}x converges to a nonstationary point Z, we
must have, as in the proof of Prop. 1.2.1, f(a*) — f(zk+1) — 0, and the
preceding relation implies that ’V f (:c’f)’d’f’ — 0. This contradicts the
assumption that {d¥} is gradient related. Hence, every limit point of {x*}
is stationary. Q.E.D.

In the case of steepest descent [dF = —V f(z*)], the condition (1.24)

on the stepsize becomes
2—¢€
e<ak < .

Thus a constant stepsize roughly in the middle of the interval [0,2/L] guar-
antees convergence. This is a classical convergence result.

Note that the existence of an e satisfying Eq. (1.24) is guaranteed
by standard conditions that imply the gradient related assumption. In
particular, if {d*} is such that there exist positive scalars ¢1, c2 such that
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for all &,
al ViEH|® < -Vi@hyd,  df 2 <o Vi (126
then Eq. (1.24) is satisfied if for all k& we have
c1(2—¢)
<ok < —2, 1.2
e<ak < Tes (1.27)

Furthermore, if d¥ has the form
dk = —DFV f(x*)

with D¥ positive definite symmetric and having eigenvalues in an interval
[v,T], the condition (1.26) can be seen to hold with

1=, co =12,

Exercise 1.2.3 provides an example showing that the Lipschitz con-
dition (1.23) is essential for the validity of Prop. 1.2.2. This condition
requires roughly that the “curvature” of f is no more than L at all points
and in all directions. In particular, it is possible to show that this condition
is satisfied, if f is twice differentiable and the eigenvalues of the Hessian
V2 f are bounded over " by L. Unfortunately, however, it is generally
difficult to obtain an estimate of L, so in most cases the range of step-
sizes that guarantee convergence [cf. Eq. (1.24) or (1.27)] is unknown, and
experimentation may be necessary to obtain appropriate stepsize values.

Even worse, many types of cost function f, while twice differen-
tiable, have Hessian V2f that is unbounded over R" [this is so for any
function f(z) that grows faster than a quadratic as * — oo, such as
f(z) = ||=||3]. Fortunately, the Lipschitz condition can be significantly
weakened, as shown in Exercise 1.2.5. In particular, it is sufficient that it
holds for all x,y in the level set

{z| fx) < f(20)},

in which case, however, the range of stepsizes that guarantee convergence
depends on the starting point 29. Let us also note that, for the case where
f is convex, there are methods that attempt to determine automatically a
constant stepsize [one such method is given in Exercise 1.2.19 (with solution
posted online), and another is described in [Berl5a], Section 6.1].

The Lipschitz continuity condition also essentially guarantees conver-
gence for a diminishing stepsize, as shown by the following proposition.
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Proposition 1.2.3: (Diminishing Stepsize) Let {zF} be a se-
quence generated by a gradient method x*k+! = zk 4 akdk. Assume
that the Lipschitz condition (1.23) holds, and that there exist positive
scalars c1, co such that for all £ we have

2
I

a||[ V@) < —Vfkyds,  dE]|? < |V (k) (1.28)

Suppose also that

oo
ak — 0, E ok = co.
k=0

Then either f(z¥) — —oc or else {f(z*)} converges to a finite value
and V f(zF) — 0. Furthermore, every limit point of {2} is a station-
ary point of f.

Proof: Combining Egs. (1.25) and (1.28), we have
flak+1) < f(a*) + ok (3aFL||dE||]2 — |V f(z*) d¥|)
< f(zk) — ak (01 — %akCQL) ||Vf(;vk)H2

Since the linear term in o* dominates the quadratic term in o* for suffi-
ciently small o, and o — 0, we have for some positive constant ¢ and all
k greater than some index k,

Fah+1) < flak) — akCva(xk)HQ, (1.29)

From this relation, we see that for k > k, { f (x’f)} is monotonically de-
creasing, so either f(z*) — —oo or {f(2*)} converges to a finite value. In
the latter case, by adding Eq. (1.29) over all k > k, we obtain

k 12 < f(ek) — 1 k
cZa [V f(®)||” < faF) kli)r{)lof(x ) < o0.
k=k
We see that there cannot exist an € > 0 such that

[V f (")

H2>6

for all k greater than some IAC, since this would contradict the assumption
> e ok = co. Therefore, we must have

lim inf ||V f(z¥)| = 0.
k—o00
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To show that V f(a*) — 0, assume the contrary; that is,

lim sup HVf(x’f)H >e>0. (1.30)
k—o0

Let {m;} and {n;} be sequences of indexes such that
m; < mn; < Mmj4i1,
% < ||V f(=h)|| for m; <k < nj, (1.31)

[V f(ah)]| < % fornj <k <mjq1. (1.32)
Let also j be sufficiently large so that

o]
€

2
k;ﬁ ok |V f(¥)|]* < N (1.33)

For any j > j and any m with m; < m <n; — 1, we have

nj—l

[Vf@ami) = Viam)| < Y [|VFR) = Vi)
k=m

n;—1
<L Z [|zh+1 — zk||
k=m
n;—1
=LY ak||d¥|
k=m

njfl

< Lyez Y o[V f(h)]
k=m

njfl
< B2 S k| vr )|
k=m

< 3L\/c2 €2
- € 9L\/ca

€

37

where the last two inequalities follow using Egs. (1.31) and (1.33). Thus

2 _
Vi@ <|Vie+5<5,  Vizim<m<n -1

<
3
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Thus, using also Eq. (1.32), we have for all m > m;
2e
[V < 2.

This contradicts Eq. (1.30), implying that limy_, Vf(z*) = 0.
Finally, if Z is a limit point of z*, then f(x*) converges to the finite
value f(Z). Thus we have V f(z*) — 0, implying that V f(z) = 0. Q.E.D.

Under the assumptions of the preceding proposition, descent is not
guaranteed in the initial iterations. However, if the stepsizes are all suffi-
ciently small [e.g., they satisfy the right-hand side inequality of Eq. (1.27)],
descent is guaranteed at all iterations. In this case, it is sufficient that
the Lipschitz condition ||V f(z) — Vf(y)|| < L]z — y|| holds for all z,y in
the set {z | f(z) < f(2°)} (see Exercise 1.2.5); otherwise the Lipschitz
condition must hold over a set larger than {z | f(z) < f(2°)} to guarantee
convergence (see Exercise 1.2.14 for an example).

The following proposition explains to some extent why sequences gen-
erated by gradient methods tend in practice to have unique limit points.
It essentially states that local minima which are “isolated” tend to attract
gradient methods: once the method gets close enough to such a minimum
it remains close and converges to it.

Proposition 1.2.4: (Capture Theorem) Let f be continuously
differentiable and let {x*¥} be a sequence satisfying f(ak+1) < f(zF)
for all k& and generated by a gradient method xk+1 = zk + akdFk, which
is convergent in the sense that every limit point of sequences that it
generates is a stationary point of f. Assume that there exist scalars
s > 0 and ¢ > 0 such that for all k there holds

ak <s, 5| < ||V f(zF)]].

Let 2* be a local minimum of f, which is the only stationary point of
f within some open set. Then there exists an open set S containing
x* such that if 2% € S for some k > 0, then z¥ € S for all £ > k and
{zF} — x*. Furthermore, given any scalar € > 0, the set S can be
chosen so that ||z — z*|| < € for all z € S.

Proof: Suppose that p > 0 is such that
fla*) < f(x), Y with ||z — 2| < p.
Define for ¢ € [0, p]
ot) = min - f(x) = f(z*),

{z|t<[lz—a*||<p}
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and note that ¢ is a monotonically nondecreasing function of ¢, and that
¢(t) > 0 for all t € (0, p]. Given any € € (0, pl, let r € (0, €] be such that

[z —a*| <r = |o—z*]+sc||[Vf(z)]<e (1.34)
Consider the open set

S={z|llz—a*l| <e flz) < flz*) + ¢(r)}.

We claim that if z* € S for some k, then zk+1 € S.
Indeed if z* € S, from the definition of ¢ and S we have

o(llzh — 2*|)) < fa*) = f(a7) < (7).

Since ¢ is monotonically nondecreasing, the above relation implies that
lx* — 2*|] < r, so that by Eq. (1.34),

lxk — 2*| + sc HVf(:z:k)H < e.
We also have by using the hypotheses a% < s and ||d*|| < ¢ ||V f(z*)||
loh 1 — 2 [| < [k — @] + [lakdh|| < [lak — 2| + se ||V f(25)]],

so from the last two relations it follows that |[z¥+1 — z*|| < €. Since
f(zh+1) < f(zF), we also obtain f(zk+1) — f(z*) < ¢(r), so we conclude
that zk+1 € S.

By using induction it follows that if 2% € S for some k, we have 2% € S
for all k > k. Let S be the closure of S. Since S is compact, the sequence
{z*} will have at least one limit point, which by assumption must be a
stationary point of f. Now the only stationary point of f within S is the
point z* (since we have ||z —a*|| < p for all # € S). Hence 2% — x*. Finally
given any € > 0, we can choose € < € in which case we have ||z — z*| < €
for all z € S. Q.E.D.

Note that in the preceding proposition, the conditions f(zFt1) <
f(zF) and ok < s are satisfied for the Armijo rule and the limited min-
imization rule. They are also satisfied for a constant and a diminishing
stepsize under conditions that guarantee descent at each iteration (see the
proofs of Props. 1.2.2 and 1.2.3). The condition ||d*|| < ¢ |V f(a*)|| is
satisfied if d¥ = —DkV f(z*) with the eigenvalues of D* bounded from
above.

Finally, we state a result that deals with the convergence of algorithms
involving a combination of different methods. It shows that for convergence
it is enough to insert, perhaps irregularly but infinitely often, an iteration
of a convergent gradient algorithm, provided that the other iterations do
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not degrade the value of the cost function. The proof is similar to the one
of Prop. 1.2.1, and is left for the reader.

Proposition 1.2.5: (Convergence for Spacer Steps) Consider a
sequence {z*} such that

fakt1) < f(zF), k=0,1,...
Assume that there exists an infinite set /C of integers for which
zh+tl = gk 4 akdk, Vkek,
where {dF}x is gradient related and a* is chosen by the minimization

rule, or the limited minimization rule, or the Armijo rule. Then every
limit point of the subsequence {z*} is a stationary point.

EXERCISES

1.2.1

Consider the problem of minimizing the function of two variables f(z,y) = 3z% +
4

Y.
(a) Apply one iteration of the steepest descent method with (1, —2) as the
starting point and with the stepsize chosen by the Armijo rule with s = 1,

o =0.1, and 8 = 0.5.

(b) Repeat (a) using s =1, o0 = 0.1, 8 = 0.1 instead. How does the cost of the
new iterate compare to that obtained in (a)? Comment on the tradeoffs
involved in the choice of 3.

(c) Apply one iteration of Newton’s method with the same starting point and
stepsize rule as in (a). How does the cost of the new iterate compare to
that obtained in (a)? How about the amount of work involved in finding
the new iterate?

1.2.2

Describe the behavior of the steepest descent method with constant stepsize s
for the function f(z) = ||z|>T#, where 8 > 0. For which values of s and z° does
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the method converge to £ = 0. Relate your answer to the assumptions of Prop.
1.2.2.

1.2.3
Consider the function f : " — R given by

f@) = ll)*?,

and the method of steepest descent with a constant stepsize. Show that for this
function, the Lipschitz condition HVf(J:) - Vf(y)” < L)z — yl| for all z and y
is not satisfied for any L. Furthermore, for any value of constant stepsize, the
method either converges in a finite number of iterations to the minimizing point
¥ = 0 or else it does not converge to x*.

1.2.4

Apply the steepest descent method with constant stepsize « to the function f of
Exercise 1.1.11. Show that the gradient V f satisfies the Lipschitz condition

|Vi@) = Vi) < Llilz—yl, VayewR,

for some constant L. Write a computer program to verify that the method is a
descent method for o € (0,2/L). Do you expect to get in the limit the global
minimum z* = 0?7

1.2.5

Suppose that the Lipschitz condition
V@) = Vi) < Lllz—yl.  VayeR,

[cf. Eq. (1.23)] is replaced by the condition that for every bounded set A C R",
there exists some constant L such that

|[Vi@) - Vi) < Llz—yll, VazyeA (1.35)

Show that:

(a) Condition (1.35) is always satisfied if the level sets {1: | f(z) < 0}7 ceR,
are bounded, and f is twice continuously differentiable.

(b) The convergence result of Prop. 1.2.2 remains valid provided that the level
set

A={z|f(z) < f@")}

is bounded and the stepsize is allowed to depend on the choice of the initial
vector #°. Hint: The key idea is to show that z* stays in the set A4, and
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to use a stepsize o that depends on the constant L corresponding to this
set. Let
R= max{H:cH |z € A},

G= max{”Vf(:c)H |z € A}7
and
B={z||lz| < R+2G}.

Using condition (1.35), there exists some constant L such that HVf(:c) —
Vf(y)” < L||z — y]|, for all z,y € B. Suppose the stepsize o satisfies
0<e<a” < (2—e~y"min{1,1/L},
where R
/
e [VIE)d]
TP

Let 8% = o*(v* — La*/2), which can be seen to satisfy 3% > ¢2~*/2 by our
choice of a®. Show by induction on k that with such a choice of stepsize,
we have z¥ € A and

FE) < FE0) = BE1dE12, YR >0

1.2.6

Suppose that f is quadratic and of the form f(z) = %m'Q:c — b'x, where Q is
positive definite and symmetric.

(a) Show that the Lipschitz condition ||Vf(1:) - Vf(y)H < L||z —yl| is satisfied
with L equal to the maximal eigenvalue of Q.

(b) Consider the gradient method 2"t = x* — sDV f(z*), where D is positive
definite and symmetric. Show that the method converges to * = Qb for
every starting point z° if and only if s € (0,2/L), where L is the maximum
eigenvalue of D'/2QD/2.

1.2.7

An electrical engineer wants to maximize the current I between two points A and
B of a complex network by adjusting the values x1 and x2 of two variable resistors,
where 0 < z1 < R1, 0 < z2 < Rg, and R1, R2 are given. The engineer does not
have an adequate mathematical model of the network and decides to adopt the
following procedure. She keeps the value x2 of the second resistor fixed and
adjusts the value of the first resistor until the current I is maximized. She then
keeps the value x1 of the first resistor fixed and adjusts the value of the second
resistor until the current I is maximized. She then repeats the procedure until no
further progress can be made. She knows a priori that during this procedure, the
values 1 and z2 can never reach their extreme values 0, R;, and Ra. Explain
whether there is a sound theoretical basis for the engineer’s procedure. Hint:
Consider how the steepest descent method works for two-dimensional problems.
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1.2.8

Consider the gradient method z**! = z* + o*d", where o” is chosen by the
Armijo rule or the line minimization rule and

0T
0,
k_ _ | af®)
a- = dx; ’
0
L 0
where ¢ is the index for which ‘8f(:ck)/8xj‘ is maximized over j = 1,...,n. Show

that every limit point of {*} is stationary.

1.2.9

Let f be twice continuously differentiable. Suppose that z* is a local minimum
such that for all z in an open sphere S centered at z*, we have, for some m > 0,

m||d||* < dV’f(x)d, VdeR"

Show that for every = € S, we have

V5| V@

:
— <
o =" < —

fl@) = f2") <

Hint: Use the relation
Vi) = Vi@ + [ (et iy a) o - o
0

See also Exercise 1.1.9.

1.2.10 (Alternative Assumptions for Convergence)

Consider the gradient method "7 = 2* + o*d*. Instead of {d*} being gradient
related, assume one of the following two conditions:

(i) It can be shown that for any subsequence {z"}rcx that converges to a
nonstationary point, the corresponding subsequence {dk}kezc is bounded
and satisfies

liminf Vf(z")d" <o0.
k— o0, ke

(i1) o is chosen by the minimization rule, and for some ¢ > 0 and all k, we

have

[V f@*)'d*| = o[V i) 1]

Show that the conclusion of Prop. 1.2.1 holds.
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1.2.11 (Behavior of Steepest Descent Near a Saddle Point)

Let f(x) = (1/2)2'Qx, where @ is symmetric, invertible, and has at least one
negative eigenvalue. Consider the steepest descent method with constant stepsize
and show that unless the starting point z° belongs to the subspace spanned by
the eigenvectors of () corresponding to the nonnegative eigenvalues, the generated
sequence {z"} diverges.

1.2.12 (Convergence of Steepest Descent to a Single Limit)

Consider the steepest descent method z**! = z% — oszf(:tck)7 and assume that
f is convex, has at least one minimizing point, and for all z,y, and some L > 0,
satisfies

|Vf(@) - Vi < Lllz—yll

Show that {xk} converges to a minimizing point of f under each of the following
two stepsize rule conditions:

(i) For some € > 0, we have

(i) of = 0and Y ;7 o = oo.

Note: This result is due to [BGI95], who also show convergence to a single limit
for a variant of the Armijo rule.

1.2.13 (Steepest Descent with Diminishing Stepsize [CoL94])

Consider the steepest descent method z*+! = 2% — Oéka(ick)7 and assume that
the function f is convex.

(a) Use the convexity of f to show that for any y € R", we have
. . . , iy 2
2" —y|? < Jla® =yl — 2" (f(&") = () +(@"IVF)]) "

(b) Assume that
Zak:oq oekHVf(xk)HZ%O.

Show that lim infy 00 f(z*) = infueqn f(z). Hint: Argue by contradiction.
Assume that for some & > 0, there exists y with f(y) < f(z*) — 6 for all k
sufficiently large. Use part (a).

(c) Assume that

k s"

~ V@)

I
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where
oo oo
k kN2
E s =00, E (s%)” < o0.
k=0 k=0

Show that liminfy e, f(z") = infyexn f(z), and that if f has at least one
global minimum, then {z*} converges to some global minimum. Hint: In
part (a), set y to some z* such that f(z*) < f(z*) for all k (if no such z*
exists, we are done). Show that the relation

2"t = 2™ <l —a"|* + (s)?

implies that {z*} is bounded and hence also that {V f (xk)} is bounded.
Use part (b).

1.2.14 (Divergence with Diminishing Stepsize)

Consider the one-dimensional function
2 3 13
fl@) = 2Jaf + 5o

and the method of steepest descent with stepsize o = ~v/(k + 1), where v is a
positive scalar.

(a) Show that for vy = 1 and |z°| > 1 the method diverges. In particular, show
that |z"| > k + 1 for all k.

(b) Characterize as best as you can the set of pairs (v, z°) for which the method
converges to ¥ = 0.

(c) How do you reconcile the results of (a) and (b) with Prop. 1.2.3.

1.2.15 (Wolfe Conditions for Line Search Accuracy)

There are several criteria for implementing approximately the minimization rule
in a gradient method. An example of such a criterion is that o satisfies simul-
taneously
f@*) = f(a" + a*d*) > —oa" V(") d", (1.36)
V" +o*d")d* > gyt d”, (1.37)
where o and 3 are some scalars with o € (0,1/2) and 8 € (o,1). If &* is indeed
a minimizing stepsize, then V f(z* + o*d*)'d* = dg(a*)/da = 0, where g is the
function g(a) = f(z* + ad®), so Eq. (1.37) is in effect a test on the accuracy of
the minimization (see Fig. 1.2.10).

(a) Show that if conditions (1.36) and (1.37) are satisfied by a gradient method
at each iteration and the direction sequence is gradient related, then all
limit points of the generated sequence {:ck} are stationary points of f.

(b) Assume that there is a scalar b such that f(z) > b. Show that there exists
an interval [c1,c2] with 0 < ¢1 < c2, such that every a € [c1, c2] satisfies
Egs. (1.36) and (1.37).



64 Unconstrained Optimization: Basic Methods Chap. 1

Set of Stepsizes Satisfying the
Wolfe Conditions

4
A §

o
Q

/.

\

avf/(xk)/dk oaV f(zk) dk

/
Slope = BV f(zk)’dk f(@F+adk)—f(a)

Figure 1.2.10. Illustration of the stepsize selection criterion based on the Wolfe
conditions.

1.2.16 (Steepest Descent with Errors)

Consider the steepest descent method 2! = 2% — o* (Vf(:ck) + ek), where e*
is an error satisfying ||e”|| < & for all k. Assume that Vf is Lipschitz continuous.
Show that for any &’ > §, there exists a range of positive stepsizes [a, &] such that
if o € [a,a] for all sufficiently large k, then either f(z*) — —o0 or HVf(mk)H <
' for infinitely many values of k. Hint: Use the reasoning of Prop. 1.2.2.

1.2.17 (Multiple Limit Points for Steepest Descent [Zou76])

Consider the two-dimensional function

= {0 A () 2

where
r=+/z? + 23, ¢ = arctan(x1/z2).

This function is minimized at each point of the circle where »r = 1. Consider
a nonoptimal starting point and the method of steepest descent where 2" is
set equal to the first local minimum along the line {:ck —aVfEh) | a > O}.
Show that this method follows a spiral path that comes arbitrarily close to every
point of the circle of optimal points. Note: For another example of convergence
to multiple limit points, which involves a convex differentiable cost function,
see [Gon00]. In this example the steepest descent method with the exact line
minimization rule produces a sequence with four limit points.
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1.2.18 (Simplified Steepest Descent)

(a) Consider the unconstrained minimization of a function f of the form

f(@) = F(z,9(x)),

where g : R™ — R" is continuously differentiable and F(z,y) is a contin-
uously differentiable function of the two arguments x € R" and y € R™.
It is sometimes convenient to approximate the gradient of F(mg(m)) by
neglecting the dependence on g. This leads to the method

aF = gh — aszF(xk,g(xk)),

where o is chosen by the minimization rule or the Armijo rule on the
function f. (Such a method makes sense when V. F is much easier to
compute than VgV, F.) Show that if there exists v € (0, 1) such that

HVg(:c)V,,F(@g(m)) H < ’)’HvxF($7g($))H7 VxeR",
then the method is convergent in the sense that all limit points of the

sequences that it generates are stationary points of f.

(b) Consider the constrained minimization problem

minimize f(z,y)

subject to h(z,y) =0

where f : R™"T™ - R and h: R*T™ — R™ are continuously differentiable
functions of the two arguments z € R" and y € R™. Consider also a
method of the form

S . akvmf(xk’yk)7

where ¥ is a solution of h(z",y) = 0, viewed as a system of m equations
in the unknown vector y, and a* is chosen by the minimization rule or
the Armijo rule. Formulate conditions that guarantee that this method is
convergent.

1.2.19 (A Stepsize Reduction Rule for Convex Problems)

Suppose that the cost function f is convex, and consider a gradient method
2P+ = 2% + o*d* where the assumptions of Prop. 1.2.3 are satisfied, except that
the stepsize o is determined by the following rule:

o+ — oF i VY dR <o,
,Bak otherwise,



66 Unconstrained Optimization: Basic Methods Chap. 1

where § € (0,1) is a fixed scalar and a® is any positive scalar.

(a) Show that the stepsize is reduced after iteration k if and only if the interval
I* connecting z* and z"*! contains in its interior all the vectors z* that
minimize f(z) over x € I*.

(b) Show that the stepsize will be constant after a finite number of iterations.

(c) Show that either f(z*) — —oo or else {f(z")} converges to a finite value
and Vf(z") — 0. Furthermore, every limit point of {z*} is a global mini-
mum of f.

1.2.20 (Convergence of Gradient Method with Errors [BeT96],

[BeT00])

Let {:ck} be a sequence generated by the gradient method with errors
:Ck+1 _ xk + ak(dk + ek)7

where the following hold:
(1) Vf satisfies the Lipschitz assumption of Prop. 1.2.3.
(2) d"* satisfies

al|VrEh|® < -viEhyds, dt < e (L IVAEDI), Y,

where ¢1 and c2 are some scalars.

(3) The stepsizes " satisfy

Zak = o0, Z(ak)2 < 0.

o0 oo
k=0 k=0

(4) The errors e satisfy
"]l < @*(a +pIV ), Yk,

where ¢ and p are some scalars.

Show that either f(z*) — —oo or else {f(:ck)} converges to a finite value and

Vf(xk) — 0. Furthermore, every limit point of {xk} is a stationary point of f.
Hint: Show that for sufficiently large k, we have

f(karl) Sf(xk)—akb1||Vf(xk)H2+(ak)2bz

for some constants by and b2. Use the line of argument of Prop. 1.2.3.
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GRADIENT METHODS - RATE OF CONVERGENCE

The second major issue regarding gradient methods relates to the rate (or
speed) of convergence of the generated sequences {z*}. The mere fact that
{z*} converges to a stationary point z* will be of little practical value unless
the points ¥ are reasonably close to x* after relatively few iterations. Thus,
the study of the rate of convergence provides what are often the dominant
criteria for selecting one algorithm in favor of others for solving a particular
problem.

Approaches for Rate of Convergence Analysis

There are several approaches towards quantifying the rate of convergence
of nonlinear programming algorithms. We will discuss briefly three possi-
bilities and then concentrate on the third.

(a) Computational complexity approach: Here we try to estimate the
number of elementary operations needed by a given method to find
an optimal solution exactly or within an e-tolerance. Usually, this
approach provides worst-case estimates, that is, upper bounds on the
number of required operations over a class of problems of given di-
mension and type (e.g. linear, convex, etc.). These estimates may also
involve parameters such as the distance of the starting point from the
optimal solution set, etc.

(b) Informational complexity approach: One difficulty with the computa-
tional complexity approach is that for a diverse class of problems, it
is often difficult or meaningless to quantify the amount of computa-
tion needed for a single function or gradient evaluation. For example,
in estimating the computational complexity of the gradient method
applied to the entire class of differentiable convex functions, how are
we to compare the overhead for finding the stepsize and for updating
the x vector with the work needed to compute the cost function value
and its gradient? The informational complexity approach, which is
discussed in detail in the book [NeY83] (see also [TrW80]), bypasses
this difficulty by estimating the number of function (and possibly
gradient) evaluations needed to find an exact or approximately opti-
mal solution (as opposed to the number of necessary computational
operations). In other respects, the informational and computational
complexity approaches are similar.

(¢) Local analysis: In this approach we focus on the local behavior of the
method in a neighborhood of an optimal solution. Local analysis can
describe quite accurately the behavior of a method near the solution
by using series approximations, but ignores entirely the behavior of
the method when far from the solution.
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The main potential advantage of the computational and informational
complexity approaches is that they provide information about the method’s
progress when far from the eventual limit. Unfortunately, however, this in-
formation is usually pessimistic as it accounts for the worst possible prob-
lem instance within the class considered. This has resulted in some striking
discrepancies between the theoretical model predictions and practical real-
world observations. For example, the most widely used linear programming
method, the simplex method, is categorized as a “bad” method by worst-
case complexity analysis, because it performs very poorly on some specially
constructed examples, which, however, are highly unlikely in practice. On
the other hand, the ellipsoid method of Khachiyan [Kha79]t is categorized
as much better than the simplex method by worst-case complexity analysis,
even though it performs very poorly on most practical linear programs.

The computational complexity approach has received considerable at-
tention in the context of interior point methods. These methods, discussed
in Section 5.1, were primarily motivated by Karmarkar’s development of a
linear programming algorithm with a polynomial complexity bound that
was more favorable than the one of the ellipsoid method [Kar84]. It turned
out, however, that the worst-case predictions for the required number of
iterations of these methods were off by many orders of magnitude from the
practically observed number of iterations. Furthermore, the interior point
methods that perform best in practice have poor worst-case complexity,
while the ones with the best complexity bounds are very slow in practice.

The local analysis approach, which will be adopted almost exclusively
in this text, has enjoyed considerable success in predicting the behavior of
various methods near nonsingular local minima where the cost function can
be well approximated by a quadratic. Moreover it is often more intuitive
than the computational complexity approach, and lends itself better to
geometrical interpretations. However, the local analysis approach also has
some drawbacks, the most important of which is that it does not account for
the rate of progress in the initial iterations. Nonetheless, in many practical
situations this is not a serious omission because progress is fast in the
initial iterations and slows down only in the limit (the reasons for this seem
hard to understand; they are problem-dependent). Furthermore, often in
practice, starting points that are near a solution are easily obtainable by a
combination of heuristics and experience from problems with similar data,
in which case local analysis becomes more meaningful.

Local analysis has not been very successful for problems which either
involve singular local minima or which are difficult in the sense that the
principal methods take many iterations to get near their solution where
local analysis applies. Theoretical guidance to help a practitioner who is

T The ellipsoid method was chronologically the first linear programming algo-
rithm with a polynomial complexity bound; see [BGTS81] or [BeT97] for a survey
and discussion of this method.
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faced with such problems is an important subject, which is still under active
development.

1.3.1 The Local Analysis Approach

We now formalize the basic ingredients of our local rate of convergence
analysis approach. These are:

(a)
(b)

We restrict attention to sequences {z*} that converge to a unique
limit point z*.

Rate of convergence is evaluated using an error function e : ®» — R
satisfying e(x) > 0 for all z € R* and e(z*) = 0. Typical choices are
the Euclidean distance

e(@) = [lz -z

and the cost difference

Our analysis is asymptotic; that is, we look at the rate of convergence
of the tail of the error sequence {e(z*)}.

The generated error sequence {e(x’f)} is compared with some “stan-
dard” sequences. In our case, we compare {6($k)} with the geometric
progression

Bk, k=0,1,...,

where 3 € (0,1) is some scalar. In particular, we say that {e(z*)}
converges linearly or geometrically, if there exist ¢ > 0 and § € (0,1)
such that for all k&

e(zk) < gpBk.

It is possible to show that linear convergence is obtained if for some
B € (0,1) we have
e(xk+1
lim sup ( = ) < B;
k—oo 6(517 )

that is, asymptotically, the error is decreasing by a factor of at least
B at each iteration (see Exercise 1.3.6, which gives several additional
convergence rate characterizations). If for every 8 € (0,1), there
exists ¢ such that the condition e(a*) < ¢B8* holds for all k, we say
that {e(z*)} converges superlinearly. This is true in particular, if

k+1
i €&
koo e(zk)
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To quantify further the notion of superlinear convergence, we may
compare {e(z¥)} with the sequence

(this is 8 raised to the power p raised to the power k) where 8 € (0,1),
and p > 1 are some scalars. This sequence converges much faster
than a geometric progression. We say that {e(m’“)} converges at least
superlinearly with order p, if there exist ¢ > 0, 8 € (0,1), and p > 1
such that for all k&

e(ah) < q (B)P".

The case where p = 2 is referred to as quadratic convergence. It is
possible to show that superlinear convergence with order p is obtained
if k+1
e(x
lim sup ( )

<
k—oo e(xk)p o

or equivalently, e(z*+1) = O(e(z*)P); see Exercise 1.3.7.

Most optimization algorithms that are of interest in practice produce
sequences converging either linearly or superlinearly, at least when they
converge to nonsingular local minima. Linear convergence is a fairly sat-
isfactory rate of convergence for nonlinear programming algorithms, pro-
vided the factor g of the associated geometric progression is not too close
to unity. Several nonlinear programming algorithms converge superlinearly
for particular classes of problems. Newton’s method is an important ex-
ample, as we will see in the present section and also in Section 1.4. For
convergence to singular local minima, slower than linear convergence rate
is expected for most cases. One may then compare {e(az’f)} with some
standard sequences that converge sublinearly, such as {¢gk—?}, where ¢ > 0
and p > 1.

1.3.2 The Role of the Condition Number

Many of the important convergence rate characteristics of gradient meth-
ods reveal themselves when the cost function is quadratic. To see why,
assume that a gradient method is applied to minimization of a twice con-
tinuously differentiable function f : ®" — R, and it generates a sequence
{z*} converging to a nonsingular local minimum z*. We have

f@) = fa*) + 5( = 2) V2 f(z*)(z — 2*) + o(||lz — 2*]|?).

Therefore, since V2 f(x*) is positive definite, f can be accurately approxi-
mated near z* by the quadratic function

fla*) + 5@ —2*) V2 f(z*) (@ — z¥).
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We thus expect that asymptotic convergence rate results obtained for the
quadratic cost case have direct analogs for the general case. This conjecture
has been substantiated by extensive numerical experimentation, and is one
of the most reliable analytical guidelines in nonlinear programming.

For this reason, we take the positive definite quadratic case as our
point of departure. In Exercise 1.3.3 we extend our analysis for the case
where f has Lipschitz continuous gradient and is strongly convex (and
hence also has positive definite Hessian when it is twice differentiable).
We also discuss later in this section what happens when V2f(z*) is not
positive definite, in which case an analysis based on a quadratic model is
inadequate.

Convergence Rate of Steepest Descent for Quadratic Functions
Suppose that the cost function f is quadratic with positive definite Hessian
Q. We may assume without loss of generality that f is minimized at x* = 0

and that f(z*) = 0 [otherwise we can use the change of variables y = x —z*
and subtract the constant f(z*) from f(z)]. Thus we have

fl@)=52'Qu,  Vf(x)=Qz, V2f(x)=Q.
The steepest descent method takes the form
htl =gk — akV f(zF) = (I — a*kQ)zk.
Therefore, we have
[|lzk+1]|2 = xk’([ — akQ)2ak.
Since by Prop. A.18(b) of Appendix A, we have for all x € »
2'(I — o*Q)2x < (maximum eigenvalue of (I — a#Q)?)||z[|2,
we obtain
|zF 4112 < (maximum eigenvalue of (I — akQ)2)||z*||2.
Using Prop. A.13 of Appendix A, it can be seen that the eigenvalues of
(I — akQ)? are equal to (1 — ak);)2, where \; are the eigenvalues of Q.
Therefore, we have
maximum eigenvalue of (I — a*Q)2 = max{(1 — a*km)2, (1 — akM)2},

where
m : smallest eigenvalue of @,

M : largest eigenvalue of Q.
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It follows that for =% # 0, we have

[l* ]

[l*]

< max{|1 — akm|, |1 — akM|}. (1.38)

It can be seen that this inequality holds as an equation if z* is proportional
to an eigenvector corresponding to m and if |1 — afm| > |1 — ak¥M|. Oth-
erwise, if |1 — afm| < |1 — ok M|, the inequality holds as an equation if z*
is proportional to an eigenvector corresponding to M.

The relation (1.38) is a fundamental convergence rate bound for the
steepest descent method with a constant stepsize, which admits an exten-
sion to the case of a strongly convex cost function with Lipschitz continu-
ous gradient (see Exercise 1.3.3). Figure 1.3.1 illustrates the bound of Eq.
(1.38) as a function of the stepsize . It can be seen that the value of a*
that minimizes the bound is

2
o* =
M+m’
in which case e o
T —-m
. 1.39
lz*|| — M +m ( )

This is the best convergence rate bound for steepest descent with constant
stepsize.

There is another interesting convergence rate result, which holds when
a* is chosen by the line minimization rule. This result quantifies the rate
at which the cost decreases and has the form

k1 M —m\?
e < (3rem) (140)

The above inequality is verified in Prop. 1.3.1, given in the next subsection,
where we collect and prove the more formal results of this section. It can
be shown that the inequality is sharp in the sense that given any @, there
is a starting point x9 such that this inequality holds as an equation for all
k (see Fig. 1.3.2).

The ratio M/m is called the condition number of ), and problems
where M/m is large are referred to as ill-conditioned. Such problems are
characterized by very elongated elliptical level sets. The steepest descent
method converges slowly for these problems as indicated by the convergence
rate bounds of Eqgs. (1.38) and (1.40), and as illustrated in Fig. 1.3.2.

Scaling and Steepest Descent

Consider now the more general method

xktl = gk — ok DEV f(zF), (1.41)
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¥ max{|l —am|, |1 —aM|}

M—m
M+ m

Stepsizes that
Guarantee Convergence

Figure 1.3.1. Illustration of the convergence rate bound

[lz* 1]

2] Smax{|l—am|,|l—aM\}
x

for steepest descent. The bound is minimized when « is such that 1 — am =
aM —1, ie., for a =2/(M + m).

where DF¥ is positive definite and symmetric; most of the gradient methods
of interest have this form as discussed in Section 1.2. It turns out that we
may view this iteration as a scaled version of steepest descent. In particu-
lar, this iteration is just steepest descent applied in a different coordinate
system, which depends on D¥.
Indeed, let
S = (Dk)1/2

denote the positive definite square root of D¥ (cf. Prop. A.21 in Appendix
A), and consider a transformation of variables defined by

x = Sy.
Then, in the space of y, the problem is written as

minimize h(y) = f(Sy) (1.42)
subject to y € Rn. '

The steepest descent method for this problem takes the form

yktl = yk — ok Vh(yk). (1.43)
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Figure 1.3.2. Example showing that the convergence rate bound

o< ()

is sharp for the steepest descent method with the line minimization rule. Consider
the quadratic function

fl@) =330 e,

where 0 < m = A1 < A2 < --- < Ay, = M. Any positive definite quadratic
function can be put into this form by transformation of variables. Consider the
starting point
_ _ !
2= (m~,0,...,0,M ")

and apply the steepest descent method zk+! = 2%k — aka(:ck) with o chosen
by the line minimization rule. We have Vf(z%) = (1,0,...,0,1)’ and it can
be verified that the minimizing stepsize is a® = 2/(M + m). Thus we obtain
zi=1/m—2/(M +m), 2k =1/M —2/(M +m), 2} =0fori=2,...,n— 1L

Therefore,
M —
ol = ( m) (m=t0,...,0,-M~ 1)
M+ m

and, we can verify by induction that for all k,

M — m\ 2k o\ 2K
22k _ ( m) 2O, gl (M m) =y
M+m M+m

Thus, there exist starting points on the plane of points x of the form = =
(£1,0,...,0,&,), &1 € R, &, € R, in fact two lines shown in the figure, for
which steepest descent converges in a way that the inequality

o< ()

is satisfied as an equation at each iteration.
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Multiplying with .S, we obtain
Syk+l = Syk — ak SV h(yk).
By passing back to the space of x, using the relations
xk = Syk, Vh(yk) = SV f(z*k), S2 = Dk, (1.44)
we obtain
okl = gk — ok DRV f(2F).

Thus the above gradient iteration is nothing but the steepest descent
method (1.43) in the space of y.

We now apply the convergence rate results for steepest descent to the
scaled iteration y5t1 = yk — akVh(y*), obtaining

[ly* ]
7l

< max{|l — oFmk|, |1 — ok MF|}

and

h(yk+1) Mk — mk\ 2
< )
i < (i)

[cf. the convergence rate bounds (1.38) and (1.40), respectively], where mk
and MF are the smallest and largest eigenvalues of the Hessian V2h(y),
which is equal to SV2f(z)S = (D¥)1/2Q(D*)1/2. Using the equations

yk = (Dk)=1/2gk, Ykl = (Dk)=1/2gh+1
to pass back to the space of x, we obtain the convergence rate bounds

$k+1’(Dk)71Ik+1

o (DF)—1ah < max{ (1 — akmk)2, (1 — akM*)2} (1.45)
and ) ) "
f xk+1 Mk —m
fak) = <Mk +mk) g (1.46)
where

mk : smallest eigenvalue of (DF)1/2Q(Dk)1/2,
MPF : largest eigenvalue of (D¥)1/2Q(D¥)1/2.
The stepsize that minimizes the right-hand side bound of Eq. (1.45) is

2

Mk 4+ mk’

The important point is that if M*/m* is much larger than unity,

the convergence rate can be very slow, even if an optimal stepsize is used.

Furthermore, we see that it is desirable to choose DF as close as possible

to @1, so that (D¥)1/2 is close to Q~1/2 (cf. Prop. A.21 in Appendix A)

and M* =~ m* = 1. Note that if D¥ is so chosen, Eq. (1.47) shows that the
stepsize o = 1 is near optimal.

(1.47)
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Diagonal Scaling

Many practical problems are ill-conditioned because of poor relative scaling
of the optimization variables. By this we mean that the units in which the
variables are expressed are incongruent in the sense that single unit changes
of different variables have disproportionate effects on the cost.

As an example, consider a financial problem with two variables, in-
vestment denoted x1 and expressed in dollars, and interest rate denoted x2
and expressed in percentage points. If the effect on the cost function f due
to a million dollar increment of investment is comparable to the effect due
to a percentage point increment of interest rate, then the condition number
will be of the order of 1012!! [This rough calculation is based on estimating
the condition number by the ratio

02 f (w1, 22) / 0% f (1, 2)

(03) (01)?

approximating the second partial derivatives by the finite difference formu-

1
T 02, o f@thi @) + fo1 — ha, w) — 2f (21, 22)
(31'1)2 - h% ’
P f(x1,22) _ flz, 22+ he) + f(z1,22 — he) — 2f (21, 22)
(0x2)2 h3 ’

and using the relations f(z1 + hi,22) = f(z1,22 + he), f(z1 — h1,22) =~
f(z1,22 — h2), and hy = 109, hy = 1, which express the comparability of
the effects of a million dollar investment increment and an interest rate
percentage point increment. |

The ill-conditioning in such problems can be significantly alleviated by
changing the units in which the optimization variables are expressed, which
amounts to diagonal scaling of the variables. By this, we mean working in
a new coordinate system of a vector y related to x by a transformation,

r =Sy,

where S is a diagonal matrix. In the absence of further information, a
reasonable choice of S is one that makes all the diagonal elements of the
Hessian of the cost

SV2f(x)S

in the y-coordinate system approximately equal to unity. For this, we must
have
(2@
o ( (O ) ) ’

where s; is the ith diagonal element of S. As discussed earlier, we may
express any gradient algorithm in the space of variables y as a gradient
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algorithm in the space of variables x. In particular, steepest descent in the
y-coordinate system, when translated in the z-coordinate system, yields
the diagonally scaled steepest descent method

xhtl = gk — ok DRV f(2F),

where
d’f 0O 0 --- 0 0 0
0 d’g 0O --- 0 0 0
D=1 : © = - : ,
0O 0 0 0 di_y O
0 0 0 0 0 dk
and )
gt~ (2SEN N
t (8:51)2

This method is also valid for nonquadratic problems as long as d¥ are
chosen to be positive. It is not guaranteed to improve the convergence
rate of steepest descent, but it is simple and often surprisingly effective in
practice. In particular, it tends to automatically correct mismatches of the
units in which the various optimization variables are expressed.

Nonquadratic Cost Functions

It is possible to show that our main conclusions on rate of convergence
carry over to the nonquadratic case for sequences converging to nonsingular
local minima. Conceptually, this makes sense because in the neighborhood
of a nonsingular local minimum a twice continuously differentiable cost
function is very close to a positive definite quadratic (up to second order).
The technical details of the proofs of such results are straightforward, but
tend to be uninsightful and tedious, and for the most part will be omitted.

More specifically, let f be twice continuously differentiable and con-
sider the gradient method

aktl = gk — ok DRV f(2F), (1.48)

where DF is positive definite and symmetric. Consider a generated sequence
{z*}, and assume that

xh — x| Vf(z*) =0, V2f(x*) : positive definite, (1.49)
and that z% # x* for all k. Then, denoting
mF : smallest eigenvalue of (D*)1/2V2 f(zk)(D¥*)1/2,

MF : largest eigenvalue of (DF)1/2V2 f(xk)(DFk)1/2,
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it is possible to show the following;:
(a) There holds
k+1 _ px ) (Dk)=1(gk+1 — p*
s =2V (DY) A k1 — )
e @k =y (DR ek — )

= limsup max{|1 — afm* |2, |1 — a*M¥|2}.
k—o00

(b) If ¥ is chosen by the line minimization rule, there holds

, flaktt) = flzr) M~ —mk)*
o oy s () - 09

An alternative result for the case of the Armijo rule is given in Exercise
1.3.10 (with solution posted online).

From Eq. (1.50), we see that if D* converges to some positive definite
matrix as #¥ — z*, the sequence {f(z*)} converges to f(z*) linearly.
When

DE = V2 f(2%) 1,

we have limg_, oo M* = limg oo m* = 1 and Eq. (1.50) shows that the
convergence rate of { f (xk)} is superlinear. A somewhat more general
version of this result for the case of the Armijo rule is given in Prop. 1.3.2
in the next subsection. In particular, it is shown that if the direction

dk = —DkV f(z)

approaches asymptotically the Newton direction — (V2 f(z¥)) v f(z¥) and
the Armijo rule is used with initial stepsize equal to one, the rate of con-
vergence is superlinear.

There is a consistent theme that emerges from our analysis, namely
that to achieve asymptotically fast convergence of the gradient method

aktl = gk — ok DRV f(2F),
one should try to choose the matrices D¥ as close as possible to (V2 (2*)) !
so that the maximum and minimum eigenvalues of (D¥)1/2V2 f(z*)(Dk)1/2
satisfy M* ~ 1 and m* =~ 1. Furthermore, when D¥ is so chosen, the initial
stepsize s = 1 is a good choice for the Armijo rule and other related rules,
or as a starting point for one-dimensional minimization procedures used in
minimization stepsize rules. This finding has been supported by extensive
numerical experience and is one of the most reliable guidelines for selecting
and designing optimization algorithms for unconstrained problems. Note,
however, that this guideline is valid only for problems where the cost func-
tion is twice differentiable and has positive definite Hessian near the points
of interest. We discuss next problems where this condition is not satisfied.



Sec. 1.3 Gradient Methods — Rate of Convergence 79
Singular and Difficult Problems

Let us consider problems where the Hessian matrix either does not exist
or is not positive definite at or near local minima of interest. Expressed
mathematically, there are local minima x* and directions d such that the
slope of f along d, which is V f(z* + ad)’d, changes very slowly or very
rapidly with «, i.e., either

Vf(x* +ad)d—Vf(x*)d

ilg%) - =0, (1.51)
o v dyd — Vf(z*)d

lim YL@ Fadyd = Vi@)yd (1.52)

a—0 (6%

The case of Eq. (1.51) is characterized by flatness of the cost along the
direction d; large excursions from z* along d produce small changes in
cost. In the case of Eq. (1.52) the reverse is true; the cost rises steeply
along d. An example is the function

f(x1,m2) = |21 |* + |22]3/2,

where for the minimum z* = (0,0), Eq. (1.51) holds along the direction
d = (1,0) and Eq. (1.52) holds along the direction d = (0,1). Gradient
methods that use directions that are comparable in size to the gradient
may require very large stepsizes in the case of Eq. (1.51) and very small
stepsizes in the case of Eq. (1.52). This suggests potential difficulties in the
implementation of a good stepsize rule; certainly a constant stepsize does
not look like an attractive possibility. Furthermore, in the Armijo rule,
the initial stepsize should not be taken constant; it should be adjusted
according to a suitable scheme, although designing such a scheme may not
be easy.

One may view the cases of Eqgs. (1.51) and (1.52) as corresponding
to an “infinite condition number,” thereby suggesting slower than linear
convergence rate for the method of steepest descent. Proposition 1.3.3 of
the next subsection quantifies the rate of convergence of gradient methods
for the case of a convex function whose gradient satisfies the Lipschitz
condition

|V£(@) = Vi) < Lz -yl (1.53)

for some L, and all x and y in a neighborhood of z* [this assumption is
consistent with the “flat” cost case of Eq. (1.51), but not with the “steep”
cost case of Eq. (1.52)]. It is shown in particular that for a gradient method
with several types of stepsize rules, we have

f(@¥) = f(z*) = o(1/k).

This type of estimate suggests that for many practical singular problems
one may be unable to obtain a highly accurate approximation of an optimal
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solution. In the “steep” cost case where Eq. (1.52) holds for some directions
d, computational examples suggest that the rate of convergence can be
slower than linear for the method of steepest descent, although a formal
analysis of this conjecture does not seem to have been published.

It should be noted that problems with singular local minima are not
the only ones for which gradient methods may converge slowly. There
are problems where a given method may have excellent asymptotic rate
of convergence, but its progress when far from the eventual limit can be
very slow. A prominent example is when the cost function is continu-
ously differentiable but its Hessian matrix is discontinuous and possibly
singular in some regions that are outside a small neighborhood of the so-
lution; such functions arise for example in augmented Lagrangian methods
for inequality constrained problems (see Section 5.2). Then the powerful
Newton-like methods may require a very large number of iterations to get
to the small neighborhood of the eventual limit where their convergence
rate is favorable. What happens here is that these methods use second
derivative information in sophisticated ways, but this information may be
misleading due to the Hessian discontinuities.

Generally, there is a tendency to think that difficult problems should
be addressed with sophisticated methods, such as Newton-like methods.
This is often true, particularly for problems with nonsingular local minima
that are poorly conditioned. However, it is important to realize that often
the reverse is true, namely that for problems with “difficult” cost functions
and singular local minima, it is best to use simple methods such as (per-
haps diagonally scaled) steepest descent with simple stepsize rules such as
a constant or a diminishing stepsize. The reason is that methods that use
sophisticated descent directions and stepsize rules often rely on assump-
tions that are likely to be violated in difficult problems. We also note that
for difficult problems, it may be helpful to supplement the steepest descent
method with features that allow it to deal better with multiple local min-
ima and peculiarities of the cost function. An often useful modification is
to introduce extrapolation based on the preceding two iterates, which we
discuss next.

Steepest Descent with Extrapolation
A variant of the steepest descent method, known as gradient method with
momentum, involves extrapolation along the direction of the difference of
the preceding two iterates:

xhtl = gk — bV f(xhk) + pF(zk — 2k-1), (1.54)
where 8% is a scalar in [0, 1), and we define x_1 = x9. When o and g* are

chosen to be constant scalars o and 3, respectively, the method is known as
the heavy ball method [Pol64]; see Fig. 1.3.3. This is a sound method with
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Gradient Step
Try1 = ok — aV f(zy)

T1 = T —aV f(zr)+B(TK—Tk-1)
V f(zk) Tk

/
/
Th-1

Extrapolation Step

Figure 1.3.3. Illustration of the heavy ball method (1.54), where o* = « and
gk = p.

guaranteed convergence under a Lipschitz continuity assumption on Vf.
It can be shown to have faster convergence rate than the corresponding
gradient method where o = o and 8% = 0. In particular, for a positive
definite quadratic problem with minimum at z*, and with optimal choices
of the constants a and 3, the convergence rate of the heavy ball method is
linear, and is governed by the formula

ot — || _ VM = /m
[k — 2| = VM + m’

(see Exercise 1.3.8, whose solution is posted online; also see [GFJ15] for
a related convergence analysis). This formula has the same form as the
one for the steepest descent method, but with M/m replaced by /M /m,
which is a substantial improvement. Simple examples also suggest that with
extrapolation, the steepest descent method is less prone to getting trapped
at “shallow” local minima, and deals better with cost functions that are
alternately very flat and very steep along the path of the algorithm.

A method with similar structure as (1.54), proposed in [Nes83] and
often called Nesterov’s method, has received a lot of attention because it
has theoretically interesting complexity properties. The iteration of this
method is commonly described in two steps: first an extrapolation step, to
compute

(1.55)

yk = ak + gk(zk — zk-1) (1.56)

with 8% chosen in a special way so that 8% — 1, and then a gradient step
with constant stepsize a, and gradient calculated at y*,

xhtl = yk — aV f(y*). (1.57)

Compared to the method (1.54), it reverses the order of gradient calcula-
tion and extrapolation, and uses V f(y*) in place of V f(x*) (in addition to
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using time-varying parameters 5%). Assuming only convexity of f and Lip-
schitz continuity of V f, the convergence rate of the method (1.56)-(1.57) is
sublinear, but of better order than the one of the method (1.54). For a pos-
itive definite quadratic cost function, the convergence rate of both methods
is linear and roughly comparable (with optimal choices of parameters). We
refer to [Nes04], Section 2.2.1, for an analysis and discussion of the method
(1.56)-(1.57); also [Berlbal, Section 6.2, and the references quoted there,
including the paper [Tse08], which describes some extensions.

We finally note that extrapolation can also be used in the context of
two implementations of the conjugate gradient method, which have super-
linear convergence rate. These implementations are described in Section
2.1; see Exercises 2.1.5 and 2.1.6 (with solutions posted online).

1.3.3 Convergence Rate Results

We first derive the convergence rate of steepest descent with the minimiza-
tion stepsize rule when the cost is quadratic.

Proposition 1.3.1: Consider the quadratic function
f(@) = 2'Qa, (1.58)

where (@ is positive definite and symmetric, and the method of steepest
descent
aktl = gk — ok f(2F), (1.59)

where the stepsize oF is chosen according to the minimization rule
k — ok f(2F)) = mi k— oV f(zF)).
f(2* = a*V f(z¥)) = min f (o — aVf(a*))

Then, for all &,

e < (M) g,

where M and m are the largest and smallest eigenvalues of ), respec-
tively.

Proof: Let us denote
gk =V f(zk) = Quzk. (1.60)

The result clearly holds if g* = 0, so we assume gk # 0. We first compute
the minimizing stepsize a*. We have

d
o @k —agh) = —gMQ(z* — agh) = —g"'g* + agh'Qg*.
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By setting this derivative equal to zero, we obtain

g*' gk

ak = T
9* Qg

(1.61)

We have, using Egs. (1.58)-(1.60),
Flak+1) = L(ak - akgryQ(ak — akgh)
= % (xk’ka — 20k gk’ Quk + (ak)2gk’ng)
% (xk’ka — 20k gk’ gk + (ak)2gk’ng)

and using Eq. (1.61),

N ("' d")?
flaktl) = 3 (w’f Quzk — gk’cqggk .
Thus, using the fact f(a*) = %xk'Q:rk = %gk'Qflgk, we obtain

(g% g*)2
(9% Qg*) (g% Q—1g*

At this point we need the following lemma.

ket = (1- e e

Lemma 3.1: (Kantorovich Inequality) Let @ be a positive defi-
nite and symmetric n X n matrix. Then for any vector y € R,y # 0,
there holds
(v'y)? o _AMm
W Qy)(y'Q~1y) — (M +m)*’

where M and m are the largest and smallest eigenvalues of ), respec-
tively.

Proof: Let A1,..., A\, denote the eigenvalues of @) and assume that
O<m=M< < - <\, =M.

Let S be the matrix consisting of the n orthogonal eigenvectors of ), nor-
malized so that they have unit norm (cf. Prop. A.17 in Appendix A). Then,
it can be seen that S’Q.S is diagonal with diagonal elements A1, ..., A,. By
using if necessary a transformation of the coordinate system that replaces
y by Sz, we may assume that () is diagonal and that its diagonal elements
are A1, ..., An. We have for y = (y1,...,yn) #0

(y'y)? _ (Z?:l 3/12)2 _
(¥ Qy)(yQ~1y) (Z?:l /\1%2) (Z?_l %)
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MAA =D " &N
A1 An

v =) &
i=1""

1

Figure 1.3.4. Proof of the Kantorovich inequality. Consider the function 1/\.
The scalar Z?:l &\ represents, for any & = (§1,...,&n) with § > 0, Z?:l &=
1, a point in the line segment [A1,An]. Thus, the values ¢(§) = 1/ 2?21 &
correspond to the thick part of the curve 1/A. On the other hand, the value ¢(§) =
Z?:l(ﬁi/)\i) is a convex combination of 1/A1,...,1/A, and hence corresponds
to a point in the shaded area in the figure. For the same vector &, both ¢(§) and
(&) are represented by points on the same vertical line. Hence,

(&) . 1
A1 An

The minimum is attained for A = (A1 + An)/2 and we obtain

@ > AN A,

© = (a+an)?

which is used to show the result.

By letting

and by defining

_ 1 &
0O = ey WO=2 5

we obtain

(y'y)? _ 98
W Qy)(yQly)  ¥(&)
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Figure 1.3.4 shows that we have

BE) . hih,
WO T AP

which proves the desired inequality. Q.E.D.

Returning to the proof of Prop. 1.3.1, we have by using the Kan-
torovich inequality in Eq. (1.62)

j@“USO—a%%#)NW=<%;ZYﬂW)

Q.E.D.

The following proposition shows superlinear convergence for methods

where dF approaches the Newton direction — (VQf(x*))AVf(xk) and the
Armijo rule is used.

Proposition 1.3.2: (Superlinear Convergence of Newton-Like
Methods) Let f be twice continuously differentiable. Consider a
sequence {x*} generated by the gradient method zk+l = zk + akdFk
and suppose that

xk — x*, Vf(z*) =0, V2f(x*): positive definite. (1.63)

Assume further that V f(xz*) # 0 for all k& and

i 12+ (V20 @9) V1)

=0. (1.64)

Then, if a* is chosen by means of the Armijo rule with initial stepsize
s =1and o < 1/2, we have

kE+1 _ %
= cal Y (1.65)

lim ———
k—oo |k — x|
Furthermore, there exists an integer k > 0 such that ok = 1 for all

k > k (i.e., eventually no reduction of the initial stepsize will be taking
place).

Proof: We first prove that there exists a k > 0 such that for all & > k,

f(ah +dF) = f(a*) <oV f(ak)d,
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i.e., the unity initial stepsize passes the test of the Armijo rule. By the
mean value theorem, we have

Flak +db) — f(ab) = VF (k) ds + L V2 f ()b,

where ZF is a point on the line segment joining x* and x*¥ + d*. Thus, it
will be sufficient to show that for k sufficiently large, we have

Vf(akydk + Lk V2 f(2R)dk < oV f (k) dk,

or equivalently,

(1—o)pt' gk + 3qk'V2 f(zk)gk < 0, (1.66)
where
pk = M gk = dik
[V f (k)| [V £ (k)|

Indeed, from the assumption (1.64), we have
qF + (V{f(a:*))ilp’C — 0.

Since V2 f(x*) is positive definite and ||p¥|| = 1, it follows that {¢*} is a
bounded sequence, and in view of gk = d*/||V f(z*)|| and V f(z*) — 0, we
obtain d* — 0. Hence, z* + d* — z*, and it follows that ¥ — z* and
V2f(zk) — V2f(z*). We now write Eq. (1.64) as

gk = —(V2f(2*)) "' pk + BF,

where {*} denotes a vector sequence with 5* — 0. By using the above
relation and the fact V2f(Z*) — V2 f(z*), we may write Eq. (1.66) as

(1— U)pk’(vzf(x*))*lpk _ %pk/(vzf(x*))*lpk > Ak,

where {~*} is some scalar sequence with v — 0. Thus Eq. (1.66) is
equivalent to

-1

(3 =) K (V2f (%)) pk > k.
Since 1/2 > o, ||p¥|| = 1, and V2f(x*) is positive definite, the above
relation holds for sufficiently large k. Thus, Eq. (1.66) holds, and it follows

that the unity initial stepsize is acceptable for sufficiently large k.
To complete the proof, we note that from Eq. (1.64), we have

dk + (V2f(2%) TV f(ak) = ||V f(ak)]||o*, (1.67)
where 6% is some vector sequence with 65 — 0. We have

Vf(ak) = V2 f(a*) (@b — %) + o(f|a* — 2*]]),
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from which
(V2 (@) " Vf (k) = ok =+ of|Ja* — a]),
[V f@@h)|| = O(ll* — a*])).
Using the above two relations in Eq. (1.67), we obtain
dF + ok — a2 = o(||xk — *|). (1.68)
Since for sufficiently large k we have d¥ + % = 2k+1 Eq. (1.68) yields
ZRHL = g = o[zt — 27,

from which

S R -
e ”rxk = xf|| = O(||5k = ;*H”) -0
Q.E.D.
Note that the equation
bt — ]|

lim =0

k—oo ||xk — x*|]

[cf. Eq. (1.65)] implies that {|lz* — 2*||} converges superlinearly (see Ex-
ercise 1.3.6). In particular, we see that Newton’s method, combined with
the Armijo rule with unity initial stepsize, has the property that when it
converges to a local minimum z* such that V2f(x*) is positive definite,
its rate of convergence is superlinear. The capture theorem (Prop. 1.2.3)
together with the preceding proposition suggest that Newton-like methods
with the Armijo rule and a unity initial stepsize converge to a local mini-
mum x* such that V2 f(z*) is positive definite, whenever they are started
sufficiently close to such a local minimum. The proof of this is left as
Exercise 1.3.4 for the reader (solution posted online).

We finally consider the convergence rate of gradient methods for sin-
gular problems with a convex cost function, and a stepsize that is either
constant within an appropriate range (cf. Prop. 1.2.2), or is obtained by
line minimization.

Proposition 1.3.3: (Convergence Rate of Gradient Methods
for Singular Problems) Suppose that the cost function f is convex
and its gradient satisfies for some L the Lipschitz condition

[Vf(@) =V <Llz—yll, Vazyehr (1.69)
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Assume further that the set of global minima of f is nonempty and
bounded. Consider a gradient method x*k+1 = zF + akd* where for
some ¢ > 0 and all £ we have

Vi(ah)ydk < —c||[Vf@b)|]?,  dk #£0, (1.70)
while oF either satisfies for some € € (0, 1] and all k
e < ak < (2—e)ak, (1.71)
where

e [V akydr]
~ Lflak[

or else satisfies f(z* + o*dF) < f(zF 4+ a*d*). Then all limit points of
{z*} are optimal and there exists at least one limit point. Moreover

f(@F) = f* = o(1/k),

where f* = mingegn f(x) is the optimal value.

Proof: We assume that Vf(z¥) # 0; otherwise the method terminates
finitely at a global minimum and the result holds trivially. Assume first
that «F is chosen by the rule (1.71). Then from the proof of Prop. 1.2.2,
we have

f(@k + akdk) — f(xk) < —1e2|V f(xk) dk|.

Combining this relation with Eq. (1.70), we obtain

I

Flak + atkdt) < f(a¥) — ||V F (k) (1.72)

The above relation holds also for a* = &k, so that
ce? 2
Flak +akd) < f(ak) — |V

Thus for any of the possible stepsizes chosen by the algorithm, we have

Flak ) < Fb) - )|

(1.73)

Let X* be the set of global minima of f. Since X* is nonempty and
compact, all the level sets of f are compact (Prop. B.10 in Appendix B).
This together with the monotone decrease of { f(z*)}, shows that {z*} is
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bounded. Hence, by Prop. 1.2.1, all limit points of {z*} belong to X*, and
the distance of z* from X*, defined by

d(zk, X*) = £Iél§{l* |xk — a*]],

converges to 0 and ek — 0. Using the convexity of f, we also have for every
global minimum z*

flak) = f(a*) < Vf(ak) (@b —2%) < [|VF@R)[| - [la? — 2],

from which, by minimizing over x* € X*,

fak) = fr < ||V f(ah)| d(®, X). (1.74)
Let us denote for all k&
ek = f(ok) - f*.
Combining Egs. (1.73) and (1.74), we obtain
ce2(ek)2
kil < b o \C ) )
ektl <e Sd(ak, X2 vk, (1.75)

where we assume without loss of generality that d(z*, X*) # 0.
We will show that Eq. (1.75) implies that e = o(1/k). Indeed we

have -
cee
0 k41 < ok (1 —
D < 2d<wk,X*>2)’
ce2ek
0<l—- —F——
ST 2R, X
from which
ce2ek -1 ce2ek
E+1)—=1 > (gk)-1 | ] — —— — > (ek)-1 (1 -
et @ (1 )2 @9 (14 g )
C(ek)-1 4 €
)™+ S X

Summing this inequality over all k, we obtain

-1
ek§<60 1+_Zd$z *—> 7
or

k—1 -1
1 ce? )
k < N N (3 *)—2 . .
kek < (keo + ok ;:0 d(xt, X*) > (1.76)
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Since d(z?, X*) — 0, we have d(z?, X*)=2 — oo and

o k=1

o ; d(zi, X*)=2 = 0.

Therefore the right-hand side of Eq. (1.76) tends to 0, implying that ek =
o(1/k). Q.E.D.

The key step in the preceding proof is that the stepsize rule is such
that Eq. (1.73) holds. Indeed the proof goes through for any stepsize rule
for which we have

Fa+1) < fak) = |V F (et
for some constant 8 > 0 and all k. The proof can also be modified for
the case where the Lipschitz condition (1.69) holds within the level set
{z | f(z) < f(20)}. Moreover, with additional assumptions on the struc-
ture of f, some more precise convergence rate results can be obtained.
In particular, if f is convex, has a unique minimum x*, and satisfies the
following growth condition

f(x) = f(@*) = qlle —a*||f, ¥V a such that f(z) < f(20),

for some scalars ¢ > 0 and 8 > 2, it can be shown (see [Dun81]) that for
the method of steepest descent with the Armijo rule we have

ﬂwwwuﬂ=0< i>.

kP2

EXERCISES

1.3.1

Estimate the rate of convergence of steepest descent with the line minimization
rule when applied to the function of two variables f(z,y) = 2% 4+ 1.999zy + 3>
Find a starting point for which this estimate is sharp (cf. Fig. 1.3.2).

1.3.2

Consider a positive definite quadratic problem with Hessian matrix . Suppose
we use scaling with the diagonal matrix whose ¢th diagonal element is qi;17 where
gii is the ith diagonal element of (). Show that if @ is 2 x 2, this diagonal
scaling improves the condition number of the problem and the convergence rate
of steepest descent. (Note: This need not be true for dimensions higher than 2.)
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1.3.3 (Linear Convergence under Strong Convexity)

Let f be differentiable and satisfy the Lipschitz condition
[Vi@) = VIw)|| <Llz—yl, VayeR"

Assume further that f is strongly convex, i.e., for some o > 0, we have

(Vi@ - VIiW) @-y) zollz—yl’,  VayeR,
and let * be the unique minimum of f.

(a) Show that the mapping Guo(z) = z — aV f(z) of the steepest descent iter-
ation with constant stepsize « satisfies

|Ga(@) = Ga(y)|| < max {|1 —aL|, |1 —aol} |z —yl,  VayeR",

and is a contraction for all a € (0,2/L). Abbreviated Proof: For all z,y €
RN, we have

[Gal@) = Ga@)||" = /(= — aV (@) = (y — aV W) ||

Expanding the quadratic on the right-hand side, and using Prop. B.5(a),
the Lipschitz condition, and the strong convexity condition, we obtain

|Ga(@)~Ga®)||” < e — ylI* — 20(Vf(2) - V() (x — )

+0?||Vf(@) - Vi’
20 L 2 2«
o+ L |z =yl o+ L

+0?||VI@) - V)|

2a0L
= (1- 22 e - yl®

V@) - Viw)|®

2
<llz—yl” -

o+ L
+a(a- =) VI - Vi)
< (1- 272 o -yl

Ho-gig) o (oo e
+amaX{L (a e 70 R Glt=orny |z — yll
= max {(1 - aL)®,(1 - a0)*}|lz —y|,

from which the desired inequality follows.
(b) Use part (a) to show that for the steepest descent method 2" = G4 (z*)
we have

lz*** — 2| < max{[1 — aol, |1 — aLl|}|lz" 7,

and that this relation generalizes the estimate of Eq. (1.38). From this
relation, argue that the ratio L/o plays the role of the condition number,
which we have defined for twice differentiable f.
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1.3.4 (Superlinear Convergence)

Let f be twice continuously differentiable. Consider a sequence {z*} generated
by the gradient method z**! = z* + o*d* and suppose that z* is a nonsingular
local minimum. Assume that, for all k, Vf(z") # 0 and d* = d(z*), where d(-)
is a continuous function of x with

e @)+ (Vi) Vi@
z—x*, V f(z)#0 va(:c)H

Furthermore, o is chosen by means of the Armijo rule with initial stepsize s = 1
and o < 1/2. Show that there exists an € > 0 such that if [|#° — 2*|| < ¢, then:

(a) {xk} converges to x*.
(b) a® =1 for all k.
(€) Timposoo ([l = 2% /||2* —2*|]) = 0.

Hint: Use the line of argument of Prop. 1.3.2 together with the capture theorem
(Prop. 1.2.3). Alternatively, instead of using the capture theorem, consult the
proof of the subsequent Prop. 1.4.1.

1.3.5 (Steepest Descent with Errors)
Consider the steepest descent method
xk+1 _ xk _ a(vf(xk) + ek)7

where « is a constant stepsize, e is an error satisfying HekH < § for all k, and f

is the positive definite quadratic function
flz) = 3(z —2")Qx — a¥).

Let
q= max{|1 —aml,|1 — on|}7

where
m : smallest eigenvalue of @, M : largest eigenvalue of Q,

and assume that ¢ < 1. Show that for all k, we have

X " ad X
la* — z*|| < T—¢ +q" " — =

Il
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1.3.6 (Convergence Rate Characterizations [Ber82a], p. 14)

Consider a scalar sequence {e*} with e* > 0 for all k, and e* — 0. We say that
{ek} converges faster than linearly with convergence ratio 3, where 0 < 8 < 1, if
for every 8 € (B8,1) and g > 0, there exists k such that

" <qft,  Vk=k

We say that {ek } converges slower than linearly with convergence ratio B, where
0 < B <1, if for every 5 € (8,1) and ¢ > 0, there exists k such that

gB* <t VEk>k

We say that {e} converges linearly with convergence ratio f if it converges both
faster and slower than linearly with convergence ratio 8. Show that:

(a) {e*} converges faster than linearly with convergence ratio 8 if and only if

lim sup(e”)/* < B.

k— oo

{e*} converges slower than linearly with convergence ratio § if and only if
lim inf (e")'/* > 8.
k— o0

{e*} converges linearly with convergence ratio 3 if and only if

lim (¢*)'/* = 3.

k—oo

(b) Assume that e # 0 for all k, and denote

k+1 k+1
B2 = lim sup
k— o0

e

= lim inf , .
A k—oo €k ek
Show that if 0 < 81 < B2 < 1, then {e*} converges faster than linearly
with convergence ratio B2 and slower than linearly with convergence ratio
B1. Furthermore, if 51 = B2 = 0, then {ek} converges superlinearly.

1.3.7

Consider a scalar sequence {e*} with e* > 0 for all k, and e* — 0. Show that
{ek} converges superlinearly with order p if

k+1

lim sup ——— < oo.
k—oo (ek)p
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1.3.8 (The Heavy Ball Method [Pol64])

Consider the following variant of the steepest descent method:
2" = b — o) 4 Bt — 2F T, E=12,...,
where « is a constant positive stepsize and S is a scalar with 0 < 5 < 1.
(a) Let f be the quadratic function f(z) = (1/2)2'Qx + ¢'z, where Q is pos-
itive definite and symmetric, and let m and M be the minimum and the
maximum eigenvalues of @), respectively. Show that the method converges

linearly to the unique solution if 0 < a < 2(1 4+ 8)/M. Show that with
optimal choices of a and 3, the ratio of linear convergence for the sequence

{lla* — 2|1} is
VI — i,
VM + m’
cf. Eq. (1.55). [This is faster than the corresponding ratio of the steepest

descent method where 8 = 0 and « is chosen optimally; cf. Eq. (1.39).]
Hint: Write the iteration as

<xk+1) _ ((1+ﬂ)I—OzQ —ﬂ[) ( z* )
z* o I 0 !

and show that v is an eigenvalue of the matrix in the above equation if and
only if v+ 8/v is equal to 1 + 8 — a\ where A is an eigenvalue of Q). (This
is a challenging exercise.)

(b) It is generally conjectured that in comparison to steepest descent, the
method is less prone to getting trapped at “shallow” local minima, and
tends to behave better for difficult problems where the cost function is
alternatively very flat and very steep. Argue for or against this conjecture.

(¢) In support of your answer in (b), write a computer program to test the
method with § = 0 and 8 > 0 with one-dimensional cost functions of the
form

f(z) = 3a? (1 +’YCOS(£C))7
where v € (0, 1), and
J()=§ 37, | — tanh(ay:)|*

where z; and y; are given scalars.

1.3.9

Suppose that a vector sequence {ek} satisfies
[ —eF < Bl =", VR,

where k is a positive integer and 8 € (0, 1) is a scalar. Show that {ek} converges
to some vector e¢* linearly, and in fact we have

lle® — €|l < ¢8*

for some scalar ¢ and all k. Hint: Show that {ek} is a Cauchy sequence.
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1.3.10 (Convergence Rate of Steepest Descent with the

Armijo Rule)

Let f: R" — R be a twice continuously differentiable function that satisfies
mly|* <y'V2fx)y < Mlyl®,  Va,yeR,

where m and M are some positive scalars. Consider the steepest descent method
2" = zF — oFV f(2") with oF determined by the Armijo rule. Let z* be the
unique unconstrained minimum of f and let

_ 4mpBo(1—o)

-1
" M

Show that for all k, we have

FE™) = @) < r(f@*) = f(27)),

and

lz" =" ||* < ar*,

where ¢ is some constant.

NEWTON’S METHOD AND VARIATIONS

In the last two sections we emphasized a basic tradeoff in gradient meth-
ods: implementation simplicity versus fast convergence. We have already
discussed steepest descent, one of the simplest but also one of the slowest
methods. We now consider its opposite extreme, Newton’s method, which
is arguably the most complex and also the fastest of the gradient methods
(under appropriate conditions).

Newton’s method consists of the iteration

ahtl = gk —ak(VQf(a:k))%Vf(:z:k), (1.77)
assuming that the Newton direction
dk = —(V2f(xk)) TV f (k) (1.78)

is defined [i.e., V2f(z*) is invertible] and is a direction of descent [i.e.,
d*'V f(zF) < 0]. As explained in the preceding section, one may view this
iteration as a scaled version of steepest descent where the “optimal” scaling
matrix (V2f(zF)) “!is used. Tt is worth mentioning in this connection that
Newton’s method is “scale-free,” in the sense that it cannot be affected by

a change in coordinate system as is true for steepest descent (see Exercise
1.4.1).
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When the Armijo rule is used with initial stepsize s = 1, then no
reduction of the stepsize will be necessary near a nonsingular minimum
(positive definite Hessian), as shown in Prop. 1.3.2. Thus, near convergence
the method takes the form

xhtl =gk — (sz(x’f))_1Vf(xk), (1.79)

which will be referred to as the pure form of Newton’s method. On the
other hand, far from such a local minimum, the Hessian matrix may be
singular or the Newton direction of Eq. (1.78) may not be a direction of
descent because the Hessian V2f(x*) is not positive definite. Thus the
analysis of Newton’s method has two principal aspects:

(a) Local convergence, dealing with the behavior of the pure form of the
method near a nonsingular local minimum.

(b) Global convergence, addressing the modifications that are necessary
to ensure that the method is valid and is likely to converge to a local
minimum when started far from all local minima.

We consider these issues in this section and we also discuss some
variations of Newton’s method, which are aimed at reducing the overhead
for computing the Newton direction.

Local Convergence

It can be shown that the pure form of Newton’s method converges super-
linearly when started close enough to a nonsingular local minimum. This is
suggested by the local convergence result for gradient methods (the capture
theorem of Prop. 1.2.4) together with the superlinear convergence result for
Newton-like methods (Prop. 1.3.2). Results of this type hold for a more
general form of Newton’s method, which can be used to solve the system
of n equations with n unknowns

g(x) =0, (1.80)

where g : R — R is a continuously differentiable function. This method
has the form
htl = gk — (Vg(zk)) " g(ah), (1.81)

and for the special case where g(x) is equal to the gradient V f(x), it yields
the pure form of Eq. (1.79). Note here that a continuously differentiable
function g : ™ — R need not be equal to the gradient of some function.
In particular, g(z) = Vf(z) for some f : R* — R, if and only if the
n x n matrix Vg(z) is symmetric for all z (see [OrR70], p. 95). Thus,
the equation version of Newton’s method [cf. Eq. (1.81)] is more broadly
applicable than the optimization version [cf. Eq. (1.79)].
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Here is a simple argument that shows the fast convergence of Newton’s
method (1.81). Suppose that the method generates a sequence {z¥} that

converges to a vector z* such that g(a*) = 0 and Vg(z*) is invertible. Let
us use a first order expansion around z* to write

0= g(z*) = g(ak) + Vg(a*) (= — 2*) + o(||z* — 2])).
By multiplying this relation with (Vg(a:k)’)fl we have
Tk —z* — (Vg(:tk)’)_lg(:tk) = o(||a* — z*|),
so for the pure Newton iteration, zk+1 = zk — (Vg(x’f)’)flg(xk), we obtain
ahtl — g = o(||lak — a*|).

Thus, for ok # x*,

k+1 _ % 0 .’L'k —*
i el el —atl)
koo |k — x| koo |lak — x|
implying superlinear convergence. This argument can also be used to show
convergence to x* if the initial vector z9 is sufficiently close to z*. The

following proposition proves a more detailed result.

Proposition 1.4.1: Consider a function g : ®” — R7, and a vector
x* such that g(z*) = 0. For § > 0, let S5 denote the sphere {x |
|z — *|] < §}. Assume that g is continuously differentiable within
some sphere S5 and that Vg(x*) is invertible.

(a) There exists § > 0 such that if 20 € S;, the sequence {z*}
generated by the iteration

pktl — gk _ (Vg(xk)/)_lg(xk)

is defined, belongs to Ss, and converges to z*. Furthermore,
{l|lz* — x*||} converges superlinearly.

(b) Assume that for some L > 0, M > 0, § € (0, 6], and for all x and
y in Ss,

|Va(z) = Vy(y)|| < Lljz - yl, H (vg(x)')”H <M. (1.82)
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Then, if 20 € S5, we have
LM
|kt — a*|| < Tka—x*H?, Vk=0,1,..,

so if LM§/2 < 1 and a0 € S5, {||lz* — 2*||} converges superlinearly
with order at least two.

Proof: (a) Choose § > 0 so that (Vg(:b)’)_l exists for z € Ss, and let

M = sup
€S

(Vg(x)’)le }
Assuming that 9 € Ss, and using the relation

g(zk) = /01 Vg(:z:* + t(zk — x*))/dt(xk — x*),
we estimate ||zF+1 — z*|| as
et = o) = ot — o = (Vgat)) " g(ab)|
= [ (Tg@ry) T (Tglary @k —2%) - g(ab) |

1
= (Vg(a:k)’)f1 (Vg(:z:k)’ —/0 Vg(z* + t(zk — x*))/dt> (xk — a*)

= (Vg(a:k)’)f1 (/01 {Vg(:z:k)’ — Vg (z* + t(xk — x*))/} dt> (xF — )

By continuity of Vg, we can take ¢ sufficiently small to ensure that {||z* —
2*||} is monotonically decreasing and that the term under the integral sign
is arbitrarily small for all k. The convergence of z¥ to z* and the superlinear
convergence of ||zF — z*|| follow.

(b) If the condition (1.82) holds, the preceding relation yields

1
<M (/0 ||Vg(xk) - Vg(a:* + t(zk — x*))H dt> lxF — ||

1

LM
|kt — 2| < M (/ Lt|jz* — ;v*||dt> lak — a=|| = Tka — x*||2.
0

Q.E.D.

A related result is the following. Its proof requires a simple modifi-
cation of the proof of Prop. 1.4.1(a), and is left as Exercise 1.4.2 for the
reader.



Sec. 1.4 Newton’s Method and Variations 99

Proposition 1.4.2: Under the assumptions of Prop. 1.4.1(a), given
any > 0, there exists a 6 > 0 such that if ||z% — z*|| < 0, then

lak+t — x| < vllak —ax)l,  |lg(zm )] < rflg(zk)]].

Thus, the pure form of Newton’s method converges extremely fast
once it gets “near” a solution x* where Vg(z*) is invertible, typically tak-
ing a handful of iterations to achieve very high solution accuracy; see Fig.
1.4.1. Unfortunately, it is usually difficult to predict whether a given start-
ing point is sufficiently near to a solution for the fast convergence rate of
Newton’s method to take hold right away. Thus, in practice one can only
expect that eventually the fast convergence rate of Newton’s method will
take hold. Figure 1.4.2 illustrates how the method can fail to converge
when started far from a solution.

Global Convergence

Newton’s method in its pure form for unconstrained minimization of f has
several serious drawbacks.

(a) The inverse (V2 f(z*)) - may fail to exist, in which case the method
breaks down. This will happen, for example, in regions where f is
linear (V2f = 0).

(b) The pure form is not a descent method; i.e., possibly f(zk+1) > f(ak).

(¢) The pure form tends to be attracted by local maxima just as much
as it is attracted by local minima. It just tries to solve the system of
equations Vf(z) = 0.

For these reasons, it is necessary to modify the pure form of Newton’s
method to turn it into a reliable minimization algorithm. There are several
schemes that accomplish this by converting the pure form into a gradient
method with a gradient related direction sequence. Simultaneously the
modifications are such that, near a nonsingular local minimum, the algo-
rithm assumes the pure form of Newton’s method (1.79) and achieves the
attendant fast convergence rate.

A simple possibility is to replace the Newton direction by the steepest
descent direction (possibly after diagonal scaling), whenever the Newton
direction is either not defined or is not a descent direction.f With proper

T Interestingly, this motivated the development of steepest descent by M.
Augustin Cauchy. In his original paper [Caud7], Cauchy states as motivation for
the steepest descent method its capability to obtain a close approximation to the
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Y

Figure 1.4.1. Fast convergence of Newton’s method for solving the equation
e’ —1=0.

g9(z)

Y

8
w
--------18
g,
S
g
(=}

Figure 1.4.2. Divergence of Newton’s method for solving an equation g(z) = 0
of a single variable z, when the starting point is far from the solution. This
phenomenon typically occurs when HVg(:c)H tends to decrease as ||z|| — co.

safeguards, such a method has appropriate convergence and asymptotic

solution, in which case “

... one can obtain new approximations very rapidly with
the aid of the linear or Newton’s method ...” (Note the attribution to Newton

by Cauchy.)
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rate of convergence properties (see Exercise 1.4.3, and for a related method,
see Exercise 1.4.4). However, its performance at the early iterations may be
quite slow, whether the Newton direction or the steepest descent direction
is used in these iterations.

Generally, no modified version of Newton’s method can be guaranteed
to converge fast in the early iterations, but there are schemes that can use
second derivative information effectively, even when the Hessian is not pos-
itive definite. These schemes are based on making diagonal modifications
to the Hessian; that is, they obtain the direction d* by solving a system of
the form

(V2f(2¥) + )t = =9 f ("),

whenever the Newton direction does not exist or is not a descent direction.
Here A* is a diagonal matrix such that

V2f(xk) + Ak : positive definite.
We outline some possibilities in the next two subsections.
1.4.1 Modified Cholesky Factorization

It can be shown that every positive definite matrix @) has a unique factor-
ization of the form

Q=LL,

where L is a lower triangular matrix; this is known as the Cholesky factor-
ization of @ (see Appendix D). Systems of equations of the form Qz = b
can be solved by first solving for y the triangular system Ly = b, and then
by solving for x the triangular system L’z = y. These triangular systems
can be solved easily [in O(n2) operations, as opposed to general systems,
which require O(n3) operations; see Appendix D]. Since calculation of the
Newton direction involves solution of the system

V2 f(ak)dk = =V f(zF),

it is natural to compute d¥ by attempting to form the Cholesky factor-
ization of V2 f(x*). During this process, one can detect whether V2 f(z*)
is either nonpositive definite or nearly singular, in which case some of the
diagonal elements of V2f(xzF) are suitably increased to ensure that the
resulting matrix is positive definite. This is done sequentially during the
factorization process, so in the end we obtain

LELK = V2 f(xk) + Ak,

where L* is lower triangular and nonsingular, and A is diagonal.



102 Unconstrained Optimization: Basic Methods Chap. 1

As an illustration, consider the 2-dimensional case (for the general
case, see Appendix D). Let

h h
vere) = ()

and let the desired factorization be of the form

a 0 a
LL = . .
(v ﬁ) (0 B)
We choose «, 3, and =, so that V2 f(a*) = LL’ if V2f(xF) is positive defi-

nite, and we appropriately modify hi1 and hos otherwise. This determines
the first diagonal element « according to the relation

a_{\/hu ifh11>0
vV hi1 + 01 otherwise

where 07 is such that h11+ 01 > 0. Given «, we can calculate v by equating
the corresponding elements of V2 f(x*) and LL’. We obtain ya = hig or
hia
v =—
o
We can now calculate the second diagonal element 8 by equating the corre-
sponding elements of V2f(x*) and LI/, after appropriately modifying hao

if necessary,
B:{\/hzz—"y2 ifh22>’}/2,
v/ hoo — 2+ 02 otherwise,

where 02 is such that haa — 42 4+ d2 > 0. The method for choosing the
increments 91 and 2 is largely heuristic. One possibility is discussed in
Appendix D, which also describes more sophisticated versions of the above
procedure where a positive increment is added to the diagonal elements of
the Hessian even when the corresponding diagonal elements of the factor-
ization are positive but very close to zero.

Given the L*L*' factorization, the direction d* is obtained by solving
the system

LFLK' dk = —V f(xF).
The next iterate is
ok+1l = gk 4 okdk,
where o is chosen according to the Armijo rule or one of the other stepsize
rules we have discussed.

To guarantee convergence, the increments added to the diagonal el-
ements of the Hessian can be chosen so that {d¥} is gradient related (cf.
Prop. 1.2.1). Also, these increments can be chosen to be zero near a non-
singular local minimum. In particular, with proper safeguards, near such a
point, the method becomes identical to the pure form of Newton’s method

and achieves the corresponding superlinear convergence rate (see Appendix
D).
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1.4.2 Trust Region Methods

As explained in Section 1.2, the pure Newton step is obtained by minimizing
over d the second order approximation of f around z*, given by

fh(d) = f(xk) + Vf(xk)d+ Ld'V2 f(zF)d.

We know that f*(d) is a good approximation of f(z* + d) when d is in a
small neighborhood of zero, but the difficulty is that with unconstrained
minimization of f*(d) one may obtain a step that lies outside this neigh-
borhood. It therefore makes sense to consider a restricted Newton step d*,
which is obtained by minimizing f*(d) over a suitably small neighborhood
of zero, called the trust region:

dF € arg min fk(d), (1.83)

lld]|<~*

where v* is some positive scalar.t An approximate solution of the constrai-
ned minimization problem of Eq. (1.83) can be obtained quickly using the
fact that it has only one constraint. We refer to the specialized literature,
including [MoS83] and the book [CGTO00], for an account of approximate
solution methods.

An important observation here is that even if V2 f(2*) is not positive
definite or, more generally, even if the pure Newton direction is not a
descent direction, the restricted Newton step d* improves the cost, provided
Vf(x*) # 0 and ~¥ is sufficiently small. The reason is that, in view of Eq.
(1.83), fk(dF) is smaller than f(a*) [which is equal to f¥(0)], and f(a*+dF)
is very close to its second order expansion f*(dk) when ||d¥| is small.

More specifically, we have for all d with ||d|| < ~v*

f(ak 4 d) = fF(d) + o((v*)?),
so that

Flat o d¥) = H(d) + o((79)?)

= f(ak) + Hgﬁgk{w(;ﬂk)/d +1d'V2 f(ak)d} + o((7%)2).

Therefore, denoting
oo V@
Ipcolll

1 It can be shown that the restricted Newton step d* also solves a system of
the form (VQf(xk) + 5kI)d = —Vf(2*), where I is the identity matrix and §*
is a nonnegative scalar (a Lagrange multiplier in the terminology of Chapter 4),
so the preceding method of determining d* fits the general framework of using a
correction of the Hessian matrix by a positive semidefinite matrix.
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we have
Flak 4+ %) F) + VI @Ry ds + 3 T2 ()i +o((14)?)

—fak) IV + — 09y ) v )
2|V f ()|
+ o((v%)?).

For ~* sufficiently small, the negative term —~*| HVf(:C’“)H dominates the
last two terms on the right-hand side above, showing that

f(@h +db) < f(ak).

It can be seen in fact from the preceding relations that a cost improvement
is possible even when V f(z*) = 0, provided ~* is sufficiently small and f
has a direction of negative curvature at z*, i.e., V2f(z*) is not positive
semidefinite. Thus the preceding procedure will fail to improve the cost
only if Vf(z*) = 0 and V2f(z¥) is positive semidefinite, i.e., z¥ satisfies
the first and the second order necessary conditions. In particular, one can
make progress even if z* is a stationary point that is not a local minimum.
We are thus motivated to consider a method of the form

okl = gk 4 gk,

where d* is the restricted Newton step corresponding to a suitably chosen
scalar v* as per Eq. (1.83). Here, for a given a*, v¥ should be small enough
so that there is cost improvement; one possibility is to start from an initial
trial 4% and successively reduce v* by a certain factor as many times as
necessary until a cost reduction occurs [f(zF+1) < f(zF)]. The choice of
the initial trial value for v* is crucial here; if it is chosen too large, a large
number of reductions may be necessary before a cost improvement occurs;
if it is chosen too small the convergence rate may be poor. In particular,
to maintain the superlinear convergence rate of Newton’s method, as z*
approaches a nonsingular local minimum, one should select the initial trial
value of v* sufficiently large so that the restricted Newton step and the
pure Newton step coincide.

A reasonable way to adjust the initial trial value for v* is to increase
this value when the method appears to be progressing well and to decrease
this value otherwise. One can measure progress by using the ratio of actual
over predicted cost improvement [based on the approximation f*(d)]

O C B (e

F(@) = Fr(d)
In particular, it makes sense to increase the initial trial value for v (y*+1 >
~k) if this ratio is close to or above unity, and decrease v otherwise. The
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following algorithm is a typical example of such a method. Given xz* and
an initial trial value «*, it determines z¥+! and an initial trial value y*+!
by using two thresholds o1, o2 with 0 < 01 < g2 < 1 and two factors £,
B2 with 0 < 81 < 1 < B2 (typical values are o1 = 0.2, o2 = 0.8, 51 = 0.25,
B2 = 2).
Step 1: Find

dk € arg min f*(d), (1.84)

lldl| <~k

If fk(d*) = f(x*) stop (z* satisfies the first and second order necessary
conditions for a local minimum); else go to Step 2.

Step 2: If f(zF + dF) < f(zF) set

gh+1 = gk + gk (1.85)
calculate
T = FR)
and go to Step 3; else set v* := f31]|d¥|| and go to Step 1.
Step 3: Set
ﬁ1||dk|| if 7k < o1,
YhtL = & Bovk if oo < rk and ||dF| = ~F, (1.87)

~k otherwise.

Go to the next iteration.

Assuming that f is twice continuously differentiable, it is possible to
show that the above algorithm is convergent in the sense that if {z¥} is a
bounded sequence, there exists a limit point of {z*} that satisfies the first
and the second order necessary conditions for optimality. Furthermore, if
{z*} converges to a nonsingular local minimum z*, then asymptotically,
the method is identical to the pure form of Newton’s method, thereby
attaining a superlinear convergence rate; see the references given at the
end of the chapter for proofs of these and other related results for trust
region methods.

1.4.3 Variants of Newton’s Method

We will now briefly consider approximate implementations of Newton’s
method. The idea is to calculate the Newton direction approximately, with
the aim of economizing on computational overhead with relatively small
degradation of the convergence rate.
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Newton’s Method with Periodic Reevaluation of the Hessian

A variation of Newton’s method is obtained if the Hessian matrix V2 f
is recomputed every p > 1 iterations rather than at every iteration. In
particular, this method, in unmodified form, is given by

aktl = gk — ok DRV f(zF),
where
Dirti = (V2f(xi?)) !, j=0,1,.,p—1,i=0,1,..

The idea here is to save the computation and the inversion (or factorization)
of the Hessian for the iterations where j # 0. This reduction in overhead
is achieved at the expense of what is usually a small degradation in speed
of convergence.

Truncated Newton Methods

We have so far assumed that the Newton system V2f(zk)dk = —V f(zF)
will be solved exactly for the direction d* by Cholesky factorization or
Gaussian elimination, which require a finite number of arithmetic opera-
tions [O(n3)]. When the dimension n is large, the calculation required for
exact solution may be prohibitive. An alternative is to use an approximate
solution, which may be obtained with an iterative method. This approach
is often useful for solving very large linear systems of equations, arising in
the solution of partial differential equations, where an adequate approxi-
mation to the solution can often be obtained by iterative methods quite
fast, while the computation to find the exact solution can be overwhelming.

Generally, solving for d any system of the form Hkd = —V f(z*),
where H* is a positive definite symmetric n X n matrix, can be done by
solving the quadratic optimization problem

minimize id’Hkd + V f(z*)'d

1.88
subject to d € R, (1.88)

whose cost function gradient is zero at d if and only if Hkd = —V f(x*).
Suppose that an iterative descent method is used for solution and the start-
ing point is d® = 0. Since the quadratic cost is reduced at each iteration
and its value at the starting point is zero, we obtain after each iteration
a vector dF satisfying %d’fIH’“d’C + Vf(zk)dk < 0, from which, using the
positive definiteness of H¥,

Vf(zk)dk < 0.

Thus the approximate solution d¥ of the system H*d = —V f(x*), obtained
after any positive number of iterations, is a descent direction.
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Possible iterative methods for solving the direction finding problem
(1.88) include the conjugate gradient method to be presented in Section 2.1
and the coordinate descent method to be discussed in Section 2.3.1. For the
conjugate gradient method to be practical, the calculation of matrix-vector
products of the form H*d must be convenient, and for this, the presence
of special structure of H¥ may be important. An example of this type
is network optimization problems, to be discussed in Section 3.8. Also,
the idea of implementing Newton’s method by using an iterative method
applies more generally to constrained forms of the method, to be discussed
in Chapter 3.

Conditions on the accuracy of the approximate solution d* that en-
sure linear or superlinear rate of convergence are given in Exercise 1.4.5.
Generally, the superlinear convergence rate property of the method to a
nonsingular local minimum is maintained if the approximate Newton di-
rections dF satisfy

i HV2f(gc’f)d’C + Vf(:v’“)”
koo [V r @)
(cf. Prop. 1.3.2). Thus, for superlinear convergence rate, the norm of the

error in solving the Newton system must become negligible relative to the
gradient norm in the limit.

207

1.4.4 Least Squares and the Gauss-Newton Method

We will now consider a specialized Newton-like method for solving least
squares problems of the form

minimize f(x) = %Hg(JC)H2 =52 ng(:v)H2

(1.89)
subject to x € k",

where g is a continuously differentiable function with component functions
gis---,9m, where g; : % — Rri. Usually r; = 1, but it is sometimes
convenient to consider the more general case.

Least squares problems are common in many practical contexts. An
important case arises when g consists of n scalar-valued functions and we
want to solve the system of n equations with n unknowns g(z) = 0. We can
formulate this as the least squares optimization problem (1.89) [x* solves
the system g(z) = 0 if and only if it minimizes %Hg(:v)’f and the optimal
value is zero]. Here are some other examples:

Example 1.4.1 (Model Construction — Curve Fitting)

Suppose that we want to estimate n parameters of a mathematical model so
that it fits well a physical system, based on a set of input-output data. In
particular, we hypothesize an approximate relation of the form

z = h(z,y),



108 Unconstrained Optimization: Basic Methods Chap. 1

where h is a known function representing the model and

x € R™ is a vector of unknown parameters,
z € R is the model’s output,
y € NP is the model’s input.

Given a set of m input-output data pairs (y1,21), ..., (Ym, 2m) from measure-
ments of the physical system that we try to model, we want to find the vector
of parameters x that matches best the data in the sense that it minimizes the
sum of squared errors

I |l ||

For example, to fit the data pairs by a cubic polynomial approximation, we
would choose

h(z,y) = 23y + 22y® + 21y + 20,
where © = (xo, 1,2, x3) is the vector of unknown coefficients of the cubic

polynomial.

The next two examples are really special cases of the preceding one.

Example 1.4.2 (Dynamic System Identification)

A common model for a single input-single output dynamic system is to relate
the input sequence {yx} to the output sequence {z;} by a linear equation of

the form
n n
D sz =Y Bk
=0 §j=0

Given a record of inputs and outputs y1, 21, - - . , Ym, 2m from the true system,
we would like to find a set of parameters {a;, 8; | j = 0,1,...,n} that
matches this record best in the sense that it minimizes

m n 2

Z Z QjZp—j — Z BiYk—j
j=0

k=n \j=0

This is a least-squares problem.

Example 1.4.3 (Neural Networks)

A least squares modeling approach that has received a lot of attention is
provided by neural networks. Here the model is specified by a multistage
system, also called a multilayer perceptron. The kth stage consists of ng
activation units, each being a single input-single output mapping of a given
form ¢ : & — RN (examples will be given shortly). The output of the jth
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activation unit of the (k + 1)st stage is denoted by :Ci+1 and the input is a

linear function of the output vector zx = (z}, . . . 723:’“) of the kth stage. Thus
el =0 | u) + inuzj L =1, e, (1.90)
s=1

where the coefficients uzj (also called weights) are to be determined. In

variants of this approach there may be some constraints on the weights in
order to induce desired connectivity structures between the stages, which are
designed to produce a particular effect and/or exploit some known structure
of the input. However, for simplicity we will not consider this possibility; the
algorithmic ideas to be described generalize.

Suppose that the multilayer perceptron has N stages, and let u denote
the vector of the weights of all the stages:

u={u’ |k=0,...,N—1,s=0,...,n%, j=1,...,nk41}.

Then, for a given vector u of weights, an input vector xo to the first stage pro-
duces a unique output vector zy from the Nth stage via Eq. (1.90). Thus,
we may view the multilayer perceptron as a mapping h that is parameter-
ized by u and transforms the input vector xo into an output vector of the
form zny = h(u,z0). Suppose that we have m sample input-output pairs
(y1,21),- .-, (Ym, 2m) from a physical system that we are trying to model.
Then, by selecting u appropriately, we can try to match the mapping of the
multilayer perceptron with the mapping of the physical system. A common
way to do this is to minimize over u the sum of squared errors

DI

In neural network terminology, finding the optimal weights u is referred to

as training the network. Incremental gradient methods, to be discussed in

Section 2.4.1, are often used for this purpose (see e.g., [BeT96], [Hay11]).
Examples of activation units are functions such as

| 2

zi — h(u, yi)

o(&) = 1—&-%7 (sigmoidal function),
e
of _ ¢
o(&) = ﬁ’ (hyperbolic tangent function),
e e

whose gradients are zero as the argument & approaches —oo and co. For these
functions, it is possible to show that with a sufficient number of activation
units and a number of stages N > 2, a multilayer perceptron can approximate
arbitrarily closely very complex input-output maps; see [Cyb89]. In practice,
a number N that is considerably larger than 2 is often considered, in com-
bination with functions ¢ specially tailored to particular types of problems,
giving rise to so called deep neural networks, which have attained considerable
success in a variety of applications; see e.g., [HDY12], [SHM16].

Neural network training problems can be quite challenging. Their cost
function is typically nonconvex and involves multiple local minima. For large
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Figure 1.4.3. Three-dimensional plot of a least squares cost function

3 E?:;l (Zz — d(ury; + uo))2,

for a neural network training problem where there are only two weights ug and
ui, five data pairs, and ¢ is the hyperbolic tangent function. The data of the
problem are given in Exercise 2.4.3. The cost function tends to a constant as u is
changed along rays of the form @, where r > 0 and 4 is a fixed vector.

values of the weights u;'cj , the cost becomes “flat.” In fact, the cost function
tends to a constant as w is changed along rays of the form ru, where r > 0
and u is a fixed vector; see Fig. 1.4.3. For u near the origin, the cost function
can be quite complicated, alternately involving flat and steep regions.

The next example deals with an important context where neural net-
works are often used.

Example 1.4.4 (Classification - Hypothesis Testing)

Let us consider a problem of classifying objects based on the values of their
characteristics. Here we use the term “object” generically. In some contexts,
the classification may relate to persons or situations. In other cases, an ob-
ject may represent a hypothesis, and the problem is to decide which of the
hypotheses is true, based on some data.

We assume that each object is presented to us with a vector y, and we
wish to classify it in one of s categories 1,...,s. For example, the vector y
may represent data, such as the results of a collection of tests on a medical
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patient, and we may wish to classify the patient as being healthy or as having
one of several types of illnesses.

A classical classification approach is to assume that for each category
j=1,...,s, we know the conditional probability p(j | y) that an object is of
category j given data y. Then, given data y, we decide on the category j*(y)
having maximum posterior probability, i.e.,

iy € argjgaxsp(jly)- (1.91)

This is called the Maximum a Posteriori rule (or MAP rule for short; see for
example the book [BeT08] for a discussion).

Suppose now that the probabilities p(j|y), viewed as functions of y,
are unknown, but instead we have a sample consisting of data for m object-
category pairs. Then we may try to estimate p(j|y) based on the following
simple fact: out of all functions f;(y) of y, p(j|y) is the one that minimizes
the expected value of (z; — f;(y))?, where

- {1 if y is of category j,
’ 0 otherwise.

To this end, we adopt a parametric approach. For each category j =
1,...,s, we estimate the probability p(j|y) with a function h;(z;,y) that is
parameterized by a vector x;. The function h; may be provided for example
by a neural network (cf. Example 1.4.3). Then, denoting y; the data vector
of the ith object, we obtain x; by minimizing the least squares function

mo( 2
% i=1 (Zj - hj(xﬁyi)) s
where

i {1 if y; is of category j,
i =

gl 0 otherwise.
This minimization approximates the minimization of the expected value of
(Zj — f; (y))Z. Once the optimal parameter vectors zj, j = 1,...,s, have
been obtained, we may use them to classify a new object with data vector y
according to the rule

Estimated Object Category € arg max h;(z},y),
Jj=1,...;s

which approximates the MAP rule (1.91).

For the simpler case where there are just two categories, say A and B, a
similar formulation is to hypothesize a relation of the following form between
data vector y and category of an object:

A if h(z,y) =1,

Object Category = {B if h(z,y) = —1

where h is a given function and z is an unknown vector of parameters. Given
a set of m data pairs (z1,y1),- .., (2m, ym) of representative objects of known
category, where y; is the data vector of the ith object, and

= { 1 if y is of category A,
‘7 L -1 ifyis of category B,
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we obtain x by minimizing the least squares function

I (2= b))

The optimal parameter vector z* is used to classify a new object with data
vector y according to the rule

A if h(z*,y) >0,

Estimated Object Category = {B if h(z*,y) < 0

There are several variations on the above theme, for which we refer to the spe-
cialized literature. Furthermore, there are several alternative optimization-
based methods for classification (see Example 2.4.1, and the book [Berl5al,
which also gives many references to the extensive literature on this subject).

The Gauss-Newton Method

We now consider the Gauss-Newton method, which is a specialized method
for minimizing the least squares cost (1/2)||g(:1:)||2 Given a point z*, the
pure form of the Gauss-Newton iteration is based on linearizing g to obtain

9(@,2%) = g(a¥) + Vg (k) (z — z¥)
and then minimizing the norm of the linearized function g:
. 11~ 2
xhtl e arg min |Gz, z%)||

= arg min sUlg@R)I? + 2(z — 2*) Vg (ak)g(z*)

+ (w — 2k Vg(ak)Vg(ah) (v — 2b) }.

Assuming that the n x n matrix Vg(z#)Vg(zF)’ is invertible, the above
quadratic minimization yields

TR = ok (Vg(aF) V() ™ Vg(ak)g(ah). (1.92)

Note that if g is already a linear function, we have Hg(x)H2 = Hg(x, x’f)‘ 2,
and the method converges in a single iteration. Note also that the direction

—(Vg(z*)Vg(ak)) ™ Vg(ak)g(z*)

used in the above iteration is a descent direction since Vg(zF)g(zF) is
the gradient at z* of the least squares cost function (1/2)”9(3:)“2 and
(Vg(xk)Vg(xk)’)_l is a positive definite matrix.



Sec. 1.4 Newton’s Method and Variations 113

To deal with the case where the matrix Vg(x*)Vg(z*)’ is singular
(as well as enhance convergence when this matrix is nearly singular), the
method is often implemented in the modified form

pEH = gk _ ok (Vg(xk)vg(xk)/ + Ak)*1Vg(xk)g(xk)7 (1.93)

where of is a stepsize chosen by one of the stepsize rules that we have
discussed, and A* is a diagonal matrix such that

Vg(zk)Vg(zk) + Ak : positive definite.
For example, A*¥ may be chosen in accordance with the Cholesky factor-
ization scheme outlined in Section 1.4.1. An early proposal, known as the
Levenberg-Marquardt method, is to choose AF to be a positive multiple of
the identity matrix. With these choices of A¥, it can be seen that the
directions used by the method are gradient related, and the convergence
results of Section 1.2.2 apply.

Relation to Newton’s Method

The Gauss-Newton method bears a close relation to Newton’s method. In

particular, assuming each g; is a scalar function, the Hessian of the cost
. 2,

function (1/2)]|g(z)||” is

Vg(ak)Vg(ah) + 3 V2gi(ah)gi(ah), (1.94)
i=1
so it is seen that the Gauss-Newton iterations (1.92) and (1.93) are ap-
proximate versions of their Newton counterparts, where the second order
term

Z V2gi(x*)gi(a*) (1.95)

is neglected. Thus, in the Gauss-Newton method, we save the computation
of this term at the expense of some deterioration in the convergence rate.
If, however, the neglected term (1.95) is relatively small near a solution,
the convergence rate of the Gauss-Newton method is satisfactory. This is
often true in many applications such as for example when ¢ is nearly linear,
and also when the components g;(x) are small near the solution.

A case in point is when m = n and the problem is to solve the system
g(x) = 0. Then the neglected term is zero at a solution, and assuming
Vg(z*) is invertible, we have

-1 -1
(Vg(ah)Vg(ah)y)  Vg(ah)g(ah) = (Vg(ahy)  g(ah).
Thus the pure form of the Gauss-Newton method (1.92) takes the form
okl = gk — (Vg(aky) g(at),
and is identical to Newton’s method for solving the system g(z) = 0 [rather

than Newton’s method for minimizing || g(:z:)||2] The convergence rate is
typically superlinear in this case (cf. Prop. 1.4.1).
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EXERCISES

1.4.1 (Scale-Free Character of Newton’s Method)

The purpose of this exercise is to show that Newton’s method is unaffected by
linear scaling of the variables. Consider a linear invertible transformation of
variables x = Sy. Write the pure form of Newton’s method in the space of the
variables y and show that it generates the sequence y* = S™'z¥, where {z*} is
the sequence generated by Newton’s method in the space of the variables x.

1.4.2

Show Prop. 1.4.2. Hint: For the second relation, let

M(x) :/ Vg(m*—i—t(x—:c*))/dt,

so that g(z) = M(z)(x — x*). Argue that for some § > 0 the eigenvalues of
M (z)' M(z) lie between some positive scalars v and T for all z with ||z —x*|| < J.
Show that

Yz -z < Hg(x)H2 < Dz —z*||?, V x with ||z — 2| < 4.

1.4.3 (Combination of Newton and Steepest Descent Methods)

Consider the iteration "7 = z* 4+ o*d* where o is chosen by the Armijo rule

with initial stepsize s = 1, ¢ € (0,1/2), and d” is equal to
d = —(V2f(=") " V@)
if V2f (:ck ) is nonsingular and the following two inequalities hold:
a||VEEh|™ < -ViE*)dy,

ldx 172 < e2||V£(2")];

otherwise
d* = —DVf(a"),

where D is a fixed positive definite symmetric matrix. The scalars ci1, c2, p1,
and pa satisfy ¢ > 0, c2 > 0, p1 > 2, pa > 1. Show that the sequence {d*}
is gradient related. Furthermore, every limit point of {z*} is stationary, and if
{:ck} converges to a nonsingular local minimum z*, the rate of convergence of
{||x’C — :c*H} is superlinear.
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1.4.4 (Armijo Rule Along a Curved Path)

This exercise provides a globally convergent variant of Newton’s method, which
combines the Newton and steepest descent directions along a curved path. Let f :
R™ — R be twice continuously differentiable. At a point z*, let d§ = —DV f(z*)
be a scaled steepest descent direction, where D is a fixed positive definite sym-
metric matrix. Let also df be the Newton direction —(sz(xk))qu(:ck) if

V2 f(2") is nonsingular, and be equal to d% otherwise. Consider the method
a* = 2b 4ok ((1 —af)dk + akd%%

k
where o = 8™ and m” is the first nonnegative integer m such that the following
three inequalities hold:

F@)—f(2"+8™ (1=B™)ds+BdN)) > =BV f(a") (1-B™)ds+B™dn ),

amin{Vf (") DVf(z"), |Vf(")|*} < =VF") (1~ 57)ds + " dw),

(1= B™)ds + 8" dn|| < camax{[[DV f(")], |V f(")'?},

where 8 and o are scalars satisfying 0 < 8 < 1 and 0 < ¢ < 1/2, and &1
and c2 are scalars satisfying ¢; < 1 and c2 > 1. Show that the method is well
defined in the sense that the stepsize a* will be obtained after a finite number of
trials. Furthermore, every limit point of {2*} is stationary and if {z*} converges
to a nonsingular local minimum z*, the rate of convergence of {H:ck — 1:*||} is
superlinear. Hint: For a given z*, each of the three inequalities is satisfied for m
sufficiently large, so o is obtained after a finite number of trials. The directions
d* = (1 — a*)d% + oFd¥ are gradient related by construction (cf. the last two
inequalities). Use the line of proof of Prop. 1.2.1 to show stationarity of the limit
points of {z*}. Use the line of proof of Prop. 1.3.2 to show that if {z*} converges
to a nonsingular local minimum z*, the convergence is superlinear (including the
fact that a® =1 for all sufficiently large k).

1.4.5

Consider a truncated Newton method with the stepsize chosen by the Armijo
rule with initial stepsize s = 1 and o < 1/2, and assume that {z*} converges to a
nonsingular local minimum z*. Assume that the matrices H* and the directions
d* satisfy

k ik k
lim ||[H* — V()| =0,  lim [H "+ VM|
k— o0 k—o0 va(:ck)H

Show that {H:ck - x*||} converges superlinearly.
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1.4.6

Apply Newton’s method with a constant stepsize to minimization of the function
f(x) = ||z|®. Identify the range of stepsizes for which convergence is obtained,
and show that it includes the unit stepsize. Show that for any stepsize within
this range, the method converges linearly to ™ = 0. Explain this fact in light of
Prop. 1.4.1.

1.4.7

Consider Newton’s method with the given trust region implementation for the
case of a positive definite quadratic cost function. Show that the method termi-
nates in a finite number of iterations.

1.4.8

(a) Consider the pure form of Newton’s method for the case of the cost function
f(x) = ||z||”, where 8 > 1. For what starting points and values of 3 does
the method converge to the optimal solution? What happens when g < 1?7

(b) Repeat part (a) for the case where Newton’s method with the Armijo rule
is used.

1.4.9 (Necessary and Sufficient Conditions for Convergence of
Iterative Methods for Linear Equations)

This exercise deals with the convergence of iterative algorithms for the system of
linear equations Az = b, where A is a given (possibly singular) n X n matrix and
b is a vector in R"™. We assume that b lies in the range of A, so that the system
has at least one solution. For a given n X n matrix D, we say that the iteration

" = 2b —aD(Az" —b) (1.96)
is convergent if there exists & > such that for all @ € (0,a] and z° € R" the

sequence {z*} produced by the iteration converges to some solution of Az = b.
Show that the iteration is convergent if and only if the following conditions hold.

(i) Each eigenvalue of DA either has a positive real part or is equal to 0.

(ii) The dimension of the nullspace of DA is equal to the multiplicity of the 0
eigenvalue of DA.

(iii) The nullspace of A is equal to the nullspace of DA.

Note: The case where A is invertible is straightforward [then conditions (i)-
(iii) are reduced to the condition that each eigenvalue of DA has positive real
part]. The case where A is singular is challenging. To show that condition (ii)
is necessary for a convergent iteration, use the fact that if it does not hold then
there exists a vector v such that DAv # 0 and (DA)*v = 0. See [WaB13b] or
[Ber12], Section 7.3.8, for a complete proof and related analysis.
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1.4.10 (Iterative Solution of Nonlinear Equations)

This exercise deals with the iterative solution of the system of equations g(x) =
0, where g : R" — R" is a continuously differentiable function. Consider the
sequence {z"} generated by the iteration

2 = 2% — DFg(a"), k=0,1,...,

where {D*} is a sequence of n x n matrices.

(a) (Linear Convergence) Suppose that {z"} converges to some x*. Denote

L = lim sup HI - Dng(x*),H7

k—oo

where ||| is the matrix norm induced by the standard Euclidean norm, and
assume that L < 1. Show that g(z*) = 0. Moreover for every L € (L, 1),
there is an integer m such that

2"t — 2" < Llja* =z, Vk>m.

(b) (Local Convergence) Let ™ be such that g(z*) = 0 and Vg(z*) is nonsin-
gular. Let also D(z) be a matrix function such that

lim sup ||I - D(:C)Vg(:c*)'H <1

z—x*

Show that there is a neighborhood N of z* such that if z° € N, the
sequence {z"} generated by the algorithm with D* = D(2*) remains in N
and converges to z*.

Note: This is a challenging exercise; see [Hes80], Section 1.4, for a complete
proof and related analysis.

1.5 NOTES AND SOURCES

Section 1.2: The steepest descent method dates to Cauchy [Caud7], who
attributes to Newton the unity stepsize version of what we call Newton’s
method. The modern theory of gradient methods evolved in the 60s, when
several practical convergent stepsize rules were proposed starting with the
work of Goldstein [Gol62], [Gol64], Armijo [Arm66], and others. Shortly
afterwards, general methods of convergence analysis were formulated start-
ing with the work of Zangwill [Zan69], which was followed by the works of
Ortega and Rheinboldt [OrR70], Daniel [Dan71], and Polak [Pol71]. The
Armijo stepsize rule is the most popular of a broad variety of rules that
enforce descent and provide convergence guarantees without requiring a
full line minimization.



118 Unconstrained Optimization: Basic Methods Chap. 1

The capture theorem (Prop. 1.2.3) was formulated and proved by the
author for the case of a nonsingular local minimum in [Ber82a], Prop. 1.12.
It was extended to the form given here by Dunn [Dun93c].

Gradient methods with errors are discussed in Poljak [Pol87], and
Bertsekas and Tsitsiklis [BeT96], [BeT00]. Parallel and asynchronous sto-
chastic gradient methods converge under very weak conditions; see Tsit-
siklis, Bertsekas, and Athans [TBA&6], Bertsekas and Tsitsiklis [BeT89],
Section 7.8. The convergence rate of these methods is discussed by Duchi,
Chaturapruek, and Re [DCR15].

Section 1.3: For further discussion of various measures of rate of conver-
gence, see Ortega and Rheinboldt [OrR70], Bertsekas [Ber82a), and Barzilai
and Dempster [BaD93]. The convergence rate of steepest descent with line
minimization was analyzed by Kantorovich [Kan45]. The case of a con-
stant stepsize was analyzed by Goldstein [Gol64], and Levitin and Poljak
[LeP65]. For analysis of the convergence rate of steepest descent for singu-
lar problems, see Dunn [Dun81], [Dun87], and Poljak [Pol87].

Section 1.4: The modern analysis of Newton’s method is generally at-
tributed to Kantorovich [Kan39], [Kan49], although the method has a long
history, reviewed among others by Deuflhard [Deul2] and Ypma [Ypm95].
For an analysis of the case where the method converges to a singular point,
see Decker and Kelley [DeK80], Decker, Keller, and Kelley [DKK83], and
Hughes and Dunn [HuD84]. An alternative analysis, based on the notion of
self-concordance, which is related to the interior point algorithms described
in Chapter 5, is given by Nesterov and Nemirovskii [NeN94] (for a more
accessible account, see Boyd and Vandenbergue [BoV04]).

The modification to extend the region of convergence of Newton’s
method by modifying the Cholesky factorization was given by Gill and
Murray [GiM74]; see also Gill, Murray, and Wright [GMWS81]. The use of a
trust region has been discussed in the paper by Moré and Sorensen [MoS83],
and in the book by Conn, Gould, and Toint [CGT00]. Extensive accounts of
various aspects of Newton-like methods are given in the books by Goldstein
[Gol67], Hestenes [Hes80], Gill, Murray, and Wright [GMWS81], Dennis and
Schnabel [DeS83], Luenberger Lue84], Nazareth [Naz94], Kelley [Kel99],
Fletcher [Fle00], and Nocedal and Wright [NoWO06]. The truncated Newton
method is discussed in Dembo, Eisenstadt, and Steihaug [DES82|, Nash
[Nas85], and Nash and Sofer [NaS89].

There is a vast literature on least squares problems. They arise in
many practical contexts, including statistical data analysis, where they are
often referred to as regression problems. In addition to the Gauss-Newton
method, they are also often solved with the incremental methods to be
discussed in Section 2.4, particularly when m, the number of terms in the
least squares sum, is very large.
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