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Abstract. We characterize and establish the existence of stationary equilibrium solutions for a
class of finite-state average cost games. We assume that two players choose actions at each stage from
compact constraint sets, enforcing some relatively mild assumptions on the transition probability and
cost functions. We also assume that there is a distinguished state which is recurrent under each pair
of stationary policies and that the corresponding Markov chains have a single recurrent class. In the
second half of the paper, we establish the convergence of several dynamic programming algorithms.
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1. Introduction. In this paper, we consider two player Markov decision pro-
cesses where one player seeks to minimize average cost in controlling a finite state
system and the other player seeks to maximize cost. The players choose actions at
each stage from compact constraint sets, knowing only the state of the system. In
addition to some regularity assumptions on the state transition probabilities and cost
functions, we assume that the Markov chain associated with each pair of station-
ary policies is unichain and that there is a single state which is recurrent under all
pairs of stationary policies. We will show that zero-sum games of this type have
a unique equilibrium average cost which is independent of the initial state and is
characterized by the essentially unique solution of Bellman’s equation. We also show
the convergence of several dynamic programming algorithms, including a new one:
e-policy iteration. Our results generalize earlier results about two-player stochastic
games since our analysis applies to games where the action sets are compact (and not
necessarily simplicial).

To provide a formal mathematical setting, let S = {1,...,n} denote a finite set
of states. Let U(i) and V (i) denote the sets of actions available to the players at state
i. Let

M=<p:Sm | JUG) | pi)eUG), Vies
i€S

and

M:{{/lo,/ll,...} ‘ ,UkEM, Vk}

be the sets of allowable one-stage (statio?ary) policies and nonstationary policies for
the minimizer, respectively. Let N and N be the similarly defined sets of policies for
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the maximizer. The probability of transitioning from i € S to j € S under u € U(i)
and v € V(i) is denoted p;;(u,v). The expected cost to the minimizer of transitioning
from ¢ € S under u € U(i) and v € V(i) is denoted ¢;(u,v). Given y € M and v € N,

pua(u(1),v(1)) - pin(p(l),v(1))
P(p,v) = : : :
pm(p(n),v(n)) -+ pun(p(n),v(n))
and
1 (u(1), (1))
e(,v) = ;
a(ja(n), v(n))

are the corresponding transition probability matrix and expected transition cost vec-
tor, respectively. Throughout this paper we shall use J(i) to denote the i-th compo-
nent of a vector .J € R". This simplifies some of the notation in the sequel. Let 1 € "
be the vector whose components are all ones. Also, given J,J € ", we say J < J
if J(i) < J(i) for every i = 1,...,n. We now define the “dynamic programming”
operators which operate on R™:

THVJZC(I‘L:V)-i_P(H:V)J: M€M7V€N;

T,J = sup [c(p,v) + P(u,v)J], e M;
veEN

TJ = inf sup [e(,v) + Plu,v)J];

HEM yeN
T,J = inf [e(u.v) + P(uv)J],  veN;
neM

TJ = sup inf [e(u,v) + Plu,v)J].
veN HEM

The suprema and infima in the above are taken componentwise. For example,

(TJ)(i) = inf sup {ci(u,v) +ipij(u,v).](j)} .

“eU(i)veV(z‘) i1
We use the notation Tt J to denote the t-fold composition of T},,, applied to J. Similar
definitions hold for TlﬁJ, TtJ, Tt!J, and T'J (whenever they are well-defined).

Given a pair of nonstationary policies 7y € M and mx € N, the average cost to
the cost-minimizing player from state i is defined to be

= . . 1 )
(11) J7TM,7TN (Z) = lltlglol.}f ? thM,mv (2)7
where h! (i) is the expected (t 4 1)-stage cost from i under (7p7, 7y ), defined by

t
e 002 [l 00) + S IPlo, 0) P, ) - P, v Dl )] )
k=1

We make the following assumptions.
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Assumption RS (Recurrent State) The following are true:
1. The Markov chain associated with each pair of stationary policies (u,v) is
unichain.
2. The state n € S is recurrent under every pair of stationary policies.
Assumption R (Regularity) The following are true:
1. For each i € S, the control constraint sets U (i) and V(i) are compact subsets
of metric spaces.
2. The functions p;j(u,v) and c;(u,v) are continuous with respect to (u,v) €
U(i) x V(i). (In light of Proposition 7.32 in [4], this implies that the outer
extrema in the operators T and T are achieved by elements of M and N,
respectively. That is, for every H € R"™, there exists p € M and v € N such
that TH =T,H € R" and TH = T,H € ®".)
3. For every H € R", we have TH = TH.
We now make some remarks on these assumptions. Note that part 4 of Assumption R
is satisfied under conditions for which a minimax theorem can be used to interchange
“inf” and “sup”. In particular, this part, as well as the entire Assumption R, is
satisfied if:
1. the sets U(i) and V(i) are nonempty, convex, and compact subsets of Eu-
clidean spaces,
2. the functions p;;(u,v) are bilinear of the form w'Q;;v, where @Q;; is a real
matrix of dimension commensurate with U (i) and V (i),
3. the functions ¢;(u, v) are
(a) convex and lower semi-continuous as functions of u € U (i) with v fixed
in V (i), and
(b) concave and upper semi-continuous as functions of v € V(i) with u fixed
in U(i).
This follows from the Sion-Kakutani theorem (see [18], p.232 or [13], p. 397). The
fact that the state n is recurrent (from Assumption RS) allows us to relate average
cost games to stochastic shortest path games [12], a relationship we use throughout
this paper. These assumptions together define the class of games that we shall refer
to as recurrent-state average cost games.

Games with average cost objectives have been studied for a long time, starting
with Gillette [7] in 1957. In [10], Liggett and Lippman used the existence of Blackwell
optimal policies in one-player Markov decision problems (with finite action sets) to
establish that sequential games have equilibria in pure stationary policies. In [8], after
proving a result about the continuity of linear programming, Hoffman and Karp estab-
lished the existence of stationary equilibrium policies in irreducible games. They also
established the convergence of an average cost version of policy iteration in irreducible
games. Later on, Federgruen [6] and van der Wal [19] gave successive approximation
(value iteration) algorithms for these and slightly more general average cost stochastic
games. In the more general context of nonzero-sum games, Stern [17] used a dynamic
programming approach to show that stationary equilibrium policies exist in games
where the Markov chain associated with each pair of pure policies is unichain and
there is a special state which is recurrent under all pairs of pure policies. [This is
our Assumption RS. Games of this type are to be distinguished from the smaller
class of irreducible (recurrent) games which Gillette originally studied.] Equilibria in
Stern’s games are characterized (but not uniquely) by solutions to a generalized form
of Bellman’s equation.

All of the results cited above make use of Gillette’s original assumption that the
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players are optimizing with respect to mixed strategies over finite sets of actions.
[In fact, we are unaware of any literature on average cost games (aside from the
dissertation upon which this paper is based) where this assumption is relaxed.] Thus,
one purpose of this paper is to show that Gillette’s assumption is not essential. In
general, it is not necessary to require the constraint sets U (i) and V(i) be simplicial
and the functions ¢;(u,v) and p;j(u,v) to be bilinear. Rather, at least for some
classes of games, it is sufficient to impose less restrictive topological assumptions.
This, unfortunately, complicates the analysis.

In Section 2, we review the main results from [12] and establish a formal relation-
ship between recurrent state average cost games and stochastic shortest path games.
In Section 3, we use this relationship to characterize and prove the existence of equi-
librium solutions for recurrent state average cost games. In Section 4, we discuss
the convergence properties of several dynamic programming algorithms, including a
new one called e-policy iteration. In Section 5, we end the paper with a few general
remarks concerning the relationship between recurrent state average cost games and
stochastic shortest path games.

2. Relation to Stochastic Shortest Path Games. With Assumption RS in
place we can view the recurrent state n as a terminal state which is inevitably reached
in an infinite sequence of stochastic shortest path games. [12]

2.1. Stochastic Shortest Path Games: Review. Stochastic shortest path
games are finite state additive cost games with compact constraint sets, where one of
the states ) is absorbing and zero-cost. (Throughout this paper 2 will be treated as
an extra state, not included in S = {1,...,n}. We did not observe this convention
n [12].) Stochastic shortest path games are such that the minimizer wishes to drive
the system to termination along a minimum expected cost path, and the maximizer
seeks to maximize the cost of reaching termination. Formally, the players seek an
equilibrium for the objective function
(2.1) Tras oo (i) = liminf BL (3,
where mar = {po, p1,...} € M and 7y = {vy,v1,...} € N. A stationary policy
for the minimizer which, for any policy of the maximizer, forces termination with
probability one is called proper. A pair of policies, one for the minimizer and the
other for the maximizer, which does not lead to termination with probability one is
called prolonging. The following assumptions formally define stochastic shortest path
games.

Assumption SSP The following are true:

1. There exists at least one proper policy for the minimizer.

2. If a pair of policies (mwar,wn) s prolonging, then the expected cost to the
minimizer is infinite for at least one initial state. That is, there is a state i
for which lim;_, o thM’ﬁN (i) = 0.

Assumption R (Regularity for SSPs) The following are true:

1. The control constraint sets are compact. That is, for each i € S, U(i) and
V(i) are compact subsets of metric spaces. (This implies that M and N are
compact.)

2. The functions p;;(u,v) are continuous with respect to (u,v) € U(i) x V (i),
and the functions c¢;(u,v) are

(a) lower-semicontinuous with respect to u € U(i) (with v € V(i) fized) and
(b) upper—semicontinuous with respect to v € V(i) (with u € U(i) fized).
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(The Weierstrass theorem implies that the supremum and infimum in the
definitions of the operators T, and T, are always achieved by elements of N
and M , respectively. That is, for every J € R", there exists v € N such that
T,J =T,,J e R". Similarly, for every J € R", there exists p € M such that
T,J =T,,J € R".)
3. For all J € R", the infimum and supremum in the definitions of the operators
T and T are achieved by elements of M and N. That is, for every J € R,
there exists u € M andv € N such that TJ =T,J € R" and TJ =T, J € R".
4. For each J € R", we have TJ =T.J.
Note that Assumption R is slightly less restrictive than Assumption R, and the earlier
condition based on the Sion-Kakutani theorem still applies.
The following results were obtained in [12].
LEMMA 2.1. Assume that all stationary policies for the minimizer are proper.
The operator T is a contraction mapping on R™ with respect to a weighted sup-norm
||, where w is a positive vector in R™ and

(2.2) 1715 = max |J (0)] /w(i).
Moreover, if 1 € M is proper, then T, is a contraction mapping with respect to a
weighted sup-norm. !
PROPOSITION 2.2. The operator T has a unique fized point J* on R™.
ProproSITION 2.3. The unique fized point J* = T'J* is the equilibrium cost of
the stochastic shortest path game. There exist stationary policies u* € M and v* € N
which achieve the equilibrium. Moreover, if J € ", u € M, and v € N are such that
J=TJ=T,J] =T,J, then
1. J=Ju,
2 Jaw > Jyw, Vrm €M,
8 Jyry <Juv, V7N €EN.
PROPOSITION 2.4. For every J € R™, there holds,

(2.3) lim T*J = J*,
t— o0

where J* is the unique equilibrium cost vector.
PROPOSITION 2.5. Given a proper stationary policy u° € M, we have that

J

A
puk = Sup Juk7,, — J*,

veN

where J* is the unique equilibrium cost vector and {u*} is a sequence of policies
(generated by policy iteration) such that T'J,x = Tys1J 0 for all k.

2.2. The Relationship. Our results in [12] help us to establish the existence
of equilibrium solutions for recurrent state average cost games, along with the con-
vergence of some dynamic programming algorithms. It is useful to define for each
recurrent state average cost game, along with an estimate its equilibrium average cost,
the associated stochastic shortest path game (A\-SSPG). This the stochastic shortest
path game with transition probabilities p;;(u,v) and costs ¢;(u,v) obtained by

LWhile not explicit in this statement of the lemma, there is a positive vector w € ™ and a scalar
B € (0,1) such that T, ,,Ty,,T,T,, and T are all contractions with respect to || - [|% with modulus
[. We may assume without loss of generality that the weighting on state n is unity.
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1. setting p;;(u,v) = p;;(u,v) for all 4,j € S with j # n,
. setting Pin(u,v) =0 for all i € S,
3. introducing an artificial terminal state €2 to which the system transitions from
state i with probability p; o(u,v) = pin(u,v) for all i € S, and
4. setting ¢;(u,v) = ¢;(u,v) — A for all i € S.
The definitions and observations of the following paragraphs will be useful in the
sequel.

Let Jx, ., (i) denote the cost of starting from ¢ under the stationary policies u € M
and v € N in the A\-SSPG. Let J) , (i) = max,en Jx 4. (i) denote the worst case cost of
starting from ¢ under p. Let Jy (i) = min,ea maxy,en Ji . (4) be the equilibrium cost
of starting from 4. (Note that these functions are well defined because Assumptions
SSP and R are satisfied in the associated stochastic shortest path game. [12])

Note that the dynamic programming operators for the associated stochastic short-

[\

est path game are contractions with respect to a weighted sup-norm || - || (cf.
Lemma 2.1 in this paper). Throughout the rest of this paper, we use || - || to de-
note such a “contractive” weighted sup-norm, whereas || - ||~ will denote the usual
sup-norm.

It is useful to relate the dynamic programming operators for average cost games
and their associated stochastic shortest path games. Suppose H € R" is such that
H(n)=0. Then, foralli=1,...,n,

n—1
TH)(#) = inf sup |ei(u,v)+ pij(u,v)H(j
(CH0 = ol s |esion) + 3 pitu)HO)

n—1
inf  sup |ei(u,v) + piji(u,v)H(j
u€U(i) yeV (i) (u,0) le (s v)H ()

Thus, T applied to H in the context of an average cost game is equivalent to T" applied
to the equilibrium cost function estimate H in an associated stochastic shortest path
game. As a result, T is a contraction on {H € R" | H(n) = 0}. The same is true of
the other dynamic programming operators.

Let N, ,(i) denote the expected number of stages required to reach n in the
original average cost game under the policies ¢ and v starting from i. Define

Nyin, = min min N, , (i),
weEM,veN i=1,...n ?

Npae = max  max N, ,(i).
pweEMveEN i=1,...,n

(Again, the maximum and minimum exist because Assumptions SSP and R are sat-
isfied in an associated stochastic shortest path problem.) It is clear that Ny, > 1.
LeMMA 2.6. The following are statements are true for recurrent state average
cost games.
1. Forallpe M,v e N, A, and XN ; we have

(2.4) Tnw (i) = Jx (@) + (N = NN, (@), i=1,... 0.

2. For all p € M, the functions Jy ,(i) are continuous and decreasing as func-
tions of A and satisfy alli =1,....,n
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Tnn(8) + NoninN = A) < Tan (i) < Tnu(6) + Nopaw (N = A), if X' > A,
(2.5)
Tx (D) + Nonaz N = X) < Iy u(0) < Jn (i) + Noin (N — A),  if X' < A,

3. The functions J\(i) are continuous and decreasing as functions of X and sat-
isfy for all i =1,...,n

J)\’ (Z) + Nmzn(Al - /\) S J)\(Z) S J)\’ (Z) + Nmaz(A’ - A) ZfAI Z /\7
(2.6)
J)\’ (Z) + Nmaz(/\, - A) S J)\(Z) S J)\’ (Z) + Nmzn(Al - A) ZfAI S A

Proof:. To prove statement 1, note that the second term on the right hand side
of (2.4) is the expected cost differential associated with \'-SSPG relative to A-SSPG.

To prove statement 2, note that the continuity of the functions Jy , (i) follows
from Proposition 7.32 in [4] and the joint continuity of Jy , . (i) with respect to A, p,
and v. To see that the Jy ,(i) are decreasing, let A1 < Ay be given. For some v € N
we have

Finally, to see (2.5), let A’ > X be given; then, for all v € N we have Jy (i) =

In o (8) + (N = ANy (3) > Iar (i) + (A — A)Npin. The right-most expression is
maximized by some v € N. Thus,

J)\“u(i) Z J)\7u717
Z JA’,;,L,D + (/\, - /\)Nmzn
=Jyvu+ N = A Npin.

The remaining inequalities of (2.5) follow similarly.

To prove statement 3, note that the continuity of .Jy (i) follows from Proposition
7.32 in [4] and the joint continuity of Jy , (i) with respect to A and p. To see that the
Jy (i) are decreasing, let A\; < Ao be given; then, for some i € M we have

Finally, we obtain (2.6) from (2.5) and similar arguments. Q.E.D.

It can be shown that the functions Jy , (i) are convex with respect to A. However,
the functions J) (i) are generally neither convex nor concave; they are only strictly
decreasing as stated above.

3. Existence and Characterization of Equilibrium Solutions. We now
establish the existence of stationary equilibrium solutions in recurrent state average
cost games. We characterize the equilibrium value function as the effectively unique
solution to a form of Bellman’s equation. The results of this section can be viewed
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as a generalization of Stern’s results in [17] (cf. Chapter 2, restricted to the zero-sum

case).

PRrROPOSITION 3.1. The following statements are true for recurrent state average
cost games.
1. There is a unique equilibrium average cost from each state. The equilibrium

average cost is the same for each state and is denoted \*. There is a function
H* € R™ which, along with \*, satisfies Bellman’s equation

(3.1) A1+ H* = TH*.

Furthermore, if u € M achieves the minimum in TH* andv € N achieves the
mazimum in TH*, then (u,v) forms an equilibrium solution for the average
cost game. Out of all solutions (A, H) to (3.1), there is a unique solution for
which H(n) = 0.

If a scalar A\ and a function H € R" satisfy (3.1), then X is exactly the
equilibrium average cost for each initial state.

Given a stationary policy p € M, the corresponding worst-case average cost
Ay, along with a unique function H, € R™ such that H,(n) =0, satisfy

A1+ H, =T,H,.

Given a stationary policy v € N, the corresponding worst-case average cost
Av, along with a unique function H, € R™ such that H,(n) = 0, satisfy

A1+ H,=T,H,.

Given stationary policies y € M and v € N, the corresponding average cost
Auv, along with a unique function Hy,, € R" such that H,,(n) = 0, satisfy

Awl+Hy =T,,H,,.

Proof:. We first prove part 3. Let C), ,(n) denote the expected cost starting from
n up to the first return to n under the policies u € M and v € N in the average
cost game. Let N, ,(n) denote the expected number of stages to return to n starting
from n, as defined earlier. Considering the 0-SSPG, we know from our results about
stochastic shortest path games and Assumptions R and RS, that Cy, ,(n) and N, ,(n)
are bounded and continuous on the compact product space M x N. Since N, ,(n) > 2
for all p and v, the quotient C), ,(n)/N, ., (n) is also continuous. As a result, with
i € M fixed, there is a policy v, € N which achieves the supremum in

Thus,

Moreover, since N, ,(n) is bounded and greater than or equal to one, the following
are true:

1. Cyu(n) — \yN,,(n) <0 for all v € N, and

2. ¢,(v) = 0if and only if C,, ,(n) — A, N, (n) = 0.
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Since ¢, (v,) = 0, we have that v, maximizes C,, ,(n) — X\, N, ,(n). The rest of the
proof for part 3 follows from arguments similar to those for Proposition 4.1 in Chapter
7 of [1]. Parts 4 and 5 follow similarly.

To show part 1, note that for each € M there is a policy v, € N which achieves
the supremum in sup, ¢ Cp,v(n)/Ny,(n). From Proposition 7.32 in [4], the function
Cu.v(n)/Ny . (n) is continuous as a function of p € M. Thus, there exists a minimax
optimal policy g which achieves the infimum in

Cuv(n)
inf sup &2,
neM ,,E][\); Ny o(n)

A2

Observe that for all p € M

(1) 2 sup {C"’”(n) — MV (n) } > 0.

veEN NM7V(n)

Moreover, since N, ,(n) is bounded and greater than or equal to one, the following
are true: }

1. sup,en {C’W,(n) — /\Nu,,,(n)} > 0 for all p € M, and

2. ¢(u) = 0 if and only if

sup {C’W,(n) - /N\Nu,,,(n)} =0.
veN
Since ¢(j1) = 0, we have that f minimizes sup, ¢y {CH,,,(n) - S\Nuy,,(n)}.

Now consider the associated stochastic shortest path game, A-SSPG. Since As-
sumptions R and RS are in effect, the A\-SSPG satisfies Assumptions SSP and R. As
a result there exists a unique function H* € R" (equal to .J5) such that

n—1
H*(i):ug}%)v@%) ci(u,v)—/\+jzzlpij(u,v)H*(j) . ie{l,...,n},

where we have used the fact that p;,(u,v) = 0. In fact, H* represents the equilibrium
cost-to-go function for the associated stochastic shortest path game. An equilibrium

policy pu* € M minimizes sup, ¢y {C’W,(n) - /N\Nu,,,(n)}, reducing it to zero [given
our previous observation about fi]. Thus, H*(n) = J;(n) = 0 and

H*(i) + A = mi (u,v) + (w0 H ()|, ie{l,..., .
(4) Jnin  max ci(u,v) ;pu(u v)H*(§) |, i€{l,...,n}

Moreover, by Assumption R,

(3.2) H*(i)—l—;\:vrél‘z/i();)urenl}r(li) ci(u,v)—kazlpij(u,v)H*(j) , ied{l,...,n}.

Because we have found an equilibrium of the associated stochastic shortest path game
a policy v* € N which achieves the maximum in (3.2) for all states i € S maximizes

inf,enm {C’W,(n) - /N\Nu,,,(n)}. (Such a policy exists thanks to Assumption R.)
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Now consider the one-player average cost problem which results when the min-
imizer announces the use of p*. The maximizer is left with a unichain average cost
problem for which the state n is recurrent under all stationary policies. From part 3,
the Bellman equations above characterize the average cost of this problem, resulting
in the fact that for all states i € S

A= sup. e (1)
TNEN

Similarly, if the maximizer announces v* then we have that for all states i

A= inf_J.,, (i)

Combining these observations, we obtain

inf  sup Jryan < sup  inf  Jr,oaa-
TMEM ;v eN rnENTMEM

This, along with the usual minimax inequality, implies that equality holds and a
constant-valued equilibrium average cost \* = \ exists. Tt is apparent that p* and v*
form an equilibrium solution for the average cost game.

Part 2 follows from similar arguments. Q.E.D.

COROLLARY 3.2. The following are true regarding recurrent state average cost
games.

1. Jxuv(n) =0 if and only if A = A, where Ay, is the average cost associated
with u € M andv € N.

2. Jau(n) = 0 if and only if X = X\,, where A, is the worst case average cost
associated with p € M.

3. Ja(n) = 0 if and only if X = \*, where \* is the equilibrium average cost of
the game.

For single-player problems with finite action sets, it is possible to exploit the
connection with stochastic shortest path problems to analyze the full class of unichain
average cost problems (where it is not required that there be a special state which
is always recurrent). In particular, it is possible (as in [2]) to use the existence
of Blackwell optimal policies? to show that if every policy which is optimal within
the class of stationary policies is unichain, then there exists a solution to Bellman’s
equation and the optimal average cost is independent of the initial state. If we allow
the constraint sets to be arbitrary compact subsets of metric spaces, then the existence
of Blackwell optimal policies is not clear. As a result, the analysis of [2] cannot be
generalized easily to prove the existence of a solution to Bellman’s equation for single-
player unichain average cost problems with compact constraint sets.®> Similarly, the
analysis of [2] cannot be generalized easily to prove the existence of solutions to (3.1)
in unichain games satisfying Assumption R.*

4. Dynamic Programming Algorithms for Recurrent State Average
Cost Games. In this section we state and discuss the convergence properties of
several dynamic programming algorithms.

2A policy is Blackwell optimal if it is optimal for all discount factors a in a neighborhood of 1.

3For single-player unichain problems, the existence of solutions to Bellman’s equation under was
established in [15] by other methods.

4In [16], Sobel established the existence of stationary equilibrium solutions in N-player, nonzero-
sum games where, for each profile of pure stationary policies, there is a single class of communicating
states. Rogers [14] obtained similar results using a different technique.
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4.1. Value Iteration. Asshown in the following proposition, given any terminal
cost function J € R", the k-horizon equilibrium cost divided by k approaches the
equilibrium average cost of the game.

PROPOSITION 4.1. For every J € R™,

1
lim ET’“J = \"1,

k—oo

where \* is the equilibrium average cost of the recurrent state average cost game.

Proof:. The proof is nearly identical to an argument in [2] (cf. pages 318-319).
The only difference lies in the fact that our 7" operator involves a minimax opera-
tion. Since T remains nonexpansive, the proof goes through with the same algebraic
manipulations. Q.E.D.

4.2. Relative Value Iteration. An important practical difficulty of the value
iteration method is that |(T*.J)(i)| may approach infinity for some states i. Moreover,
the method does not produce an estimate of the equilibrium differential cost function
H*. The relative value iteration method presented here is designed to address these
issues. Unfortunately, to assure convergence, extra assumptions must be satisfied.

ALGORITHM 4.1. (Relative Value Iteration)

1. Choose T € (0,1], t € S, and an initial Hy € R".
2. Given Hy, compute

Hk+1 = (1 — T)Hk + T(THk) - T(THk)(t)].

If this algorithm converges, say to H, then the limit satisfies

TH +T(tH)(t)1 =T(tH).

Consequently, T'(THy)(t) converges to the equilibrium average cost A*, and it is true
that H = (1/7)H*, where H* is the unique solution to TH = H +\*1 with H*(¢) = 0.
Unfortunately, convergence is not clear without imposing extra conditions, as in the
following proposition.?

PROPOSITION 4.2. In addition to Assumptions R and RS, assume that there exists
a positive integer m such that for every pair of admissible policies wpr = {po, p1,-..} €
M and mx = {vo,v1,...} € N, there exists an € > 0 such that

[P(N’M=Um)P(:um*17mel)"'P(:ulzyl)]in €, i=1,....n,

[P(ttm—1sVm—1)P(fm—2, Vim—2) - .. P(po, v0)l;,

(AVARAVS

€, 1=1,...,n,

where [];n denotes the element of the ith row and nth column of the corresponding
matrix. Then, setting t = n in relative value iteration, the sequence Hy converges to
a vector H such that (TH)(n)1+ H = TH. (This implies (TH)(n) is equal to the
equilibrium average cost of the game.)

5If we set t to be the recurrent state n and we choose the initial cost function Hg such that
Hg(n) = 0, then we have Hy(n) = 0 for every k > 1. Thus, every time the T operator is applied in
relative value iteration, it acts like a contraction mapping. Unfortunately, this does not seem to be
of much help in establishing the convergence of the method.
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Proof:. Let py be such that THy, = T, Hy and define A\, = (T'Hy)(n), for every
k. We have

Hip1 =T, Hy — M1 <Ty, Hp — X1
H,=T, Hi1— 11 <Ty, Hy1 — A 1.
Defining qx = Hyy1 — Hy, we obtain from the above inequalities
gr > Ty Hy — Ty Hi—1 + (Ag—1 — Ap)1
gk < Ty Hy — Ty Hi—1 + (Ae—1 — )1
Let v;, be such that T, Hy_1 = Ty,,, Hy—1 and similarly let v; be such that

Tuklek :Tu Hy,

k—1Vk
for every k. Consequently,

ak > P(pr, vp)qe—1 + (Ar—1 — M)l

ak < P(pr—1,Vk)qr—1 + (Ag—1 — Ap)1.
Since relations like this hold for all £ > 1, we obtain
(4.1) Q> [P(pksvg) - P(tk—m+1, Vg g k-1 + (Ae—m — Ap)1
(4.2) ar < [P(ur—1,7%) - P(lk—m> Pk —m41)]qk—1 + (Ae—m — Ap) 1.

By our assumption about the recurrent state m, there are two scalars ¢; > 0 and

€2 > 0 such that
I:P(IUIMZIC)---P(Nk7m+172k7m+1):|in €1, 1= 17"'7”:

[P(,uk,h ljk) .. -P(,kam: ﬂk7m+1)]in

(AVARAY]

€2, 1=1,...,n
From (4.2), we obtain

qr(i) < (1 —¢) mjaxqj,m(j) +Xeem — M, i=1,...,n,
where € = min{eq, e2}. Thus,
max gy () <(1—¢ max qj—m(J) + Ae—m — Ak
Similarly, from (4.1), we obtain
min gy (1) > (1 —¢ min @j—m(J) + Ae—m — Ap.

Subtracting the last two inequalities, we get

mx () i) < (1 0) (o G) - winge ()
and the rest of the argument follows the proof of Proposition 3.1 in Chapter 4 of [2].
Q.E.D.

As described in [2] for single-player problems; it is possible to extend this result to
the case where t # n. Moreover, if the number of policies available to the respective
players is finite, then setting 7 < 1 can be viewed as a data transformation which
gives rise to a game with the aperiodic structure required in the hypothesis of the
proposition. Proposition 4.2 generalizes the earlier result of Federgruen in [5] (Cf.
Theorem 2, part (a)), where relative value iteration is shown to converge under the
data transformation above for unichain games with mixed strategies over finite action
sets.
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4.3. Contracting Value Iteration. The next method we describe is a new type
of value iteration for recurrent-state average cost games. It generalizes a similar algo-
rithm for single-player problems described in [3] and is motivated by the connection
with stochastic shortest path games.

ALGORITHM 4.2. (Contracting Value Iteration)

1. Start with an initial estimate (Ao, Ho) of a solution to Bellman’s equation
(8.1).

2. Given (A, Hy),
(a) first compute Hy1 = —Ap1 + T Hy, and then
(b) compute Agt1 = Ap + Vi Hi1(n).

ProproSITION 4.3. For every recurrent state average cost game, there exists a
positive stepsize v such that if

Y< % <Y

for some minimal positive stepsize v and all k, the sequence (A, Hy) generated by con-
tracting value iteration converges linearly to the unique solution (\*, H*) of Bellman’s
equation (3.1) with H*(n) = 0.

Proof:. The proof uses Lemma 2.6 and Corollary 3.2 and closely follows the proof
of Proposition 1 in [3]. To see this, associate .Jy ,(i) with hy , () and Jy (i) with hy ().
What is important is that these functions are

1. continuous and decreasing with bounded slope, and
2. the upper bound on their slopes is strictly less than zero. (The slopes of these
functions lie between —Npax and —Npin.)
Q.E.D.

4.4. Policy Iteration. We now examine the policy iteration algorithm of Hoff-
man and Karp [8].
ALGORITHM 4.3. (Policy Iteration)
1. Choose an initial stationary policy puo € M.
2. Given py € M:
(a) (Policy Evaluation) Compute the unique solution (A, , Hy, ) to the equa-
tions

A+ H =T, H,
H(n) =0.

H

(b) (Policy Improvement) Compute pp11 € M such that TH,, =T, s -

Hr+1
This algorithm is known to converge [8] when both :
1. U(i) and V(i) represent mixed strategies over finite sets of actions, and
2. the Markov chain associated with each pair of pure policies is irreducible.
The following proposition gives a monotonicity result under the less restrictive con-
ditions of Assumption R and RS. Unfortunately, it falls short of actually proving
convergence to a solution of Bellman’s equation.
PROPOSITION 4.4. For each k in policy iteration applied to a recurrent state
average cost game, we either have

A < Ay

Hk+1

or

Miwr = Auer H

Hk41 k41 < Huk'
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If equality prevails in the latter, then both py and pry1 are stationary equilibrium
policies for the minimizer.

Proof:. Let {ux} be a sequence of stationary policies generated by policy iteration.
Consider p; we will show that either A < Ay, or else A =My, and Hy, ,, <
H,,.Set Jy = H,,, and define

Hie+1 Hr+1

JnL:: J%zfl.

He41

Note that J,,, is the m-stage worst-case (additive) cost function associated with the
minimizer’s policy px4+1 when the terminal cost function is H,,. Thanks to Proposi-
tion 4.1 we have that for every i € S

~ lim ).

m—oo m

A

Hik+1
By Proposition 3.1 and the definition pgy1 and Jy,

J=T.Jy = 11; Jo < jzthb ::,Xukl + Jg.

k+1
Consequently,
Jo = T,Mlc+1‘]1
< Ibk+1(Auk1 +'Jb)

= N1+ Ty Jo
<21+ Jo,

where the second equality follows from the fact that there is no terminal state in our
formulation of average cost games. Proceeding inductively, we obtain

Jm S m/\ukl + JO-

Thus,
1 1
—Jm <A1+ —Jo
m m

and by taking the limit as m — oc we obtain Ay, ., < Ay,

If Ay = Ay, then we can interpret H,, , as the worst case cost of ppyg
produced by a policy iteration step in the associated stochastic shortest path game
Au,-SSPG. From the monotonicity of policy iteration for stochastic shortest path

games, it follows that H,, ., < H,,.
XAy = Ay, and Hy, . = Hy, , then
A VA Hyye = Ay 1+ Hyy oy
=Ty Hyyoys
= Tuk+1Huk
=TH,,.

Thus, A, and H,, satisfy Bellman’s equation, and Proposition 3.1 implies that both
i and pg41 are equilibrium policies for the minimizer. Q.E.D.

COROLLARY 4.5. If the minimizer has only finitely many policies, then policy
iteration converges in a finite number of iterations.
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Convergence of policy iteration in the more general case [where U(i) and V(i)
are compact subsets of metric spaces] is not clear. The possibility exists that A, will

converge to some A > \* with \,, < Airy, for every k.°

4.5. e-Policy Iteration. In this subsection we describe a variation of policy
iteration which yields policies that are arbitrarily close to equilibrium. The basic idea
is to implement conventional policy iteration (as in Algorithm 4.3) as long as the
corresonding improvments in average cost are greater in magnitude than some fixed
e > 0. If at stage k a conventional policy iteration step does not result in this much
of an improvement, then the prevailing estimate A,, of the equilibrium average cost
is held fixed while policy iteration for the A,, -SSPG is implemented. The inequalities
of Lemma 2.6 give rise to a stopping criterion for the inner loop so that termination
results in an improvement in average cost that is bounded away from zero.

ALGORITHM 4.4. (e-Policy Iteration)

1. Choose € > 0 and an initial policy po € M. Compute the unique solution
(Auos Hyy) to the equations

T, H =H + M1,
H(n)=0.

2. Given (e, Ay, Hy ),
(a) Choose i such that

THy, =TuHy,
and compute the unique solution (A, Hy) to the equations

H(n)=0.

(b) If \g < Ay, — €, then set

(/“k+17 AHkJrl? Huk+1) = (,EL, Aﬁ: Hﬁ)'

Otherwise, set iy = i and iterate as follows. Given fi;,
i. Compute the unique solution Hy, to the equation

TﬁjH = FI"'/\ukl-

ii. If fNIﬁj (n) < —e, then stop this inner loop; set pry1 = fi; and com-

pute the unique solution (N, ., Hy,, ) to the equations
Tpoo H = H+ A1,
H(n)=0.

Otherwise, continue the inner loop by choosing jij41 such that

TH;, =Ty, Hz,.

Aj41

6 Unfortunately, we cannot pursue the type of analysis of Hordijk and Puterman in [9] which relies
upon a Newton’s method interpretation of (single-player) policy iteration which does not generalize
to the two-player case.
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The following observations are useful in interpreting this algorithm.

1. The process of computing the unique solution (A,,H,) to the equations
T,H = H + A1 and H(n) = 0 is equivalent to computing the maximal av-
erage cost in the single-player Markov decision problem which prevails when
the minimizer specifies u. By Corollary 3.2, A, is the unique scalar such that
J)\‘“H(n) =0.

2. Given p and X [where X is possibly not equal to A, (the worst-case average
cost of )], the process of computing the unique solution H such that T,H =
H + A1 is equivalent to the computing the worst case cost of y in the A-SSPG.
Thus, H = Jx,. If XA = X, then H(n) = Jy, u(n) = 0. Moreover, if p' is
such that TH = T,y H, then p' is the policy that results from one policy
iteration step in the A\-SSPG, and Jy ,» < H.

PROPOSITION 4.6. After a finite number of global iterations, the e-policy iteration
method will keep executing (get stuck in) the inner loop of step 2.(b)ii, and the uy
which prevails is such that \,, — \* <e.

Proof:. Since ), is the worst case average cost associated with uy, we have that
Aue > A* for all k. Consider the global update where we start with (ug, Ay, , Hyp)-
If the resulting g is such that Az < A,, — €, then because we choose pp41 = p the
resulting improvement in worst case cost is at least €/N,,,,. Otherwise, there are two
cases to consider.

1. If Irey (n) < —¢, then, because policy iteration for the A\, -SSPG converges,
the inner loop will terminate with some fi; for which Jy, z;(n) < —e. Since
Jx,i; (n) is strictly decreasing as a function of A, it is true that Az, < Ay,.
Moreover, from (2.5), associating X" with A, , A with Az, and p with fi;, we
have that

0= JAﬂj7ﬁj (n) < JX#kJ]J. (77) + Nmaz()\uk — )\ﬁj),

which implies that A, — Az, > €/Nmaz. Since we choose ppi1 = fij, the
resulting global update results in an improvement of at least /Ny, ..

2. If JA% (n) > —e¢, then the inner loop of the algorithm will never terminate.
From (2.6), associating A" with A,, and A with A*, we see that

Jx (n) + Nmin(/\,uk — )\*) < Jys (n) = 0.

K
Thus, Ay, — A < €/Npin < €.

Since there can be only finitely many improvements of €/N,,,., the algorithm must

eventually get stuck in step 2.(b)ii. Q.E.D.

5. Conclusion. An implicit purpose of this paper is to illustrate connections
between stochastic shortest path games and average cost stochastic games. It is ap-
propriate to search for such connections since both can be viewed generally as “undis-
counted” games. It turns out (cf. [11]) that previously existing theory for average cost
games can be used to prove a subset of the results established in [12] about stochas-
tic shortest path games. Unfortunately, this line of reasoning does not apply to the
general case where U (i) and V(i) are compact subsets of metric spaces. On the other
hand, as we have shown in this paper, the results of [12] can be used to extend the
theory of recurrent-state average cost games, namely the existence of an equilibrium
value for recurrent state games when U(i) and V(i) are arbitrary compact subsets
of metric spaces and appropriate regularity assumptions are imposed. The equilib-
rium value along with an equilibrium differential cost vector is characterized as the
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essentially unique solution to Bellman’s equation and can be achieved by stationary
policies for the opposing players. We also examined several dynamic programming
algorithms for recurrent-state average cost games. One important conclusion to be
drawn from this paper is that it is not necessary to assume finite underlying action
sets and mixed strategies to obtain powerful results for a broad class of average cost
games: many of the usual results hold for the case of compact constraint sets, at least
under the recurrent state assumption.
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