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2 S. D. PATEK AND D. P. BERTSEKASthe maximizer. The probability of transitioning from i 2 S to j 2 S under u 2 U(i)and v 2 V (i) is denoted pij(u; v). The expected cost to the minimizer of transitioningfrom i 2 S under u 2 U(i) and v 2 V (i) is denoted ci(u; v). Given � 2M and � 2 N ,P (�; �) = 264 p11(�(1); �(1)) � � � p1n(�(1); �(1))... ... ...pn1(�(n); �(n)) � � � pnn(�(n); �(n)) 375and c(�; �) = 0B@ c1(�(1); �(1))...cn(�(n); �(n)) 1CAare the corresponding transition probability matrix and expected transition cost vec-tor, respectively. Throughout this paper we shall use J(i) to denote the i-th compo-nent of a vector J 2 <n. This simpli�es some of the notation in the sequel. Let 1 2 <nbe the vector whose components are all ones. Also, given J; �J 2 <n, we say J � �Jif J(i) � �J(i) for every i = 1; : : : ; n. We now de�ne the \dynamic programming"operators which operate on <n:T��J = c(�; �) + P (�; �)J; � 2M; � 2 N ;T�J = sup�2N [c(�; �) + P (�; �)J ] ; � 2M ;TJ = inf�2M sup�2N [c(�; �) + P (�; �)J ] ;~T�J = inf�2M [c(�; �) + P (�; �)J ] ; � 2 N ;~TJ = sup�2N inf�2M [c(�; �) + P (�; �)J ] :The suprema and in�ma in the above are taken componentwise. For example,(TJ)(i) = infu2U(i) supv2V (i)24ci(u; v) + nXj=1 pij(u; v)J(j)35 :We use the notation T t��J to denote the t-fold composition of T�� applied to J . Similarde�nitions hold for T t�J , T tJ , ~T t�J , and ~T tJ (whenever they are well-de�ned).Given a pair of nonstationary policies �M 2 �M and �N 2 �N , the average cost tothe cost-minimizing player from state i is de�ned to be�J�M ;�N (i) = lim inft!1 1t+ 1 ht�M ;�N (i);(1.1)where ht�M ;�N (i) is the expected (t+1)-stage cost from i under (�M ; �N ), de�ned byht�M ;�N (i) 4= �c(�0; �0) + tXk=1[P (�0; �0)P (�1; �1) � � �P (�k�1; �k�1)]c(�k ; �k)�(i):We make the following assumptions.



Finite-state Average Cost Stochastic Games 3Assumption RS (Recurrent State) The following are true:1. The Markov chain associated with each pair of stationary policies (�; �) isunichain.2. The state n 2 S is recurrent under every pair of stationary policies.Assumption �R (Regularity) The following are true:1. For each i 2 S, the control constraint sets U(i) and V (i) are compact subsetsof metric spaces.2. The functions pij(u; v) and ci(u; v) are continuous with respect to (u; v) 2U(i) � V (i). (In light of Proposition 7.32 in [4], this implies that the outerextrema in the operators T and ~T are achieved by elements of M and N ,respectively. That is, for every H 2 <n, there exists � 2 M and � 2 N suchthat TH = T�H 2 <n and ~TH = ~T�H 2 <n.)3. For every H 2 <n, we have TH = ~TH.We now make some remarks on these assumptions. Note that part 4 of Assumption �Ris satis�ed under conditions for which a minimax theorem can be used to interchange\inf" and \sup". In particular, this part, as well as the entire Assumption �R, issatis�ed if:1. the sets U(i) and V (i) are nonempty, convex, and compact subsets of Eu-clidean spaces,2. the functions pij(u; v) are bilinear of the form u0Qijv, where Qij is a realmatrix of dimension commensurate with U(i) and V (i),3. the functions ci(u; v) are(a) convex and lower semi-continuous as functions of u 2 U(i) with v �xedin V (i), and(b) concave and upper semi-continuous as functions of v 2 V (i) with u �xedin U(i).This follows from the Sion-Kakutani theorem (see [18], p.232 or [13], p. 397). Thefact that the state n is recurrent (from Assumption RS) allows us to relate averagecost games to stochastic shortest path games [12], a relationship we use throughoutthis paper. These assumptions together de�ne the class of games that we shall referto as recurrent-state average cost games.Games with average cost objectives have been studied for a long time, startingwith Gillette [7] in 1957. In [10], Liggett and Lippman used the existence of Blackwelloptimal policies in one-player Markov decision problems (with �nite action sets) toestablish that sequential games have equilibria in pure stationary policies. In [8], afterproving a result about the continuity of linear programming, Ho�man and Karp estab-lished the existence of stationary equilibrium policies in irreducible games. They alsoestablished the convergence of an average cost version of policy iteration in irreduciblegames. Later on, Federgruen [6] and van der Wal [19] gave successive approximation(value iteration) algorithms for these and slightly more general average cost stochasticgames. In the more general context of nonzero-sum games, Stern [17] used a dynamicprogramming approach to show that stationary equilibrium policies exist in gameswhere the Markov chain associated with each pair of pure policies is unichain andthere is a special state which is recurrent under all pairs of pure policies. [This isour Assumption RS. Games of this type are to be distinguished from the smallerclass of irreducible (recurrent) games which Gillette originally studied.] Equilibria inStern's games are characterized (but not uniquely) by solutions to a generalized formof Bellman's equation.All of the results cited above make use of Gillette's original assumption that the



4 S. D. PATEK AND D. P. BERTSEKASplayers are optimizing with respect to mixed strategies over �nite sets of actions.[In fact, we are unaware of any literature on average cost games (aside from thedissertation upon which this paper is based) where this assumption is relaxed.] Thus,one purpose of this paper is to show that Gillette's assumption is not essential. Ingeneral, it is not necessary to require the constraint sets U(i) and V (i) be simplicialand the functions ci(u; v) and pij(u; v) to be bilinear. Rather, at least for someclasses of games, it is su�cient to impose less restrictive topological assumptions.This, unfortunately, complicates the analysis.In Section 2, we review the main results from [12] and establish a formal relation-ship between recurrent state average cost games and stochastic shortest path games.In Section 3, we use this relationship to characterize and prove the existence of equi-librium solutions for recurrent state average cost games. In Section 4, we discussthe convergence properties of several dynamic programming algorithms, including anew one called �-policy iteration. In Section 5, we end the paper with a few generalremarks concerning the relationship between recurrent state average cost games andstochastic shortest path games.2. Relation to Stochastic Shortest Path Games. With Assumption RS inplace we can view the recurrent state n as a terminal state which is inevitably reachedin an in�nite sequence of stochastic shortest path games. [12]2.1. Stochastic Shortest Path Games: Review. Stochastic shortest pathgames are �nite state additive cost games with compact constraint sets, where one ofthe states 
 is absorbing and zero-cost. (Throughout this paper 
 will be treated asan extra state, not included in S = f1; : : : ; ng. We did not observe this conventionin [12].) Stochastic shortest path games are such that the minimizer wishes to drivethe system to termination along a minimum expected cost path, and the maximizerseeks to maximize the cost of reaching termination. Formally, the players seek anequilibrium for the objective functionJ�M ;�N (i) = lim inft!1 ht�M ;�N (i);(2.1)where �M = f�0; �1; : : :g 2 �M and �N = f�0; �1; : : :g 2 �N . A stationary policyfor the minimizer which, for any policy of the maximizer, forces termination withprobability one is called proper. A pair of policies, one for the minimizer and theother for the maximizer, which does not lead to termination with probability one iscalled prolonging. The following assumptions formally de�ne stochastic shortest pathgames.Assumption SSP The following are true:1. There exists at least one proper policy for the minimizer.2. If a pair of policies (�M ; �N ) is prolonging, then the expected cost to theminimizer is in�nite for at least one initial state. That is, there is a state ifor which limt!1 ht�M ;�N (i) =1.Assumption R (Regularity for SSPs) The following are true:1. The control constraint sets are compact. That is, for each i 2 S, U(i) andV (i) are compact subsets of metric spaces. (This implies that M and N arecompact.)2. The functions pij(u; v) are continuous with respect to (u; v) 2 U(i) � V (i),and the functions ci(u; v) are(a) lower-semicontinuous with respect to u 2 U(i) (with v 2 V (i) �xed) and(b) upper{semicontinuous with respect to v 2 V (i) (with u 2 U(i) �xed).



Finite-state Average Cost Stochastic Games 5(The Weierstrass theorem implies that the supremum and in�mum in thede�nitions of the operators T� and ~T� are always achieved by elements of Nand M , respectively. That is, for every J 2 <n, there exists � 2 N such thatT�J = T��J 2 <n. Similarly, for every J 2 <n, there exists � 2M such that~T�J = T��J 2 <n.)3. For all J 2 <n, the in�mum and supremum in the de�nitions of the operatorsT and ~T are achieved by elements of M and N . That is, for every J 2 <n,there exists � 2M and � 2 N such that TJ = T�J 2 <n and ~TJ = ~T�J 2 <n.4. For each J 2 <n, we have TJ = ~TJ .Note that Assumption R is slightly less restrictive than Assumption �R, and the earliercondition based on the Sion-Kakutani theorem still applies.The following results were obtained in [12].Lemma 2.1. Assume that all stationary policies for the minimizer are proper.The operator T is a contraction mapping on <n with respect to a weighted sup-normk � kw1, where w is a positive vector in <m andkJkw1 = maxi2S jJ(i)j=w(i):(2.2)Moreover, if � 2 M is proper, then T� is a contraction mapping with respect to aweighted sup-norm. 1Proposition 2.2. The operator T has a unique �xed point J� on <n.Proposition 2.3. The unique �xed point J� = TJ� is the equilibrium cost ofthe stochastic shortest path game. There exist stationary policies �� 2M and �� 2 Nwhich achieve the equilibrium. Moreover, if J 2 <n, � 2M , and � 2 N are such thatJ = TJ = T�J = ~T�J , then1. J = J�;�2. J�M ;� � J�;� ; 8 �M 2 �M;3. J�;�N � J�;� ; 8 �N 2 �N:Proposition 2.4. For every J 2 <n, there holds,limt!1 T tJ = J�;(2.3)where J� is the unique equilibrium cost vector.Proposition 2.5. Given a proper stationary policy �0 2M , we have thatJ�k 4= sup�2N J�k ;� ! J�;where J� is the unique equilibrium cost vector and f�kg is a sequence of policies(generated by policy iteration) such that TJ�k = T�k+1J�k for all k.2.2. The Relationship. Our results in [12] help us to establish the existenceof equilibrium solutions for recurrent state average cost games, along with the con-vergence of some dynamic programming algorithms. It is useful to de�ne for eachrecurrent state average cost game, along with an estimate its equilibrium average cost,the associated stochastic shortest path game (�-SSPG). This the stochastic shortestpath game with transition probabilities �pij(u; v) and costs �ci(u; v) obtained by1While not explicit in this statement of the lemma, there is a positive vector w 2 <n and a scalar� 2 (0; 1) such that T�;� ; T�; T; ~T� ; and ~T are all contractions with respect to k � kw1 with modulus�. We may assume without loss of generality that the weighting on state n is unity.



6 S. D. PATEK AND D. P. BERTSEKAS1. setting �pij(u; v) = pij(u; v) for all i; j 2 S with j 6= n,2. setting �pin(u; v) = 0 for all i 2 S,3. introducing an arti�cial terminal state 
 to which the system transitions fromstate i with probability �pi;
(u; v) = pi;n(u; v) for all i 2 S, and4. setting �ci(u; v) = ci(u; v)� � for all i 2 S.The de�nitions and observations of the following paragraphs will be useful in thesequel.Let J�;�;�(i) denote the cost of starting from i under the stationary policies � 2Mand � 2 N in the �-SSPG. Let J�;�(i) = max�2N J�;�;�(i) denote the worst case cost ofstarting from i under �. Let J�(i) = min�2M max�2N J�;�;�(i) be the equilibrium costof starting from i. (Note that these functions are well de�ned because AssumptionsSSP and R are satis�ed in the associated stochastic shortest path game. [12])Note that the dynamic programming operators for the associated stochastic short-est path game are contractions with respect to a weighted sup-norm k � kw1 (cf.Lemma 2.1 in this paper). Throughout the rest of this paper, we use k � k to de-note such a \contractive" weighted sup-norm, whereas k � k1 will denote the usualsup-norm.It is useful to relate the dynamic programming operators for average cost gamesand their associated stochastic shortest path games. Suppose H 2 <n is such thatH(n) = 0. Then, for all i = 1; : : : ; n,(TH)(i) = infu2U(i) supv2V (i)24ci(u; v) + n�1Xj=1 pij(u; v)H(j)35= infu2U(i) supv2V (i)24ci(u; v) + n�1Xj=1 �pij(u; v)H(j)35 :Thus, T applied to H in the context of an average cost game is equivalent to T appliedto the equilibrium cost function estimate H in an associated stochastic shortest pathgame. As a result, T is a contraction on fH 2 <n j H(n) = 0g. The same is true ofthe other dynamic programming operators.Let N�;�(i) denote the expected number of stages required to reach n in theoriginal average cost game under the policies � and � starting from i. De�neNmin = min�2M;�2N mini=1;:::;nN�;�(i);Nmax = max�2M;�2N maxi=1;:::;nN�;�(i):(Again, the maximum and minimum exist because Assumptions SSP and R are sat-is�ed in an associated stochastic shortest path problem.) It is clear that Nmin � 1.Lemma 2.6. The following are statements are true for recurrent state averagecost games.1. For all � 2M , � 2 N , �, and �0; we haveJ�;�;�(i) = J�0;�;�(i) + (�0 � �)N�;�(i); i = 1; : : : ; n:(2.4) 2. For all � 2 M , the functions J�;�(i) are continuous and decreasing as func-tions of � and satisfy all i = 1; : : : ; n



Finite-state Average Cost Stochastic Games 7J�0;�(i) +Nmin(�0 � �) � J�;�(i) � J�0;�(i) +Nmax(�0 � �); if �0 � �;J�0;�(i) +Nmax(�0 � �) � J�;�(i) � J�0;�(i) +Nmin(�0 � �); if �0 � �:(2.5) 3. The functions J�(i) are continuous and decreasing as functions of � and sat-isfy for all i = 1; : : : ; nJ�0(i) +Nmin(�0 � �) � J�(i) � J�0(i) +Nmax(�0 � �); if �0 � �;J�0(i) +Nmax(�0 � �) � J�(i) � J�0(i) +Nmin(�0 � �); if �0 � �:(2.6)Proof:. To prove statement 1, note that the second term on the right hand sideof (2.4) is the expected cost di�erential associated with �0-SSPG relative to �-SSPG.To prove statement 2, note that the continuity of the functions J�;�(i) followsfrom Proposition 7.32 in [4] and the joint continuity of J�;�;�(i) with respect to �, �;and �. To see that the J�;�(i) are decreasing, let �1 < �2 be given. For some �� 2 Nwe have J�2;�(i) = J�2;�;��(i)= J�1;�;��(i) + (�1 � �2)N�;��(i)< J�1;�;��(i)� J�1;�(i):Finally, to see (2.5), let �0 � � be given; then, for all � 2 N we have J�;�;�(i) =J�0;�;�(i) + (�0 � �)N�;�(i) � J�0;�;�(i) + (�0 � �)Nmin. The right-most expression ismaximized by some �� 2 N . Thus,J�;�(i) � J�;�;��� J�0;�;�� + (�0 � �)Nmin= J�0;� + (�0 � �)Nmin:The remaining inequalities of (2.5) follow similarly.To prove statement 3, note that the continuity of J�(i) follows from Proposition7.32 in [4] and the joint continuity of J�;�(i) with respect to � and �. To see that theJ�(i) are decreasing, let �1 < �2 be given; then, for some �� 2M we haveJ�1(i) = J�1;��(i)> J�2;��(i)� J�2;�(i)� J�2(i):Finally, we obtain (2.6) from (2.5) and similar arguments. Q.E.D.It can be shown that the functions J�;�(i) are convex with respect to �. However,the functions J�(i) are generally neither convex nor concave; they are only strictlydecreasing as stated above.3. Existence and Characterization of Equilibrium Solutions. We nowestablish the existence of stationary equilibrium solutions in recurrent state averagecost games. We characterize the equilibrium value function as the e�ectively uniquesolution to a form of Bellman's equation. The results of this section can be viewed



8 S. D. PATEK AND D. P. BERTSEKASas a generalization of Stern's results in [17] (cf. Chapter 2, restricted to the zero-sumcase).Proposition 3.1. The following statements are true for recurrent state averagecost games.1. There is a unique equilibrium average cost from each state. The equilibriumaverage cost is the same for each state and is denoted ��. There is a functionH� 2 <n which, along with ��, satis�es Bellman's equation��1+H� = TH�:(3.1)Furthermore, if � 2M achieves the minimum in TH� and � 2 N achieves themaximum in ~TH�, then (�; �) forms an equilibrium solution for the averagecost game. Out of all solutions (�;H) to (3.1), there is a unique solution forwhich H(n) = 0.2. If a scalar � and a function H 2 <n satisfy (3.1), then � is exactly theequilibrium average cost for each initial state.3. Given a stationary policy � 2 M , the corresponding worst-case average cost��, along with a unique function H� 2 <n such that H�(n) = 0, satisfy��1+H� = T�H�:4. Given a stationary policy � 2 N , the corresponding worst-case average cost�� , along with a unique function H� 2 <n such that H�(n) = 0, satisfy��1+H� = ~T�H� :5. Given stationary policies � 2 M and � 2 N , the corresponding average cost��� , along with a unique function H�� 2 <n such that H��(n) = 0, satisfy���1+H�� = T��H�� :Proof:. We �rst prove part 3. Let C�;�(n) denote the expected cost starting fromn up to the �rst return to n under the policies � 2 M and � 2 N in the averagecost game. Let N�;�(n) denote the expected number of stages to return to n startingfrom n, as de�ned earlier. Considering the 0-SSPG, we know from our results aboutstochastic shortest path games and Assumptions �R and RS, that C�;�(n) and N�;�(n)are bounded and continuous on the compact product spaceM�N . Since N�;�(n) � 2for all � and �, the quotient C�;�(n)=N�;�(n) is also continuous. As a result, with� 2M �xed, there is a policy �� 2 N which achieves the supremum in~�� 4= sup�2N C�;�(n)N�;�(n) :Thus, ��(�) 4= (C�;�(n)� ~��N�;�(n)N�;�(n) ) � 0:Moreover, since N�;�(n) is bounded and greater than or equal to one, the followingare true:1. C�;�(n)� ~��N�;�(n) � 0 for all � 2 N , and2. ��(�) = 0 if and only if C�;�(n)� ~��N�;�(n) = 0:



Finite-state Average Cost Stochastic Games 9Since ��(��) = 0, we have that �� maximizes C�;�(n) � ~��N�;�(n). The rest of theproof for part 3 follows from arguments similar to those for Proposition 4.1 in Chapter7 of [1]. Parts 4 and 5 follow similarly.To show part 1, note that for each � 2M there is a policy �� 2 N which achievesthe supremum in sup�2N C�;�(n)=N�;�(n). From Proposition 7.32 in [4], the functionC�;�(n)=N�;�(n) is continuous as a function of � 2M . Thus, there exists a minimaxoptimal policy ~� which achieves the in�mum in~� 4= inf�2M sup�2N C�;�(n)N�;�(n) :Observe that for all � 2M�(�) 4= sup�2N(C�;�(n)� ~�N�;�(n)N�;�(n) ) � 0:Moreover, since N�;�(n) is bounded and greater than or equal to one, the followingare true:1. sup�2N nC�;�(n)� ~�N�;�(n)o � 0 for all � 2M , and2. �(�) = 0 if and only ifsup�2N nC�;�(n)� ~�N�;�(n)o = 0:Since �(~�) = 0, we have that ~� minimizes sup�2N nC�;�(n)� ~�N�;�(n)o.Now consider the associated stochastic shortest path game, ~�-SSPG. Since As-sumptions �R and RS are in e�ect, the ~�-SSPG satis�es Assumptions SSP and R. Asa result there exists a unique function H� 2 <n (equal to J~�) such thatH�(i) = minu2U(i) maxv2V (i)24ci(u; v)� ~�+ n�1Xj=1 pij(u; v)H�(j)35 ; i 2 f1; : : : ; ng;where we have used the fact that �pin(u; v) = 0. In fact, H� represents the equilibriumcost-to-go function for the associated stochastic shortest path game. An equilibriumpolicy �� 2 M minimizes sup�2N nC�;�(n)� ~�N�;�(n)o, reducing it to zero [givenour previous observation about ~�]. Thus, H�(n) = J~�(n) = 0 andH�(i) + ~� = minu2U(i) maxv2V (i)24ci(u; v) + nXj=1 pij(u; v)H�(j)35 ; i 2 f1; : : : ; ng:Moreover, by Assumption �R,H�(i) + ~� = maxv2V (i) minu2U(i)24ci(u; v) + nXj=1 pij(u; v)H�(j)35 ; i 2 f1; : : : ; ng:(3.2)Because we have found an equilibrium of the associated stochastic shortest path gamea policy �� 2 N which achieves the maximum in (3.2) for all states i 2 S maximizesinf�2M nC�;�(n)� ~�N�;�(n)o. (Such a policy exists thanks to Assumption �R.)



10 S. D. PATEK AND D. P. BERTSEKASNow consider the one-player average cost problem which results when the min-imizer announces the use of ��. The maximizer is left with a unichain average costproblem for which the state n is recurrent under all stationary policies. From part 3,the Bellman equations above characterize the average cost of this problem, resultingin the fact that for all states i 2 S~� = sup�N2 �N �J��;�N (i):Similarly, if the maximizer announces �� then we have that for all states i~� = inf�M2 �M �J�M ;��(i):Combining these observations, we obtaininf�M2 �M sup�N2 �N �J�M ;�N � sup�N2 �N inf�M2 �M �J�M ;�N :This, along with the usual minimax inequality, implies that equality holds and aconstant-valued equilibrium average cost �� = ~� exists. It is apparent that �� and ��form an equilibrium solution for the average cost game.Part 2 follows from similar arguments. Q.E.D.Corollary 3.2. The following are true regarding recurrent state average costgames.1. J�;�;�(n) = 0 if and only if � = ��� , where ��� is the average cost associatedwith � 2M and � 2 N .2. J�;�(n) = 0 if and only if � = ��, where �� is the worst case average costassociated with � 2M .3. J�(n) = 0 if and only if � = ��, where �� is the equilibrium average cost ofthe game.For single-player problems with �nite action sets, it is possible to exploit theconnection with stochastic shortest path problems to analyze the full class of unichainaverage cost problems (where it is not required that there be a special state whichis always recurrent). In particular, it is possible (as in [2]) to use the existenceof Blackwell optimal policies2 to show that if every policy which is optimal withinthe class of stationary policies is unichain, then there exists a solution to Bellman'sequation and the optimal average cost is independent of the initial state. If we allowthe constraint sets to be arbitrary compact subsets of metric spaces, then the existenceof Blackwell optimal policies is not clear. As a result, the analysis of [2] cannot begeneralized easily to prove the existence of a solution to Bellman's equation for single-player unichain average cost problems with compact constraint sets.3 Similarly, theanalysis of [2] cannot be generalized easily to prove the existence of solutions to (3.1)in unichain games satisfying Assumption �R.44. Dynamic Programming Algorithms for Recurrent State AverageCost Games. In this section we state and discuss the convergence properties ofseveral dynamic programming algorithms.2A policy is Blackwell optimal if it is optimal for all discount factors � in a neighborhood of 1.3For single-player unichain problems, the existence of solutions to Bellman's equation under wasestablished in [15] by other methods.4In [16], Sobel established the existence of stationary equilibrium solutions in N-player, nonzero-sum games where, for each pro�le of pure stationary policies, there is a single class of communicatingstates. Rogers [14] obtained similar results using a di�erent technique.



Finite-state Average Cost Stochastic Games 114.1. Value Iteration. As shown in the following proposition, given any terminalcost function J 2 <n, the k-horizon equilibrium cost divided by k approaches theequilibrium average cost of the game.Proposition 4.1. For every J 2 <n,limk!1 1kT kJ = ��1;where �� is the equilibrium average cost of the recurrent state average cost game.Proof:. The proof is nearly identical to an argument in [2] (cf. pages 318-319).The only di�erence lies in the fact that our T operator involves a minimax opera-tion. Since T remains nonexpansive, the proof goes through with the same algebraicmanipulations. Q.E.D.4.2. Relative Value Iteration. An important practical di�culty of the valueiteration method is that j(T kJ)(i)j may approach in�nity for some states i. Moreover,the method does not produce an estimate of the equilibrium di�erential cost functionH�. The relative value iteration method presented here is designed to address theseissues. Unfortunately, to assure convergence, extra assumptions must be satis�ed.Algorithm 4.1. (Relative Value Iteration)1. Choose � 2 (0; 1], t 2 S, and an initial H0 2 <n.2. Given Hk, computeHk+1 = (1� �)Hk + T (�Hk)� T (�Hk)(t)1:If this algorithm converges, say to �H , then the limit satis�es� �H + T (� �H)(t)1 = T (� �H):Consequently, T (�Hk)(t) converges to the equilibrium average cost ��, and it is truethat �H = (1=�)H�, whereH� is the unique solution to TH = H+��1 with H�(t) = 0.Unfortunately, convergence is not clear without imposing extra conditions, as in thefollowing proposition.5Proposition 4.2. In addition to Assumptions �R and RS, assume that there existsa positive integer m such that for every pair of admissible policies �M = f�0; �1; : : :g 2�M and �N = f�0; �1; : : :g 2 �N , there exists an � > 0 such that[P (�m; �m)P (�m�1; �m�1) : : : P (�1; �1)]in � �; i = 1; : : : ; n;[P (�m�1; �m�1)P (�m�2; �m�2) : : : P (�0; �0)]in � �; i = 1; : : : ; n;where [�]in denotes the element of the ith row and nth column of the correspondingmatrix. Then, setting t = n in relative value iteration, the sequence Hk converges toa vector H such that (TH)(n)1 + H = TH. (This implies (TH)(n) is equal to theequilibrium average cost of the game.)5If we set t to be the recurrent state n and we choose the initial cost function H0 such thatH0(n) = 0, then we have Hk(n) = 0 for every k � 1. Thus, every time the T operator is applied inrelative value iteration, it acts like a contraction mapping. Unfortunately, this does not seem to beof much help in establishing the convergence of the method.



12 S. D. PATEK AND D. P. BERTSEKASProof:. Let �k be such that THk = T�kHk and de�ne �k = (THk)(n), for everyk. We have Hk+1 = T�kHk � �k1 � T�k�1Hk � �k1Hk = T�k�1Hk�1 � �k�11 � T�kHk�1 � �k�11:De�ning qk = Hk+1 �Hk, we obtain from the above inequalitiesqk � T�kHk � T�kHk�1 + (�k�1 � �k)1qk � T�k�1Hk � T�k�1Hk�1 + (�k�1 � �k)1:Let �k be such that T�kHk�1 = T�k�kHk�1 and similarly let ��k be such thatT�k�1Hk = T�k�1��kHk;for every k. Consequently,qk � P (�k; �k)qk�1 + (�k�1 � �k)1qk � P (�k�1; ��k)qk�1 + (�k�1 � �k)1:Since relations like this hold for all k � 1, we obtainqk � [P (�k; �k) : : : P (�k�m+1; �k�m+1)]qk�1 + (�k�m � �k)1(4.1) qk � [P (�k�1; ��k) : : : P (�k�m; ��k�m+1)]qk�1 + (�k�m � �k)1:(4.2)By our assumption about the recurrent state n, there are two scalars �1 > 0 and�2 > 0 such that�P (�k; �k) : : : P (�k�m+1; �k�m+1)�in � �1; i = 1; : : : ; n;[P (�k�1; ��k) : : : P (�k�m; ��k�m+1)]in � �2; i = 1; : : : ; n:From (4.2), we obtainqk(i) � (1� �)maxj qj�m(j) + �k�m � �k; i = 1; : : : ; n;where � = minf�1; �2g. Thus,maxj qk(j) � (1� �)maxj qj�m(j) + �k�m � �k:Similarly, from (4.1), we obtainminj qk(j) � (1� �)minj qj�m(j) + �k�m � �k:Subtracting the last two inequalities, we getmaxj qk(j)�minj qk(j) � (1� �)�maxj qk�m(j)�minj qk�m(j)� ;and the rest of the argument follows the proof of Proposition 3.1 in Chapter 4 of [2].Q.E.D.As described in [2] for single-player problems, it is possible to extend this result tothe case where t 6= n. Moreover, if the number of policies available to the respectiveplayers is �nite, then setting � < 1 can be viewed as a data transformation whichgives rise to a game with the aperiodic structure required in the hypothesis of theproposition. Proposition 4.2 generalizes the earlier result of Federgruen in [5] (Cf.Theorem 2, part (a)), where relative value iteration is shown to converge under thedata transformation above for unichain games with mixed strategies over �nite actionsets.



Finite-state Average Cost Stochastic Games 134.3. Contracting Value Iteration. The next method we describe is a new typeof value iteration for recurrent-state average cost games. It generalizes a similar algo-rithm for single-player problems described in [3] and is motivated by the connectionwith stochastic shortest path games.Algorithm 4.2. (Contracting Value Iteration)1. Start with an initial estimate (�0; H0) of a solution to Bellman's equation(3.1).2. Given (�k ; Hk),(a) �rst compute Hk+1 = ��k1+ THk, and then(b) compute �k+1 = �k + 
kHk+1(n):Proposition 4.3. For every recurrent state average cost game, there exists apositive stepsize �
 such that if 
 � 
k � �
for some minimal positive stepsize 
 and all k, the sequence (�k; Hk) generated by con-tracting value iteration converges linearly to the unique solution (��; H�) of Bellman'sequation (3.1) with H�(n) = 0.Proof:. The proof uses Lemma 2.6 and Corollary 3.2 and closely follows the proofof Proposition 1 in [3]. To see this, associate J�;�(i) with h�;�(i) and J�(i) with h�(i).What is important is that these functions are1. continuous and decreasing with bounded slope, and2. the upper bound on their slopes is strictly less than zero. (The slopes of thesefunctions lie between �Nmax and �Nmin.)Q.E.D.4.4. Policy Iteration. We now examine the policy iteration algorithm of Ho�-man and Karp [8].Algorithm 4.3. (Policy Iteration)1. Choose an initial stationary policy �0 2M .2. Given �k 2M :(a) (Policy Evaluation) Compute the unique solution (��k ; H�k ) to the equa-tions �1+H = T�kH;H(n) = 0:(b) (Policy Improvement) Compute �k+1 2M such that TH�k = T�k+1H�k .This algorithm is known to converge [8] when both1. U(i) and V (i) represent mixed strategies over �nite sets of actions, and2. the Markov chain associated with each pair of pure policies is irreducible.The following proposition gives a monotonicity result under the less restrictive con-ditions of Assumption �R and RS. Unfortunately, it falls short of actually provingconvergence to a solution of Bellman's equation.Proposition 4.4. For each k in policy iteration applied to a recurrent stateaverage cost game, we either have ��k+1 < ��kor ��k+1 = ��k ; H�k+1 � H�k :



14 S. D. PATEK AND D. P. BERTSEKASIf equality prevails in the latter, then both �k and �k+1 are stationary equilibriumpolicies for the minimizer.Proof:. Let f�kg be a sequence of stationary policies generated by policy iteration.Consider �k; we will show that either ��k+1 < ��k or else ��k+1 = ��k and H�k+1 �H�k : Set J0 = H�k , and de�ne Jm = T�k+1Jm�1:Note that Jm is the m-stage worst-case (additive) cost function associated with theminimizer's policy �k+1 when the terminal cost function is H�k . Thanks to Proposi-tion 4.1 we have that for every i 2 S��k+1 = limm!1 1mJm(i):By Proposition 3.1 and the de�nition �k+1 and J0,J1 = TJ0 = T�k+1J0 � T�kJ0 = ��k1+ J0:Consequently, J2 = T�k+1J1� T�k+1(��k1+ J0)= ��k1+ T�k+1J0� 2��k1+ J0;where the second equality follows from the fact that there is no terminal state in ourformulation of average cost games. Proceeding inductively, we obtainJm � m��k1+ J0:Thus, 1mJm � ��k1+ 1mJ0and by taking the limit as m!1 we obtain ��k+1 � ��k .If ��k+1 = ��k , then we can interpret H�k+1 as the worst case cost of �k+1produced by a policy iteration step in the associated stochastic shortest path game��k -SSPG. From the monotonicity of policy iteration for stochastic shortest pathgames, it follows that H�k+1 � H�k .If ��k+1 = ��k and H�k+1 = H�k , then��k1+H�k = ��k+11+H�k+1= T�k+1H�k+1= T�k+1H�k= TH�k :Thus, ��k and H�k satisfy Bellman's equation, and Proposition 3.1 implies that both�k and �k+1 are equilibrium policies for the minimizer. Q.E.D.Corollary 4.5. If the minimizer has only �nitely many policies, then policyiteration converges in a �nite number of iterations.



Finite-state Average Cost Stochastic Games 15Convergence of policy iteration in the more general case [where U(i) and V (i)are compact subsets of metric spaces] is not clear. The possibility exists that ��k willconverge to some �� > �� with ��k < ��k+1 for every k.64.5. �-Policy Iteration. In this subsection we describe a variation of policyiteration which yields policies that are arbitrarily close to equilibrium. The basic ideais to implement conventional policy iteration (as in Algorithm 4.3) as long as thecorresonding improvments in average cost are greater in magnitude than some �xed� > 0. If at stage k a conventional policy iteration step does not result in this muchof an improvement, then the prevailing estimate ��k of the equilibrium average costis held �xed while policy iteration for the ��k -SSPG is implemented. The inequalitiesof Lemma 2.6 give rise to a stopping criterion for the inner loop so that terminationresults in an improvement in average cost that is bounded away from zero.Algorithm 4.4. (�-Policy Iteration)1. Choose � > 0 and an initial policy �0 2 M . Compute the unique solution(��0 ; H�0) to the equations T�0H = H + �1;H(n) = 0:2. Given (�k ; ��k ; H�k),(a) Choose �� such that TH�k = T��H�kand compute the unique solution (���; H��) to the equationsT��H = H + �1;H(n) = 0:(b) If ��� < ��k � �, then set(�k+1; ��k+1 ; H�k+1) = (��; ���; H��):Otherwise, set ~�0 = �� and iterate as follows. Given ~�j ,i. Compute the unique solution ~H~�j to the equationT~�j ~H = ~H + ��k1:ii. If ~H~�j (n) < ��, then stop this inner loop; set �k+1 = ~�j and com-pute the unique solution (��k+1 ; H�k+1) to the equationsT�k+1H = H + �1;H(n) = 0:Otherwise, continue the inner loop by choosing ~�j+1 such thatT ~H~�j = T~�j+1 ~H~�j :6Unfortunately, we cannot pursue the type of analysis of Hordijk and Puterman in [9] which reliesupon a Newton's method interpretation of (single-player) policy iteration which does not generalizeto the two-player case.



16 S. D. PATEK AND D. P. BERTSEKASThe following observations are useful in interpreting this algorithm.1. The process of computing the unique solution (��; H�) to the equationsT�H = H + �1 and H(n) = 0 is equivalent to computing the maximal av-erage cost in the single-player Markov decision problem which prevails whenthe minimizer speci�es �. By Corollary 3.2, �� is the unique scalar such thatJ��;�(n) = 0.2. Given � and � [where � is possibly not equal to �� (the worst-case averagecost of �)], the process of computing the unique solution �H such that T�H =H+�1 is equivalent to the computing the worst case cost of � in the �-SSPG.Thus, �H = J�;�. If � = ��, then �H(n) = J��;�(n) = 0. Moreover, if �0 issuch that T �H = T�0 �H , then �0 is the policy that results from one policyiteration step in the �-SSPG, and J�;�0 � �H .Proposition 4.6. After a �nite number of global iterations, the �-policy iterationmethod will keep executing (get stuck in) the inner loop of step 2.(b)ii, and the �kwhich prevails is such that ��k � �� < �:Proof:. Since ��k is the worst case average cost associated with �k, we have that��k � �� for all k. Consider the global update where we start with (�k; ��k ; H�k ).If the resulting �� is such that ��� < ��k � �, then because we choose �k+1 = �� theresulting improvement in worst case cost is at least �=Nmax. Otherwise, there are twocases to consider.1. If J��k (n) < ��, then, because policy iteration for the ��k -SSPG converges,the inner loop will terminate with some ~�j for which J��k ;~�j (n) < ��. SinceJ�;~�j (n) is strictly decreasing as a function of �, it is true that �~�j < ��k .Moreover, from (2.5), associating �0 with ��k , � with �~�j , and � with ~�j , wehave that 0 = J�~�j ;~�j (n) � J��k ;~�j (n) +Nmax(��k � �~�j );which implies that ��k � �~�j � �=Nmax. Since we choose �k+1 = ~�j , theresulting global update results in an improvement of at least �=Nmax.2. If J��k (n) � ��, then the inner loop of the algorithm will never terminate.From (2.6), associating �0 with ��k and � with ��, we see thatJ��k (n) +Nmin(��k � ��) � J��(n) = 0:Thus, ��k � �� � �=Nmin � �.Since there can be only �nitely many improvements of �=Nmax, the algorithm musteventually get stuck in step 2.(b)ii. Q.E.D.5. Conclusion. An implicit purpose of this paper is to illustrate connectionsbetween stochastic shortest path games and average cost stochastic games. It is ap-propriate to search for such connections since both can be viewed generally as \undis-counted" games. It turns out (cf. [11]) that previously existing theory for average costgames can be used to prove a subset of the results established in [12] about stochas-tic shortest path games. Unfortunately, this line of reasoning does not apply to thegeneral case where U(i) and V (i) are compact subsets of metric spaces. On the otherhand, as we have shown in this paper, the results of [12] can be used to extend thetheory of recurrent-state average cost games, namely the existence of an equilibriumvalue for recurrent state games when U(i) and V (i) are arbitrary compact subsetsof metric spaces and appropriate regularity assumptions are imposed. The equilib-rium value along with an equilibrium di�erential cost vector is characterized as the
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