
Playing Wordle Using an Online
Rollout Algorithm for Deterministic POMDPs

Siddhant Bhambri
School of Computing & AI

Arizona State University
Tempe, USA

siddhantbhambri@asu.edu

Amrita Bhattacharjee
School of Computing & AI

Arizona State University
Tempe, USA

abhatt43@asu.edu

Dimitri Bertsekas
School of Computing & AI

Arizona State University
Tempe, USA

dbertsek@asu.edu

Abstract— In this paper, we consider an important class of
Partially Observable Markov Decision Processes (POMDP) with
unknown parameters, which contains the Wordle puzzle as a
special case. For this class of POMDP, we develop a new on-line
solution method, which is based on the rollout approach. Our
method relies on the use of a base heuristic policy and guarantees
cost improvement over that policy. When applied to Wordle, our
algorithm solves the puzzle on-line. The performance is within
0.4% of the known optimal results, and is substantially better
than that of the base heuristic policies we have tested.

Index Terms—POMDP, Wordle, Rollout, Dynamic Program-
ming

I. INTRODUCTION

In this paper, we introduce a rollout solution methodology
for an important class of POMDP, and apply it to the popular
Wordle puzzle that appears daily in the New York Times1.
Wordle involves a list of 5-letter mystery words, which is a
subset of a larger list of guess words. A word is selected
at random from the mystery list, and the objective is to
find that word with sequential selection of as few words
as possible from the guess list. Each guess word selection
provides information about the letters contained in the hidden
mystery word according to a given set of rules, which involves
color coding of letters shared by the guess word and the
mystery word.

Our solution method may be viewed as a form of ap-
proximation in value space in the context of Reinforcement
Learning (RL) or approximate Dynamic Programming (DP). It
is based on the ideas of the rollout algorithm, an online policy
iteration method, which improves upon the performance of
any given heuristic/sub-optimal policy. We present a suitably
modified rollout approach which maintains this performance
improvement property.

While in this paper we focus on Wordle, our approach
applies to a wider class of problems that includes sequential
decoding, the Mastermind class of puzzles, and sequential
estimation. Broadly speaking, our approach relates to POMDP

1https://www.nytimes.com/games/wordle/index.html

involving a controlled deterministic dynamic system with an
unknown model parameter, but with a fully observable state.

In our wider POMDP formulation, the system can have a
finite number of states, and evolves according to a discrete-
time equation of the form sk+1 = T (sk, θ, ak), where sk is
the state at time k, ak is the control or action to be chosen at
time k out of a give finite set, θ is the unknown parameter,
and T is an available transition function. It is assumed that
θ can take a finite number of values with an a priori known
probability distribution. The perfect observations of sk serve
to estimate θ asymptotically, as the system is being controlled.
In the Wordle context, θ is the unknown mystery word, ak is
the guess word chosen at step k, and sk is the current list
of mystery words that are consistent with the results of the
guess word selections up to step k. The belief state of the
corresponding POMDP is the pair (bk, sk), where bk is the
posterior probability distribution of θ, given the observations
s0, . . . , sk and the past controls a0, . . . , ak−1. Here, the choice
of controls has a dual objective: to produce states and controls
of small current and future cost, and to identify θ.

Our rollout solution methodology relies on the use of one
out of several heuristic guess word selection policies for Wor-
dle that have been proposed in the literature (see Section II).
In the terminology of rollout algorithms, the heuristic policy
is referred to as the base policy. The rollout algorithm can be
viewed as a single step of the classical policy iteration method,
which starts from the base policy. The major guarantee that our
rollout algorithm offers is that its performance can be shown
to be better than the performance of the corresponding base
policy. Indeed we will show computationally (see Section V)
that the rollout policy performs better than all of the heuristic
policies that we have tried by a substantial margin, and is
very close to optimal (it performs within 0.4% of the optimal
assuming the best opening word selection salet).

Our primary contributions in this paper are: (1) We present
a DP-based online rollout strategy as a computationally effi-
cient solution to deterministic POMDP. (2) We motivate our
approach using the popular online puzzle Wordle as our case
study for deterministic POMDP and empirically show that our
approach provides near-optimal performance. (3) Our empiri-
cal evaluations further show that our online rollout approach
is generalizable across various heuristics as it significantly979-8-3503-2277-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 C
on

fe
re

nc
e

on
 G

am
es

 (C
oG

) |
 9

79
-8

-3
50

3-
22

77
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
oG

57
40

1.
20

23
.1

03
33

22
8

Authorized licensed use limited to: MIT Libraries. Downloaded on December 20,2023 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

improves the performance even over heuristics that may not
be computationally efficient for the given problem.

We begin with a discussion of existing approaches for
Wordle in Section II, we provide a formal definition of
deterministic POMDP and we provide a brief description of
the maximum information gain heuristic in Section III. We
present our proposed rollout approach and its application to
Wordle in Section IV. We then describe our experiments and
results in Section V, and finally conclude this work in Section
VI. An appendix is also attached2.

II. RELATED WORK

Wordle has attracted the attention of quite a few scientists,
with a growing body of analysis and algorithmic development
from both mathematical and computer science perspectives.
Most of the discussions have focused on attempts to find the
optimal strategy for guess word selection, or to propose good
sub-optimal strategies. In particular, a widely known work by
Selby [7] was the first to implement optimal strategies, and
gave the corresponding optimal scores. Bertsimas and Paskov
[3] confirmed these optimal scores by using a similar DP-based
solution method.

Since we aim to device an observation strategy that finds
the mystery word as quickly as possible, it is logical to
try guess words that are as “informative” as possible, given
the observations already available. An information theoretic
approach to identify such guess words, was first suggested
by Sanderson through his 3Blue1Brown3 channel, and will be
described in the next section. Additional heuristic strategies
have been proposed in [4] and [5]. RL solution methods such
as Deep-Q Learning and Advantage Actor Critic were tested
[6], with much worse results than the MIG heuristic.

III. BACKGROUND

Generally, a deterministic POMDP is defined by a tuple
(S,A, T , C,Ω,O) that consists of S, a finite set of states with
the initial distribution over these states, denoted by b0; A, a
finite set of actions; T , a deterministic transition function:
T (sk, θ, ak) gives the next state sk+1 when action ak is
applied in state sk at stage k for sk, sk+1 ∈ S and ak ∈ A;
C, a cost function: C(sk, ak) that gives the cost (or negative
rewards) incurred by the agent when action ak is applied
in state sk at stage k for sk ∈ S, ak ∈ A; Ω, a finite set
of observations; and O, a deterministic observation function:
O(sk, ak) that gives the observation ok ∈ Ω when action ak
is applied in state sk at stage k for sk ∈ S, ak ∈ A. We
assume that the state space contains a cost-free and absorbing
termination state. The total cost of a policy is the expected
value (over the initial distribution b0) of the cost incurred up
to entering the termination state.

In Wordle, players have to guess a five-letter word in six
attempts, which becomes the absorbing goal state for the agent.
The hidden word, which we will refer to as the “mystery word”
in this paper, is chosen every day from a set of 2,315 words

2https://tinyurl.com/appendix-wordle
3https://www.youtube.com/c/3blue1brown

(a) Wordle in Easy mode. (b) Wordle in Hard mode.

Fig. 1: In the Easy mode (1a), the user can choose any word as
the next guess word. However, in the Hard mode (1b), the user
is constrained to use the letters marked as “yellow” and the
letters marked as “green” that have to be at the same position
as in the previous guess word. For example, here, if we get
“E” as green when we play CARSE, we need to use only the
words that end with an “E”, and so on.

according to some distribution. In published studies as well as
the computations reported in the present paper, the distribution
is assumed to be uniform. The set of mystery words, referred
to as the “mystery list,” is known to the public. Each guess
attempt consists of a word chosen from a “guess list” of 12,972
words, also known to the public, and provides information
about the letter in each of the five positions of the mystery
word. This “guess list” comprises the POMDP action space
A. We assume that every guess costs +1, and that once the
guess word is equal to the mystery word, we enter a cost-
free termination state. Thus the total cost of an instance of the
game is the number of guesses required to find the mystery
word. We want to minimize the expected number of guesses to
solve the puzzle, with the expectation taken over the mystery
word randomly chosen according to some known distribution
(the uniform distribution, in our computational experiments).

Maximum Information Gain: Consider a random vari-
able Θ that can take a finite number of values θ1, . . . , θm

with given probabilities. An information theoretic approach
aimed at estimating θ using one out of a finite number
of observations Zu, u ∈ U , is to select u that results in
maximum entropy reduction (or maximizes the information
gain). In particular, the (a priori) entropy of Θ is given by
H(Θ) = −

∑m
i=1 p(θ

i) log
(
p(θi)

)
, where p(θi) is the a priori

probability that Θ has the value θi. The a posteriori entropy
of Θ given Zu is given by

H(Θ | Zu) = −
n∑

j=1

p(zj)

m∑
i=1

p(θi | Zu = zj)

× log
(
p(θi | Zu = zj)

)
,

(1)

where p(zj) is the probability that Zu takes the value zj and
p(θi | Zu = zj) is the conditional probability that Θ = θi

given that Zu has taken the value zj . The entropy reduction
(or information gain) provided by a choice u ∈ U is the
function of u given by H(Θ)−H(Θ | Zu), and the information
theoretic approach suggests selecting u ∈ U that maximizes
this expression, or equivalently minimizes the a posteriori
entropy H(Θ | Zu). This is the basis for the maximum
information gain (MIG) heuristic, which has received a lot
of attention in the context of Wordle.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 20,2023 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

IV. THE ROLLOUT METHODOLOGY

Assume that we have a base heuristic algorithm H that
can choose the next guess at any stage of the game. The
rollout algorithm at a given stage k considers each available
action and completes the solution of the problem by using
repeatedly the base heuristic to select the subsequent actions.
The corresponding cost is recorded in the action’s Q-factor.
The action selected for stage k is the one with minimal Q-
factor, as described in the following algorithm.

Algorithm 1: Rollout with One Step Look-ahead
Data: Current state sk ∈ S, Currently possible goal

states Gk ⊆ S, Action space A, Transition
function T , Cost function C, Base Heuristic H.

Result: Next state sk+1.
1 Q̂ factors← [];
2 for a in A do
3 Cost total← [];
4 for g ∈ Gk do
5 sk+1 ← T (sk, ak), cost← 0;
6 while sk+1 ̸= g do
7 sk+1 ← argminak∈AH(T (sk, ak));
8 cost← cost+ C(sk, ak)
9 Cost total.append(cost);

10 mean cost← 1
|Gk|

∑
(Cost total);

11 Q̂ factors.append(mean cost);

12 âk ← argmin∀ak∈A Q̂ factors, sk+1 ← T (sk, âk) ;
13 return sk+1

We will next explain in some detail Algorithm 1. We intend
to calculate (approximate) Q factors for taking an action ak
in state sk, i.e., Q̂(sk, ak) = C(sk, ak) +H(T (sk, ak)) (see
Appendix B). In line 1, we begin with an empty set to
store these Q factors for each possible action at stage k. We
also assume a goal state set Gk that may be a subset or equal
to the set of all states S. Hence, for any possible goal state
g ∈ Gk, we perform rollout (lines 4-9) by applying the
next action as selected by our base heuristic H, and compute
the total cost until termination. In line 10, we find the mean
cost for taking action a leading to all possible terminating
states in Gk. Finally, in line 12 we select the action â that
corresponds to the minimum Q̂ factor and apply it at state sk.

At a typical stage of the rollout algorithm, we know the
current mystery list Gk, i.e., the subset of possible mystery
words that are consistent with the information received in
response to the preceding guess selections. We also know
(or can simulate) the posterior distribution over Gk given this
information. We also know the guess list Ak, which is defined
as the subset of words in the original guess list A that are
allowable for our next selection based on the information
received in response to the preceding k − 1 guess word
selections. Note that in the easy mode we have Ak = A,
but in the hard mode Ak may be a strict subset of A. The
rollout algorithm chooses the kth guess word âk ∈ Ak, the

puzzle responds with some information regarding the identity
and position of some letters within the mystery word according
to the rules, the mystery list distribution and the guess list are
updated, and the process is repeated until the mystery word is
identified. The method for choosing âk for the current stage
k is described next.

For each pair (g, ak), consisting of a possible mystery
word g ∈ Gk and guess word ak ∈ Ak, and starting from
the current state sk, we calculate Q(sk, ak), the Q-factor of
ak, conditioned on g being the true mystery word. This is
the number of guesses required to find g, assuming that we
select ak as our first guess, and then we select the subsequent
guess words using the base heuristic H. This Q-factor can
be simply computed by simulating the base heuristic forward
from stage k + 1, knowing g and the kth stage selection
ak. We also compute for each ak ∈ Ak, starting from stage
sk, the average Q-factor of ak, denoted by Q̂k(sk, ak), as
Q̂(sk, ak) = 1

|Gk|
∑

g∈Gk
Q(sk, ak), where, |Gk| denotes the

cardinality of the mystery word list Gk. This corresponds to
the mean cost computation shown in line 10 of Algorithm
1. The algorithm then selects in line 12 a guess word âk
whose average Q-factor is minimal:

âk ∈ argmin
ak∈Ak

Q̂(sk, uk). (2)

In summary, the Q-factors are averaged using the posterior
distribution over the possible values of g (i.e., the current
mystery list Gk), and the guess word with minimal averaged
Q-factor is chosen, as in Eq. (2). An important fact is that
the posterior distribution over Gk is uniform when the initial
mystery word is chosen according to the uniform distribution,
as we have assumed. Otherwise, Monte Carlo simulation
would be needed to compute the averaged Q-factors.

V. EXPERIMENTS AND RESULTS

We focus here primarily on the maximum information gain
heuristic (MIG), discussed in Section III, and we also test
two other heuristics: most rapid decrease (MRD) and greatest
expected probability (GEP) (see Appendix C).

Briefly, the MRD heuristic aims to select the next guess
word that yields the smallest set of possible mystery words
once it is selected and an observation is received. In essence,
it keeps track of the number of mystery words with a non-zero
probability in the belief distribution over Gk at any stage k of
the game. On the other hand, the GEP heuristic keeps track
of the expected probability that a guess word, if selected, may
be the correct mystery word in the next stage of the game.
This expected probability is calculated as 1 over the size of
the smallest mystery word set that an observation from the
game could lead to. We have re-implemented the MRD and
GEP heuristics, based on our best understanding of [8], so
our implementations may differ from the ones of [8].4 Still

4Actually, our implementation of MRD performs very well relative to the
optimal. This is not true for GEP, which performs rather poorly. Remarkably,
however, our rollout algorithm that uses GEP as its base heuristic, yields
near-optimal performance; see Table 2.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 20,2023 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Results using ‘Maximum Information Gain’ as base heuristic, and with rollout.

Opening Word Easy Mode Hard Mode

MIG as
Base Heuristic

Rollout with
MIG as

Base Heuristic
Optimal Score MIG as

Base Heuristic

Rollout with
MIG as

Base Heuristic
Optimal Score

salet 3.6108 3.4345 3.4212 3.6078 3.5231 3.5084
reast 3.6 3.4462 3.4225 3.6181 3.53 3.5136
crate 3.6177 3.4414 3.4238 3.6289 3.5361 3.5175
trape 3.6319 3.4604 3.4454 3.6199 3.5356 3.5179
slane 3.6255 3.4444 3.4311 3.622 3.5378 3.5201
prate 3.6333 3.4535 3.4376 3.6173 3.5348 3.5210
crane 3.6091 3.4380 3.4255 3.6333 3.5374 3.5227
carle 3.6108 3.4419 3.4285 3.6384 3.5369 3.5261
train 3.6181 3.4622 3.4436 3.6216 3.5369 3.5248
clout 3.6955 3.5248 3.5097 3.7123 3.6125 3.5931

our implementations represent legitimate heuristics, so they
are suitable for comparison with the corresponding rollout
algorithm, which is our principal aim.

TABLE II: Results for hard mode using ’Most Rapid Decrease’
and ’Greatest Expected Probability’ as base heuristic, and with
rollout.

Opening Word MRD as
Base Heuristic

Rollout with
MRD as

Base Heuristic

GEP as
Base Heuristic

Rollout with
GEP as

Base Heuristic

salet 3.5438 3.5227 5.8674 3.5352
reast 3.5443 3.5365 5.9244 3.5481
crate 3.5533 3.5361 5.8998 3.5706
trape 3.5581 3.5352 5.8479 3.5689
slane 3.5581 3.5421 5.9158 3.5619
prate 3.5624 3.5343 5.8462 3.5658
crane 3.5538 3.5404 5.9935 3.5641
carle 3.5637 3.5412 5.9788 3.5659
train 3.5568 3.5378 5.8907 3.5598
clout 3.6345 3.6168 5.9974 3.6596

In Table I, we give our results for the MIG heuristic for both
the easy and the hard mode of the game along with optimal
scores as shown in [7] and [3], and in Table II, we give our
results for the MRD and GEP heuristics in just the hard mode.
In both tables, we show the score for each opening word,
averaged over all the 2,315 mystery words. We also compare
the base heuristic and rollout performances in Fig. 2.

More specifically, we have evaluated the three heuristics
and their use as base policies within the rollout approach for
a selected set of opening words, which have been identified
in earlier works as best or nearly best choices for initial guess
selection [3], [5], [7].

In summary, our tests show that our rollout approach
improves substantially upon the performance of the three
heuristics. In particular, the rollout performance is very close
to the optimal, as calculated in the papers [7] and [3], even in
the case of the GEP base heuristic, whose performance is far
from optimal. This is consistent with a general interpretation of
rollout and approximation in value space methods as a single
step of Newton’s method for solving the Bellman equation
associated with the underlying DP problem [1], [2]. The role
of the base heuristic is to provide the starting point for the
Newton step, and apparently all three base heuristics provide
starting points that are within the region of fast convergence
of Newton’s method. The running time for solving any given
instance of the puzzle was in the order of a few seconds, thus

Fig. 2: Base heuristics against rollout in Hard mode.

showing that our approach is suitable for online implementa-
tion.

VI. CONCLUDING REMARKS

In this paper, we described a rollout algorithm for solving
online the Wordle puzzle. Our computational results show that
the performance of our algorithm is very close to optimal,
and much better than the ones of the three different base
heuristics we used. Moreover, our rollout approach is capable
of addressing extensions of Wordle (see Appendix D) and
other types of online planning and adaptive control problems
for which exact solution by DP is infeasible.

REFERENCES

[1] D. Bertsekas, Rollout, policy iteration, and distributed reinforcement
learning. Athena Scientific, 2020.

[2] ——, Lessons from AlphaZero for optimal, model predictive, and adaptive
control. Athena Scientific, 2022.

[3] D. Bertsimas and A. Paskov, “An exact and interpretable solution to
wordle,” https://scholar.google.com/scholar?hl=en&as sdt=0%2C3&q=
An+Exact+and+Interpretable+Solution+to+Wordle&btnG=&oq=an+,
2022, accessed: 2022-11-14.

[4] M. Bonthron, “Rank one approximation as a strategy for wordle,” arXiv
preprint arXiv:2204.06324, 2022.

[5] N. de Silva, “Selecting seed words for wordle using character statistics,”
arXiv preprint arXiv:2202.03457, 2022.

[6] A. Ho, “Solving wordle with reinforcement learning,” https://rb.gy/dvu2ft,
2022, accessed: 2022-11-14.

[7] A. Selby, “The best strategies for wordle,” https://sonorouschocolate.com/
notes/index.php?title=The best strategies for Wordle, 2022, accessed:
2022-11-14.

[8] M. B. Short, “Winning wordle wisely,” arXiv preprint arXiv:2202.02148,
2022.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 20,2023 at 03:24:15 UTC from IEEE Xplore. Restrictions apply.

