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A Bridge Between Convex Analysis and Approximate Dynamic
Programming

Convex Analysis

Deterministic Problems
Proximal Algorithms
Iterative Regularization
Hyperplane Separation
Iterative Descent

Approximate DP

Stochastic Problems
Policy Iteration
Large Linear Systems of Equations
Simulation-Temporal Differences
AlphaGo

4

Polyhedral Convexity Template

x0 x1 x2 x3 x4 f(x) X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

αx + (1 − α)y, 0 ≤ α ≤ 1

< 90◦

Level set
{
x | f(x) ≤ f∗ + αc2/2

}
Optimal solution set x0

X

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

xk

1

4

Polyhedral Convexity Template

x0 x1 x2 x3 x4 f(x) X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

αx + (1 − α)y, 0 ≤ α ≤ 1

< 90◦

Level set
{
x | f(x) ≤ f∗ + αc2/2

}
Optimal solution set x0

X

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

xk

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t,�, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t,�, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t,�, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t,�, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t,�, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t,�, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t,�, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t,�, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Separating hyperplane

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t,�, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t,�, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

Bertsekas (M.I.T.) Proximal Algorithms and Temporal Difference Methods 2 / 37



Problem Formulation: Find a Fixed Point of a Nonexpansive Mapping

Problem: Solve x = T (x)

where we assume that T : <n 7→ <n has a unique fixed point and is nonexpansive,∥∥T (x1)− T (x2)
∥∥ ≤ γ‖x1 − x2‖, ∀ x1, x2 ∈ <n,

where 0 ≤ γ ≤ 1 and ‖ · ‖ is some Euclidean norm.

Primary focus: The linear case

x = Ax + b

where I − A is nearly singular and/or has huge dimension.

“Nearly singular" suggests the use of regularization and the proximal algorithm.

“Huge dimension" suggests projection over a low-dimensional subspace and
simulation.
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Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping P(c) : <n 7→ <n for x − T (x) = 0, where c > 0

x 7→ Unique solution of y − T (y) =
1
c

(x − y)

The proximal algorithm is
xk+1 = P(c)(xk )

x∗ x∗ c v xkk xk+1+1 xk+2d z xP (c)(x)

) y − T (y) ) y − T (y)

) y − ) y −

+2 Slope = −1

c

) Proximal Mapping Proximal Algorithm ) Proximal Mapping Proximal Algorithm

Special case: Convex minimization minx∈<n f (x), or ∇f (x) = 0

T (x) = x −∇f (x), f : Convex differentiable function

P(c)(x) = arg min
y∈<n

{
f (y) +

1
2c
‖y − x‖2

}
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Multistep Mappings - Temporal Differences - DP (1990s)

Consider the special case of a linear system T (x) = Ax + b

For λ ∈ (0, 1), introduce the multistep mapping

T (λ) = (1− λ)
∞∑
`=0

λ`T `+1

T (λ) is linear: T (λ)(x) = A(λ)x + b(λ), where

A(λ) = (1− λ)
∞∑
`=0

λ`A`+1, b(λ) =
∞∑
`=0

λ`A`b

T (λ) has the same fixed point as T

Algorithms (central in approximate DP/policy iteration/policy evaluation, where
T is the Bellman equation mapping of a policy)

xk+1 = T (xk ) (value iteration) or xk+1 = T (λ)(xk )

xk+1 = xk + γk
(
sampleT (λ)(xk )− xk

)
with γk ↓ 0 (TD(λ) algorithm)

Simulation-based with intermediate projection onto a subspace of basis functions
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Key Fact: The Multistep Mapping is an Extrapolated and Faster Version
of the Proximal Mapping

T P

Tx Tx P

x

T P (c)

P (c)x = x + λ(T (λ)x − x) Tx T (λ)x = x +
c + 1

c
(P (c)x − x)

) T (λ)x = P (c) Tx = TP (c)x Tx T

λ =
c

c + 1
, c =

λ

1 − λ

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

T (λ) IS FASTER
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Extrapolated Iteration

4
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x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ,⇥) (u, w)
µ

⇥

⇥
u + w

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

The extrapolated iterate T (x) is closer to x∗ than the proximal iterate x

A FREE LUNCH
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Another Possibility: Introduce Projection into the Proximal Algorithm

Consider Π: Projection Onto a Low-Dimensional Subspace

Solve the projected proximal equation x = ΠP(c)(x) [has the same solution as the
multistep equation x = ΠT (λ)(x)]

Use the projected proximal algorithm

xk+1 = ΠP(c)(xk )

modeled after the TD algorithms with projection.

Subspace S

xk

xk+2

xk+3

= ΠT (λ)xk

x Tx T (λ)xk =

k xk+1 = ΠP (c)xk

k P (c)xk

The simulation-based TD methodology can be used in the proximal context
The sampled version of the projected proximal algorithm is identical to TD(λ)

xk+1 = xk + γk
(
sample ΠP(c)(xk )− xk

)
, γk ↓ 0
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Outline

1 Acceleration of the Proximal Algorithm for Linear Systems

2 Simulation-Based Projected Proximal Algorithms for Linear Systems

3 Acceleration of the Proximal Algorithm for Nonlinear Systems

4 Acceleration of Forward-Backward and Proximal Gradient Algorithms
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Properties of Multistep Mappings for Linear Systems

Consider the linear system x = Ax + b under the following assumption:
The system has a unique solution x∗ and spectral radius σ(A) ≤ 1.

Some basic results (Bertsekas and Yu, 2009)

The mapping T (λ) = (1− λ)
∑∞
`=0 λ

`T `+1 has the form

T (λ)(x) = A(λ)x + b(λ),

where

A(λ) = (1− λ)
∞∑
`=0

λ`A`+1, b(λ) =
∞∑
`=0

λ`A`b

The eigenvalues of A(λ) have the form

θi = (1− λ)
∞∑
`=0

λ`ζ`+1
i =

ζi (1− λ)

1− ζiλ
, i = 1, . . . , n,

where ζi , i = 1, . . . , n, are the eigenvalues of A. Furthermore,

σ(A(λ)) < 1, lim
λ→1

σ
(
A(λ)) = 0
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The Extrapolation Formula

Let c > 0 and λ = c
c+1 . Consider the proximal mapping

P(c) : x 7→ Unique solution of y − T (y) =
1
c

(x − y)

Then:
T (λ) = T · P(c) = P(c) · T

and x , P(c)x , and T (λ)x are colinear:

T (λ)x = P(c)x +
1
c
(
P(c)x − x

)

T P

Tx Tx P

x

T P (c)

P (c)x = x + λ(T (λ)x − x) Tx T (λ)x = x +
c + 1

c
(P (c)x − x)

) T (λ)x = P (c) Tx = TP (c)x Tx T

λ =
c

c + 1
, c =

λ

1 − λ

Extrapolation Formula T (λ) = P (c) · T = T · P (c)
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Proof outline

Main idea: Express the proximal mapping in terms of a power series
We have

P(c)x =

(
c + 1

c
I − A

)−1(
b +

1
c

x
)

and by a series expansion(
c + 1

c
I − A

)−1

=

(
1
λ

I − A
)−1

= λ(I − λA)−1 = λ

∞∑
`=0

(λA)`

Recall that

T (λ) = (1− λ)
∞∑
`=0

λ`A`+1x +
∞∑
`=0

λ`A`b

Using these relations and the fact 1
c = 1−λ

λ
, it follows that

T (λ) = T · P(c) = P(c) · T
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Acceleration

The eigenvalues of T (λ) and P(c) are simply related:

θi = ζi · θi

where
θi = i th Eig(T (λ)), θi = i th Eig(P(c)), ζi = i th Eig(A)

Moreover, P(c) and T (λ) have the same eigenvectors.

Convergence rate improvement: We have

σ(A(λ))

σ(A)
≤ σ(A

(λ)
) < 1

so σ(A(λ)) < σ(A
(λ)

) if σ(A) < 1.

Optimal extrapolation
The eigenvalues of the extrapolated iteration

xk+1 =
(
(1− γ)P(c) + γT (λ))xk , γ > 0

are θi (γ) = (1− γ)θi + γθi , and for some γ̂ ≥ 1, we have acceleration for all γ ∈ (0, γ̂).
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A Note on Extrapolation in the Proximal Algorithm

4

Polyhedral Convexity Template

xk

xk+1

g

fS(s | H0)

x∗

X

Level Sets of f

∂f(x∗)

Significance Level
s s − t s + t
Space of Measurement X
H0 True Type I Error

1

Pc,f (z) ⌃f(x) 0 slope � c v xk xk+1 xk+2

w pW (·; x) z = g(w) g

⇤k � Dk(x, xk) ⇤k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⇧)(x, z)

rx(µ) � ⌅ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇥x ⇥ b}

a�(C) C C ⇤ S⇤ d z x

Hyperplane {x | a⇥x = b} = {x | a⇥x = a⇥x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ,⇥) (u, w)
µ

⇥

⇥
u + w

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

It is well-known that extrapolation by any factor less than 2 preserves the
convergence of the proximal algorithm, but does not guarantee acceleration.

This is a different and unrelated old result (Bertsekas, 1975, for the convex
minimization case, Eckstein and Bertsekas, 1992, for the general case).

The acceleration result of this talk holds only for the fixed point/nonexpansive case
x = T (x).
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Approximation in a Subspace of Basis Functions

Approximate the solution x∗ of x = Ax + b within a low-dimensional subspace
Consider the subspace

S = {Φr | r ∈ <s}

spanned by the columns φ1, . . . , φs of an n × s matrix Φ (s << n)

Subspace S = {Φr | r ∈ ℜs}

} x∗

∗ x̃

Solution Approximate solution

Solution Approximate solution

Examples
Standard bases: Polynomials, radial basis functions, wavelets, etc

Throw away some components of x interpolate for the rest

Aggregation (e.g., form a smaller system using linear combinations of rows and
columns of A)

Feature-based approximation (features of the components of x are the rows of Φ -
generated “manually" or “automatically", e.g., by a neural network)
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How to Approximate Vectors x within S?

Introduce a “projection" operation Π : <n → S (Π is linear and Πx = x for all x ∈ S)

Subspace S = {Φr | r ∈ ℜs}

x

x Projection Πx

General form: Oblique Projection

Π = Φ(Ψ′ΞΦ)−1Ψ′Ξ,

where Ξ is a diagonal n × n positive semidefinite, and Ψ is an n × s matrix such that
Ψ′ΞΦ is invertible

Examples
Orthogonal projection (Ψ = Φ and Ξ is positive definite)

Seminorm projection (Ξ may have some 0 diagonal components)

Aggregation (Π = ΦD, where the rows of Φ and D are probability distributions)
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Projected Proximal Equation: x = ΠP(c)(x)

Subspace S = {Φr | r ∈ ℜs}

} x∗

) Πx∗

Bias (

xc = ΠP (c)(xc)

) Bias (→ 0 as c → ∞)

P (c)(xc)

Galerkin approximation approach: Project the equation not the solution
Recall the proximal equation

x = P(c)(x) = A
(λ)

x + b
(λ)

We solve the projected version x = ΠP(c)(x) at the expense of “bias" (xc − Πx∗)

Important Point: Large c diminishes the bias

x∗ − xc =
(
I − ΠA

(λ))−1
(x∗ − Πx∗)

We have limλ→1 A
(λ)

= 0, so the bias (xc − Πx∗)→ 0 as c →∞
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Algebraic Form of the Projected Proximal Equations

Recall the proximal equation

x = P(c)(x) = A
(λ)

x + b
(λ)

where

A
(λ)

= (1− λ)
∞∑
`=0

λ`A`, b
(λ)

=
∞∑
`=0

λ`+1A`b, λ =
c

c + 1

For the oblique projection case Π = Φ(Ψ′ΞΦ)−1Ψ′Ξ

The projected equation is the (low-dimensional linear equation) r = Q(λ)r + d (λ) where

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA
(λ)

Φ, d (λ) = (Ψ′ΞΦ)−1Ψ′Ξb
(λ)

Important point:

A
(λ)

and b
(λ)

involve powers of matrices (which facilitates simulation)

For any value of λ, Q(λ) and d (λ) can be evaluated by simulation, just as
conveniently as for λ = 0
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Projected Proximal and Proximal Projected Algorithms

Projected proximal: Fixed point algorithm for the projected proximal equation

xk+1 = ΠP(c)(xk ) or equivalently rk+1 = Q(λ)rk + d (λ)

Can also use its extrapolated version xk+1 = ΠT (λ)(xk ). Converges if ΠP(c) is a
contraction (true if c is sufficiently large or if Π is properly chosen)

Subspace S

xk

xk+2

xk+3

= ΠT (λ)xk

x Tx T (λ)xk =

k xk+1 = ΠP (c)xk

k P (c)xk

Proximal projected: Proximal algorithm for the low-dimensional proximal
equation r = Q(λ)r + d (λ)

rk+1 = P̂(ĉ)(rk ), (ĉ > 0: unrelated to c and λ)

where P̂(ĉ) : <s 7→ <s is the mapping

r 7→ Unique solution of y −Q(λ)y − d (λ) =
1
ĉ

(r − y)
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The Need for Simulation for Large Systems

Recall the projected equation r = Q(λ)r + d (λ)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA
(λ)

Φ, d (λ) = (Ψ′ΞΦ)−1Ψ′Ξb
(λ)

A
(λ)

= (1− λ)
∞∑
`=0

λ`A`, b
(λ)

=
∞∑
`=0

λ`+1A`b, λ =
c

c + 1

Need for simulation

Q(λ) and d (λ) have low dimension but cannot be explicitly computed

Reason: They involve HUGE-dimensional inner products

Monte Carlo simulation can approximate HUGE-dimensional inner products

Connection with Monte Carlo integration
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Simulation-Based Methodology

Simulation Analytics
Key idea: Interpret linear algebra operations (matrix products, inner products) as
computing expected values with suitable distributions (matrix Ξ)

Approximate the expected values by using sampling and laws of large numbers

Generate samples of powers of A by using a suitable Markov chain

Important issues

Contraction properties of ΠP(c)

Choice of projection (norm mismatch issue)

Near singularity of projected proximal equation (sensitivity to sampling error)

Bias-variance tradeoff (as λ ↑ 1, less bias, greater simulation error, more sampling
needed)

Issues of importance sampling
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Simulation-Based Experience

A happy union of research in AI (low-dimensional representations, deep neural
networks, BIG data) and in control/OR (DP, optimization, aggregation, etc)

Many algorithmic variations at the interface of DP, iterative stochastic optimization,
Monte Carlo methods

Challenging implementation, but very difficult problems can be addressed

A long history of successful implementation in approximate DP

Recent success story of AlphaGo program
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Proximal Extrapolation for the Nonlinear System x = T (x)

Assume that the system has a unique solution x∗, and T is nonexpansive:∥∥T (x1)− T (x2)
∥∥ ≤ γ‖x1 − x2‖, ∀ x1, x2 ∈ <n

where ‖ · ‖ is some Euclidean norm and γ is a scalar with 0 ≤ γ ≤ 1.

Define the proximal mapping P(c):

P(c) : x 7→ Unique solution of y − T (y) =
1
c

(x − y)

Consider the extrapolated proximal mapping

E (c)(x) = x +
c + 1

c
(
P(c)(x)− x

)
Important note: P(c)(x) and E (c)(x) cannot be easily computed by simulation

Acceleration Result: We have E (c)(x) = T
(
P(c)(x)

)
and hence∥∥E (c)(x)− x∗

∥∥ ≤ γ∥∥P(c)(x)− x∗
∥∥
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Geometric Interpretation and Proof

x∗ d z x

) y − T (y)

) y −

+2 Slope = −1

c

x = P (c)(x)) E(c)(x) = T (x)

x − T (x) = 1
c (x − x)

From the definition of P(c), we have

P(c)(x) +
1
c
(
P(c)(x)− x

)
= T

(
P(c)(x)

)
.

so that

E (c)(x) = x +
c + 1

c
(
P(c)(x)− x

)
= P(c)(x) +

1
c
(
P(c)(x)− x

)
= T

(
P(c)(x)

)
Hence, using the assumption,∥∥E (c)(x)− x∗

∥∥ ≤ ∥∥∥T
(
P(c)(x)

)
− x∗

∥∥∥ =
∥∥∥T
(
P(c)(x)

)
− T (x∗)

∥∥∥ ≤ γ∥∥P(c)(x)− x∗
∥∥.
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Forward-Backward Splitting Algorithm for Fixed Point Problem
x = T (x)− H(x)

xk+1 = P(α)(xk − αH(xk )
)
, α > 0

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Slope Optimal dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/c Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

w pW (·; x) z = g(w) g

1

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Slope Optimal dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

w pW (·; x) z = g(w) g

1

x0 x0 − α∇f(x0) x1 x2 x3 x∗ x1 − α∇f(x1) x2 ∂h(x) x − ∇f(x)

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Gradient Step Proximal Step dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

1

x0 x0 − α∇f(x0) x1 x2 x3 x∗ x1 − α∇f(x1) x2 ∂h(x) x − ∇f(x)

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Gradient Step Proximal Step dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) x − T (x) = 1
c (x − x)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) + H(x) = 1
α (z − x) + H(x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):
If T is nonexpansive, and H is single-valued and strongly monotone, the F-B
algorithm converges to x∗ if α is sufficiently small

For a minimization problem where H is the gradient of a strongly convex function,
it becomes the proximal gradient algorithm
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Extrapolation and Acceleration

Extrapolated forward-backward algorithm

zk = xk − αH(xk ), xk = P(α)(zk ) (Forward-Backward Iteration)

xk+1 = xk +
1
α

(xk − zk )− H(xk ) (Extrapolation)

λ Slope = −1/α

3 x∗

) y − T (y)

) Forward Step

) y −xk

zk = xk − αH(xk)

xk − T (xk) + H(xk) = 1
α (zk − xk) + H(xk)

) Forward-Backward Step

) Forward-Backward Step

) xk = P (α)(zk)

Extrapolated Forward-Backward Step

Extrapolated Forward-Backward Step xk+1 = T (xk) − H(xk)

−H(y)

We have
xk+1 = T (xk )− H(xk )

so there is acceleration if T − H is contractive.
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Using Simulation in the Linear Case: T (x) = Ax + b, H(x) = Bx

Oblique projection Π = Φ(Ψ′ΞΦ)−1Ψ′Ξ onto a subspace S = {Φr | r ∈ <s}

zk = xk − αBxk , xk = ΠP(α)(zk ) (Projected F-B Iteration)

The projected F-B equation is the (low-dimensional linear equation)

r = Q(λ)r + d (λ)

where

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA
(λ)

(I − αB)Φ, d (λ) = (Ψ′ΞΦ)−1Ψ′Ξb
(λ)

A
(λ)

= (1− λ)
∞∑
`=0

λ`A`, b
(λ)

=
∞∑
`=0

λ`+1A`b, λ =
α

α + 1

Similar to the proximal case, it can be implemented by simulation.
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Concluding Remarks

Proximal and multistep/TD iterations for fixed point problems are closely
connected

x , P(c)(x), and T (λ)(x) are colinear and simply related (no line search needed)

Multistep iteration is faster than proximal

Cost-free acceleration of the proximal algorithm. It can be very substantial,
particularly for small c

Extrapolation formula provides new insight and justification for multistep methods
I TD(λ) is the stochastic version of the proximal algorithm
I TD(λ) with subspace approximation is stochastic version of the projected proximal

Bring the use of subspace approximation and simulation into the proximal context
(for linear problems)

The ideas extend to the forward-backward algorithm and potentially other
algorithmic contexts that involve fixed points and proximal operators
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Thank you!
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