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We consider optimization problems with equality, inequality, and abstract set constraints. We investigate the relations
between various characteristics of the constraint set related to the existence of Lagrange multipliers. For problems
with no abstract set constraint, the classical condition of quasiregularity provides the connecting link between the
most common constraint qualifications and existence of Lagrange multipliers. In earlier work, we introduced a new
and general condition, pseudonormality, that is central within the theory of constraint qualifications, exact penalty
functions, and existence of Lagrange multipliers. In this paper, we explore the relations between pseudonormality,
quasiregularity, and existence of Lagrange multipliers, and show that, unlike pseudonormality, quasiregularity cannot
play the role of a general constraint qualification in the presence of an abstract set constraint. In particular, under a
regularity assumption on the abstract constraint set, we show that pseudonormality implies quasiregularity. However,
contrary to pseudonormality, quasiregularity does not imply the existence of Lagrange multipliers, except under
additional assumptions.
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1 INTRODUCTION

In this paper, we consider finite-dimensional optimization problems of the form

minimize f (x)

subject to x ∈ C,
(1)

where the constraint set C consists of equality and inequality constraints as well as an additional
abstract set constraint x ∈ X:

C = X ∩ {x | h1(x) = 0, . . . , hm(x) = 0} ∩ {x | g1(x) ≤ 0, . . . , gr(x) ≤ 0}. (2)
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We assume throughout the paper that f , hi , gj are smooth (continuously differentiable)
functions from �n to �, and X is a nonempty closed set.

The analysis of optimization problems that include abstract set constraints has a long history.
For example, the classical formulations of convex optimization problems, starting with the
works of Fenchel [1] and Rockafellar [2], involve an abstract set constraint. While equality
and inequality constraints are most common in representing the constraint sets, for many
problems, optimality conditions and computational algorithms may become more convenient
when some of these equality/inequality constraints as well as additional complicated side
conditions are lumped into a suitable abstract set constraint.

The study of constrained optimization problems revolves around characterizing how the
cost function behaves as we move from a local minimum to neighboring feasible points. The
relevant variations can be studied in terms of various conical approximations to the constraint
set. In this paper, we use two such approximations, namely the tangent cone and the normal
cone, which are particularly useful in characterizing local optimality of feasible solutions of
the above problem [see Ref. 3].

In our terminology, a vector y is a tangent of a set S ⊂ �n at a vector x ∈ S if either y = 0
or there exists a sequence {xk} ⊂ S such that xk �= x for all k and

xk −→ x,
xk − x

‖xk − x‖ −→ y

‖y‖ .

The set of all tangent vectors of S at x is denoted by TS(x) and is also referred to as the tangent
cone of S at x. The polar cone of any cone T is defined by

T ∗ = {z | z′y ≤ 0, y ∈ T }.

The normal cone is another conical approximation that is useful in the context of optimality
conditions, and is of central importance in nonsmooth analysis [see Refs. 4–7]. For a closed
set X and a point x ∈ X, the normal cone of X at x, denoted by NX(x), is obtained from the
polar cone TX(x)∗ by means of a closure operation.1 In particular, we have z ∈ NX(x) if there
exist sequences {xk} ⊂ X and {zk} such that xk → x, zk → z, and zk ∈ TX(xk)∗ for all k. From
the definition of the normal cone, an important closedness property follows: if {xk} ⊂ X is a
sequence that converges to some x∗ ∈ X, and {zk} is a sequence that converges to some z∗
with zk ∈ NX(xk) for all k, then z∗ ∈ NX(x∗) [see Ref. 6, Proposition 6.6].

It can be seen that, for any x ∈ X, we have TX(x)∗ ⊂ NX(x). Note that NX(x) may not
always be equal to TX(x)∗. When TX(x)∗ = NX(x), we say that X is regular at x [see Ref. 6,
p. 199]. Regularity is an important property, which distinguishes problems that have satisfactory
Lagrange multiplier theory from those that do not, as has been been emphasized in earlier
work [3,8,9]. In this paper, we further elaborate on the significance of this property of the
constraint set in relation to existence of Lagrange multipliers.

A classical necessary condition for a vector x∗ ∈ C to be a local minimum of f over C is

∇f (x∗)′y ≥ 0, ∀ y ∈ TC(x∗), (3)

where TC(x∗) is the tangent cone of C at x∗ [see for e.g. Refs. 6,8,10–12]. When the constraint
set is specified in terms of equality and inequality constraints, as in problems (1) and (2), more
refined optimality conditions can be obtained. In particular, we say that the constraint set C

1 The terminology limiting normal cone is also used in the literature to avoid confusion with the polar of the
tangent cone. We use the term normal cone in this paper for consistency with our earlier work, see Ref. [9]. This term
is also used by Rockafellar and Wets [6].
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of Eq. (2) admits Lagrange multipliers at a point x∗ ∈ C if for every smooth cost function f

for which x∗ is a local minimum of problem (1), there exist vectors λ∗ = (λ∗
1, . . . , λ

∗
m) and

µ∗ = (µ∗
1, . . . , µ

∗
r ) that satisfy the following conditions:


∇f (x∗) +

m∑
i=1

λ∗
i ∇hi(x

∗) +
r∑

j=1

µ∗
j ∇gj (x

∗)




′

y ≥ 0, ∀y ∈ TX(x∗), (4)

µ∗
j ≥ 0, ∀j = 1, . . . , r, (5)

µ∗
j = 0, ∀j �∈ A(x∗), (6)

where A(x∗) = {j | gj (x
∗) = 0} is the index set of inequality constraints that are active at x∗.

We refer to such a pair (λ∗, µ∗) as a Lagrange multiplier vector corresponding to f and x∗ or
simply a Lagrange multiplier.

In the case where X = �n, a typical approach to asserting the admittance of Lagrange
multipliers is to assume structure in the constraint set, which guarantees that the tangent cone
TC(x∗) has the form

TC(x∗) = V (x∗),

where V (x∗) is the cone of first-order feasible variations at x∗, given by

V (x∗) = {y | ∇hi(x
∗)′y = 0, i = 1, . . . , m, ∇gj (x

∗)′y ≤ 0, j ∈ A(x∗)}. (7)

In this case we say that x∗ is a quasiregular point or that quasiregularity holds at x∗ [other
terms used are x∗ ‘satisfiesAbadie’s constraint qualification’[10,13], or ‘is a regular point’[12].
When there is no abstract set constraint, it is well-known [see for e.g. Ref. 11, p. 332] that for
a given smooth f for which x∗ is a local minimum, there exist Lagrange multipliers if and
only if

∇f (x∗)′y ≥ 0, ∀y ∈ V (x∗).

If x∗ is a quasiregular local minimum, it follows from Eq. (3) that the above condition holds,
so the constraint set admits Lagrange multipliers at x∗. Thus, a common line of analysis when
X = �n is to establish various conditions, also known as constraint qualifications, which imply
quasiregularity, and therefore imply that the constraint set admits Lagrange multipliers [see
for e.g. Refs. 10,11]. This line of analysis, however, requires fairly complicated proofs to show
the relations of constraint qualifications to quasiregularity.

A general constraint qualification, called quasinormality, was introduced for the special
case where X = �n by Hestenes in Ref. [12]. Hestenes showed that quasinormality implies
quasiregularity [see also Ref. 11, Proposition 3.3.17]. Since it is simple to show that the major
classical constraint qualifications imply quasinormality [see for e.g. Ref. 11], this provides an
alternative line of proof that these constraint qualifications imply quasiregularity. The extension
of quasinormality to the case where X �= �n was investigated in Ref. [9]. In particular, we say
that a feasible vectorx∗ of problems (1) and (2) is quasinormal if there are no scalarsλ1, . . . , λm,
µ1, . . . , µr , and no sequence {xk} ⊂ X such that:

(i) −
(∑m

i=1 λi∇hi(x
∗) + ∑r

j=1 µj∇gj (x
∗)

)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r .
(iii) λ1, . . . , λm, µ1, . . . , µr are not all equal to 0.
(iv) {xk} converges to x∗ and for each k, λihi(x

k) > 0 for all i with λi �= 0 and µjgj (x
k) > 0

for all j with µj �= 0.
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A slightly stronger notion, known as pseudonormality, was also introduced in Ref. [9], and
was shown to form the connecting link between major constraint qualifications, admittance of
Lagrange multipliers, and exact penalty function theory, for the general case where X �= �n.
In particular, we say that a feasible vector x∗ of problems (1) and (2) is pseudonormal if there
are no scalars λ1, . . . , λm, µ1, . . . , µr , and no sequence {xk} ⊂ X such that:

(i) −
(∑m

i=1 λi∇hi(x
∗) + ∑r

j=1 µj∇gj (x
∗)

)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r , and µj = 0 for all j �∈ A(x∗).
(iii) {xk} converges to x∗ and

m∑
i=1

λihi(x
k) +

r∑
j=1

µjgj (x
k) > 0, ∀k. (8)

In this paper, we focus on the following extension of the notion of quasiregularity, adopted
in several treatments of Lagrange multiplier theory [see for e.g. Ref. 8] for the case where
X may be a strict subset of �n. We say that a feasible vector x∗ of problems (1) and (2) is
quasiregular if

TC(x∗) = V (x∗) ∩ TX(x∗),

where V (x∗) is the cone of first-order feasible variations [cf. Eq. (7)]. We investigate the con-
nections between pseudonormality, quasiregularity, and admittance of Lagrange multipliers
when X �= �n. Our goal is to show that, in the presence of an abstract set constraint, unlike
pseudonormality, quasiregularity does not provide the connecting link between constraint qual-
ifications and existence of Lagrange multipliers. In Section 2, we show that under a regularity
assumption on X, pseudonormality implies quasiregularity. Our line of proof is not only more
general than the one of Hestenes (which applies only to the case X = �n), but is also con-
siderably simpler. In Section 3, we focus on the relation of quasiregularity and admittance
of Lagrange multipliers. We show that contrary to the case where X = �n, quasiregularity by
itself is not sufficient to guarantee the existence of a Lagrange multiplier. Thus the importance of
quasiregularity, which constitutes the classical pathway to Lagrange multipliers when X = �n,
diminishes when X �= �n. On the other hand, pseudonormality still provides unification of the
theory.

Regarding notation, all vectors are viewed as column vectors, and a prime denotes
transposition, so x ′y denotes the inner product of the vectors x and y. We will use throughout
the standard Euclidean norm ‖x‖ = (x ′x)1/2. We denote the convex hull and the closure of a
set C by conv(C) and cl(C), respectively.

2 PSEUDONORMALITY, QUASINORMALITY, AND QUASIREGULARITY

In this section, we investigate the connection of pseudonormality and quasiregularity. In partic-
ular, we show that under a regularity assumption on X, quasinormality implies quasiregularity
even when X �= �n. This shows that any constraint qualification that implies quasinormality
also implies quasiregularity. Moreover, since pseudonormality implies quasinormality, it fol-
lows that under the given assumption, pseudonormality also implies quasiregularity.

We first give some basic results regarding cones and their polars that will be useful in our
analysis. For the proofs, see Ref. [2] or Ref. [3].
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LEMMA 1

(a) Let C be a cone. Then (C∗)∗ = cl(conv(C)). In particular, if C is closed and convex,
(C∗)∗ = C.

(b) Let C1 and C2 be two cones. If C1 ⊂ C2, then C∗
2 ⊂ C∗

1 .
(c) Let C1 and C2 be two cones. Then, (C1 + C2)

∗ = C∗
1 ∩ C∗

2 and C∗
1 + C∗

2 ⊂ (C1 ∩ C2)
∗.

In particular, if C1 and C2 are closed and convex, (C1 ∩ C2)
∗ = cl(C∗

1 + C∗
2 ).

Next, we prove the following lemma that relates to the properties of quasinormality. From
here on in our analysis, we assume for simplicity that all the constraints of problems (1)
and (2) are inequalities. [Equality constraints hi(x) = 0 can be handled by conversion to two
inequality constraints, hi(x) ≤ 0, −hi(x) ≤ 0. We can then assign multipliers λ+

i and λ−
i to

these constraints, respectively, and let λi = λ+
i − λ−

i to get the conditions related to equality
constraints in the definitions of pseudonormality and quasinormality, cf. Section 1.]

LEMMA 2 If a vector x∗ ∈ C is quasinormal, then all feasible vectors in a neighborhood of
x∗ are quasinormal.

Proof Assume that the claim is not true. Then we can find a sequence {xk} ⊂ C such that
xk �= x∗ for all k, xk → x∗ and xk is not quasinormal for all k. This implies, for each k, the
existence of scalars ξk

1 , . . . , ξ k
r , and a sequence {xk,l} ⊂ X such that:

(a)

−



r∑
j=1

ξk
j ∇gj (x

k)


 ∈ NX(xk), (9)

(b) ξk
j ≥ 0, for all j = 1, . . . , r , and ξk

1 , . . . , ξ k
r are not all equal to 0.

(c) liml→∞ xk,l = xk , and for all l, ξk
j gj (x

k,l) > 0 for all j with ξk
j > 0.

For each k denote

δk =
√√√√

r∑
j=1

(ξ k
j )2,

µk
j = ξk

j

δk
, j = 1, . . . , r, ∀ k.

Since δk �= 0 and NX(xk) is a cone, conditions (a)–(c) for the scalars ξk
1 , . . . , ξ k

r yield the
following set of conditions that hold for each k for the scalars µk

1, . . . , µ
k
r :

(i)

−



r∑
j=1

µk
j ∇gj (x

k)


 ∈ NX(xk), (10)

(ii) µk
j ≥ 0, for all j = 1, . . . , r , and µk

1, . . . , µ
k
r are not all equal to 0.

(iii) There exists a sequence {xk,l} ⊂ X such that liml→∞ xk,l = xk , and for all l,
µk

j gj (x
k,l) > 0 for all j with µk

j > 0.
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Since by construction we have
r∑

j=1

(µk
j )2 = 1, (11)

the sequence {µk
1, . . . , µ

k
r } is bounded and must contain a subsequence that converges to some

nonzero limit {µ∗
1, . . . , µ

∗
r }. Assume without loss of generality that {µk

1, . . . , µ
k
r } converges to

{µ∗
1, . . . , µ

∗
r }. Taking the limit in Eq. (10), and using the closedness of the normal cone, we

see that this limit must satisfy

−



r∑
j=1

µ∗
j ∇gj (x

∗)


 ∈ NX(x∗). (12)

Moreover, from condition (ii) and Eq. (11), it follows that µ∗
j ≥ 0, for all j = 1, . . . , r , and

µ∗
1, . . . , µ

∗
r are not all equal to 0. Finally, let

J = {j | µ∗
j > 0}.

Then, there exists some k0 such that for all k ≥ k0, we must have µk
j > 0, for all j ∈ J . From

condition (iii), it follows that for each k ≥ k0, there exists a sequence {xk,l} ⊂ X with

lim
l→∞ xk,l = xk, gj (x

k,l) > 0, ∀ l, ∀j ∈ J.

For each k ≥ k0, choose an index lk such that l1 < · · · < lk−1 < lk and

lim
k→∞ xk,lk = x∗.

Consider the sequence {yk} defined by

yk = x(k0+k−1),(lk0+k−1), k = 1, 2, . . . .

It follows from the preceding relations that {yk} ⊂ X and

lim
k→∞ yk = x∗, gj (y

k) > 0, ∀ k, ∀j ∈ J.

The existence of scalars µ∗
1, . . . , µ

∗
r that satisfy Eq. (12) and the sequence {yk} that satisfies

the preceding relation violates the quasinormality of x∗, thus completing the proof. �

We mentioned that a classical necessary condition for a vector x∗ ∈ C to be a local minimum
of the function f over the set C is

−∇f (x∗) ∈ TC(x∗)∗. (13)

An interesting converse was given by Gould and Tolle [14], namely that every vector in TC(x∗)∗
is equal to the negative of the gradient of some function having x∗ as a local minimum over C.
Rockafellar and Wets [6, p. 205] showed that this function can be taken to be smooth over �n

as in Lemma 3.
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LEMMA 3 Let x̄ be a vector in C. For every y ∈ TC(x̄)∗, there is a smooth function F with
−∇F(x̄) = y, which achieves a strict global minimum over C at x̄.

We use this result to obtain a specific representation of a vector that belongs to TC(x̄)∗
for some x̄ ∈ C under a quasinormality condition, as given in the following proposition. This
result will be central in showing the relation of quasinormality to quasiregularity.

PROPOSITION 1 If x̄ is a quasinormal vector of C, then any y ∈ TC(x̄)∗ can be represented as

y = z +
r∑

j=1

µ̄j∇gj (x̄),

where z ∈ NX(x̄), µ̄j ≥ 0, for all j = 1, . . . , r . Furthermore, there exists a sequence {xk} ⊂ X

that converges to x̄ and is such that µ̄j gj (x
k) > 0 for all k and all j with µ̄j > 0.

Proof Let y be a vector that belongs to TC(x̄)∗. By Lemma 3, there exists a smooth function
F that achieves a strict global minimum over C at x̄ with −∇F(x̄) = y. We use a quadratic
penalty function approach. For each k = 1, 2, . . ., choose an ε > 0 and consider the ‘penalized’
problem

minimize Fk(x)

subject to x ∈ X ∩ S,

where

Fk(x) = F(x) + k

2

r∑
j=1

(g+
j (x))2,

and S = {x | ‖x − x̄‖ ≤ ε}. Since X ∩ S is compact, by Weierstrass’ theorem, there exists an
optimal solution xk for the above problem. We have for all k

F (xk) + k

2

r∑
j=1

(g+
j (xk))2 = Fk(xk) ≤ Fk(x̄) = F(x̄) (14)

and since F(xk) is bounded over X ∩ S, we obtain

lim
k→∞ g+

j (xk) = 0, j = 1, . . . , r;

otherwise the left-hand side of Eq. (14) would become unbounded from above as k → ∞.
Therefore, every limit point x̄ of {xk} is feasible i.e. x̃ ∈ C. Furthermore, Eq. (14) yields
F(xk) ≤ F(x̄) for all k, so by taking the limit along the relevant subsequence as k → ∞, we
obtain

F(x̃) ≤ F(x̄).

Since x̃ is feasible, we have F(x̄) < F(x̃) (since F achieves a strict global minimum over C

at x̄), unless x̃ = x̄, which when combined with the preceding inequality yields x̃ = x̄. Thus
the sequence {xk} converges to x̄, and it follows that xk is an interior point of the closed sphere
S for all k greater than some k̄.
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For k ≥ k̄, we have the necessary optimality condition, ∇Fk(xk)′y ≥ 0 for all y ∈ TX(xk),
or equivalently −∇Fk(xk) ∈ TX(xk)∗, which is written as

−

∇F(xk) +

r∑
j=1

ζ k
j ∇gj (x

k)


 ∈ TX(xk)∗, (15)

where

ζ k
j = kg+

j (xk). (16)

Denote,

δk =
√√√√1 +

r∑
j=1

(ζ k
j )2, (17)

µk
0 = 1

δk
, µk

j = ζ k
j

δk
, j = 1, . . . , r. (18)

Then by dividing Eq. (15) with δk , we get

−

µk

0∇F(xk) +
r∑

j=1

µk
j ∇gj (x

k)


 ∈ TX(xk)∗. (19)

Since by construction the sequence {µk
0, µ

k
1, . . . , µ

k
r } is bounded, it must contain a subsequence

that converges to some nonzero limit {µ̄0, µ̄1, . . . , µ̄r}. From Eq. (19) and the definition of the
normal cone NX(x̄)[xk → x̄, zk → z̄, and zk ∈ TX(xk)∗ for all k, imply that z̄ ∈ NX(x̄)], we
see that µ̄0 and the µ̄j must satisfy

−

µ̄0∇F(x̄) +

r∑
j=1

µ̄j∇gj (x̄)


 ∈ NX(x̄). (20)

Furthermore, from Eqs. (16) and (18), we have gj (x
k) > 0 for all j such that µ̄j > 0 and k

sufficiently large. By using the quasinormality of x̄, it follows that we cannot have µ̄0 = 0,
and by appropriately normalizing, we can take µ̄0 = 1 and obtain

−

∇F(x̄) +

r∑
j=1

µ̄j∇gj (x̄)


 ∈ NX(x̄).

Since −∇F(x̄) = y, we see that

y = z +
r∑

j=1

µ̄j∇gj (x̄),

where z ∈ NX(x̄), and the scalars µ̄1, . . . , µ̄r and the sequence {xk} satisfy the desired
properties, thus completing the proof. �

We are now ready to prove the main result of this section.
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PROPOSITION 2 If x∗ is a quasinormal vector of C and X is regular at x∗, then x∗ is quasi-
regular.

Proof We must show that TC(x∗) = TX(x∗) ∩ V (x∗), and to this end, we first show that
TC(x∗) ⊂ TX(x∗) ∩ V (x∗).

Indeed, since C ⊂ X, using the definition of the tangent cone, we have

TC(x∗) ⊂ TX(x∗). (21)

To show that TC(x∗) ⊂ V (x∗), let y be a nonzero tangent of C at x∗. Then there exist sequences
{ξk} and {xk} ⊂ C such that xk �= x∗ for all k,

ξk −→ 0, xk −→ x∗,

and
xk − x∗

‖xk − x∗‖ = y

‖y‖ + ξk.

By the mean value theorem, we have for all j ∈ A(x∗) and k

0 ≥ gj (x
k) = gj (x

∗) + ∇gj (x̃
k)′(xk − x∗) = ∇gj (x̃

k)′(xk − x∗),

where x̃k is a vector that lies on the line segment joining xk and x∗. This relation can be
written as

‖xk − x∗‖
‖y‖ ∇gj (x̃

k)′yk ≤ 0,

where yk = y + ξk‖y‖, or equivalently

∇gj (x̃
k)′yk ≤ 0, yk = y + ξ‖y‖.

Taking the limit as k → ∞, we obtain ∇gj (x
∗)′y ≤ 0 for all j ∈ A(x∗), thus proving that

y ∈ V (x∗). Hence, TC(x∗) ⊂ V (x∗). Together with Eq. (11), this shows that

TC(x∗) ⊂ TX(x∗) ∩ V (x∗). (22)

To show the reverse inclusion TX(x∗) ∩ V (x∗) ⊂ TC(x∗), we first show that

NC(x∗) ⊂ TX(x∗)∗ + V (x∗)∗.

Let y∗ be a vector that belongs to NC(x∗). By the definition of the normal cone, this implies the
existence of a sequence {xk} ⊂ C that converges to x∗ and a sequence {yk} that converges to
y∗, with yk ∈ TC(xk)∗ for all k. In view of the assumption that x∗ is quasinormal, it follows
from Lemma 2 that for all sufficiently large k, xk is quasinormal. Then, by Proposition 1, for
each sufficiently large k, there exists a vector zk ∈ NX(xk) and nonnegative scalars µk

1, . . . , µ
k
r

such that

yk = zk +
r∑

j=1

µk
j ∇gj (x

k). (23)
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Furthermore, there exists a sequence {xk,l} ⊂ X such that

lim
l→∞ xk,l = xk,

and for all l, µk
j gj (x

k,l) > 0 for all j with µk
j > 0.

We will show that the sequence {µk
1, . . . , µ

k
r } is bounded. Suppose, to arrive at a contra-

diction, that this sequence is unbounded, and assume without loss of generality, that for
each k, at least one of the µk

j is nonzero. For each k, denote

δk = 1√∑r
j=1(µ

k
j )2

,

and

ξk
j = δkµk

j , ∀j = 1, . . . , r.

It follows that δk > 0 for all k and δk → 0 as k → ∞. Then, by multiplying Eq. (23) by δk ,
we obtain

δkyk = δkzk +
r∑

j=1

ξk
j ∇gj (x

k),

or equivalently, since zk ∈ NX(xk) and δk > 0, we have

δkzk =

δkyk −

r∑
j=1

ξk
j ∇gj (x

k)


 ∈ NX(xk).

Note that by construction, the sequence {ξk
1 , . . . , ξ k

r } is bounded, and therefore has a nonzero
limit point {ξ ∗

1 , . . . , ξ ∗
r }. Taking the limit in the preceding relation along the relevant subse-

quence and using the facts δk → 0, yk → y∗, and xk → x∗ together with the closedness of the
normal cone NX(x∗), we see that δkzk converges to some vector z∗ in NX(x∗), where

z∗ = −



r∑
j=1

ξ ∗
j ∇gj (x

∗)


.

Furthermore, by defining an index lk for each k such that l1 < · · · < lk−1 < lk and

lim
k→∞ xk,lk = x∗,

we see that for all j with ξ ∗
j > 0, we have gj (x

k,lk ) > 0 for all sufficiently large k. The existence
of such scalars ξ ∗

1 , . . . , ξ ∗
r violate the quasinormality of the vector x∗, thus showing that the

sequence {µk
1, . . . , µ

k
r } is bounded.

Let {µ∗
1, . . . , µ

∗
r } be a limit point of the sequence {µk

1, . . . , µ
k
r }, and assume without loss of

generality that {µk
1, . . . , µ

k
r } converges to {µ∗

1, . . . , µ
∗
r }. Taking the limit as k → ∞ in Eq. (23),

we see that zk converges to some z∗, where

z∗ = y∗ −



r∑
j=1

µ∗
j ∇gj (x

∗)


. (24)
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By closedness of the normal cone NX(x∗) and in view of the assumption that X is regular at
x∗, so that NX(x∗) = TX(x∗)∗, we have that z∗ ∈ TX(x∗)∗. Furthermore, by defining an index
lk for each k such that l1 < · · · < lk−1 < lk and

lim
k→∞ xk,lk = x∗,

we see that for all j with µ∗
j > 0, we have gj (x

k,lk ) > 0 for all sufficiently large k, showing
that gj (x

∗) = 0. Hence, it follows that µ∗
j = 0 for all j /∈ A(x∗), and using Eq. (24), we can

write y∗ as

y∗ = z∗ +

 ∑

j∈A(x∗)

µ∗
j ∇gj (x

∗)


 .

By Farkas’ Lemma, V (x∗)∗ is the cone generated by ∇gj (x
∗), j ∈ A(x∗). Hence, it follows

that y∗ ∈ TX(x∗)∗ + V (x∗)∗, and we conclude that

NC(x∗) ⊂ TX(x∗)∗ + V (x∗)∗. (25)

Finally, using the properties relating to cones and their polars given in Lemma 1 and the
fact that TX(x∗) is convex (which follows by the regularity of X at x∗, [see Ref. 6, p. 221]),
we obtain

(TX(x∗)∗ + V (x∗)∗)∗ = TX(x∗) ∩ V (x∗) ⊂ NC(x∗)∗. (26)

Using the relation NC(x∗)∗ ⊂ TC(x∗) [see Ref. 6, Propositions 6.26 and 6.28], this shows that
TX(x∗) ∩ V (x∗) ⊂ TC(x∗), which together with Eq. (22) concludes the proof. �

Using the arguments in the proof of this proposition, we also obtain the following result,
which is of independent interest.

COROLLARY 1 If x∗ is a quasinormal vector of C and X is regular at x∗, then C is regular
at x∗.

Proof As shown in the preceding proof, the relation TC(x∗) ⊂ TX(x∗) ∩ V (x∗) holds even
without regularity and quasinormality assumptions. Using the relations given in Lemma l, this
implies that

TX(x∗)∗ + V (x∗)∗ ⊂ (TX(x∗) ∩ V (x∗))∗ ⊂ TC(x∗)∗.

We also proved that if X is regular at x∗ and x∗ is quasinormal, we have

NC(x∗) ⊂ TX(x∗)∗ + V (x∗)∗,

[cf. Eq. (25)]. Combining the preceding two relations with TC(x∗)∗ ⊂ NC(x∗), we obtain

TC(x∗)∗ = NC(x∗),

thus showing that C is regular at x∗. �
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3 QUASIREGULARITY AND ADMITTANCE OF LAGRANGE MULTIPLIERS

In this section, we explore the relation of quasiregularity with the admittance of Lagrange
multipliers. First, we provide a necessary and sufficient condition for the constraint set C of
Eq. (2) to admit Lagrange multipliers. This condition was given in various forms by Gould
and Tolle [15], Guignard [16], and Rockafellar [8]. For completeness, we provide the proof of
this result using the gradient characterization of vectors in TC(x∗)∗, given in Lemma 3.

PROPOSITION 3 Let x∗ be a feasible vector of problems (1)–(2). The constraint set C of
problem (2) admits Lagrange multipliers at x∗ if and only if

TC(x∗)∗ = TX(x∗)∗ + V (x∗)∗. (27)

Proof Denote by D(x∗) the set of gradients of all smooth cost functions for which x∗ is a
local minimum of problems (1)–(2).We claim that−D(x∗) = TC(x∗)∗. Indeed by the necessary
condition for optimality [cf. Eq. (3)], we have

−D(x∗) ⊂ TC(x∗)∗.

To show the reverse inclusion, let y ∈ TC(x∗)∗. By Lemma 3, there exists a smooth function F

with −∇F(x∗) = y, which achieves a strict global minimum over C at x̄. Thus, y ∈ −D(x∗),
showing that

−D(x∗) = TC(x∗)∗. (28)

We now note that by definition, the constraint set C admits Lagrange multipliers at x∗ if and
only if

−D(x∗) ⊂ TX(x∗)∗ + V (x∗)∗.

In view of Eq. (28), this implies that the constraint set C admits Lagrange multipliers at x∗ if
and only if

TC(x∗)∗ ⊂ TX(x∗)∗ + V (x∗)∗. (29)

On the other hand, we have shown in the proof of Proposition 2 that we have

TC(x∗) ⊂ TX(x∗) ∩ V (x∗),

[cf. Eq. (22)]. Using the properties of polar cones given in Lemma 1, this implies

TX(x∗)∗ + V (x∗)∗ ⊂ (TX(x∗) ∩ V (x∗))∗ ⊂ TC(x∗)∗,

which combined with Eq. (29), yields the desired relation, and concludes the proof. �

Note that the condition given in Eq. (27) is equivalent to the following two conditions:

(a) V (x∗) ∩ cl(conv(TX(x∗))) = cl(conv(TC(x∗))),
(b) V (x∗)∗ + TX(x∗)∗ is a closed set.

Quasiregularity is a weaker condition, even under the assumption that X is regular, since
the sum V (x∗)∗ + TX(x∗)∗ need not be closed (generically the sum of two closed cones need
not be closed). This is shown in the following example.
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Example 1 Consider the constraint set C ⊂ �3 specified by

C = {x ∈ X | h(x) = 0},

where

X = {(x1, x2, x3) | x2
1 + x2

2 ≤ x2
3 , x3 ≤ 0},

and

h(x) = x2 + x3.

Let x∗ denote the origin. In view of the convexity of X, we have that X is regular at x∗ and
that TX(x∗) is given by the closure of the set of feasible directions at x∗. Since x∗ is the origin
and X is a closed cone, it follows that

TX(x∗) = X.

The cone of first-order feasible variations, V (x∗), is given by

V (x∗) = {(x1, x2, x3) | x2 + x3 = 0}.

It can be seen that the set V (x∗)∗ + TX(x∗)∗ is not closed [cf. Ref. 3, Exercise 3.5], implying
that C does not admit Lagrange multipliers. On the other hand, we have

TC(x∗) = TX(x∗) ∩ V (x∗),

i.e. x∗ is quasiregular.
The preceding example shows that quasiregularity is not powerful enough to assert the

existence of Lagrange multipliers for the general case X �= �n, unless additional assumptions
are imposed. It is effective only for special cases, for instance, when TX(x∗) is a polyhedral
cone, in which case V (x∗)∗ + TX(x∗)∗ is closed, since it is the vector sum of two polyhedral
sets, and quasiregularity implies the admittance of Lagrange multipliers. Thus the importance
of quasiregularity, the classical pathway to Lagrange multipliers when X = �n, diminishes
when X �= �n. By contrast, as shown in Ref. [9], pseudonormality still provides unification of
the theory of constraint qualifications and existence of Lagrange multipliers.
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