Topics in Reinforcement Learning: Lessons from AlphaZero for (Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 9
Infinite Horizon Problems: Theory and Algorithms
General Comments on Infinite Horizon DP

Why do we want to use an infinite horizon?
- **Theory (and its notation) is more elegant and often more intuitive (but also more intricate mathematically).**
- **The fundamental policy iteration algorithm is useful primarily for infinite horizon; similarly for some other algorithms (e.g., linear programming).**

Some myths about infinite horizon problems
- **We don’t need to worry about finite horizon problems** (how about discrete optimization and time-varying systems)
- **We can focus attention on finite state problems** (many practical problems have naturally continuous spaces, discretization issues are tricky)
- **We can focus attention on stochastic problems** (many practical problems are naturally deterministic, or are formulated as deterministic to exploit the more effective deterministic methodology)
- **We will focus on well-behaved problems**: finite-state Markov decision problems, either discounted or SSP under favorable assumptions
- **Don’t be lulled into thinking that these are the only interesting problems**
Infinite Horizon Problems

Random Transition
\[x_{k+1} = f(x_k, u_k, w_k) \]

Random Cost
\[\alpha^k g(x_k, u_k, w_k) \]

Infinite number of stages, and stationary system and cost

- System \(x_{k+1} = f(x_k, u_k, w_k) \) with state, control, and random disturbance
- Stationary policies \(\mu \) with \(\mu(x) \in U(x) \) for all \(x \)
- Cost of stage \(k \): \(\alpha^k g(x_k, \mu(x_k), w_k) \)
- Cost of a policy \(\mu \): The limit as \(N \to \infty \) of the \(N \)-stage costs

\[
J_\mu(x_0) = \lim_{N \to \infty} E_{w_k} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu(x_k), w_k) \right\}
\]

- Optimal cost function \(J^*(x_0) = \min_\mu J_\mu(x_0) \)
- \(0 < \alpha \leq 1 \) is the discount factor. If \(\alpha < 1 \) the problem is called Discounted
- Problems with \(\alpha = 1 \) typically include a special cost-free termination state \(t \) and are called Stochastic Shortest Path (SSP) problems.
Transition Probability Notation for Finite-State Problems

- States: \(x = 1, \ldots, n \). Successor states: \(y \). (For SSP there is also the extra termination state \(t \).)
- Probability of \(x \to y \) transition under control \(u \): \(p_{xy}(u) \)
- Cost of \(x \to y \) transition under control \(u \): \(g(x, u, y) \)

Going from one notation system to the other (discounted case):

- Replace \(x_{k+1} = f(x_k, u_k, w_k) \) with \(x_{k+1} = w_k \) (a simpler system)
- Replace \(P(w \mid x, u) \) with \(p_{xy}(u) \) (a 3-dimensional matrix)
- Replace cost per stage \(E\{g(x, u, w)\} \) with \(\sum_{y=1}^{n} p_{xy}(u)g(x, u, y) \)
- Replace cost-to-go \(E\{J(f(x, u, w))\} \) with \(\sum_{y=1}^{n} p_{xy}(u)J(y) \)

Example: Bellman equation (translated to the new notation)

\[
J^*(x) = \min_{u \in U(x)} \left[\sum_{y=1}^{n} p_{xy}(u) \left(g(x, u, y) + \alpha J^*(y) \right) \right] \quad \text{(for Discounted)}
\]

\[
J^*(x) = \min_{u \in U(x)} \left[p_{xt}(u)g(x, u, t) + \sum_{y=1}^{n} p_{xy}(u) \left(g(x, u, y) + J^*(y) \right) \right] \quad \text{(for SSP)}
\]
The Three Theorems for Discounted Problems: If \(g(x, u, y) \) is Bounded the Entire Exact Theory Goes Through with No Exceptions

1) \(\text{VI convergence: } J_k(x) \rightarrow J^*(x) \) for all \(J_0 \), where:

\[
J_{k+1}(x) = \min_{u \in U(x)} \left[\sum_{y=1}^{n} p_{xy}(u) (g(x, u, y) + \alpha J_k(y)) \right]
\]

2) \(J^* \) satisfies uniquely Bellman’s equation

\[
J^*(x) = \min_{u \in U(x)} \left[\sum_{y=1}^{n} p_{xy}(u) (g(x, u, y) + \alpha J^*(y)) \right], \quad x = 1, \ldots, n
\]

3) Optimality condition

A stationary policy \(\mu \) is optimal if and only if \(\mu(x) \) attains the minimum for every state \(x \).

Also \(J_\mu \) is the unique solution of the Bellman equation (for policy \(\mu \))

\[
J_\mu(x) = \sum_{y=1}^{n} p_{xy}(\mu(x)) \left(g(x, \mu(x), y) + \alpha J_\mu(y) \right), \quad x = 1, \ldots, n
\]
Exact and Approximate Policy Iteration

Important facts:
- Exact PI yields in the limit an optimal policy
- Exact PI is much faster than VI; it is Newton’s method for solving Bellman’s Eq.
- Policy evaluation can be implemented by a variety of simulation-based methods. Lots of RL theory (e.g., temporal difference methods)
- PI can be implemented approximately, with a value and/or a policy network
Most favorable Assumption (Termination Inevitable Under all Policies)

There exists \(m > 0 \) such that for every policy and initial state, there is positive probability that \(t \) will be reached within \(m \) stages.

Intuitively: This is really a finite horizon problem, but with random horizon. Easy analysis.

VI Convergence: \(J_k \to J^* \) for all initial conditions \(J_0 \), where

\[
J_{k+1}(x) = \min_{u \in U(x)} \left[px_t(u)g(x, u, t) + \sum_{y=1}^{n} px_y(u)(g(x, u, y) + J_k(y)) \right], \quad x = 1, \ldots, n
\]

Bellman’s equation: \(J^* \) satisfies

\[
J^*(x) = \min_{u \in U(x)} \left[px_t(u)g(x, u, t) + \sum_{y=1}^{n} px_y(u)(g(x, u, y) + J^*(y)) \right], \quad x = 1, \ldots, n,
\]

and is the unique solution of this equation.

Optimality condition: \(\mu \) is optimal if and only if for every \(x \), \(\mu(x) \) attains the minimum in the Bellman equation.
A discounted problem can be converted to an SSP problem (with termination inevitable)

- **Reason:** The stage k cost $[\alpha^k E\{g(x, u, y)\}]$ is identical in both problems, under the same policy.
- **Proofs for discounted case:** Start with SSP analysis, get discounted analysis as special case.
- **This line of proof applies to finite-state problems.** For infinite-state discounted problems a different line is needed (based on contraction mapping ideas).
SSP Extensions

SSP problems often do not satisfy the “termination inevitable for all policies" assumption (e.g., deterministic SP problems with cycles)

A more general assumption for SSP results: Nonterminating policies are “bad"

- Every policy that does not terminate with > 0 probability, has ∞ cost for some initial states.
- There exists at least one policy under which termination is inevitable.
- Major results are salvaged under this assumption.

SSP further extensions can be very challenging

- Bellman’s Eq. can have many solutions
- Bellman’s Eq. may have a unique solution that is not equal to J^* (even for finite-state, but stochastic, problems)!!
- VI and PI may fail (even for finite-state problems)
- Infinite-state problems can exhibit “strange" behavior (even with bounded cost per stage)
- See the on-line Abstract DP book (DPB, 2018) for detailed discussion
Working Break: Challenge Questions About a Tricky SSP Problem; see the Abstract DP Book, Section 3.1.1, for More Analysis

This example violates the “nonterminating policies are bad” assumption for $a = 0$. Then:

- Bellman equation, $J(1) = \min [b, a + J(1)]$, has multiple solutions
- VI converges to J^* from some initial conditions but not from others

Challenge questions: Consider the cases $a > 0$, $a = 0$, and $a < 0$

- What is $J^*(1)$?
- What is the solution set of Bellman’s equation?
- What is the limit of the VI algorithm $J_{k+1}(1) = \min [b, a + J_k(1)]$?
Answers to the Challenge Questions

Bellman Eq: \(J(1) = \min \left[b, a + J(1) \right] \); VI: \(J_{k+1}(1) = \min \left[b, a + J_k(1) \right] \)

- If \(a > 0 \) (positive cycle): \(J^*(1) = b \) is the unique solution, and VI converges to \(J^*(1) \). Here the "nonterminating policies are bad" assumption is satisfied.
- If \(a = 0 \) (zero cycle):
 - \(J^*(1) = \min[0, b] \).
 - Bellman Eq. is \(J(1) = \min \left[b, J(1) \right] \); its solution set is \((-\infty, b] \).
 - The VI algorithm, \(J_{k+1}(1) = \min \left[b, J_k(1) \right] \), converges to \(b \) starting from \(J_0(1) \geq b \), and does not move from a starting value \(J_0(1) \leq b \).
- If \(a < 0 \) (negative cycle): The Bellman Eq. has no solution, and VI diverges to \(J^*(1) = -\infty \).
Consider (discounted problem) VI with sequential approximation

\[J_{k+1}(x) = \min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u)(g(x, u, y) + \alpha J_k(y)) \]

(VI algorithm)

Approximate version: Assume that for some \(\delta > 0 \)

\[\max_{x=1,\ldots,n} \left| \tilde{J}_{k+1}(x) - \min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u)(g(x, u, y) + \alpha \tilde{J}_k(y)) \right| \leq \delta \]

(1)

- Under condition (1), the cost function error \(\max_{x=1,\ldots,n} |\tilde{J}_k(x) - J^*(x)| \) can be shown to be \(\leq \delta/(1 - \alpha) \) (asymptotically, as \(k \to \infty \)).
- ... but this result may not be meaningful for some natural methods: It may be difficult to maintain Eq. (1) over an infinite horizon, because \{\tilde{J}_k\} may become unbounded.
- **Illustration**: Start with \(\tilde{J}_0 \), and let \(\tilde{J}_k \) be obtained using a parametric architecture:
 - Given parametric approximation \(\tilde{J}_k \), obtain a parametric approximation \(\tilde{J}_{k+1} \) using a least squares fit.
 - We will give an example where the cost function error accumulates to \(\infty \).
Instability of Fitted VI (Tsitsiklis and VanRoy, 1996)

Single policy

Bellman Eq.: $J(1) = \alpha J(2)$, $J(2) = \alpha J(2)$

$J^*(1) = J^*(2) = 0$

Exact VI: $J_{k+1}(1) = \alpha J_k(2)$, $J_{k+1}(2) = \alpha J_k(2)$

By using a weighted projection we may correct the problem. What is the right projection?
Given the current policy μ^k, a PI consists of two phases:

- **Policy evaluation** computes $J_{\mu^k}(x)$, $x = 1, \ldots, n$, as the solution of the (linear) Bellman equation system

$$J_{\mu^k}(x) = \sum_{y=1}^{n} p_{xy}(\mu^k(x)) \left(g(x, \mu^k(x), y) + \alpha J_{\mu^k}(y) \right), \quad x = 1, \ldots, n$$

- **Policy improvement** then computes a new policy μ^{k+1} as

$$\mu^{k+1}(x) \in \arg\min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u) \left(g(x, u, y) + \alpha J_{\mu^k}(y) \right), \quad x = 1, \ldots, n$$
Proof of Policy Improvement (Standard Rollout/PI Proof Line)

PI finite convergence: PI generates an improving sequence of policies, i.e.,
\(J_{\mu^{k+1}}(x) \leq J_{\mu^k}(x) \) for all \(x \) and \(k \), and terminates with an optimal policy.

Let \(\tilde{\mu} \) be the rollout policy obtained from base policy \(\mu \): Will show that \(J_{\tilde{\mu}} \leq J_{\mu} \)

- Denote by \(J_N \) the cost function of a policy that applies \(\tilde{\mu} \) for the first \(N \) stages and applies \(\mu \) thereafter.

- We have the Bellman equation
 \[
 J_{\mu}(x) = \sum_{y=1}^{n} p_{xy}(\mu(x)) \left(g(x, \mu(x), y) + \alpha J_{\mu}(y) \right),
 \]

 so
 \[
 J_{1}(x) = \sum_{y=1}^{n} p_{xy}(\tilde{\mu}(x)) \left(g(x, \tilde{\mu}(x), y) + \alpha J_{\mu}(y) \right) \leq J_{\mu}(x) \quad \text{(by policy improvement eq.)}
 \]

- From the definition of \(J_2 \) and \(J_1 \), and the preceding relation, we have
 \[
 J_{2}(x) = \sum_{y=1}^{n} p_{xy}(\tilde{\mu}(x)) \left(g(x, \tilde{\mu}(x), y) + \alpha J_{1}(y) \right) \leq \sum_{y=1}^{n} p_{xy}(\tilde{\mu}(x)) \left(g(x, \tilde{\mu}(x), y) + \alpha J_{\mu}(y) \right)
 \]

 so \(J_2(x) \leq J_1(x) \leq J_{\mu}(x) \) for all \(x \).

- Continuing similarly, we obtain \(J_{N+1}(x) \leq J_N(x) \leq J_{\mu}(x) \) for all \(x \) and \(N \). Since \(J_N \to J_{\tilde{\mu}} \) (VI for \(\tilde{\mu} \) converges to \(J_{\tilde{\mu}} \)), it follows that \(J_{\tilde{\mu}} \leq J_{\mu} \).
Generates sequence of policy-cost function approximation pairs \(\{(\mu^k, J_k)\} \)

Given the typical pair \((\mu^k, J_k)\), do truncated rollout with base policy \(\mu^k\) and cost approximation \(J_k\):

- **Policy evaluation** \((m_k\) steps of rollout using \(\mu^k\)): Starting with \(\hat{J}_{k,0} = J_k\), compute \(\hat{J}_{k,1}, \ldots, \hat{J}_{k,m_k}\) according to

\[
\hat{J}_{k,m+1}(x) = \sum_{y=1}^{n} p_{xy}(\mu^k(x)) \left(g(x, \mu^k(x), y) + \alpha \hat{J}_{k,m}(y) \right), \quad x = 1, \ldots, n
\]

- **Policy improvement** (standard): Set

\[
\mu^{k+1}(x) \in \arg \min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u) \left(g(x, u, y) + \alpha \hat{J}_{k,m_k}(y) \right), \quad x = 1, \ldots, n
\]

\[
J_{k+1}(x) = \min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u) \left(g(x, u, y) + \alpha \hat{J}_{k,m_k}(y) \right), \quad x = 1, \ldots, n.
\]

Convergence (using similar argument to standard PI)
Given the typical policy μ^k:

- **Policy evaluation** (standard): Computes $J_{\mu^k}(x)$, $x = 1, \ldots, n$, as the solution of the (linear) Bellman equation

$$
J_{\mu^k}(x) = \sum_{y=1}^{n} p_{xy}(\mu^k(x)) \left(g(x, \mu^k(x), y) + \alpha J_{\mu^k}(y) \right), \quad x = 1, \ldots, n
$$

- **Policy improvement with ℓ-step lookahead**: Solves the ℓ-stage problem with terminal cost function J_{μ^k}. If $\{\hat{\mu}_0, \ldots, \hat{\mu}_{\ell-1}\}$ is the optimal policy of this problem, then the new policy μ^{k+1} is $\hat{\mu}_0$.

Motivation: It may yield a better policy μ^{k+1} than with one-step lookahead, at the expense of a more complex policy improvement operation.

Convergence (using similar argument to standard PI)
Approximate Rollout and PI Variants

Simplified Minimization

Multiagent policy improvement

\[
\min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u) \left(g(x, u, y) + \alpha \tilde{J}_{\mu}(y) \right)
\]

Approximation of \(E\{\cdot\} \)
Adaptive simulation
Monte Carlo tree search
Certainty equivalence

First Step “Future”

Approximation of \(J_{\mu} \)
Rollout by (possibly inexact) simulation
Truncated rollout (optimistic PI)
Parallel rollout (multiple policies)
Problem approximation (aggregation)

- **Multistep lookahead** may be used
- **Multiple policies** variant uses \(\tilde{J}(y) = \min \{ J_{\mu_1}(x), \ldots, J_{\mu_m}(x) \} \)
- **Corresponding PI variants**
- **Approximate PI**: Repeated approximate rollout; generates a sequence of policies \(\{ \mu^k \} \)
- **Approximate PI needs off-line training** of policies and/or terminal cost function approximations
Assuming an approximate policy evaluation error satisfying

$$\max_{x=1,\ldots,n} |\tilde{J}_{\mu^k}(x) - J_{\mu^k}(x)| \leq \delta$$

and an approximate policy improvement error satisfying

$$\max_{x=1,\ldots,n} \left| \sum_{y=1}^{n} p_{xy} (\mu^{k+1} (x)) (g(x, \mu^{k+1} (x), y) + \alpha \tilde{J}_{\mu^k}(y)) - \min_{u \in U(x)} \sum_{y=1}^{n} p_{xy}(u) (g(x, u, y) + \alpha \tilde{J}_{\mu^k}(y)) \right| \leq \epsilon$$
Global Error Bound for the Case Where Policies Converge (NDP, 1996)

- A better error bound (by a factor $1 - \alpha$) holds if the generated policy sequence $\{\mu_k\}$ converges to some policy.
- **Convergence of policies is guaranteed in some cases;** approximate PI using aggregation is one of them.
Consider truncated rollout with

- ℓ-step lookahead
- Followed by rollout with a policy μ for m steps
- Followed by terminal cost function approximation \tilde{J}

For the rollout policy $\tilde{\mu}$, we have:

- The error bound
 \[
 \|J_{\tilde{\mu}} - J^*\| \leq \frac{2\alpha^\ell}{1 - \alpha} \left(\alpha^m \|\tilde{J} - J_\mu\| + \|J_\mu - J^*\| \right),
 \]
 where $\|J\| = \max_{x=1,\ldots,n} |J(x)|$ is the max-norm.

- The cost improvement bound
 \[
 J_{\tilde{\mu}}(x) \leq J_\mu(x) + \frac{2\alpha^{m-1}}{1 - \alpha} \|\tilde{J} - J_\mu\|, \quad x = 1, \ldots, n
 \]

Note that it helps to have:

- ℓ and m: large,
- $\|\tilde{J} - J_\mu\|$ and $\|J_\mu - J^*\|$: small
Global Error Bds are Conservative - Often Do Not Predict Well Reality
Locally the Newton Step View is More Representative

\[
(TJ)(x) = \min_{u \in U(x)} E\left\{ g(x, u, w) + \alpha J(f(x, u, w)) \right\}, \quad \text{for all } x
\]

\[
(T\mu J)(x) = E\left\{ g(x, \mu(x), w) + \alpha J(f(x, \mu(x), w)) \right\}, \quad \text{for all } x
\]
Comparing Local and Global Performance Estimates

The Newton step (from \tilde{J} to $J_{\tilde{\mu}}$) interpretation suggests a local superlinear performance estimate (for \tilde{J} near J^*)

$$\max_x |J_{\tilde{\mu}}(x) - J^*(x)| = o\left(\max_x |\tilde{J}(x) - J^*(x)|\right)$$

When \tilde{J} is far from J^*, the difference $\max_x |J_{\tilde{\mu}}(x) - J^*(x)|$ may be large.

This is to be compared with global error bounds, including

$$\max_x |J_{\tilde{\mu}}(x) - J^*(x)| \leq \frac{2\alpha^\ell}{1 - \alpha} \max_x |\tilde{J}(x) - J^*(x)|$$

for ℓ-step lookahead, and α-discounted problems.

The global error bound tends to be overly conservative and not representative of the performance of approximation in value space schemes when \tilde{J} is near J^*.

Example: For finite spaces α-discounted MDP, $\tilde{\mu}$ can be shown to be optimal if

$$\max_x |\tilde{J}(x) - J^*(x)|$$

is sufficiently small (the Bellman operator is piecewise linear). The global performance bound is way off!
About the Next Lecture

We will cover a variety of infinite horizon RL algorithms; also distributed and multiagent RL:

- Issues of approximate policy iteration and variations
- Q-learning with and without approximations
- Multiagent rollout and policy iteration
- State space partitioning and use of parallel computation
- Case studies