Topics in Reinforcement Learning: Lessons from AlphaZero for (Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2023

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 2
Stochastic Finite and Infinite Horizon DP
Review - Finite Horizon Deterministic Problem

- System

\[x_{k+1} = f_k(x_k, u_k), \quad k = 0, 1, \ldots, N - 1 \]

where \(x_k \): State, \(u_k \): Control chosen from some set \(U_k(x_k) \)

- Arbitrary state and control spaces

- Cost function:

\[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k) \]

- For given initial state \(x_0 \), minimize over control sequences \(\{u_0, \ldots, u_{N-1}\} \)

\[J(x_0; u_0, \ldots, u_{N-1}) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k) \]

- Optimal cost function \(J^*(x_0) = \min_{u_k \in U_k(x_k)} J(x_0; u_0, \ldots, u_{N-1}) \)
Go backward to compute the optimal costs $J_k^*(x_k)$ of the x_k-tail subproblems (off-line training - involves lots of computation)

Start with

$$J_N^*(x_N) = g_N(x_N), \quad \text{for all } x_N,$$

and for $k = 0, \ldots, N - 1$, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)) \right], \quad \text{for all } x_k.$$

Then optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.

Go forward to construct optimal control sequence $\{u_0^*, \ldots, u_{N-1}^*\}$ (on-line play)

Start with

$$u_0^* \in \arg \min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + J_1^*(f_0(x_0, u_0)) \right], \quad x_1^* = f_0(x_0, u_0^*).$$

Sequentially, going forward, for $k = 1, 2, \ldots, N - 1$, set

$$u_k^* \in \arg \min_{u_k \in U_k(x_k^*)} \left[g_k(x_k^*, u_k) + J_{k+1}^*(f_k(x_k^*, u_k)) \right], \quad x_{k+1}^* = f_k(x_k^*, u_k^*).$$
An alternative (and equivalent) form of the DP algorithm

Generates the optimal Q-factors, defined for all \((x_k, u_k)\) and \(k\) by

\[
Q^*_k(x_k, u_k) = g_k(x_k, u_k) + J^*_{k+1}(f_k(x_k, u_k))
\]

The optimal cost function \(J^*_k\) can be recovered from the optimal Q-factor \(Q^*_k\)

\[
J^*_k(x_k) = \min_{u_k \in U_k(x_k)} Q^*_k(x_k, u_k)
\]

The DP algorithm can be written in terms of Q-factors

\[
Q^*_k(x_k, u_k) = g_k(x_k, u_k) + \min_{u_{k+1} \in U_{k+1}(f_k(x_k, u_k))} Q^*_k(f_k(x_k, u_k), u_{k+1})
\]

Exact and approximate forms of this and other related algorithms, form an important class of RL methods known as Q-learning.
We replace J_k^* with an approximation \tilde{J}_k during on-line play.

- **Start with**
 \[
 \tilde{u}_0 \in \arg \min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + \tilde{J}_1(f_0(x_0, u_0)) \right]
 \]

- **Set** $\tilde{x}_1 = f_0(x_0, \tilde{u}_0)$

- **Sequentially,** going forward, for $k = 1, 2, \ldots, N-1$, set
 \[
 \tilde{u}_k \in \arg \min_{u_k \in U_k(\tilde{x}_k)} \left[g_k(\tilde{x}_k, u_k) + \tilde{J}_{k+1}(f_k(\tilde{x}_k, u_k)) \right], \quad \tilde{x}_{k+1} = f_k(\tilde{x}_k, \tilde{u}_k)
 \]

How do we compute $\tilde{J}_{k+1}(x_{k+1})$? This is one of the principal issues in RL.

- **Off-line problem approximation:** Use as \tilde{J}_{k+1} the optimal cost function of a simpler problem, computed off-line by exact DP.

- **On-line approximate optimization,** e.g., solve on-line a shorter horizon problem by multistep lookahead minimization and simple terminal cost (often done in MPC).

- **Parametric cost approximation:** Obtain $\tilde{J}_{k+1}(x_{k+1})$ from a parametric class of functions $J(x_{k+1}, r)$, where r is a parameter, e.g., training using data and a NN.

- **Rollout with a heuristic:** We will focus on this for the moment.
Rollout for Finite-State Deterministic Problems

Cost approximation by running a heuristic from states of interest

We generate a single system trajectory \(\{x_0, x_1, \ldots, x_N\} \) by on-line play

- Upon reaching \(x_k \), we compute for all \(u_k \in U_k(x_k) \), the corresponding next states \(x_{k+1} = f_k(x_k, u_k) \)
- From each of the next states \(x_{k+1} \) we run the heuristic and compute the heuristic cost \(H_{k+1}(x_{k+1}) \)
- We apply \(\tilde{u}_k \) that minimizes over \(u_k \in U_k(x_k) \), the (heuristic) Q-factor
 \[g_k(x_k, u_k) + H_{k+1}(x_{k+1}) \]
- We generate the next state \(x_{k+1} = f_k(x_k, \tilde{u}_k) \) and repeat
Stochastic DP Problems - Perfect State Observation (We Know x_k)

- System $x_{k+1} = f_k(x_k, u_k, w_k)$ with random "disturbance" w_k (e.g., physical noise, market uncertainties, demand for inventory, unpredictable breakdowns, etc).
- Cost function: $E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) \right\}$
- Policies $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$, where μ_k is a "closed-loop control law" or "feedback policy"/a function of x_k. A "lookup table" for the control $u_k = \mu_k(x_k)$ to apply at x_k.
- An important point: Using feedback (i.e., choosing controls with knowledge of the state) is beneficial in view of the stochastic nature of the problem.
- For given initial state x_0, minimize over all $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$ the cost

$$J_\pi(x_0) = E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\}$$

- Optimal cost function: $J^*(x_0) = \min_\pi J_\pi(x_0)$. Optimal policy: $J_{\pi^*}(x_0) = J^*(x_0)$
The Stochastic DP Algorithm

Produces the optimal costs \(J_k^*(x_k) \) **of the tail subproblems that start at** \(x_k \)

Start with \(J_N^*(x_N) = g_N(x_N) \), and for \(k = 0, \ldots, N - 1 \), let

\[
J_k^*(x_k) = \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}^*(f_k(x_k, u_k, w_k)) \right\}, \quad \text{for all } x_k.
\]

- The optimal cost \(J^*(x_0) \) is obtained at the last step: \(J_0^*(x_0) = J^*(x_0) \).
- The optimal policy component \(\mu_k^* \) can be constructed simultaneously with \(J_k^* \), and consists of the minimizing \(u_k^* = \mu_k^*(x_k) \) above.

Alternative on-line implementation of the optimal policy, given \(J_1^*, \ldots, J_{N-1}^* \)

Sequentially, going forward, for \(k = 0, 1, \ldots, N - 1 \), observe \(x_k \) and apply

\[
u_k^* \in \arg \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}^*(f_k(x_k, u_k, w_k)) \right\}.
\]

Issues: Need to know \(J_{k+1}^* \), compute \(E_{w_k} \{ \cdot \} \) for each \(u_k \), minimize over all \(u_k \).
A Very Favorable Case: Linear-Quadratic Problems

One-dimensional linear-quadratic problem

- **System**: \(x_{k+1} = ax_k + bu_k + w_k \) (\(a \) and \(b \) are given scalars)
- **Cost**: over \(N \) stages: \(qx_N^2 + \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2) \), where \(q > 0 \) and \(r > 0 \) are given scalars
- **DP algorithm**: starts with \(J^*_N(x_N) = qx_N^2 \), and generates \(J^*_k \) according to
 \[
 J^*_k(x_k) = \min_{u_k} E_{w_k} \left\{ qx_k^2 + ru_k^2 + J^*_{k+1}(ax_k + bu_k + w_k) \right\}, \quad k = 0, \ldots, N - 1
 \]
- **DP algorithm**: can be carried out in closed form to yield
 \[
 J^*_k(x_k) = K_k x_k^2 + \text{const}, \quad \mu^*_k(x_k) = L_k x_k \]
 \(K_k \) and \(L_k \) can be explicitly computed
- **Certainty Equivalence**: \(\mu^*_k(x_k) \) does not depend on the distribution of \(w_k \) as long as it has 0 mean:

These results generalize to multidimensional linear-quadratic problems

- \(x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m \); the scalars \(a, b, q, r \) are replaced by matrices \(A, B, Q, R \)
Derivation - DP Algorithm starting from Terminal Cost $J^*_N(x_N) = qx_N^2$

\[
J^*_{N-1}(x_{N-1}) = \min_{u_{N-1}} E\left\{ qx_{N-1}^2 + ru_{N-1}^2 + J^*_N(ax_{N-1} + bu_{N-1} + w_{N-1}) \right\}
\]

\[
= \min_{u_{N-1}} E\left\{ qx_{N-1}^2 + ru_{N-1}^2 + q(ax_{N-1} + bu_{N-1} + w_{N-1})^2 \right\}
\]

\[
= \min_{u_{N-1}} \left[qx_{N-1}^2 + ru_{N-1}^2 + q(ax_{N-1} + bu_{N-1})^2 + 2q E\{w_{N-1}\}(ax_{N-1} + bu_{N-1}) + q E\{w_{N-1}^2\} \right]
\]

\[
= qx_{N-1}^2 + \min_{u_{N-1}} \left[ru_{N-1}^2 + q(ax_{N-1} + bu_{N-1})^2 \right] + q\sigma^2
\]

Minimize by setting to zero the derivative: $0 = 2ru_{N-1} + 2qb(ax_{N-1} + bu_{N-1})$, to obtain

\[
\mu^*_{N-1}(x_{N-1}) = L_{N-1}x_{N-1} \quad \text{with} \quad L_{N-1} = -\frac{abq}{r + b^2q}
\]

and by substitution, $J^*_{N-1}(x_{N-1}) = K_{N-1}x_{N-1}^2 + q\sigma^2$, where $K_{N-1} = \frac{a^2rq}{r + b^2q} + q$

Similarly, going backwards (starting with $K_N = q$), we obtain for all k:

\[
J^*_k(x_k) = K_k x_k^2 + \sigma^2 \sum_{m=k}^{N-1} K_{m+1}, \quad \mu^*_k(x_k) = L_k x_k, \quad K_k = \frac{a^2rK_{k+1}}{r + b^2K_{k+1}} + q, \quad L_k = -\frac{abK_{k+1}}{r + b^2K_{k+1}}
\]
Observations and generalizations

- The solution does not depend on the distribution of w_k, only on the mean (which is 0), i.e., we have **certainty equivalence** (the stochastic problem can be replaced by a deterministic problem)
- Generalization to **multidimensional problems**, nonzero mean disturbances, etc
- Generalization to **infinite horizon**
- Generalization to problems where the **state is observed partially through linear measurements**: Optimal policy involves an extended form of certainty equivalence

$$L_k E\{x_k \mid \text{measurements}\}$$

where $E\{x_k \mid \text{measurements}\}$ is provided by an estimator (e.g., Kalman filter)

- Linear systems and quadratic cost are a starting point for other lines of investigations and approximations:
 - Problems with safety/state constraints [Model Predictive Control (MPC)]
 - Problems with control constraints (MPC)
 - Unknown or changing system parameters (adaptive control)
Approximation in Value Space - The Three Approximations

Simplified minimization

At x_k

\[
\min_{u_k} E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(x_{k+1}) \right\}
\]

Expected value approximation

Cost-to-go approximation

First Step

“Future”

“On-Line Play”

Important variants: Use **multistep lookahead**, use **multiagent rollout** (for multicomponent control problems)

Multistep lookahead (performance - computational overhead tradeoff)

At State x_k

DP minimization

\[
\min_{u_k, \mu_{k+1}, \ldots, \mu_{k+\ell-1}} E\left\{ g_k(x_k, u_k, w_k) + \sum_{m=k+1}^{k+\ell-1} g_m(x_m, \mu_m(x_m), w_m) + \tilde{J}_{k+\ell}(x_{k+\ell}) \right\}
\]

First ℓ Steps

“Future”

Lookahead Minimization

Cost-to-go Approximation
Constructing Approximations

Approximate Min
Discretization
Selective Minimization

At \(x_k \)
\[
\min_{u_k} E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(x_{k+1}) \right\}
\]

Approximate \(E\{\cdot\} \)
Adaptive simulation
Monte Carlo tree search

First Step

“Future”

Approximate Cost-to-Go \(\tilde{J}_{k+1} \)
Certainty equivalence
Problem approximation
Rollout, Model Predictive Control
Parametric approximation
Neural nets
Aggregation

An example: Truncated rollout with base policy and terminal cost approximation (however obtained, e.g., off-line training)
Approximation in Policy Space: The Major Alternative to Approximation in Value Space

Control
\[u_k = \tilde{\mu}_k(x_k, r_k) \]

System
Environment
State \(x_k \)

Controller
\[\tilde{\mu}_k(\cdot, r_k) \]

Training Data

- **Idea:** Select the policy by optimization over a suitably restricted class of policies
- The restricted class is usually a parametric family of policies \(\tilde{\mu}_k(x_k, r_k) \), \(k = 0, \ldots, N - 1 \), of some form, where \(r_k \) is a parameter (e.g., a neural net)
- Methods used for optimization/off-line training: Random search, policy gradient, classification (to be discussed later)
- **Important advantage once the parameters \(r_k \) are computed:** The on-line computation of controls is often much faster ... at state \(x_k \) apply \(u_k = \tilde{\mu}_k(x_k, r_k) \)
- **Important disadvantage:** It does not allow for on-line replanning ... no Newton step
An Important Conceptual Difference Between Approximation in Value and in Policy Space

Approximation in value space is primarily an “on-line play" method
with off-line training used optionally to construct cost function approximations for one-step or multistep lookahead

Approximation in policy space is primarily an “off-line training" method
which may be used optionally to provide a policy for on-line rollout
The approximate cost-to-go functions \tilde{J}_{k+1} define a suboptimal policy $\tilde{\mu}_k$ through one-step or multistep lookahead minimization

- Given functions \tilde{J}_{k+1}, how do we simplify the computation of $\tilde{\mu}_k$?
- **Idea:** Use approximation in policy space to represent $\tilde{\mu}_k$: Approximate $\tilde{\mu}_k$ using a training set of a large number q of sample pairs (x^s_k, u^s_k), $s = 1, \ldots, q$, where $u^s_k = \tilde{\mu}_k(x^s_k)$:

$$u^s_k \in \arg \min_{u \in U_k(x_k)} E \left\{ g_k(x^s_k, u, w_k) + \tilde{J}_{k+1}(f_k(x^s_k, u, w_k)) \right\}$$

- **Example:** Introduce a parametric family of randomized policies $\mu_k(x_k, r_k)$, $k = 0, \ldots, N - 1$, of some form (e.g., a neural net), where r_k is a parameter. Then estimate the parameters r_k by least squares fit:

$$r_k \in \arg \min_r \sum_{s=1}^{q} \left\| u^s_k - \mu_k(x^s_k, r) \right\|^2$$

- Relation to classification methods ... policy \leftrightarrow classifier; more on this later.
All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.
Infinite Horizon Problems

System $x_{k+1} = f(x_k, u_k, w_k)$ with state, control, and random disturbance.

Policies $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k(x) \in U(x)$ for all x and k.

Cost of stage k: $\alpha^k g(x_k, \mu_k(x_k), w_k)$.

$0 < \alpha \leq 1$ is the discount factor. If $\alpha < 1$ the problem is called discounted.

Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$: The limit as $N \to \infty$ of the N-stage costs

$$J_\pi(x_0) = \lim_{N \to \infty} E_{w_k} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

Optimal cost function $J^*(x_0) = \min_\pi J_\pi(x_0)$.

Problems with $\alpha = 1$ typically include a special cost-free termination state t. The objective is to reach (or approach) t at minimum expected cost.
\(k \)-stages opt. cost \(\rightarrow \) Infinite horizon opt. cost as \(k \rightarrow \infty \)

- We have \(J^*(x) = \lim_{k \rightarrow \infty} J_k(x) \), for all \(x \), where for any \(k \), \(J_k(x) = k \)-stages optimal cost starting from \(x \), and is generated by

\[
J_k(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J_{k-1}(f(x, u, w)) \right\}, \quad J_0(x) \equiv 0 \tag{VI}
\]

- Derivation using DP: Let \(V_{N-k}(x) \) be the optimal cost-to-go starting at \(x \) with \(k \) stages to go,

\[
V_{N-k}(x) = \min_{u \in U(x)} E_w \left\{ \alpha^{N-k} g(x, u, w) + V_{N-k+1}(f(x, u, w)) \right\}, \quad V_N(x) \equiv 0
\]

- Define \(J_k(x) = V_{N-k}(x)/\alpha^{N-k} \) to obtain Eq. (VI)

\(J^* \) satisfies Bellman’s equation: Take the limit in Eq. (VI)

\[
J^*(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J^*(f(x, u, w)) \right\}, \quad \text{for all } x
\]

Optimality condition: Let \(\mu^*(x) \) attain the min in the Bellman equation for all \(x \)

The policy \(\{\mu^*, \mu^*, \ldots\} \) is optimal. (This type of policy is called stationary.)
Infinite Horizon Problems - The Two Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence \(\{J_k\} \)

\[
J_k(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J_{k-1}(f(x, u, w)) \right\}, \quad J_0 \text{ is "arbitrary" (?) }
\]

Policy Iteration (PI): Generates sequences of policies \(\{\mu^k\} \) and their cost functions \(\{J_{\mu^k}\} \); \(\mu^0 \) is "arbitrary"

The typical iteration starts with a policy \(\mu \) and generates a new policy \(\bar{\mu} \) in two steps:

- **Policy evaluation step**, which computes \(J_{\mu} \) the cost function of the (base) policy \(\mu \)
- **Policy improvement step**, which computes the improved (rollout) policy \(\bar{\mu} \) using the one-step lookahead minimization

\[
\bar{\mu}(x) \in \arg \min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J_{\mu}(f(x, u, w)) \right\}
\]

There are several options for policy evaluation to compute \(J_{\mu} \)

- Solve Bellman’s equation for \(\mu \) \[J_{\mu}(x) = E\{g(x, \mu(x), w) + \alpha J_{\mu}(f(x, \mu(x), w))\} \] by using VI or other method (it is linear in \(J_{\mu} \))
- Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)
Important facts (to be discussed later):

- PI yields in the limit an optimal policy (\(J^* \))
- PI is faster than VI; can be viewed as Newton’s method for solving Bellman’s Eq.
- PI can be implemented approximately, with a value and (perhaps) a policy network
Deterministic Linear Quadratic Problem - Infinite Horizon, Undiscounted

Linear system \(x_{k+1} = ax_k + bu_k \); quadratic cost per stage \(g(x, u) = qx^2 + ru^2 \)

Bellman equation: \(J(x) = \min_u \{ qx^2 + ru^2 + J(ax + bu) \} \)

Take the limit as \(N \to \infty \) in the \(N \)-step horizon results: \(K_k \to K^*, L_k \to L^* \)

- \(J^*(x) = K^* x^2 \) where \(K^* \) is some positive scalar
- The optimal policy has the form \(\mu^*(x) = L^* x \) where \(L^* \) is some scalar
- To characterize \(K^* \) and \(L^* \), we plug \(J(x) = Kx^2 \) into the Bellman equation
 \[Kx^2 = \min_u \{ qx^2 + ru^2 + K(ax + bu)^2 \} = \cdots = F(K)x^2 \]
 where \(F(K) = \frac{a^2 rK + q}{r + b^2 K} \) with the minimizing \(u \) being equal to \(-\frac{abK}{r + b^2 K}x\)
- Thus the Bellman equation is solved by \(J^*(x) = K^* x^2 \), with \(K^* \) being a solution of the Riccati equation
 \[K^* = F(K^*) = \frac{a^2 rK^*}{r + b^2 K^*} + q \]
 and the optimal policy is linear:
 \[\mu^*(x) = L^* x \quad \text{with} \quad L^* = -\frac{abK^*}{r + b^2 K^*} \]
Graphical Solution of the Riccati Equation

\[F(K) = \frac{a^2 r K}{r + b^2 K} + q \]

Riccati Equation: \(K = F(K) \)

from

Bellman Equation on
Space of Quadratic Functions

\[J(x) = K x^2 \]
Visualization of VI

\[F(K) = \frac{a^2 r K}{r + b^2 K} + q \]

Value Iteration:
\[K_{k+1} = F(K_k) \]
from
\[J_{k+1}(x) = K_{k+1} x^2 = F(K_k) x^2 \]
About the Next Lecture

Linear quadratic problems and Newton step interpretations
- Approximation in value space as a Newton step for solving the Riccati equation
- Rollout as a Newton step starting from the cost of the base policy
- Policy Iteration as repeated Newton steps

Problem formulations and reformulations
- How do we formulate DP models for practical problems?
- Problems involving a terminal state (stochastic shortest path problems)
- Problem reformulation by state augmentation (dealing with delays, correlations, forecasts, etc)
- Problems involving imperfect state observation (POMDP)
- Multiagent problems - Nonclassical information patterns
- Systems with unknown or changing parameters - Adaptive control

PLEASE READ SECTIONS 1.5-1.6 OF THE CLASS NOTES (as much as you can)

1ST HOMEWORK (DUE IN ONE WEEK): Exercise 1.1 of the Class Notes