Class Notes for
ASU Course CSE 691; Spring 2023
Topics in Reinforcement Learning

CHAPTER 1
Version of March 14, 2023

Based on the Books
Dynamic Programming and Optimal Control,
Reinforcement Learning and Optimal Control, 2019,
Rollout, Policy Iteration, and
Distributed Reinforcement Learning, 2020,
Abstract Dynamic Programming, 3rd Ed., 2022,
and
Lessons from AlphaZero for Optimal,
Model Predictive, and Adaptive Control, 2022,

by
Dimitri P. Bertsekas
Arizona State University
dbertsek@asu.edu, dimitrib@mit.edu
Preface

These class notes (and the related slides that support them) are made available as instructional material for the 2023 CSE 691 ASU class on Reinforcement Learning. They are posted on the internet, and can be used freely for instructional purposes, provided they are not excerpted, shortened, or altered in any way.

The purpose of the notes is to provide an entry point to reinforcement learning, largely from a decision, control, and optimization point of view. They have limited scope, but they provide enough background for starting to read literature in the field and for making a choice for a research-oriented term paper. They roughly cover the material of the first eight two-hour lectures. They also provide the foundation for much of the material of the remaining lectures.

To repeat, the notes (and associated slides) are not a textbook, they just provide an entry point to the field, often uneven in coverage and insufficient for in-depth understanding. At the same time the notes are at the forefront of current research, and in part discuss new and as yet unpublished material.

Your comments, corrections, and suggestions for improved presentation are most welcome. The contents of the notes will be periodically updated and corrected, so try to read the latest version and please refer to the version date.

The aim of the 2023 version of the ASU course is to provide an overview of the Reinforcement Learning (RL) methodology, and to provide an entry point into current research, particularly as it relates to problems in optimal and suboptimal decision and control, and discrete optimization.

An important part of our narrative is a new conceptual framework, which aims to bridge the gaps between the artificial intelligence, control theory, and operations research views of the subject. This framework centers on approximate forms of Dynamic Programming (DP), which are motivated from some of the major successes of RL involving games. Primary examples are the recent (2017) AlphaZero program (which plays chess), and the similarly structured and earlier (1990s) TD-Gammon program (which plays backgammon).

Our framework is couched on two general algorithms that are designed largely independently of each other and operate in synergy through the powerful mechanism of Newton’s method, applied for solution of the fundamental Bellman equation of DP. We call these the off-line training and the on-line play algorithms. In the AlphaZero and TD-Gammon game
contexts, the off-line training algorithm is the method used to teach the program how to evaluate positions and to generate good moves at any given position, while the on-line play algorithm is the method used to play in real time against human or computer opponents.

Our synergistic view of off-line training and on-line play is motivated by some striking empirical observations. In particular, both AlphaZero and TD-Gammon were trained off-line extensively using neural networks and an approximate version of the fundamental DP algorithm of policy iteration. Yet the AlphaZero player that was obtained off-line is not used directly during on-line play (it is too inaccurate due to approximation errors that are inherent in off-line neural network training). Instead a separate on-line player is used to select moves, based on multistep lookahead minimization and a terminal position evaluator that was trained using experience with the off-line player. The on-line player performs a form of policy improvement, which is not degraded by neural network approximations. As a result, it greatly improves the performance of the off-line player.

Similarly, TD-Gammon performs on-line a policy improvement step using one-step or two-step lookahead minimization, which is not degraded by neural network approximations. To this end it uses an off-line neural network-trained terminal position evaluator, and importantly it also extends its on-line lookahead by rollout (simulation with the one-step lookahead player that is based on the position evaluator). Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively trained off-line player. This is due to the beneficial effect of exact policy improvement with long lookahead minimization, which corrects for the inevitable imperfections of the neural network-trained off-line player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better than TD-Gammon without rollout. This is due to the beneficial effect of the rollout, which serves as a substitute for long lookahead minimization.

An important lesson from AlphaZero and TD-Gammon is that the performance of an off-line trained policy can be greatly improved by on-line approximation in value space, with long lookahead (involving minimization or rollout with the off-line policy, or both), and terminal cost approximation that is obtained off-line. This performance enhancement is often dramatic and is due to a simple fact, which is couched on algorithmic mathematics and is a focal point of our course: *approximation in value space with one-step lookahead minimization amounts to a step of Newton’s method for solving Bellman’s equation, while the starting point for the Newton step is based on the results of off-line training, and may be enhanced by longer lookahead minimization and on-line rollout.* Indeed the major determinant of the quality of the on-line policy is the Newton step that is performed
on-line, while off-line training plays a secondary role by comparison.

Significantly, the synergy between off-line training and on-line play also underlies Model Predictive Control (MPC), a major control system design methodology that has been extensively developed since the 1980s. This synergy can be understood in terms of abstract models of infinite horizon DP and simple geometrical constructions, and helps to explain the all-important stability issues within the MPC context.

An additional benefit of policy improvement by approximation in value space, not observed in the context of games (which have stable rules and environment), is that it works well with changing problem parameters and on-line replanning, similar to the methodology of indirect adaptive control. In particular, the Bellman equation is perturbed due to the parameter changes, but approximation in value space still operates as a Newton step. An essential requirement here is that a system model is estimated on-line through some identification method, and is used during the one-step or multistep lookahead minimization process.

In these notes we will aim to explain (often with visualization) the beneficial effects of on-line decision making on top of off-line training. In the process, we will bring out the strong connections between the artificial intelligence view of RL, the control theory views of MPC and adaptive control, and the operations research view of discrete optimization algorithms. Moreover, we will describe a broad variety of algorithms (especially truncated rollout, but also other methods) that can be used for on-line play.

We will also aim to show, through the algorithmic ideas of Newton’s method and the unifying principles of abstract DP, that the AlphaZero/TD-Gammon methodology of approximation in value space and rollout applies very broadly to deterministic and stochastic optimal control problems, involving both discrete and continuous search spaces, as well as finite and infinite horizon. Moreover, we will show that in addition to MPC and adaptive control, our conceptual framework can be effectively integrated with other important methodologies such as multiagent systems and decentralized control, discrete and Bayesian optimization, and heuristic algorithms for discrete optimization.

We finally note that while we will deemphasize mathematical proofs in these notes, there is considerable related analysis, which supports our conclusions and can be found in the author’s recent RL and DP books. These books also contain additional material on closely related methodology, such as the off-line training of neural networks, on the use of policy gradient methods for approximation in policy space, and on aggregation, which will be prominent in the second half of the course, but is not covered in sufficient detail in the present class notes.

Sources

While these notes are focused primarily on on-line play, the algorithmic
aspects of off-line training are covered at some length (see Chapter 3). They are also discussed in greater detail in the author’s approximate DP/RL books:

The two books above also include a far more detailed discussion of MPC, adaptive control, and discrete optimization topics, than the present class notes. Moreover, other popular methods, such as temporal difference methods, Q-learning, policy gradient methods for approximation in policy space, and a variety of approximation methodologies, including aggregation, are discussed in the books [1] and [2], but not in these class notes.

The author’s two-volume DP book (4th edition)

is a major source on the modeling and mathematical aspects of finite and infinite horizon DP. Modeling aspects and finite horizon problems are the principal focus of [3], while the mathematical aspects of infinite horizon problems are the principal focus of [4]. Both books [3] and [4] provide substantial accounts of approximate DP/RL methods. Thus these books are the best entry points for a research-oriented reader that wishes to go into DP and its connections to RL more deeply.

Two of the author’s recent research monographs are also highly relevant to our course:

This monograph focuses on the analytical aspects of abstract DP on which the Newton-based methodology is couched, and may serve as a mathematical supplement to the present class notes. It also provides some supportive mathematical foundation for the more visually oriented monograph

This monograph focuses in greater detail than the present class notes on the off-line training/on-line play/Newton’s method conceptual framework, as well as on model predictive and adaptive control, and associated issues of stability.

All of the above books are available as ebooks; see the Athena Sci-
scientific website. Most of the material in these class notes is essentially replicated and adapted from these books. However, the books themselves provide a presentation that is far more detailed and mathematically rigorous than these notes.

The present class notes can be fruitfully supplemented by the extensive textbook and research monograph literature on RL. This literature is summarized in Section 1.8, and includes several accounts of RL that are based on alternative viewpoints of artificial intelligence, control theory, and operations research.

Structure of the Course Notes - Course Adaptations

An important structural characteristic of these notes is that they are organized in a modular way, with a view towards flexibility, so they can be easily modified to accommodate changes in course content. In particular, the notes are divided in two parts:

1. **A foundational platform**, which consists of Chapter 1. It contains a selective overview of the approximate DP/RL landscape, and a starting point for a more detailed in-class development of other RL topics, whose choice can be at the instructor’s discretion.

2. **An in-depth coverage** of the methodologies of deterministic and stochastic rollout in Chapter 2, and of the use of neural networks and other approximation architectures for off-line training in Chapter 3.

In a different course, other choices for in-depth coverage may be made, using the same foundational platform.

Let us also mention that the notes contain more material than can be reasonably covered in class in one semester. This provides some flexibility to the instructor regarding the choice of material to present.

Videolectures and Slides

The present notes and my RL books above, were developed while teaching several versions of my course at ASU over the last four years. Videolectures and slides from this course, as well as links to overview videolectures by the author are available from my website

and provide a good supplement and companion resource to these notes.
CONTENTS

1. Exact and Approximate Dynamic Programming

 1.1. AlphaZero, Off-Line Training, and On-Line Play p. 4
 1.2. Deterministic Dynamic Programming p. 9
 1.2.1. Finite Horizon Problem Formulation p. 9
 1.2.2. The Dynamic Programming Algorithm p. 13
 1.2.3. Approximation in Value Space and Rollout p. 21
 1.3. Stochastic Dynamic Programming p. 27
 1.3.1. Finite Horizon Problems p. 27
 1.3.2. Approximation in Value Space for Stochastic DP p. 32
 1.3.3. Approximation in Policy Space p. 36
 1.4. Infinite Horizon Problems - An Overview p. 39
 1.4.1. Infinite Horizon Methodology p. 42
 1.4.2. Approximation in Value Space p. 45
 1.4.3. Understanding Approximation in Value Space p. 51
 1.5. Infinite Horizon Linear Quadratic Problems p. 52
 1.5.1. Visualizing Approximation in Value Space - Newton’s Method p. 58
 1.5.2. Local and Global Error Bounds for Approximation in Value Space p. 66
 1.5.3. Rollout and Policy Iteration p. 67
 1.6. Examples, Reformulations, and Simplifications p. 71
 1.6.1. A Few Words About Modeling p. 72
 1.6.2. Problems with a Termination State p. 75
 1.6.3. State Augmentation, Time Delays, Forecasts, and Uncontrollable State Components p. 79
 1.6.4. Partial State Information and Belief States p. 86
 1.6.5. Multiagent Problems and Multiagent Rollout p. 89
 1.6.6. Problems with Unknown Parameters - Adaptive Control p. 94
 1.6.7. Model Predictive Control p. 104
 1.7. Reinforcement Learning and Decision/Control p. 115
 1.7.1. Terminology p. 116
 1.7.2. Notation p. 117
 1.8. Notes, Sources, and Exercises p. 118

2. Approximation in Value Space - Rollout Algorithms

 2.1. Deterministic Discrete Spaces Finite Horizon Problems p. 3
2.2. Approximation in Value Space .. p. 12
2.3. Rollout Algorithms for Discrete Optimization p. 13
 2.3.1. Cost Improvement with Rollout - Sequential Consistency, ...
 2.3.2. The Fortified Rollout Algorithm p. 25
 2.3.3. Using Multiple Base Heuristics - Parallel Rollout p. 28
 2.3.4. Simplified Rollout Algorithms p. 29
 2.3.5. Truncated Rollout with Terminal Cost Approximation p. 30
 2.3.6. Model-Free Rollout .. p. 31
2.4. Rollout and Approximation in Value Space with Multistep
 2.4.1. Iterative Deepening Using Forward Dynamic Programming p. 35
 2.4.2. Pruning the Lookahead Minimization Graph - Double Rollout ... p. 39
 2.4.3. Incremental Multistep Rollout p. 41
2.5. Constrained Forms of Rollout Algorithms p. 44
 2.5.1. Constrained Rollout for Discrete Optimization and Integer Programming p. 57
2.6. Small Stage Costs and Long Horizon - Continuous-Time Rollout .. p. 61
2.7. Stochastic Rollout and Monte Carlo Tree Search p. 69
 2.7.1. Simplified Rollout and Policy Iteration p. 73
 2.7.2. Certainty Equivalence Approximations p. 74
 2.7.3. Simulation-Based Implementation of the Rollout Algorithm .. p. 75
 2.7.4. Variance Reduction in Rollout - Comparing Advantages p. 78
 2.7.5. Monte Carlo Tree Search p. 80
 2.7.6. Randomized Policy Improvement by Monte Carlo Tree Search .. p. 84
2.8. Rollout for Infinite-Spaces Problems - Optimization Heuristics .. p. 85
 2.8.1. Rollout for Infinite-Spaces Deterministic Problems p. 85
 2.8.2. Rollout Based on Stochastic Programming p. 89
 2.8.3. Stochastic Programming with Certainty Equivalence p. 92
2.9. Multiagent Rollout .. p. 93
 2.9.1. Asynchronous and Autonomous Multiagent Rollout p. 104
2.10. Rollout for Bayesian Optimization and Sequential Estimation .. p. 107
2.11. Adaptive Control by Rollout with a POMDP p. 118
2.12. Rollout for Minimax Control p. 125
2.13. Notes, Sources, and Exercises p. 133
3. Learning Values and Policies

3.1. Parametric Approximation Architectures
 3.1.1. Cost Function Approximation
 3.1.2. Feature-Based Architectures
 3.1.3. Training of Linear and Nonlinear Architectures

3.2. Neural Networks
 3.2.1. Training of Neural Networks
 3.2.2. Multilayer and Deep Neural Networks

3.3. Training of Cost Functions in Approximate DP
 3.3.1. Fitted Value Iteration
 3.3.2. Q-Factor Parametric Approximation
 3.3.3. Parametric Approximation in Infinite Horizon
 - Problems - Approximate Policy Iteration
 3.3.4. Advantage Updating - Approximating Q-Factor
 3.3.5. Differential Training of Cost Differences for Rollout

3.4. Training of Policies in Approximate DP
 3.4.1. The Use of Classifiers for Approximation in Policy
 - Space
 3.4.2. Policy Iteration with Value and Policy Networks
 - Multiprocessor Parallelization
 3.4.3. Why Use On-Line Play and not Just Train a Policy
 - Network to Emulate the Lookahead Minimization?

3.5. Notes, Sources, and Exercises

4. Lecture Slides
Exact and Approximate Dynamic Programming

Contents

1.1. AlphaZero, Off-Line Training, and On-Line Play p. 4
1.2. Deterministic Dynamic Programming p. 9
 1.2.1. Finite Horizon Problem Formulation p. 9
 1.2.2. The Dynamic Programming Algorithm p. 13
 1.2.3. Approximation in Value Space and Rollout p. 21
1.3. Stochastic Dynamic Programming p. 27
 1.3.1. Finite Horizon Problems p. 27
 1.3.2. Approximation in Value Space for Stochastic DP . p. 32
 1.3.3. Approximation in Policy Space p. 36
1.4. Infinite Horizon Problems - An Overview p. 39
 1.4.1. Infinite Horizon Methodology p. 42
 1.4.2. Approximation in Value Space p. 45
 1.4.3. Understanding Approximation in Value Space . . p. 51
1.5. Infinite Horizon Linear Quadratic Problems p. 52
 1.5.1. Visualizing Approximation in Value Space - Newton’s Method p. 58
 1.5.2. Local and Global Error Bounds for Approximation in . Value Space p. 66
 1.5.3. Rollout and Policy Iteration p. 67
This chapter has multiple purposes:

(a) *To provide an overview of the exact dynamic programming (DP) methodology, with a view towards suboptimal solution methods.* We will first discuss finite horizon problems, which involve a finite sequence of successive decisions, and are thus conceptually and analytically simpler. We will consider separately deterministic and stochastic finite horizon problems (Sections 1.2 and 1.3, respectively). The reason is that deterministic problems are simpler and have some favorable characteristics, which allow the application of a broader variety of methods. Significantly they include challenging discrete and combinatorial optimization problems, which can be fruitfully addressed with some of the reinforcement learning (RL) methods that are the main subject of the present class notes. We will also discuss somewhat briefly the more intricate infinite horizon methodology (Section 1.4), and refer to the author’s DP textbooks [Ber12], [Ber17a], the RL books [Ber19a], [Ber20a], and the neuro-dynamic programming monograph [BeT96] for a fuller presentation.

(b) *To discuss in summary the principal RL methodologies, with primary emphasis towards approximation in value space.* This is the architecture that underlies the AlphaZero, AlphaGo, TD-Gammon and other related programs, as well as the Model Predictive Control (MPC) methodology, one of the principal control system design methods. We will also argue later (Chapter 2) that approximation in value space provides the entry point for the use of RL methods for solving discrete optimization and integer programming problems.

(c) *To explain the major principles of approximation in value space, and its division into the off-line training and the on-line play algorithms.* A key idea here is the connection of these two algorithms through the algorithmic methodology of Newton’s method for solving the problem’s Bellman equation. This viewpoint, recently developed in the author’s “Rollout and Policy Iteration ...” book [Ber20a] and the visually oriented “Lessons from AlphaZero ...” monograph [Ber22a], underlies the entire course and is discussed for the simple, intuitive, and important class of linear quadratic problems in Section 1.5.

(d) *To overview the range of problem types where our RL methods apply, and to explain some of their major algorithmic ideas (Section 1.6).* Included here are partial state observation problems (POMDP), multiagent problems, and problems with unknown model parameters, which can be addressed with adaptive control methods.

We will also discuss selectively in this chapter some major algorithmic topics in approximate DP and RL, including rollout and policy iteration. A broader discussion of DP/RL may be found in the RL books [Ber19a], [Ber20a], the DP textbooks [Ber12], [Ber17a], the neuro-dynamic program-
Exact and Approximate Dynamic Programming Chap. 1

The present notes reflect the author’s decision/control and operations research orientation, which has in turn guided the choices of terminology, notation, and mathematical style for these notes. On the other hand, RL methods have been developed within the artificial intelligence community, as well as the decision/control and operations research communities. While the underlying practical problems addressed by these communities are very similar in their mathematical structure, there are notable differences in terminology, notation, and culture, which can be quite bewildering to researchers entering the field. We have thus provided in Section 1.7 a glossary and an orientation to assist the reader in navigating the full range of the DP/RL literature.

1.1 ALPHAZERO, OFF-LINE TRAINING, AND ON-LINE PLAY

One of the most exciting recent success stories in RL is the development of the AlphaGo and AlphaZero programs by DeepMind Inc; see [SHM16], [SHS17], [SSS17]. AlphaZero plays Chess, Go, and other games, and is an improvement in terms of performance and generality over AlphaGo, which plays the game of Go only. Both programs play better than all competitor computer programs available in 2022, and much better than all humans. These programs are remarkable in several other ways. In particular, they have learned how to play without human instruction, just data generated by playing against themselves. Moreover, they learned how to play very quickly. In fact, AlphaZero learned how to play chess better than all humans and computer programs within hours (with the help of awesome parallel computation power, it must be said).

Perhaps the most impressive aspect of AlphaZero/chess is that its play is not just better, but it is also very different than human play in terms of long term strategic vision. Remarkably, AlphaZero has discovered new ways to play a game that has been studied intensively by humans for hundreds of years. Still, for all of its impressive success and brilliant implementation, AlphaZero is couched on well established theory and methodology, which is the subject of the present notes, and is portable to far broader realms of engineering, economics, and other fields. This is the methodology of DP, policy iteration, limited lookahead, rollout, and approximation in value space.†

† It is also worth noting that the principles of the AlphaZero design have much in common with the work of Tesauro [Tes94], [Tes95], [TeG96] on computer backgammon. Tesauro’s programs stimulated much interest in RL in the middle 1990s, and exhibit similarly different and better play than human backgammon players. A related impressive program for the (one-player) game
To understand the overall structure of AlphaZero, and its connection to our DP/RL methodology, it is useful to divide its design into two parts: off-line training, which is an algorithm that learns how to evaluate chess positions, and how to steer itself towards good positions with a default/base chess player, and on-line play, which is an algorithm that generates good moves in real time against a human or computer opponent, using the training it went through off-line. We will next briefly describe these algorithms, and relate them to DP concepts and principles.

Off-Line Training and Policy Iteration

This is the part of the program that learns how to play through off-line self-training, and is illustrated in Fig. 1.1.1. The algorithm generates a sequence of chess players and position evaluators. A chess player assigns “probabilities” to all possible moves at any given chess position (these are the probabilities with which the player selects the possible moves at the given position). A position evaluator assigns a numerical score to any given chess position (akin to a “probability” of winning the game from that position), and thus predicts quantitatively the performance of a player starting from any position. The chess player and the position evaluator are represented by two neural networks, a policy network and a value network, which accept a chess position and generate a set of move probabilities and a position evaluation, respectively.†

In the more conventional DP-oriented terms of these notes, a position is the state of the game, a position evaluator is a cost function that gives (an estimate of) the optimal cost-to-go at a given state, and the chess player is a randomized policy for selecting actions/controls at a given state.‡

† Here the neural networks play the role of function approximators; see Chapter 3. By viewing a player as a function that assigns move probabilities to a position, and a position evaluator as a function that assigns a numerical score to a position, the policy and value networks provide approximations to these functions based on training with data (training algorithms for neural networks and other approximation architectures are also discussed in the RL books [Ber19a], [Ber20a], and the neuro-dynamic programming book [BeT96]).

‡ One more complication is that chess and Go are two-player games, while most of our development will involve single-player optimization. However, DP theory extends to two-player games, although we will not focus on this extension. Alternately, we can consider training a game program to play against a known fixed opponent; this is a one-player setting.
The overall training algorithm is a form of policy iteration, a classical DP algorithm that will be of primary interest to us in these notes. Starting from a given player, it repeatedly generates (approximately) improved players, and settles on a final player that is judged empirically to be “best” out of all the players generated. Policy iteration may be separated conceptually in two stages (see Fig. 1.1.1).

(a) **Policy evaluation**: Given the current player and a chess position, the outcome of a game played out from the position provides a single data point. Many data points are thus collected, and are used to train a value network, whose output serves as the position evaluator for that player.

(b) **Policy improvement**: Given the current player and its position evaluator, trial move sequences are selected and evaluated for the remainder of the game starting from many positions. An improved player is then generated by adjusting the move probabilities of the current player towards the trial moves that have yielded the best results. In Alp-

† Quoting from the paper [SSS17]: “The AlphaGo Zero selfplay algorithm can similarly be understood as an approximate policy iteration scheme in which MCTS is used for both policy improvement and policy evaluation. Policy improvement starts with a neural network policy, executes an MCTS based on that policy’s recommendations, and then projects the (much stronger) search policy back into the function space of the neural network. Policy evaluation is applied to the (much stronger) search policy: the outcomes of selfplay games are also projected back into the function space of the neural network. These projection steps are achieved by training the neural network parameters to match the search probabilities and selfplay game outcome respectively.” Note, however, that a two-person game player, trained through selfplay is not guaranteed theoretically to play well against a particular human or computer player.
AlphaZero, this is done with a complicated algorithm called Monte Carlo Tree Search. However, policy improvement can also be done more simply. For example one could try all possible move sequences from a given position, extending forward to a given number of moves, and then evaluate the terminal position with the player’s position evaluator. The move evaluations obtained in this way are used to nudge the move probabilities of the current player towards more successful moves, thereby obtaining data that is used to train a policy network that represents the new player.

Tesauro’s TD-Gammon algorithm [Tes94] program is similarly based on approximate policy iteration, but uses a different methodology for approximate policy evaluation [it is based on the TD(\(\lambda\)) algorithm]; see the book [BeT96], Section 8.6, for a detailed description. Moreover, it does not use a policy network and MCTS. It involves only a value network, which replicates the functionality of a policy network by generating moves on-line via a one-step or two-step lookahead minimization.

On-Line Play and Approximation in Value Space - Rollout

Suppose that a “final” player has been obtained through the AlphaZero off-line training process just described. It could then be used in principle to play chess against any human or computer opponent, since it is capable of generating move probabilities at each given chess position using its policy network. In particular, during on-line play, at a given position the player can simply choose the move of highest probability supplied by the off-line trained policy network. This player would play very fast on-line, but it would not play good enough chess to beat strong human opponents. The extraordinary strength of AlphaZero is attained only after the player and its position evaluator obtained from off-line training have been embedded into another algorithm, which we refer to as the “on-line player.” Given the policy network/player obtained off-line and its value network/position evaluator, this algorithm plays as follows (see Fig. 1.1.2).

At a given position, it generates a lookahead tree of all possible multiple move and countermove sequences, up to a given depth. It then runs the off-line obtained player for some more moves, and then evaluates the effect of the remaining moves by using the position evaluator of the off-line obtained value network. Actually the middle portion, called “truncated rollout,” is not used in the published version of AlphaZero/chess [SHS17], [SHS17]; the first portion (multistep lookahead) is quite long and implemented efficiently, so that the rollout portion is not essential. Rollout is used in AlphaGo [SHM16], and plays a very important role the final version of Tesauro’s backgammon program [TeG96]. The reason is that in backgammon, long multistep lookahead is not possible because of rapid expansion of the lookahead tree with every move.
Figure 1.1.2 Illustration of an on-line player such as the one used in AlphaGo, AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position, it generates a lookahead tree of multiple moves up to some depth, then runs the off-line obtained player for some more moves, and evaluates the effect of the remaining moves by using the position evaluator of the off-line player.

We should note that the preceding description of AlphaZero and related games is oversimplified. We will be discussing refinements and details as the notes progress. However, DP ideas with cost function approximations, similar to the on-line player illustrated in Fig. 1.1.2, will be central for our purposes. Moreover, the algorithmic division between off-line training and on-line policy implementation will be conceptually very important for our purposes.

Note that the off-line training and the on-line play algorithms may be decoupled and may be designed independently. For example the off-line training portion may be very simple, such as using a simple known policy for rollout without truncation, or without terminal cost approximation. Conversely, a sophisticated process may be used for off-line training of a terminal cost function approximation, which is used immediately following one-step or multistep lookahead in a value space approximation scheme.

In control system design, similar architectures to the ones of AlphaZero and TD-Gammon are employed in model predictive control (MPC). There, the number of steps in lookahead minimization is called the control interval, while the total number of steps in lookahead minimization and truncated rollout is called the prediction interval; see e.g., Magni et al. [MDM01]. The benefit of truncated rollout in providing an economical substitute for longer lookahead minimization is well known within this...

† The Matlab toolbox for MPC design explicitly allows the user to set these two intervals.
1.2 Deterministic Dynamic Programming

In all DP problems, the central object is a discrete-time dynamic system that generates a sequence of states under the influence of control. The system may evolve deterministically or randomly (under the additional influence of a random disturbance).

1.2.1 Finite Horizon Problem Formulation

In finite horizon problems the system evolves over a finite number N of time steps (also called stages). The state and control at time k of the system will be generally denoted by x_k and u_k, respectively. In deterministic systems, x_{k+1} is generated nonrandomly, i.e., it is determined solely by x_k and u_k;
see Fig. 1.2.1. Thus, a deterministic DP problem involves a system of the form

\[x_{k+1} = f_k(x_k, u_k), \quad k = 0, 1, \ldots, N - 1, \quad (1.1) \]

where

- \(k \) is the time index,
- \(x_k \) is the state of the system, an element of some space,
- \(u_k \) is the control or decision variable, to be selected at time \(k \) from some given set \(U_k(x_k) \) that depends on \(x_k \),
- \(f_k \) is a function of \((x_k, u_k)\) that describes the mechanism by which the state is updated from time \(k \) to time \(k + 1 \),
- \(N \) is the horizon, i.e., the number of times control is applied.

In the case of a finite number of states, the system function \(f_k \) may be represented by a table that gives the next state \(x_{k+1} \) for each possible value of the pair \((x_k, u_k)\). Otherwise a mathematical expression or a computer implementation is necessary to represent \(f_k \).

The set of all possible \(x_k \) is called the state space at time \(k \). It can be any set and may depend on \(k \). Similarly, the set of all possible \(u_k \) is called the control space at time \(k \). Again it can be any set and may depend on \(k \). Similarly the system function \(f_k \) can be arbitrary and may depend on \(k \).†

The problem also involves a cost function that is additive in the sense that the cost incurred at time \(k \), denoted by \(g_k(x_k, u_k) \), accumulates over time. Formally, \(g_k \) is a function of \((x_k, u_k)\) that takes scalar values, and may depend on \(k \). For a given initial state \(x_0 \), the total cost of a control sequence \(\{u_0, \ldots, u_{N-1}\} \) is

\[J(x_0; u_0, \ldots, u_{N-1}) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k), \quad (1.2) \]

† This generality is one of the great strengths of the DP methodology and guides the exposition style of these notes, and the author’s other DP works. By allowing general state and control spaces (discrete, continuous, or mixtures thereof), and a \(k \)-dependent choice of these spaces, we can focus attention on the truly essential algorithmic aspects of the DP approach, exclude extraneous assumptions and constraints from our model, and avoid duplication of analysis.

The generality of our DP model is also partly responsible for our choice of notation. In the artificial intelligence and operations research communities, finite state models, often referred to as Markovian Decision Problems (MDP), are common and use a transition probability notation (see Section 1.7.2). Unfortunately, this notation is not well suited for deterministic models, and also for continuous spaces models, both of which are important for the purposes of these notes. For the latter models, it involves transition probability distributions over continuous spaces, and leads to mathematics that are far more complex as well as less intuitive than those based on the use of the system function (1.1).
Sec. 1.2 Deterministic Dynamic Programming

11

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Figure 1.2.2 Transition graph for a deterministic finite-state system. Nodes correspond to states \(x_k \). Arcs correspond to state-control pairs \((x_k, u_k)\). An arc \((x_k, u_k)\) has start and end nodes \(x_k \) and \(x_{k+1} = f_k(x_k, u_k) \), respectively. We view the cost \(g_k(x_k, u_k) \) of the transition as the length of this arc. The problem is equivalent to finding a shortest path from initial nodes of stage 0 to the terminal node \(t \).

where \(g_N(x_N) \) is a terminal cost incurred at the end of the process. This is a well-defined scalar, since the control sequence \(\{u_0, \ldots, u_{N-1}\} \) together with \(x_0 \) determines exactly the state sequence \(\{x_1, \ldots, x_N\} \) via the system equation (1.1). We want to minimize the cost (1.2) over all sequences \(\{u_0, \ldots, u_{N-1}\} \) that satisfy the control constraints, thereby obtaining the optimal value as a function of \(x_0 \):

\[
J^*(x_0) = \min_{u_k \in U_k(x_k)} \min_{k=0, \ldots, N-1} J(x_0; u_0, \ldots, u_{N-1}).
\]

(1.3)

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally discrete and consist of a finite number of elements. Such problems are often conveniently described with an acyclic graph specifying for each state \(x_k \) the possible transitions to next states \(x_{k+1} \). The nodes of the graph correspond to states \(x_k \) and the arcs of the graph correspond to state-control pairs \((x_k, u_k)\). Each arc with start node \(x_k \) corresponds to a choice of a single control \(u_k \in U_k(x_k) \) and has as end node the next state \(f_k(x_k, u_k) \). The cost of an arc \((x_k, u_k)\) is defined as \(g_k(x_k, u_k) \); see Fig. 1.2.2. To handle the final stage, an artificial terminal node \(t \) is added. Each state \(x_N \) at stage \(N \) is connected to the terminal node \(t \) with an arc having cost \(g_N(x_N) \).

Note that control sequences \(\{u_0, \ldots, u_{N-1}\} \) correspond to paths originating at the initial state (a node at stage 0) and terminating at one of the

† Here and later we write “min” (rather than “inf”) even if we are not sure that the minimum is attained; similarly we write “max” (rather than “sup”) even if we are not sure that the maximum is attained.
Figure 1.2.3 The transition graph of the deterministic scheduling problem of Example 1.2.1. Each arc of the graph corresponds to a decision leading from some state (the start node of the arc) to some other state (the end node of the arc). The corresponding cost is shown next to the arc. The cost of the last operation is shown as a terminal cost next to the terminal nodes of the graph.

nodes corresponding to the final stage N. If we view the cost of an arc as its length, we see that a deterministic finite-state finite-horizon problem is equivalent to finding a minimum-length (or shortest) path from the initial nodes of the graph (stage 0) to the terminal node t. Here, by the length of a path we mean the sum of the lengths of its arcs.†

Generally, combinatorial optimization problems can be formulated as deterministic finite-state finite-horizon optimal control problems. The idea is to break down the solution into components, which can be computed sequentially. The following is an illustrative example.

Example 1.2.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed on a given machine. The operations are denoted by A, B, C, and D. We assume that operation B can be performed only after operation A has been performed, and operation D can be performed only after operation C has been performed. (Thus the sequence CDAB is allowable but the sequence

† It turns out also that any shortest path problem (with a possibly non-cyclic graph) can be reformulated as a finite-state deterministic optimal control problem. See [Ber17a], Section 2.1, and [Ber91], [Ber98] for extensive accounts of shortest path methods, which connect with our discussion here.
CDBA is not.) The setup cost \(C_{mn} \) for passing from any operation \(m \) to any other operation \(n \) is given. There is also an initial startup cost \(S_A \) or \(S_C \) for starting with operation A or C, respectively (cf. Fig. 1.2.3). The cost of a sequence is the sum of the setup costs associated with it; for example, the operation sequence ACDB has cost \(S_A + C_{AC} + C_{CD} + C_{DB} \).

We can view this problem as a sequence of three decisions, namely the choice of the first three operations to be performed (the last operation is determined from the preceding three). It is appropriate to consider as state the set of operations already performed, the initial state being an artificial state corresponding to the beginning of the decision process. The possible state transitions corresponding to the possible states and decisions for this problem are shown in Fig. 1.2.3. Here the problem is deterministic, i.e., at a given state, each choice of control leads to a uniquely determined state. For example, at state AC the decision to perform operation D leads to state ACD with certainty, and has cost \(C_{CD} \). Thus the problem can be conveniently represented with the transition graph of Fig. 1.2.3 (which in turn is a special case of the graph of Fig. 1.2.2). The optimal solution corresponds to the path that starts at the initial state and ends at some state at the terminal time and has minimum sum of arc costs plus the terminal cost.

1.2.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The algorithm rests on a simple idea, the *principle of optimality*, which roughly states the following; see Fig. 1.2.4.

Principle of Optimality

Let \(\{u_0^*, \ldots, u_N^*\} \) be an optimal control sequence, which together with \(x_0 \) determines the corresponding state sequence \(\{x_1^*, \ldots, x_N^*\} \) via the system equation (1.1). Consider the subproblem whereby we start at \(x_k^* \) at time \(k \) and wish to minimize the “cost-to-go” from time \(k \) to time \(N \),

\[
g_k(x_k^*, u_k) + \sum_{m=k+1}^{N-1} g_m(x_m, u_m) + g_N(x_N),
\]

over \(\{u_k, \ldots, u_{N-1}\} \) with \(u_m \in U_m(x_m) \), \(m = k, \ldots, N - 1 \). Then the truncated optimal control sequence \(\{u_k^*, \ldots, u_{N-1}^*\} \) is optimal for this subproblem.

The subproblem referred to above is called the *tail subproblem* that starts at \(x_k^* \). Stated succinctly, the principle of optimality says that *the tail of an optimal sequence is optimal for the tail subproblem*. Its intuitive justification is simple. If the truncated control sequence \(\{u_k^*, \ldots, u_{N-1}^*\} \) were not optimal as stated, we would be able to reduce the cost further by switching to an optimal sequence for the subproblem once we reach \(x_k^* \).
Figure 1.2.4 Schematic illustration of the principle of optimality. The tail \(\{u^*_0, \ldots, u^*_k \} \) of an optimal sequence \(\{u^*_0, \ldots, u^*_N \} \) is optimal for the tail subproblem that starts at the state \(x^*_k \) of the optimal state trajectory.

(since the preceding choices of controls, \(u^*_0, \ldots, u^*_k \), do not restrict our future choices).

For an auto travel analogy, suppose that the fastest route from Phoenix to Boston passes through St Louis. The principle of optimality translates to the obvious fact that the St Louis to Boston portion of the route is also the fastest route for a trip that starts from St Louis and ends in Boston.†

The principle of optimality suggests that the optimal cost function can be constructed in piecemeal fashion going backwards: first compute the optimal cost function for the “tail subproblem” involving the last stage, then solve the “tail subproblem” involving the last two stages, and continue in this manner until the optimal cost function for the entire problem is constructed.

The DP algorithm is based on this idea: it proceeds sequentially by solving all the tail subproblems of a given time length, using the solution of the tail subproblems of shorter time length. We illustrate the algorithm with the scheduling problem of Example 1.2.1. The calculations are simple but tedious, and may be skipped without loss of continuity. However, they may be worth going over by a reader that has no prior experience in the use of DP.

Example 1.2.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.2.1, and let us apply the principle of optimality to calculate the optimal schedule. We have to schedule optimally the four operations A, B, C, and D. There is a cost for a transition between two operations, and the numerical values of the transition costs are shown in Fig. 1.2.5 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal schedule must be optimal. For example, suppose that the optimal schedule

† In the words of Bellman [Bel57]: “An optimal trajectory has the property that at an intermediate point, no matter how it was reached, the rest of the trajectory must coincide with an optimal trajectory as computed from this intermediate point as the starting point.”
is CABD. Then, having scheduled first C and then A, it must be optimal to complete the schedule with BD rather than with DB. With this in mind, we solve all possible tail subproblems of length two, then all tail subproblems of length three, and finally the original problem that has length four (the subproblems of length one are of course trivial because there is only one operation that is as yet unscheduled). As we will see shortly, the tail subproblems of length \(k + 1 \) are easily solved once we have solved the tail subproblems of length \(k \), and this is the essence of the DP technique.

Tail Subproblems of Length 2: These subproblems are the ones that involve two unscheduled operations and correspond to the states AB, AC, CA, and CD (see Fig. 1.2.5).

State AB: Here it is only possible to schedule operation C as the next operation, so the optimal cost of this subproblem is 9 (the cost of scheduling C after B, which is 3, plus the cost of scheduling D after C, which is 6).

State AC: Here the possibilities are to (a) schedule operation B and then D, which has cost 5, or (b) schedule operation D and then B, which has cost 9. The first possibility is optimal, and the corresponding cost of the tail subproblem is 5, as shown next to node AC in Fig. 1.2.5.

State CA: Here the possibilities are to (a) schedule operation B and then
D, which has cost 3, or (b) schedule operation D and then B, which has cost 7. The first possibility is optimal, and the corresponding cost of the tail subproblem is 3, as shown next to node CA in Fig. 1.2.5.

State CD: Here it is only possible to schedule operation A as the next operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3: These subproblems can now be solved using the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost 2) and then solve optimally the corresponding subproblem of length 2 (cost 9, as computed earlier), a total cost of 11, or (b) schedule next operation C (cost 3) and then solve optimally the corresponding subproblem of length 2 (cost 5, as computed earlier), a total cost of 8. The second possibility is optimal, and the corresponding cost of the tail subproblem is 8, as shown next to node A in Fig. 1.2.5.

State C: Here the possibilities are to (a) schedule next operation A (cost 4) and then solve optimally the corresponding subproblem of length 2 (cost 3, as computed earlier), a total cost of 7, or (b) schedule next operation D (cost 6) and then solve optimally the corresponding subproblem of length 2 (cost 5, as computed earlier), a total cost of 11. The first possibility is optimal, and the corresponding cost of the tail subproblem is 7, as shown next to node C in Fig. 1.2.5.

Original Problem of Length 4: The possibilities here are (a) start with operation A (cost 5) and then solve optimally the corresponding subproblem of length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with operation C (cost 3) and then solve optimally the corresponding subproblem of length 3 (cost 7, as computed earlier), a total cost of 10. The second possibility is optimal, and the corresponding optimal cost is 10, as shown next to the initial state node in Fig. 1.2.5.

Note that having computed the optimal cost of the original problem through the solution of all the tail subproblems, we can construct the optimal schedule: we begin at the initial node and proceed forward, each time choosing the optimal operation, i.e., the one that starts the optimal schedule for the corresponding tail subproblem. In this way, by inspection of the graph and the computational results of Fig. 1.2.5, we determine that CABD is the optimal schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problems by translating into mathematical terms the heuristic argument underlying the principle of optimality. The algorithm constructs functions

\[J_N^*(x_N), J_{N-1}^*(x_{N-1}), \ldots, J_0^*(x_0), \]

sequentially, starting from \(J_N^* \), and proceeding backwards to \(J_{N-1}^*, J_{N-2}^* \), etc. We will show that the value \(J_k^*(x_k) \) represents the optimal cost of the tail subproblem that starts at state \(x_k \) at time \(k \).
Sec. 1.2 Deterministic Dynamic Programming

Figure 1.2.6 Illustration of the DP algorithm. The tail subproblem that starts at \(x_k \) at time \(k \) minimizes over \(\{u_k, \ldots, u_{N-1}\} \) the “cost-to-go” from \(k \) to \(N \),

\[
g_k(x_k, u_k) + \sum_{m=k+1}^{N-1} g_m(x_m, u_m) + g_N(x_N).
\]

To solve it, we choose \(u_k \) to minimize the (1st stage cost + Optimal tail problem cost) or

\[
J^*_k(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J^*_{k+1}(f_k(x_k, u_k)) \right],
\]

The DP algorithm together with the construction of the functions \(J^*_k(x_k) \) are illustrated in Fig. 1.2.6. Note that at stage \(k \), the calculation in Eq. (1.5) must be done for all states \(x_k \) before proceeding to stage \(k - 1 \). The key fact about the DP algorithm is that for every initial state \(x_0 \), the number \(J^*_0(x_0) \) obtained at the last step, is equal to the optimal cost \(J^*(x_0) \). Indeed, a more general fact can be shown, namely that for all
Exact and Approximate Dynamic Programming Chap. 1

\[k = 0, 1, \ldots, N - 1, \] and all states \(x_k \) at time \(k \), we have

\[J^*_k(x_k) = \min_{u_m \in U_m(x_m)} J(x_k; u_k, \ldots, u_{N-1}), \] \hspace{1cm} (1.6)

where \(J(x_k; u_k, \ldots, u_{N-1}) \) is the cost generated by starting at \(x_k \) and using subsequent controls \(u_k, \ldots, u_{N-1} \):

\[J(x_k; u_k, \ldots, u_{N-1}) = g_N(x_N) + \sum_{t=k}^{N-1} g_t(x_t, u_t). \] \hspace{1cm} (1.7)

Thus, \(J^*_k(x_k) \) is the optimal cost for an \((N - k)\)-stage tail subproblem that starts at state \(x_k \) and time \(k \), and ends at time \(N. \) Based on the interpretation (1.6) of \(J^*_k(x_k) \), we call it the optimal cost-to-go from state \(x_k \) at stage \(k \), and refer to \(J^*_k \) as the optimal cost-to-go function or optimal cost function at time \(k \). In maximization problems the DP algorithm (1.5) is written with maximization in place of minimization, and then \(J^*_k \) is referred to as the optimal value function at time \(k \).

Once the functions \(J^*_0, \ldots, J^*_N \) have been obtained, we can use a forward algorithm to construct an optimal control sequence \(\{u^*_0, \ldots, u^*_{N-1}\} \) and corresponding state trajectory \(\{x^*_1, \ldots, x^*_N\} \) for the given initial state \(x_0 \).

\[J^*_k(x_k) = g_N(x_N), \] \hspace{1cm} (1.8)

To show that it holds for all \(k \), we use Eqs. (1.6) and (1.7) to write

\[
J^*_k(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + \min_{u_{t+1} \in U_{t+1}(x_{t+1})} \left[g_N(x_N) + \sum_{t=k+1}^{N-1} g_t(x_t, u_t) \right] \right]
\]

\[= \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J^*_{k+1} \left(f_k(x_k, u_k) \right) \right], \]

where for the last equality we use the induction hypothesis. A subtle mathematical point here is that, through the minimization operation, the cost-to-go functions \(J^*_k \) may take the value \(-\infty\) for some \(x_k \). Still the preceding induction argument is valid even if this is so.
Construction of Optimal Control Sequence \(\{u_0^*, \ldots, u_{N-1}^*\} \)

Set
\[
 u_0^* \in \arg \min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + J_1^*(f_0(x_0, u_0)) \right],
\]
and
\[
 x_1^* = f_0(x_0, u_0^*).
\]
Sequentially, going forward, for \(k = 1, 2, \ldots, N-1 \), set
\[
 u_k^* \in \arg \min_{u_k \in U_k(x_k^*]} \left[g_k(x_k^*, u_k) + J_{k+1}^*(f_k(x_k^*, u_k)) \right],
\]
and
\[
 x_{k+1}^* = f_k(x_k^*, u_k^*).
\]

The same algorithm can be used to find an optimal control sequence for any tail subproblem. Figure 1.2.5 traces the calculations of the DP algorithm for the scheduling Example 1.2.1. The numbers next to the nodes, give the corresponding cost-to-go values, and the thick-line arcs give the construction of the optimal control sequence using the preceding algorithm.

The following example deals with the classical traveling salesman problem involving \(N \) cities. Here, the number of states grows exponentially with \(N \), and so does the corresponding amount of computation for exact DP. We will show later that with rollout, we can solve the problem approximately with computation that grows polynomially with \(N \).

Example 1.2.2 (The Traveling Salesman Problem)

Here we are given \(N \) cities and the travel time between each pair of cities. We wish to find a minimum time travel that visits each of the cities exactly once and returns to the start city. To convert this problem to a DP problem, we form a graph whose nodes are the sequences of \(k \) distinct cities, where \(k = 1, \ldots, N \). The \(k \)-city sequences correspond to the states of the \(k \)th stage. The initial state \(x_0 \) consists of some city, taken as the start (city A in the example of Fig. 1.2.7). A \(k \)-city node/state leads to a \((k+1)\)-city node/state by adding a new city at a cost equal to the travel time between the last two of the \(k+1 \) cities; see Fig. 1.2.7. Each sequence of \(N \) cities is connected to an artificial terminal node \(t \) with an arc of cost equal to the travel time from the last city of the sequence to the starting city, thus completing the transformation to a DP problem.

The optimal costs-to-go from each node to the terminal state can be obtained by the DP algorithm and are shown next to the nodes. Note, however, that the number of nodes grows exponentially with the number of cities \(N \). This makes the DP solution intractable for large \(N \). As a result, large
Figure 1.2.7 The DP formulation of the traveling salesman problem of Example 1.2.2. The travel times between the four cities A, B, C, and D are shown in the matrix at the bottom. We form a graph whose nodes are the \(k \)-city sequences and correspond to the states of the \(k \)th stage, assuming that A is the starting city. The transition costs/travel times are shown next to the arcs. The optimal costs-to-go are generated by DP starting from the terminal state and going backwards towards the initial state, and are shown next to the nodes. There is a unique optimal sequence here (ABDCA), and it is marked with thick lines. The optimal sequence can be obtained by forward minimization [cf. Eq. (1.8)], starting from the initial state \(x_0 \).

The traveling salesman and related scheduling problems are typically addressed with approximation methods, some of which are based on DP, and will be discussed in future chapters.

Q-Factors and Q-Learning

An alternative (and equivalent) form of the DP algorithm (1.5), uses the optimal cost-to-go functions \(J_k^* \) indirectly. In particular, it generates the
Sec. 1.2 Deterministic Dynamic Programming

optimal Q-factors, defined for all pairs \((x_k, u_k)\) and \(k\) by

\[
Q_k^*(x_k, u_k) = g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)). \tag{1.9}
\]

Thus the optimal Q-factors are simply the expressions that are minimized in the right-hand side of the DP equation (1.5).†

Note that the optimal cost function \(J_k^*\) can be recovered from the optimal Q-factor \(Q_k^*\) by means of the minimization

\[
J_k^*(x_k) = \min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k). \tag{1.10}
\]

Moreover, the DP algorithm (1.5) can be written in an essentially equivalent form that involves Q-factors only [cf. Eqs. (1.9)-(1.10)]:

\[
Q_k^*(x_k, u_k) = g_k(x_k, u_k) + \min_{u_{k+1} \in U_{k+1}(f_k(x_k, u_k))} Q_{k+1}^*(f_k(x_k, u_k), u_{k+1}).
\]

Exact and approximate forms of this and other related algorithms, including counterparts for stochastic optimal control problems, comprise an important class of RL methods known as Q-learning.

1.2.3 Approximation in Value Space and Rollout

The forward optimal control sequence construction of Eq. (1.8) is possible only after we have computed \(J_k^*(x_k)\) by DP for all \(x_k\) and \(k\). Unfortunately, in practice this is often prohibitively time-consuming, because the number of possible \(x_k\) and \(k\) can be very large. However, a similar forward algorithmic process can be used if the optimal cost-to-go functions \(J_k^*\) are replaced by some approximations \(\tilde{J}_k\). This is the basis for an idea that is central in RL: approximation in value space.‡ It constructs a suboptimal solution \(\{\tilde{u}_0, \ldots, \tilde{u}_{N-1}\}\) in place of the optimal \(\{u_0^*, \ldots, u_{N-1}^*\}\), based on using \(J_k\) in place of \(J_k^*\) in the DP algorithm (1.8).

† The term “Q-factor” has been used in the books [BeT96], [Ber19a], [Ber20a] and is adopted here as well. Another term used is “action value” (at a given state). The terms “state-action value” and “Q-value” are also common in the literature. The name “Q-factor” originated in reference to the notation used in an influential Ph.D. thesis [Wat89] that proposed the use of Q-factors in RL.

‡ Approximation in value space is a simple idea that has been used quite extensively for deterministic problems, well before the development of the modern RL methodology. For example it underlies the widely used \(A^*\) method for computing approximate solutions to large scale shortest path problems.
Approximation in Value Space - Use of \tilde{J}_k in Place of J^*_k

Start with

$$\tilde{u}_0 \in \arg \min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + \tilde{J}_1(f_0(x_0, u_0)) \right],$$

and set

$$\tilde{x}_1 = f_0(x_0, \tilde{u}_0).$$

Sequentially, going forward, for $k = 1, 2, \ldots, N-1$, set

$$\tilde{u}_k \in \arg \min_{u_k \in U_k(\tilde{x}_k)} \left[g_k(\tilde{x}_k, u_k) + \tilde{J}_{k+1}(f_k(\tilde{x}_k, u_k)) \right], \quad (1.11)$$

and

$$\tilde{x}_{k+1} = f_k(\tilde{x}_k, \tilde{u}_k).$$

In approximation in value space the calculation of the suboptimal sequence $\{\tilde{u}_0, \ldots, \tilde{u}_{N-1}\}$ is done by going forward (no backward calculation is needed once the approximate cost-to-go functions \tilde{J}_k are available). This is similar to the calculation of the optimal sequence $\{u^*_0, \ldots, u^*_N\}$, and is independent of how the functions \tilde{J}_k are computed. The motivation for approximation in value space for stochastic DP problems is vastly reduced computation relative to the exact DP algorithm (once \tilde{J}_k have been obtained): the minimization (1.11) needs to be performed only for the N states $x_0, \tilde{x}_1, \ldots, \tilde{x}_{N-1}$ that are encountered during the on-line control of the system, and not for every state within the potentially enormous state space, as is the case for exact DP.

The algorithm (1.11) is said to involve a one-step lookahead minimization, since it solves a one-stage DP problem for each k. In what follows we will also discuss the possibility of multistep lookahead, which involves the solution of an ℓ-step DP problem, where ℓ is an integer, $1 < \ell < N - k$, with a terminal cost function approximation $\tilde{J}_{k+\ell}$. Multistep lookahead typically (but not always) provides better performance over one-step lookahead in RL approximation schemes. For example in AlphaZero chess, long multistep lookahead is critical for good on-line performance. The intuitive reason is that with ℓ stages being treated “exactly” (by optimization), the effect of the approximation error

$$\tilde{J}_{k+\ell} - J^*_{k+\ell}$$

tends to become less significant as ℓ increases. However, the solution of the multistep lookahead optimization problem, instead of the one-step lookahead counterpart of Eq. (1.11), becomes more time consuming.
Rollout with a Base Heuristic for Deterministic Problems

A major issue in value space approximation is the construction of suitable approximate cost-to-go functions \tilde{J}_k. This can be done in many different ways, giving rise to some of the principal RL methods. For example, \tilde{J}_k may be constructed with a sophisticated off-line training method, as discussed in Section 1.1. Alternatively, \tilde{J}_k may be obtained on-line with rollout, which will be discussed in detail in these notes. In rollout, the approximate values $\tilde{J}_k(x_k)$ are obtained when needed by running a heuristic control scheme, called base heuristic or base policy, for a suitably large number of stages, starting from the state x_k, and accumulating the costs incurred at these stages.

The major theoretical property of rollout is cost improvement: the cost obtained by rollout using some base heuristic is less or equal to the corresponding cost of the base heuristic. This is true for any starting state, provided the base heuristic satisfies some simple conditions, which will be discussed in Chapter 2.†

There are also several variants of rollout, including versions involving multiple heuristics, combinations with other forms of approximation in value space methods, multistep lookahead, and stochastic uncertainty. We will discuss such variants later. For the moment we will focus on a deterministic DP problem with a finite number of controls. Given a state x_k at time k, this algorithm considers all the tail subproblems that start at every possible next state x_{k+1}, and solves them suboptimally by using some algorithm, referred to as base heuristic.

Thus when at x_k, rollout generates on-line the next states x_{k+1} that correspond to all $u_k \in U_k(x_k)$, and uses the base heuristic to compute the sequence of states $\{x_k, \ldots, x_N\}$ and controls $\{u_k, \ldots, u_{N-1}\}$ such that

$$x_{t+1} = f_t(x_t, u_t), \quad t = k, \ldots, N-1,$$

and the corresponding cost

$$H_{k+1}(x_{k+1}) = g_{k+1}(x_{k+1}, u_{k+1}) + \cdots + g_{N-1}(x_{N-1}, u_{N-1}) + g_N(x_N).$$

The rollout algorithm then applies the control that minimizes over $u_k \in U_k(x_k)$ the tail cost expression for stages k to N:

$$g_k(x_k, u_k) + H_{k+1}(x_{k+1}).$$

† For an intuitive justification of the cost improvement mechanism, note that the rollout control \tilde{u}_k is calculated from Eq. (1.11) to attain the minimum over u_k over the sum of two terms: the first stage cost $g_k(\tilde{x}_k, u_k)$ plus the cost of the remaining stages ($k+1$ to N) using the heuristic controls. Thus rollout involves a first stage optimization (rather than just using the base heuristic), which accounts for the cost improvement. This reasoning also explains why multistep lookahead tends to provide better performance than one-step lookahead in rollout schemes.
Figure 1.2.9 Schematic illustration of rollout with one-step lookahead for a deterministic problem. At state x_k, for every pair (x_k, u_k), $u_k \in U_k(x_k)$, the base heuristic generates an approximate Q-factor

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1} \left(f_k(x_k, u_k) \right),$$

and selects the control $\tilde{\mu}_k(x_k)$ with minimal Q-factor.

Equivalently, and more succinctly, the rollout algorithm applies at state x_k the control $\tilde{\mu}_k(x_k)$ given by the minimization

$$\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k), \quad (1.12)$$

where $\tilde{Q}_k(x_k, u_k)$ is the approximate Q-factor defined by

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1} \left(f_k(x_k, u_k) \right); \quad (1.13)$$

see Fig. 1.2.9.

Note that the rollout algorithm requires running the base heuristic for a number of times that is bounded by Nn, where n is an upper bound on the number of control choices available at each state. Thus if n is small relative to N, it requires computation equal to a small multiple of N times the computation time for a single application of the base heuristic. Similarly, if n is bounded by a polynomial in N, the ratio of the rollout algorithm computation time to the base heuristic computation time is a polynomial in N.

Example 1.2.3 (Traveling Salesman Problem)

Let us consider the traveling salesman problem of Example 1.2.2, whereby a salesman wants to find a minimum cost tour that visits each of N given cities $c = 0, \ldots, N - 1$ exactly once and returns to the city he started from. With each pair of distinct cities c, c', we associate a traversal cost $g(c, c')$. Note
that we assume that we can go directly from every city to every other city. There is no loss of generality in doing so because we can assign a very high cost \(g(c, c') \) to any pair of cities \((c, c')\) that is precluded from participation in the solution. The problem is to find a visit order that goes through each city exactly once and whose sum of costs is minimum.

There are many heuristic approaches for solving the traveling salesman problem. For illustration purposes, let us focus on the simple nearest neighbor heuristic, which starts with a partial tour, i.e., an ordered collection of distinct cities, and constructs a sequence of partial tours, adding to the each partial tour a new city that does not close a cycle and minimizes the cost of the enlargement. In particular, given a sequence \(\{c_0, c_1, \ldots, c_k\} \) (with \(k < N - 1 \)) consisting of distinct cities, the nearest neighbor heuristic adds a city \(c_{k+1} \) that minimizes \(g(c_k, c_{k+1}) \) over all cities \(c_{k+1} \neq c_0, c_1, \ldots, c_k \), thereby forming the sequence \(\{c_0, c_1, \ldots, c_k, c_{k+1}\} \). Continuing in this manner, the heuristic eventually forms a sequence of \(N \) cities, \(\{c_0, c_1, \ldots, c_{N-1}\} \), thus yielding a complete tour with cost

\[
g(c_0, c_1) + \ldots + g(c_{N-2}, c_{N-1}) + g(c_{N-1}, c_0). \tag{1.14}
\]

We can formulate the traveling salesman problem as a DP problem as we discussed in Example 1.2.2. We choose a starting city, say \(c_0 \), as the initial state \(x_0 \). Each state \(x_k \) corresponds to a partial tour \(\{c_0, c_1, \ldots, c_k\} \) consisting of distinct cities. The states \(x_{k+1} \), next to \(x_k \), are sequences of the form \(\{c_0, c_1, \ldots, c_k, c_{k+1}\} \) that correspond to adding one more unvisited city \(c_{k+1} \neq c_0, c_1, \ldots, c_k \) (thus the unvisited cities are the feasible controls at a given partial tour/state). The terminal states \(x_N \) are the complete tours of the form \(\{c_0, c_1, \ldots, c_{N-1}, c_0\} \), and the cost of the corresponding sequence of city choices is the cost of the corresponding complete tour given by Eq. (1.14). Note that the number of states at stage \(k \) increases exponentially with \(k \), and so does the computation required to solve the problem by exact DP.

Let us now use as a base heuristic the nearest neighbor method. The corresponding rollout algorithm operates as follows: After \(k < N - 1 \) iterations, we have a state \(x_k \), i.e., a sequence \(\{c_0, \ldots, c_k\} \) consisting of distinct cities. At the next iteration, we add one more city by running the
Figure 1.2.11 Rollout with the nearest neighbor base heuristic, applied to a traveling salesman problem. At city A, the nearest neighbor heuristic generates the tour ACDBA (labelled T_0). At city A, the rollout algorithm compares the tours ABCDA, ACDBA, and ADCBA, finds ABCDA (labelled T_1) to have the least cost, and moves to city B. At AB, the rollout algorithm compares the tours ABCDA and ABDCA, finds ABDCA (labelled T_2) to have the least cost, and moves to city D. The rollout algorithm then moves to cities C and A (it has no other choice). The final tour T_2 generated by rollout turns out to be optimal in this example, while the tour T_0 generated by the base heuristic is suboptimal. This is suggestive of a general result: the rollout algorithm for deterministic problems generates a sequence of solutions of decreasing cost under some conditions on the base heuristic that we will discuss in Chapter 2, and which are satisfied by the nearest neighbor heuristic.

Figure 1.2.11 provides an example where the nearest neighbor heuristic and the corresponding rollout algorithm are compared; see also Exercise 1.1.

nearest neighbor heuristic starting from each of the sequences of the form \(\{c_0, \ldots, c_k, c\} \) where \(c \neq c_0, \ldots, c_k \). We then select as next city \(c_{k+1} \) the city \(c \) that yielded the minimum cost tour under the nearest neighbor heuristic; see Fig. 1.2.10. The overall computation for the rollout solution is bounded by a polynomial in \(N \), and is much smaller than the exact DP computation. Figure 1.2.11 provides an example where the nearest neighbor heuristic and the corresponding rollout algorithm are compared; see also Exercise 1.1.
1.3 STOCHASTIC DYNAMIC PROGRAMMING

We will now extend the DP algorithm and our discussion of approximation in value space to problems that involve stochastic uncertainty in their system equation and cost function. We will first discuss the finite horizon case, and the extension of the ideas underlying the principle of optimality and approximation in value space schemes. We will then consider the infinite horizon version of the problem, and provide an overview of the underlying theory and algorithmic methodology.

1.3.1 Finite Horizon Problems

The stochastic optimal control problem differs from its deterministic counterpart primarily in the nature of the discrete-time dynamic system that governs the evolution of the state x_k. This system includes a random “disturbance” w_k with a probability distribution $P_k(\cdot | x_k, u_k)$ that may depend explicitly on x_k and u_k, but not on values of prior disturbances w_{k-1}, \ldots, w_0. The system has the form

$$x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, 1, \ldots, N - 1,$$

where as earlier x_k is an element of some state space, the control u_k is an element of some control space. The cost per stage is denoted by $g_k(x_k, u_k, w_k)$ and also depends on the random disturbance w_k; see Fig. 1.3.1. The control u_k is constrained to take values in a given subset $U_k(x_k)$, which depends on the current state x_k.

Given an initial state x_0 and a policy $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$, the future states x_k and disturbances w_k are random variables with distributions defined through the system equation

$$x_{k+1} = f_k(x_k, \mu_k(x_k), w_k), \quad k = 0, 1, \ldots, N - 1,$$

and the given distributions $P_k(\cdot | x_k, u_k)$. Thus, for given functions g_k, $k = 0, 1, \ldots, N$, the expected cost of π starting at x_0 is

$$J_\pi(x_0) = \mathbb{E}_{\mu_k} \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\},$$

where the expected value operation $\mathbb{E}\{\cdot\}$ is taken with respect to the joint distribution of all the random variables w_k and x_k.† An optimal policy π^* is one that minimizes this cost; i.e.,

$$J_{\pi^*}(x_0) = \min_{\pi \in \Pi} J_\pi(x_0),$$

† We assume an introductory probability background on the part of the reader. For an account that is consistent with our use of probability in these notes; see the text by Bertsekas and Tsitsiklis [BeT08].
Figure 1.3.1 Illustration of an N-stage stochastic optimal control problem. Starting from state \(x_k \), the next state under control \(u_k \) is generated randomly, according to \(x_{k+1} = f_k(x_k, u_k, w_k) \), where \(w_k \) is the random disturbance, and a random stage cost \(g_k(x_k, u_k, w_k) \) is incurred.

where \(\Pi \) is the set of all policies.

An important difference from the deterministic case is that we optimize not over control sequences \(\{u_0, \ldots, u_{N-1}\} \) [cf. Eq. (1.3)], but rather over policies (also called closed-loop control laws, or feedback policies) that consist of a sequence of functions

\[
\pi = \{\mu_0, \ldots, \mu_{N-1}\},
\]

where \(\mu_k \) maps states \(x_k \) into controls \(u_k = \mu_k(x_k) \), and satisfies the control constraints, i.e., is such that \(\mu_k(x_k) \in U_k(x_k) \) for all \(x_k \). Policies are more general objects than control sequences, and in the presence of stochastic uncertainty, they can result in improved cost, since they allow choices of controls \(u_k \) that incorporate knowledge of the state \(x_k \). Without this knowledge, the controller cannot adapt appropriately to unexpected values of the state, and as a result the cost can be adversely affected. This is a fundamental distinction between deterministic and stochastic optimal control problems.

The optimal cost depends on \(x_0 \) and is denoted by \(J^*(x_0) \); i.e.,

\[
J^*(x_0) = \min_{\pi \in \Pi} J_\pi(x_0).
\]

We view \(J^* \) as a function that assigns to each initial state \(x_0 \) the optimal cost \(J^*(x_0) \), and call it the optimal cost function or optimal value function.

Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem has a similar form to its deterministic version, and shares several of its major characteristics:

(a) Using tail subproblems to break down the minimization over multiple stages to single stage minimizations.

(b) Generating backwards for all \(k \) and \(x_k \) the values \(J_k^*(x_k) \), which give the optimal cost-to-go starting from state \(x_k \) at stage \(k \).
(c) Obtaining an optimal policy by minimization in the DP equations.
(d) A structure that is suitable for approximation in value space, whereby we replace \(J^*_k \) by approximations \(\tilde{J}_k \), and obtain a suboptimal policy by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems

Start with

\[
J_N^*(x_N) = g_N(x_N),
\]

and for \(k = 0, \ldots, N - 1 \), let

\[
J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \mathbb{E}_{w_k} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}^*(f_k(x_k, u_k, w_k)) \right\}.
\]

For each \(x_k \) and \(k \), define \(\mu_k^*(x_k) = u_k^* \) where \(u_k^* \) attains the minimum in the right side of this equation. Then, the policy \(\pi^* = \{\mu_0^*, \ldots, \mu_{N-1}^*\} \) is optimal.

Example 1.3.1 (Linear Quadratic Optimal Control)

Here the system is linear,

\[
x_{k+1} = ax_k + bu_k + w_k, \quad k = 0, \ldots, N - 1,
\]
and the state, control, and disturbance are scalars. The cost is quadratic of the form:

\[qx_N^2 + \sum_{k=0}^{N-1} (q x_k^2 + ru_k^2), \]

where \(q \) and \(r \) are known positive weighting parameters. We assume no constraints on \(x_k \) and \(u_k \) (in reality such problems include constraints, but it is common to neglect the constraints initially, and check whether they are seriously violated later).

As an illustration, consider a vehicle that moves on a straight-line road under the influence of a force \(u_k \) and without friction. Our objective is to maintain the vehicle’s velocity at a constant level \(\bar{v} \) (as in an oversimplified cruise control system). The velocity \(v_k \) at time \(k \), after time discretization of its Newtonian dynamics and addition of stochastic noise, evolves according to

\[v_{k+1} = v_k + bu_k + w_k, \]

(1.16)

where \(w_k \) is a stochastic disturbance with zero mean and given variance \(\sigma^2 \).

By introducing \(x_k = v_k - \bar{v} \), the deviation between the vehicle’s velocity \(v_k \) at time \(k \) from the desired level \(\bar{v} \), we obtain the system equation

\[x_{k+1} = x_k + bu_k + w_k. \]

Here the coefficient \(b \) relates to a number of problem characteristics including the weight of the vehicle, the road conditions. The cost function expresses our desire to keep \(x_k \) near zero with relatively little force.

We will apply the DP algorithm, and derive the optimal cost-to-go functions \(J_k^* \) and optimal policy. We have

\[J_N^*(x_N) = qx_N^2, \]

and by applying Eq. (1.15), we obtain

\[J_{N-1}^*(x_{N-1}) = \min_{u_{N-1}} E\left\{ qx_{N-1}^2 + ru_{N-1}^2 + J_N^*(ax_{N-1} + bu_{N-1} + w_{N-1}) \right\} \]

\[= \min_{u_{N-1}} E\left\{ qx_{N-1}^2 + ru_{N-1}^2 + q(ax_{N-1} + bu_{N-1} + w_{N-1})^2 \right\} \]

\[= \min_{u_{N-1}} \left[qx_{N-1}^2 + ru_{N-1}^2 + q(ax_{N-1} + bu_{N-1})^2 \right. \]

\[\left. + 2qE\{w_{N-1}\}(ax_{N-1} + bu_{N-1}) + qE\{w_{N-1}^2\} \right] \]

and finally, using the assumptions \(E\{w_{N-1}\} = 0 \), \(E\{w_{N-1}^2\} = \sigma^2 \), and bringing out of the minimization the terms that do not depend on \(u_{N-1} \),

\[J_{N-1}^*(x_{N-1}) = qx_{N-1}^2 + q\sigma^2 + \min_{u_{N-1}} \left[ru_{N-1}^2 + q(ax_{N-1} + bu_{N-1})^2 \right]. \]

(1.17)

The expression minimized over \(u_{N-1} \) in the preceding equation is convex quadratic in \(u_{N-1} \), so by setting to zero its derivative with respect to \(u_{N-1} \),

\[0 = 2ru_{N-1} + 2qb(ax_{N-1} + bu_{N-1}), \]

The vehicle's velocity at time \(k + 1 \) is influenced by a force \(u_k \) and a stochastic disturbance \(w_k \).
we obtain the optimal policy for the last stage:
\[\mu^*_{N-1}(x_{N-1}) = -\frac{abq}{r + b^2q} x_{N-1}. \]

Substituting this expression into Eq. (1.17), we obtain with a straightforward calculation
\[J^*_{N-1}(x_{N-1}) = K_{N-1} x_{N-1}^2 + q \sigma^2, \]
where
\[K_{N-1} = \frac{a^2rq}{r + b^2q} + q. \]

We can now continue the DP algorithm to obtain \(J^*_{N-2} \) from \(J^*_{N-1} \). An important observation is that \(J^*_{N-1} \) is quadratic (plus an inconsequential constant term), so with a similar calculation we can derive \(\mu^*_{N-2} \) and \(J^*_{N-2} \) in closed form, as a linear and a quadratic (plus constant) function of \(x_{N-2} \), respectively. This process can be continued going backwards, and it can be verified by induction that for all \(k \), we obtain the optimal policy and optimal cost-to-go function in the form
\[\mu^*_k(x_k) = L_k x_k, \quad k = 0, 1, \ldots, N - 1, \]
\[J^*_k(x_k) = K_k x_k^2 + \sigma^2 \sum_{t=k}^{N-1} K_{t+1}, \quad k = 0, 1, \ldots, N - 1, \]
where
\[L_k = -\frac{abK_{k+1}}{r + b^2K_{k+1}}, \quad k = 0, 1, \ldots, N - 1, \]
and the sequence \(\{K_k\} \) is generated backwards by the equation
\[K_k = \frac{a^2rK_{k+1}}{r + b^2K_{k+1}} + q, \quad k = 0, 1, \ldots, N - 1, \]
starting from the terminal condition \(K_N = q \).

The process by which we obtained an analytical solution in this example is noteworthy. A little thought while tracing the steps of the algorithm will convince the reader that what simplifies the solution is the quadratic nature of the cost and the linearity of the system equation. Indeed, it can be shown in generality that when the system is linear and the cost is quadratic, the optimal policy and cost-to-go function are given by closed-form expressions, even for multi-dimensional linear systems (see [Ber17a], Section 3.1). The optimal policy is a linear function of the state, and the optimal cost function is a quadratic in the state plus a constant.

Another remarkable feature of this example, which can also be extended to multi-dimensional systems, is that the optimal policy does not depend on the variance of \(w_k \), and remains unaffected when \(w_k \) is replaced by its mean (which is zero in our example). This is known as certainty equivalence, and occurs in several types of problems involving a linear system and a quadratic cost; see [Ber17a], Sections 3.1 and 4.2. For example it holds even when \(w_k \)
has nonzero mean. For other problems, certainty equivalence can be used as a basis for problem approximation, e.g., assume that certainty equivalence holds (i.e., replace stochastic quantities by some typical values, such as their expected values) and apply exact DP to the resulting deterministic optimal control problem. This is an important part of the RL methodology, which we will discuss later in this chapter, and in more detail in Chapter 2.

Note that the linear quadratic type of problem illustrated in the preceding example is exceptional in that it admits an elegant analytical solution. Most DP problems encountered in practice require a computational solution.

Q-Factors and Q-Learning for Stochastic Problems

Similar to the case of deterministic problems [cf. Eq. (1.9)], we can define optimal Q-factors for a stochastic problem, as the expressions that are minimized in the right-hand side of the stochastic DP equation (1.15). They are given by

$$Q^*_k(x_k, u_k) = E_{w_k}\left\{g_k(x_k, u_k, w_k) + J^*_{k+1}(f_k(x_k, u_k, w_k))\right\}. \quad (1.20)$$

The optimal cost-to-go functions J^*_k can be recovered from the optimal Q-factors Q^*_k by means of

$$J^*_k(x_k) = \min_{u_k \in U_k(x_k)} Q^*_k(x_k, u_k),$$

and the DP algorithm can be written in terms of Q-factors as

$$Q^*_k(x_k, u_k) = E_{w_k}\left\{g_k(x_k, u_k, w_k) + \min_{u_{k+1} \in U_{k+1}(f_k(x_k, u_k, w_k))} Q^*_{k+1}(f_k(x_k, u_k, w_k), u_{k+1})\right\}. \quad (1.21)$$

We will later be interested in approximate Q-factors, where J^*_{k+1} in Eq. (1.20) is replaced by an approximation \hat{J}_{k+1}. Again, the Q-factor corresponding to a state-control pair (x_k, u_k) is the sum of the expected first stage cost using (x_k, u_k), plus the expected cost of the remaining stages starting from the next state as estimated by the function \hat{J}_{k+1}.

1.3.2 Approximation in Value Space for Stochastic DP

Generally the computation of the optimal cost-to-go functions J^*_k can be very time-consuming or impossible. One of the principal RL methods to
deal with this difficulty is approximation in value space. Here approximations \(\tilde{J}_k \) are used in place of \(J^*_k \), similar to the deterministic case; cf. Eqs. (1.8) and (1.11).

Approximation in Value Space - Use of \(\tilde{J}_k \) in Place of \(J^*_k \)

At any state \(x_k \) encountered at stage \(k \), set

\[
\hat{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\}.
\]

\((1.21)\)

The one-step lookahead minimization (1.21) needs to be performed only for the \(N \) states \(x_0, \ldots, x_{N-1} \) that are encountered during the on-line control of the system. By contrast, exact DP requires that this type of minimization be done for every state and stage.

Truncated Rollout

Our discussion of rollout of Section 1.2 also applies to stochastic problems: we select \(\tilde{J}_k \) to be the cost function of a suitable base policy (perhaps with some approximation). Note that any policy can be used on-line as base policy, including policies obtained by a sophisticated off-line procedure, using for example neural networks and training data.† The rollout algorithm has the cost improvement property, whereby it yields an improved cost relative to its underlying base policy.

A major variant of rollout is **truncated rollout**, which combines the use of one-step optimization, simulation of the base policy for a certain number of steps \(m \), and then adds an approximate cost \(\tilde{J}_{k+m+1}(x_{k+m+1}) \) to the cost of the simulation, which depends on the state \(x_{k+m+1} \) obtained at the end of the rollout. Note that if one foregoes the use of a base policy (i.e., \(m = 0 \)), one recovers as a special case the general approximation in

† The principal role of neural networks within the context of these notes is to provide the means for approximating various target functions from input-output data. This includes cost functions and Q-factors of given policies, and optimal cost-to-go functions and Q-factors; in this case the neural network is referred to as a value network (sometimes the alternative term critic network is also used). In other cases the neural network represents a policy viewed as a function from state to control, in which case it is called a policy network (the alternative term actor network is also used). The training methods for constructing the cost function, Q-factor, and policy approximations themselves from data are mostly based on optimization and regression, and will be reviewed in Chapter 3. Detailed discussions are found in many sources, including the RL books [Ber19a], [Ber20a], and the neuro-dynamic programming book [BeT96].
Truncated Horizon Rollout

Approximation in Policy Space

Heuristic Cost Approximation

for Stages Beyond Truncation

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Base Policy

m-Step Rollout with Base Policy

Figure 1.3.2 Schematic illustration of truncated rollout. One-step lookahead is followed by simulation of the base policy for m steps, and an approximate cost $J_{k+m+1}(x_{k+m+1})$ is added to the cost of the simulation, which depends on the state x_{k+m+1} obtained at the end of the rollout. If the base policy simulation is omitted (i.e., $m = 0$), one recovers the general approximation in value space scheme (1.21). Truncated rollout with multistep lookahead is also possible and is discussed in Chapter 2.

value space scheme (1.21); see Fig. 1.3.2. Thus rollout provides an extra layer of lookahead to the one-step minimization, but this lookahead need not extend to the end of the horizon.

Note also that versions of truncated rollout with multistep lookahead minimization are possible. They will be discussed later. The terminal cost approximation is necessary in infinite horizon problems, since an infinite number of stages of the base policy rollout is impossible. However, even for finite horizon problems it may be necessary and/or beneficial to artificially truncate the rollout horizon. Generally, a large combined number of multistep lookahead minimization and rollout steps is likely to be beneficial.

Further Approximations

When designing approximation in value space schemes, one may consider several interesting simplification ideas, which are aimed at alleviating the computational overhead. One possibility is to simplify the lookahead minimization over $u_k \in U_k(x_k)$ [cf. Eq. (1.15)] by replacing $U_k(x_k)$ with a suitably chosen subset of controls that are viewed as most promising based on some heuristic criterion.

In Section 1.6.5, we will discuss a related idea for control space simplification for the multiagent case where the control consists of multiple components, $u_k = (u_k^1, \ldots, u_k^m)$. Then, a sequence of m single component minimizations can be used instead, with potentially enormous computational savings resulting.

A different type of simplification relates to approximations in the computation of the expected value in Eq. (1.21) by using limited Monte
Sec. 1.3 Stochastic Dynamic Programming

\[\min_{u_k} E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(x_{k+1}) \right\} \]

Figure 1.3.3 Schematic illustration of approximation in value space for stochastic problems, and the three approximations involved in its design. Typically the approximations can be designed independently of each other. There are also multistep lookahead versions of approximation in value space, which will be discussed later.

Carlo simulation. The Monte Carlo Tree Search method, which will be discussed in Chapter 2, Section 2.7.4, is one possibility of this type.

Another expected value simplification is based on the certainty equivalence approach, which will be discussed in more detail in Chapter 2, Section 2.7.2. In this approach, at stage \(k \), we replace the random variables \(w_{k+1}, \ldots, w_{k+m} \) associated with truncated rollout by some deterministic values \(\overline{w}_{k+1}, \ldots, \overline{w}_{k+m} \), such as their expected values. We may also view this as a combination of truncated rollout with a problem approximation approach, whereby for the purpose of computing \(\tilde{J}_{k+1}(x_{k+1}) \), we “pretend” that the problem is deterministic, with the future random quantities replaced by deterministic typical values. This is one of the most effective techniques to make stochastic approximation in value space computationally tractable, particularly when it is also combined with multistep lookahead minimization.

Figure 1.3.3 illustrates the three approximations involved in approximation in value space for stochastic problems: cost-to-go approximation, simplified minimization, and expected value approximation. They may be designed largely independently of each other, and with a variety of methods. Much of the discussion in these notes will revolve around different ways to organize these three approximations for both cases of one-step and multistep lookahead.

Cost Versus Q-Factor Approximations - Robustness and On-Line Replanning

Similar to the deterministic case, Q-learning involves the calculation of either the optimal Q-factors (1.20) or approximations \(\tilde{Q}_k(x_k, u_k) \). The approximate Q-factors may be obtained using approximation in value space schemes, and can be used to obtain approximately optimal policies through the Q-factor minimization

\[\hat{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k). \] (1.22)
Since it is possible to implement approximation in value space by using cost function approximations [cf. Eq. (1.21)] or by using Q-factor approximations [cf. Eq. (1.22)], the question arises which one to use in a given practical situation. One important consideration is the facility of obtaining suitable cost or Q-factor approximations. This depends largely on the problem and also on the availability of data on which the approximations can be based. However, there are some other major considerations.

In particular, the cost function approximation scheme

\[
\hat{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + \hat{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\},
\]

(1.23)

has an important disadvantage: the expected value above needs to be computed on-line for all \(u_k \in U_k(x_k) \), and this may involve substantial computation. It also has an important advantage in situations where the system function \(f_k \), the cost per stage \(g_k \), or the control constraint set \(U_k(x_k) \) can change as the system is operating. Assuming that the new \(f_k, g_k \), or \(U_k(x_k) \) become known to the controller at time \(k \), on-line replanning may be used, and this may improve substantially the robustness of the approximation in value space scheme. By comparison, the Q-factor function approximation scheme (1.22) does not allow for on-line replanning. On the other hand, for problems where there is no need for on-line replanning, the Q-factor approximation scheme may not require the on-line computation of expected values and may allow a much faster on-line computation of the minimizing control \(\hat{\mu}_k(x_k) \) via Eq. (1.22).

One more disadvantage of using Q-factors will emerge later, as we discuss the synergy between off-line training and on-line play based on Newton’s method; see Section 1.5. In particular, we will interpret the cost function of the lookahead minimization policy \(\{\hat{\mu}_0, \ldots, \hat{\mu}_{N-1}\} \) as the result of one step of Newton’s method for solving the Bellman equation that underlies the DP problem, starting from the terminal cost function approximations \(\{\hat{J}_1, \ldots, \hat{J}_N\} \). This synergy tends to be negatively affected when Q-factor (rather than cost) approximations are used.

1.3.3 Approximation in Policy Space

The major alternative to approximation in value space is approximation in policy space, whereby we select the policy from a suitably restricted class of policies, usually a parametric class of some form. In particular, we can introduce a parametric family of policies (or approximation architecture, as we will call it in Chapter 3),

\[
\hat{\mu}_k(x_k, r_k), \quad k = 0, \ldots, N - 1,
\]

where \(r_k \) is a parameter, and then estimate the parameters \(r_k \) using some type of training process or optimization; cf. Fig. 1.3.4.
A policy
\[\tilde{\mu}_k(x_k, r_k), \quad k = 0, 1, \ldots, N-1, \]
from a parametric class is computed off-line based on data, and it is used to generate the control \(u_k = \tilde{\mu}_k(x_k, r_k) \) on-line, when at state \(x_k \).

Neural networks, described in Chapter 3, are often used to generate the parametric class of policies, in which case \(r_k \) is the vector of weights/parameters of the neural network. In Chapter 3, we will also discuss methods for obtaining the training data required for obtaining the parameters \(r_k \), and we will consider several other classes of approximation architectures.

A general scheme for parametric approximation in policy space is to somehow obtain a large number of sample state-control pairs \((x_s^k, u_s^k)\), \(s = 1, \ldots, q \), such that for each \(s \), \(u_s^k \) is a “good” control at state \(x_s^k \). We can then choose the parameter \(r_k \) by solving the least squares/regression problem
\[
\min_{r_k} \sum_{s=1}^{q} \| u_s^k - \tilde{\mu}_k(x_s^k, r_k) \|^2
\]
(possibly modified to add regularization). In particular, we may determine \(u_s^k \) using a human or a software “expert” that can choose “near-optimal”

† Here \(\| \cdot \| \) denotes the standard quadratic Euclidean norm. It is implicitly assumed here (and in similar situations later) that the controls are members of a Euclidean space (i.e., the space of finite dimensional vectors with real-valued components) so that the distance between two controls can be measured by their normed difference (randomized controls, i.e., probabilities that a particular action will be used, fall in this category). Regression problems of this type arise in the training of parametric classifiers based on data, including the use of neural networks (see Section 3.4). Assuming a finite control space, the classifier is trained using the data \((x_s^k, u_s^k)\), \(s = 1, \ldots, q \), which are viewed as state-category pairs, and then a state \(x_k \) is classified as being of “category” \(\tilde{\mu}_k(x_k, r_k) \). Parametric approximation architectures, and their training through the use of classification
controls at given states, so \(\hat{\mu}_k \) is trained to match the behavior of the expert. Methods of this type are commonly referred to as *supervised learning* in artificial intelligence.

A special case of the above procedure, which connects with approximation in value space, is to generate the sample state-control pairs \((x_k^s, u_k^s)\) through a one-step lookahead minimization of the form

\[
u_k^s \in \arg \min_{u \in U_k(x_k^s)} E \left\{ g_k(x_k^s, u, w_k) + J_{k+1}(f_k(x_k^s, u, w_k)) \right\},\]

where \(J_{k+1} \) is a suitable (separately obtained) approximation in value space, or an approximate Q-factor based minimization

\[
u_k^s \in \arg \min_{u_k \in U_k(x_k^s)} \hat{Q}_k(x_k^s, u_k),\]

where \(\hat{Q}_k \) is a separately obtained Q-factor approximation. We may view this as *approximation in policy space built on top of approximation in value space*.

There are also alternative optimization-based approaches, where the main idea is that once we use a vector \((r_0, r_1, \ldots, r_{N-1})\) to parametrize the policies \(\pi \), the expected cost \(J_\pi(x_0) \) is parametrized as well, and can be viewed as a function of \((r_0, r_1, \ldots, r_{N-1})\). We can then optimize this cost by using a gradient-like or random search method. This is a widely used approach for optimization in policy space, which, however, will not be discussed in these notes (for details and many references to the literature, see the RL book [Ber19a], Section 5.7). An interesting feature of this approach is that in principle it does not require a mathematical model of the system and the cost function; a computer simulator (or availability of the real system for experimentation) suffices instead. This is sometimes called a *model-free implementation*. The advisability of implementations of this type, particularly when they rely exclusively on simulation (i.e., without the use of prior mathematical model knowledge), is a hotly debated and much contested issue; see for example the review paper by Alamir [Ala22].

An important advantage of approximation in policy space is that once the parametrized policy is obtained, the computation of controls

\[
u_k = \hat{\mu}_k(x_k, r_k), \quad k = 0, \ldots, N - 1,
\]
during on-line operation of the system is often much easier compared with the lookahead minimization (1.23). For this reason, one of the major uses of

and regression techniques are described in Chapter 3. An important modification is to use *regularized regression* where a quadratic regularization term is added to the least squares objective. This term is a positive multiple of the squared deviation \(\| r - \hat{r} \|^2 \) of \(r \) from some initial guess \(\hat{r} \).
approximation in policy space is to provide an *approximate implementation of a known policy* (no matter how obtained) for the purpose of convenient on-line use. On the negative side, such an implementation is less well suited for on-line replanning.

We finally note an important conceptual difference between approximation in value space and approximation in policy space. The former is primarily an on-line method (with off-line training used optionally to construct cost function approximations for one-step or multistep lookahead). The latter is primarily an off-line training method (which may be used without modification for on-line play or optionally to provide a policy for on-line rollout).

1.4 INFINITE HORIZON PROBLEMS - AN OVERVIEW

We will now provide an outline of infinite horizon stochastic DP with an emphasis on its aspects that relate to our RL/approximation methods. We will deal primarily with infinite horizon stochastic problems, where we aim to minimize the total cost over an infinite number of stages, given by

\[
J_{\pi}(x_0) = \lim_{N \to \infty} \mathbb{E}_{k=0,1,...} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\} ; \quad (1.24)
\]

see Fig. 1.4.1. Here, \(J_{\pi}(x_0) \) denotes the cost associated with an initial state \(x_0 \) and a policy \(\pi = \{ \mu_0, \mu_1, \ldots \} \), and \(\alpha \) is a scalar in the interval \((0, 1]\). The functions \(g \) and \(f \) that define the cost per stage and the system equation

\[
x_{k+1} = f(x_k, u_k, w_k),
\]

do not change from one stage to the next. The stochastic disturbances, \(w_0, w_1, \ldots \), have a common probability distribution \(P(\cdot | x_k, u_k) \).

When \(\alpha \) is strictly less that 1, it has the meaning of a *discount factor*, and its effect is that future costs matter to us less than the same costs incurred at the present time. Among others, a discount factor guarantees that the limit defining \(J_{\pi}(x_0) \) exists and is finite (assuming that the range of values of the stage cost \(g \) is bounded). This is a nice mathematical property that makes discounted problems analytically and algorithmically tractable.
Thus, by definition, the infinite horizon cost of a policy is the limit of its finite horizon costs as the horizon tends to infinity. The three types of problems that we will focus on are:

(a) *Stochastic shortest path problems* (SSP for short). Here, $\alpha = 1$ but there is a special cost-free termination state; once the system reaches that state it remains there at no further cost. In some types of problems, the termination state may represent a goal state that we are trying to reach at minimum cost, while in others it may be a state that we are trying to avoid for as long as possible. We will mostly assume a problem structure such that termination is inevitable under all policies. Thus the horizon is in effect finite, but its length is random and may be affected by the policy being used. A significantly more complicated type of SSP problems, which we will discuss selectively, arises when termination can be guaranteed only for a subset of policies, which includes all optimal policies. Some common types of SSP belong to this category, including deterministic shortest path problems that involve graphs with cycles.

(b) *Discounted problems*. Here, $\alpha < 1$ and there need not be a termination state. However, we will see that a discounted problem with a finite number of states can be readily converted to an SSP problem. This can be done by introducing an artificial termination state to which the system moves with probability $1 - \alpha$ at every state and stage, thus making termination inevitable. As a result, algorithms and analysis for SSP problems can be easily adapted to discounted problems; the DP textbook [Ber17a] provides a detailed account of this conversion, and an accessible introduction to discounted and SSP problems with a finite number of states.

(c) *Deterministic nonnegative cost problems*. Here, the disturbance w_k takes a single known value. Equivalently, there is no disturbance in the system equation and the cost expression, which now take the form

\[
x_{k+1} = f(x_k, u_k), \quad k = 0, 1, \ldots,
\]

and

\[
J_\pi(x_0) = \lim_{N \to \infty} \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k)).
\]

We assume further that there is a cost-free and absorbing termination state t, and that we have

\[
g(x, u) \geq 0, \quad \text{for all } x \neq t, u \in U(x),
\]

and $g(t, u) = 0$ for all $u \in U(t)$. This type of structure expresses the objective to reach or approach t at minimum cost, a classical control
problem. An extensive analysis of the undiscounted version of this
problem was given in the author’s paper [Ber17b].

Discounted stochastic problems with a finite number states [also re-
ferred to as discounted MDP (abbreviation for Markovian Decision Prob-
lem)] are very common in the DP/RL literature, particularly because of
their benign analytical and computational nature. Moreover, there is a
widespread belief that discounted MDP can be used as a universal model,
i.e., that in practice any other kind of problem (e.g., undiscounted problems
with a termination state and/or a continuous state space) can be painlessly
converted to a discounted MDP with a discount factor that is close enough
to 1. This is questionable, however, for a number of reasons:

(a) Deterministic models are common as well as natural in many prac-
tical contexts (including discrete optimization/integer programming
problems), so to convert them to MDP does not make sense.

(b) The conversion of a continuous-state problem to a finite-state prob-
lem through some kind of discretization involves mathematical sub-
tleties that can lead to serious practical/algorithmic complications.
In particular, the character of the optimal solution may be seriously
distorted by converting to a discounted MDP through some form of
discretization, regardless of how fine the discretization is.

(c) For some practical shortest path contexts it is essential that the termi-
nation state is ultimately reached. However, when a discount factor α
is introduced in such a problem, the character of the problem may be
fundamentally altered. In particular, the threshold for an appropriate
value of α may be very close to 1 and may be unknown in practice.
For a simple example consider a shortest path problem with states
1 and 2 plus a termination state t. From state 1 we can go to state
2 at cost 0, from state 2 we can go to either state 1 at a small cost
$\epsilon > 0$ or to the termination state at a substantial cost $C > 0$. The
optimal policy over an infinite horizon is to go from 1 to 2 and from 2
to t. Suppose now that we approximate the problem by introducing a
discount factor $\alpha \in (0, 1)$. Then it can be shown that if $\alpha < 1 - \epsilon/C$,
it is optimal to move indefinitely around the cycle $1 \rightarrow 2 \rightarrow 1 \rightarrow 2$
and never reach t, while for $\alpha > 1 - \epsilon/C$ the shortest path $2 \rightarrow 1 \rightarrow t$
will be obtained. Thus the solution of the discounted problem varies
discontinuously with α: it changes radically at some threshold, which
in general may be unknown.

An important class of problems that we will consider in some detail
in these notes is finite-state deterministic problems with a large number of
states. Finite horizon versions of these problems include challenging dis-
crete optimization problems, whose exact solution is practically impossible.
An important fact to keep in mind is that we can transform such problems
to infinite horizon SSP problems with a termination state at the end of the
horizon, so that the conceptual framework of the present section applies. The approximate solution of discrete optimization problems by RL methods, and particularly by rollout, will be considered in Chapter 2, and has been discussed at length in the books [Ber19a] and [Ber20a].

1.4.1 Infinite Horizon Methodology

There are several analytical and computational issues regarding our infinite horizon problems. Many of them revolve around the relation between the optimal cost function \(J^* \) of the infinite horizon problem and the optimal cost functions of the corresponding \(N \)-stage problems.

In particular, let \(J_N(x) \) denote the optimal cost of the problem involving \(N \) stages, initial state \(x \), cost per stage \(g(x, u, w) \), and zero terminal cost. This cost is generated after \(N \) iterations of the algorithm

\[
J_{k+1}(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J_k \left(f(x, u, w) \right) \right\}, \quad k = 0, 1, \ldots ,
\]

starting from \(J_0(x) \equiv 0 \). The algorithm (1.28) is known as the value iteration algorithm (VI for short). Since the infinite horizon cost of a given policy is, by definition, the limit of the corresponding \(N \)-stage costs as \(N \to \infty \), it is natural to speculate that:

(a) The optimal infinite horizon cost is the limit of the corresponding \(N \)-stage optimal costs as \(N \to \infty \); i.e.,

\[
J^*(x) = \lim_{N \to \infty} J_N(x)
\]

for all states \(x \).

(b) The following equation should hold for all states \(x \),

\[
J^*(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J^* \left(f(x, u, w) \right) \right\}.
\]

This is obtained by taking the limit as \(N \to \infty \) in the VI algorithm (1.28) using Eq. (1.29). The preceding equation, called Bellman’s
equation, is really a system of equations (one equation per state x), which has as solution the optimal costs-to-go of all the states.

(c) If $\mu(x)$ attains the minimum in the right-hand side of the Bellman equation (1.30) for each x, then the policy $\{\mu, \mu, \ldots\}$ should be optimal. This type of policy is called stationary, and for simplicity it is denoted by μ.

(d) The cost function J_μ of a stationary policy μ satisfies

$$J_\mu(x) = E_w \left\{ g(x, \mu(x), w) + \alpha J_\mu \left(f(x, \mu(x), w) \right) \right\}, \quad \text{for all } x.$$

(1.31)

We can view this as just the Bellman equation (1.30) for a different problem, where for each x, the control constraint set $U(x)$ consists of just one control, namely $\mu(x)$. Moreover, we expect that J_μ is obtained in the limit by the VI algorithm:

$$J_\mu(x) = \lim_{N \to \infty} J_{\mu,N}(x), \quad \text{for all } x,$$

where $J_{\mu,N}$ is the N-stage cost function of μ generated by

$$J_{\mu,k+1}(x) = E_w \left\{ g(x, \mu(x), w) + \alpha J_{\mu,k} \left(f(x, \mu(x), w) \right) \right\}, \quad (1.32)$$

starting from $J_{\mu,0}(x) \equiv 0$ or some other initial condition; cf. Eqs. (1.28)-(1.29).

All four of the preceding results can be shown to hold for finite-state discounted problems, and also for finite-state SSP problems under reasonable assumptions. The results also hold for infinite-state discounted problems, provided the cost per stage function g is bounded over the set of possible values of (x, u, w), in which case we additionally can show that J^* is the unique solution of Bellman’s equation. The VI algorithm is also valid under these conditions, in the sense that $J_k \to J^*$, even if the initial function J_0 is nonzero. The motivation for a different choice of J_0 is faster convergence to J^*; generally the convergence is faster as J_0 is chosen closer to J^*. The associated mathematical proofs can be found in several sources, e.g., [Ber12], Chapter 1, or [Ber19a], Chapter 4.†

It is important to note that for infinite horizon problems, there are additional important algorithms that are amenable to approximation in

† For undiscounted problems and discounted problems with unbounded cost per stage, we may still adopt the four preceding results as a working hypothesis. However, we should also be aware that exceptional behavior is possible under unfavorable circumstances, including nonuniqueness of solution of Bellman’s equation, and nonconvergence of the VI algorithm to J^* from some initial conditions; see the books [Ber12], [Ber22b].
value space. Approximate policy iteration, Q-learning, temporal difference methods, linear programming, and their variants are some of these; see the RL books [Ber19a], [Ber20a]. For this reason, in the infinite horizon case, there is a richer set of algorithmic options for approximation in value space, despite the fact that the associated mathematical theory is more complex. In these notes, we will only discuss approximate forms and variations of the policy iteration algorithm, which we describe next.

Policy Iteration

A major infinite horizon algorithm is policy iteration (PI for short). We will argue that PI, together with its variations, forms the foundation for self-learning in RL, i.e., learning from data that is self-generated (from the system itself as it operates) rather than from data supplied from an external source. Figure 1.4.2 describes the method as repeated rollout, and indicates that each of its iterations consists of two phases:

(a) **Policy evaluation**, which computes the cost function J_{μ} of the current (or base) policy μ. One possibility is to solve the corresponding Bellman equation

\[
J_{\mu}(x) = E_w\left\{ g(x, \mu(x), w) + \alpha J_{\mu}(f(x, \mu(x), w)) \right\}, \quad \text{for all } x, \]

cf. Eq. (1.31). However, the value $J_{\mu}(x)$ for any x can also be computed by Monte Carlo simulation, by averaging over many randomly generated trajectories the cost of the policy starting from x.

(b) **Policy improvement**, which computes the “improved” (or rollout) policy $\tilde{\mu}$ using the one-step lookahead minimization

\[
\tilde{\mu}(x) = \arg \min_{u \in U(x)} E_w\left\{ g(x, u, w) + \alpha J_{\mu}(f(x, u, w)) \right\}, \quad \text{for all } x.
\]

We call $\tilde{\mu}$ “improved policy” because we can generally prove that

\[
J_{\tilde{\mu}}(x) \leq J_{\mu}(x), \quad \text{for all } x.
\]

This cost improvement property will be shown in Chapter 2, Section 2.7, and can be used to show that PI produces an optimal policy in a finite number of iterations under favorable conditions (for example for finite-state discounted problems; see the DP books [Ber12], [Ber17a], or the RL book [Ber19a]).

The rollout algorithm in its pure form is just a single iteration of the PI algorithm. It starts from a given base policy μ and produces the rollout policy $\tilde{\mu}$. It may be viewed as approximation in value space with one-step lookahead that uses J_{μ} as terminal cost function approximation. It has the advantage that it can be applied on-line by computing the needed values of $J_{\mu}(x)$ by simulation. By contrast, approximate forms of PI for challenging problems, involving for example neural network training, can only be implemented off-line.
1.4.2 Approximation in Value Space

The approximation in value space approach that we discussed in connection with finite horizon problems can be extended in a natural way to infinite horizon problems. Here in place of J^*, we use an approximation \tilde{J}, and generate at any state x, a control $\tilde{\mu}(x)$ by the one-step lookahead minimization

$$\tilde{\mu}(x) \in \arg \min_{u \in U(x)} E\{g(x, u, w) + \alpha \tilde{J}(f(x, u, w))\}. \quad (1.33)$$

This minimization yields a stationary policy $\{\tilde{\mu}, \tilde{\mu}, \ldots\}$, with cost function denoted $J_{\tilde{\mu}}$ [i.e., $J_{\tilde{\mu}}(x)$ is the total infinite horizon discounted cost obtained when using $\tilde{\mu}$ starting at state x]; see Fig. 1.4.3. Note that when $\tilde{J} = J^*$, the one-step lookahead policy attains the minimum in the Bellman equation (1.30) and is expected to be optimal. This suggests that one should try to use \tilde{J} as close as possible to J^*, which is generally true as we will argue later.

Naturally an important goal to strive for is that $J_{\tilde{\mu}}$ is close to J^* in some sense. However, for classical control problems, which involve steering and maintaining the state near a desired reference state (e.g., problems with a cost-free and absorbing terminal state, and positive cost for all other states), stability of $\tilde{\mu}$ may be a principal objective. In these notes, we will discuss stability issues primarily for this one class of problems, and we will consider the policy $\tilde{\mu}$ to be stable if $J_{\tilde{\mu}}$ is real-valued, i.e.,

$$J_{\tilde{\mu}}(x) < \infty, \quad \text{for all } x \in X.$$

Selecting \tilde{J} so that $\tilde{\mu}$ is stable is a question of major interest for some application contexts, such as model predictive and adaptive control, and will be discussed in the next section within the limited context of linear quadratic problems.
At x_k \[\min_{u \in U(x)} E \left\{ g(x, u, w) + \alpha J_f(x, u, w) \right\} \]

One-Step Lookahead

At x_k \[\min_{u \in U(x)} \sum_{i=k+1}^{k+\ell-1} \alpha^i g(x_i, \mu_i(x_i), w_i) + \alpha^\ell J_f(x_{k+\ell}) \]

Multistep Lookahead

Figure 1.4.3 Schematic illustration of approximation in value space with one-step and ℓ-step lookahead minimization for infinite horizon problems. In the former case, the minimization yields at state x a control \tilde{u}, which defines the one-step lookahead policy $\tilde{\mu}$ via $\tilde{\mu}(x) = \tilde{u}$.

In the latter case, the minimization yields a control \tilde{u}_k policies $\tilde{\mu}_{k+1}, \ldots, \tilde{\mu}_{k+\ell-1}$. The control \tilde{u}_k is applied at x_k while the remaining sequence $\tilde{\mu}_{k+1}, \ldots, \tilde{\mu}_{k+\ell-1}$ is discarded. The control \tilde{u}_k defines the ℓ-step lookahead policy $\tilde{\mu}$.

ℓ-Step Lookahead

An important extension of one-step lookahead minimization is ℓ-step lookahead, whereby at a state x_k we minimize the cost of the first $\ell > 1$ stages with the future costs approximated by a function \tilde{J} (see the bottom half of Fig. 1.4.3). This minimization yields a control \tilde{u}_k and a sequence $\tilde{\mu}_{k+1}, \ldots, \tilde{\mu}_{k+\ell-1}$. The control \tilde{u}_k is applied at x_k, and defines the ℓ-step lookahead policy $\tilde{\mu}$ via $\tilde{\mu}(x_k) = \tilde{u}_k$, while $\tilde{\mu}_{k+1}, \ldots, \tilde{\mu}_{k+\ell-1}$ are discarded. Actually, we may view ℓ-step lookahead minimization as the special case of its one-step counterpart where the lookahead function is the optimal cost function of an $(\ell - 1)$-stage DP problem with a terminal cost $\tilde{J}(x_{k+\ell})$ on the state $x_{k+\ell}$ obtained after $\ell - 1$ stages.

The motivation for ℓ-step lookahead minimization is that by increasing the value of ℓ, we may require a less accurate approximation \tilde{J} to obtain good performance. Otherwise expressed, for the same quality of cost function approximation, better performance may be obtained as ℓ becomes larger. This will be explained visually later, using the formalism of Newton’s method in Section 1.5. In particular, for AlphaZero chess, long multistep lookahead is critical for good on-line performance. Another motivation for multistep lookahead is to enhance the stability properties of the generated on-line policy, as we will discuss later in Section 1.5. On the other
Infinite Horizon Problems - An Overview

Figure 1.4.4 Approximation in value space with one-step lookahead for infinite horizon problems. There are three potential areas of approximation, which can be considered independently of each other: optimal cost approximation, expected value approximation, and minimization approximation.

The Three Approximations: Optimal Cost, Expected Value, and Lookahead Minimization Approximations

There are three potential areas of approximation for infinite horizon problems: optimal cost approximation, expected value approximation, and minimization approximation; cf. Fig. 1.4.4. They are similar to their finite horizon counterparts that we discussed in Section 1.3.2. In particular, we have potentially:

(a) A terminal cost approximation of the optimal cost function : A major advantage of the infinite horizon context is that only one approximate cost function \(\tilde{J} \) is needed, rather than the \(N \) functions \(\tilde{J}_1, \ldots, \tilde{J}_N \) of the \(N \)-step horizon case.

(b) An approximation of the expected value operation: This operation can be very time consuming. It may be simplified in various ways. For example some of the random quantities \(w_k, w_{k+1}, \ldots, w_{k+\ell-1} \) appearing in the \(\ell \)-step lookahead minimization may be replaced by deterministic quantities; this is another example of the certainty equivalence approach, which we discussed in Section 1.3.2.

(c) A simplification of the minimization operation: For example in multiagent problems the control consists of multiple components,

\[u = (u^1, \ldots, u^m), \]

with each component \(u^i \) chosen by a different agent/decision maker. In this case the size of the control space can be enormous, but it can be simplified in ways that will be discussed later (e.g., choosing
components sequentially, one-agent-at-a-time). This will form the core of our approach to multiagent problems; see Section 1.6.5 and Chapter 2, Section 2.9.

We will next describe briefly various approaches for selecting the terminal cost function approximation.

Constructing Terminal Cost Approximations for On-Line Play

A major issue in value space approximation is the construction of a suitable approximate cost function \tilde{J}. This can be done in many different ways, giving rise to some of the principal RL methods.

For example, \tilde{J} may be constructed with sophisticated off-line training methods. Alternatively, the approximate values $\tilde{J}(x)$ may be obtained on-line as needed with truncated rollout, by running an off-line obtained policy for a suitably large number of steps, starting from x, and supplementing it with a suitable, perhaps primitive, terminal cost approximation.

For orientation purposes, let us describe briefly four broad types of approximation. We will return to these approaches later, and we also refer to the RL and approximate DP literature for more detailed discussions.

(a) Off-line problem approximation: Here the function \tilde{J} is computed off-line as the optimal or nearly optimal cost function of a simplified optimization problem, which is more convenient for computation. Simplifications may include exploiting decomposable structure, reducing the size of the state space, neglecting some of the constraints, and ignoring various types of uncertainties. For example we may consider using as \tilde{J} the cost function of a related deterministic problem, obtained through some form of certainty equivalence approximation, thus allowing computation of \tilde{J} by gradient-based optimal control methods or shortest path-type methods.

A major type of problem approximation method is aggregation, which is described and analyzed in the books [Ber12], [Ber19a], and the papers [Ber18a], [Ber18b]. Aggregation provides a systematic procedure to simplify a given problem by grouping states together into a relatively small number of subsets, called aggregate states. The optimal cost function of the simpler aggregate problem is computed by exact DP methods, possibly involving the use of simulation. This cost function is then used to provide an approximation \tilde{J} to the optimal cost function J^* of the original problem, using some form of interpolation.

(b) On-line simulation: This possibility arises in rollout algorithms for stochastic problems, where we use Monte-Carlo simulation and some suboptimal policy μ (the base policy) to compute (whenever needed) values $\tilde{J}(x)$ that are exactly or approximately equal to $J_\mu(x)$. The policy μ may be obtained by any method, e.g., one based on heuristic reasoning (such as in the case of the traveling salesman Example.
1.4 Infinite Horizon Problems - An Overview

1.2.3), or off-line training based on a more principled approach, such as approximate policy iteration or approximation in policy space. Note that while simulation is time-consuming, it is uniquely well-suited for the use of parallel computation.

(c) **On-line approximate optimization.** This approach involves the solution of a suitably constructed shorter horizon version of the problem, with a simple terminal cost approximation. It can be viewed as either approximation in value space with multistep lookahead, or as a form of rollout algorithm. It is often used in model predictive control (MPC).

(d) **Parametric cost approximation,** where \(\tilde{J} \) is obtained from a given parametric class of functions \(J(x, r) \), where \(r \) is a parameter vector, selected by a suitable algorithm. The parametric class typically involves prominent characteristics of \(x \) called features, which can be obtained either through insight into the problem at hand, or by using training data and some form of neural network (see Chapter 3). Such methods include approximate forms of PI, as discussed in Section 1.1 in connection with chess and backgammon. The policy evaluation portion of the PI algorithm can be done by approximating the cost function of the current policy using an approximation architecture such as a neural network (see Chapter 3). It can also be done with stochastic iterative algorithms such as TD(\(\lambda \)), LSPE(\(\lambda \)), and LSTD(\(\lambda \)), which are described in the DP book [Ber12] and the RL book [Ber19a]. These methods are somewhat peripheral to our course, and will not be discussed at any length. We note, however, that approximate PI methods do not just yield a parametric approximate cost function \(J(x, r) \), but also a suboptimal policy, which can be improved on-line by using (possibly truncated) rollout.

Aside from approximate PI, parametric approximate cost functions \(J(x, r) \) may be obtained off-line with methods such as Q-learning, linear programming, and aggregation methods, which are also discussed in the books [Ber12] and [Ber19a].

Let us also mention that for problems with special structure, \(\tilde{J} \) may be chosen so that the one-step lookahead minimization (1.33) is facilitated. In fact, under favorable circumstances, the lookahead minimization may be carried out in closed form. An example is when the system is nonlinear, but the control enters linearly in the system equation and quadratically in the cost function, while the terminal cost approximation is quadratic. Then the one-step lookahead minimization can be carried out analytically, because it involves a function that is quadratic in \(u \).
From Off-Line Training of a Policy to On-Line Play

Generally off-line training will produce either just a cost approximation (as in the case of TD-Gammon), or just a policy (as for example by some approximation in policy space/policy gradient approach), or both (as in the case of AlphaZero). We have already discussed in this section one-step lookahead and multistep lookahead schemes to implement on-line approximation in value space using \tilde{J}; cf. Fig. 1.4.3. Let us now consider some additional possibilities, which involve the use of a policy μ that has been obtained off-line (possibly in addition to a terminal cost approximation). Here are some of the main possibilities:

(a) Given a policy μ that has been obtained off-line, we may use as terminal cost approximation \tilde{J} the cost function J_μ of the policy. For the case of one-step lookahead, this requires a policy evaluation operation, and can be done on-line, by computing (possibly by simulation) just the values of

$$E\left\{J_\mu(f(x_k, u_k, w_k))\right\}$$

that are needed [cf. Eq. (1.33)]. For the case of ℓ-step lookahead, the values

$$E\left\{J_\mu(x_{k+\ell})\right\}$$

for all states $x_{k+\ell}$ that are reachable in ℓ steps starting from x_k are needed. This is the simplest form of rollout, and only requires the off-line construction of the policy μ.

(b) Given a terminal cost approximation \tilde{J} that has been obtained off-line, we may use it on-line to compute fast when needed the controls of a corresponding one-step or multistep lookahead policy $\tilde{\mu}$. The policy $\tilde{\mu}$ can in turn be used for rollout as in (a) above. In a truncated variation of this scheme, we may also use \tilde{J} to approximate the tail end of the rollout process (an example of this is the rollout-based TD-Gammon algorithm).

(c) Given a policy μ and a terminal cost approximation \tilde{J}, we may use them together in a truncated rollout scheme, whereby the tail end of the rollout with μ is approximated using the cost approximation \tilde{J}. This is similar to the truncated rollout scheme noted in (b) above, except that the policy μ is computed off-line rather than on-line using \tilde{J} and one-step or multistep lookahead.

The preceding three possibilities are the principal ones for using the results of off-line training within on-line play schemes. Naturally, there are variations where additional information is computed off-line to facilitate and/or expedite the on-line play algorithm. As an example, in MPC, in addition to a terminal cost approximation, a target tube may need to be computed off-line in order to guarantee that some state constraints can...
be satisfied on-line; see the discussion of MPC in Section 1.6.7. Other examples of this type will be noted in the context of specific applications.

Finally, let us note that while we have emphasized approximation in value space with cost function approximation, our discussion applies to Q-factor approximation, involving functions

$$\hat{Q}(x, u) \approx E\{g(x, u, w) + \alpha J^* (f(x, u, w))\}.$$

The corresponding one-step lookahead scheme has the form

$$\hat{\mu}(x) \in \arg \min_{u \in U(x)} E \{ g(x, u, w) + \alpha \min_{u' \in U(f(x, u, w))} \hat{Q}(f(x, u, w), u') \}; \quad (1.34)$$

cf. Eq. (1.33). The second term on the right in the above equation represents the cost function approximation

$$\hat{J}(f(x, u, w)) = \min_{u' \in U(f(x, u, w))} \hat{Q}(f(x, u, w), u').$$

The use of Q-factors is common in the “model-free” case where a computer simulator is used to generate samples of w, and corresponding values of g and f. Then, having obtained \hat{Q} through off-line training, the one-step lookahead minimization in Eq. (1.34) must be performed on-line with the use of the simulator.

1.4.3 Understanding Approximation in Value Space

We will now discuss some of our objectives as we try to get insight into the process of approximation in value space. Clearly, it makes sense to approximate J^* with a function \hat{J} that is as close as possible to J^*. However, we should also try to understand quantitatively the relation between \hat{J} and $J_{\hat{\mu}}$, the cost function of the resulting one-step lookahead (or multistep lookahead) policy $\hat{\mu}$. Interesting questions in this regard are the following:

(a) How is the quality of the lookahead policy $\hat{\mu}$ affected by the quality of the off-line training? Here we are interested in whether $J_{\hat{\mu}}(x)$ is smaller than $\hat{J}(x)$ across a range of states x of interest, and by how much. A fundamental fact in this respect is that $J_{\hat{\mu}}$ is the result of a step of Newton’s method that starts at \hat{J} and is applied to the Bellman Eq. (1.30). This will be explained through intuitive visualization in the next section for the case of linear quadratic problems.

A related insight is that in approximation in value space with multi-step lookahead schemes, $J_{\hat{\mu}}$ is the result of a step of Newton’s method that starts at the function obtained by applying multiple value iterations to \hat{J}.

(b) How sensitive is the quality of the lookahead policy $\hat{\mu}$ to the quality of the off-line training? Here we are interested to understand how much
J_\tilde{\mu} \text{ changes when } \tilde{J} \text{ changes across a range of interest. For example, how much should we care about improving } \tilde{J} \text{ through a longer and more sophisticated training process?}

(c) \text{ \textit{When is } } \tilde{\mu} \text{ \textit{stable}? The question of stability is very important in many control applications where the objective is to keep the state near some reference point or trajectory. Indeed, in such applications, stability is the dominant concern, and optimality is secondary by comparison. As noted earlier, we will use an optimization-based definition of stability, calling the lookahead policy } \tilde{\mu} \text{ \textit{stable} if } J_\tilde{\mu}(x) < \infty, \text{ for all } x. \text{ An example is an SSP problem with positive cost per stage, where some policies may not guarantee that the termination state will be reached; these policies are viewed as unstable. An example of a context where there are no stability concerns is discounted problems with bounded cost per stage; here all policies are stable according to our definition. While there are several alternative definitions of stability, which may be better-matched to specific contexts, our definition of stability is suitable for the very broad class of problems that we are dealing with.}

(d) \text{ \textit{What is the region of stability?} Here we are interested to characterize the set of terminal cost approximations } \tilde{J} \text{ that lead to a stable lookahead policy } \tilde{\mu}.

(e) \text{ \textit{How does the length of lookahead minimization or the length of the truncated rollout affect the stability and quality of the multistep lookahead policy } } \tilde{\mu}? \text{ While it is generally true that the length of lookahead has a beneficial effect on quality, it turns out that it also has a beneficial effect on the stability properties of the multistep lookahead policy, and we are interested in the mechanism by which this occurs.}

In what follows we will be keeping in mind these questions. In particular, in the next section, we will discuss them in the context of the simple and convenient linear quadratic problem. Our conclusions, however, hold within a far more general context with the aid of the abstract DP formalism; see the author’s books [Ber20a] and [Ber22a] for a broader presentation and analysis, which address these questions in greater detail and generality.

1.5 INFINITE HORIZON LINEAR QUADRATIC PROBLEMS

We will now aim to understand the character of the Bellman equation, approximation in value space, and the VI and PI algorithms within the context of an important deterministic nonnegative cost problem. This is the classical continuous-spaces problem where the system is linear, with no control constraints, and the cost function is quadratic. While this problem can be solved analytically, it provides a uniquely insightful context for
understanding visually the Bellman equation and its algorithmic solution, both exactly and approximately.

In its general form, the problem deals with the case where the system is

\[x_{k+1} = Ax_k + Bu_k, \]

where \(x_k \) and \(u_k \) are elements of the Euclidean spaces \(\mathbb{R}^n \) and \(\mathbb{R}^m \), respectively, \(A \) is an \(n \times n \) matrix, and \(B \) is an \(n \times m \) matrix. It is assumed that there are no control constraints. The cost per stage is quadratic of the form

\[g(x,u) = x'Qx + u'Ru, \]

where \(Q \) and \(R \) are positive definite symmetric matrices of dimensions \(n \times n \) and \(m \times m \), respectively (all finite-dimensional vectors in this work are viewed as column vectors, and a prime denotes transposition). The analysis of this problem is well known and is given with proofs in several control theory texts, including the author’s DP books [Ber17a], Chapter 3, and [Ber12], Chapter 4.

In what follows, we will focus only on the one-dimensional version of the problem, where the system has the form

\[x_{k+1} = ax_k + bu_k; \] \hspace{1cm} (1.35)

cf. Example 1.3.1. Here the state \(x_k \) and the control \(u_k \) are scalars, and the coefficients \(a \) and \(b \) are also scalars, with \(b \neq 0 \). The cost function is undiscounted and has the form

\[\sum_{k=0}^{\infty} (qx_k^2 + ru_k^2), \] \hspace{1cm} (1.36)

where \(q \) and \(r \) are positive scalars. The one-dimensional case allows a convenient and insightful analysis of the algorithmic issues that are central for our purposes. This analysis generalizes to multidimensional linear quadratic problems and beyond, but requires a more demanding mathematical treatment.

The Riccati Equation and its Justification

The analytical results for our problem may be obtained by taking the limit in the results derived in the finite horizon Example 1.3.1, as the horizon length tends to infinity. In particular, we can show that the optimal cost function is expected to be quadratic of the form

\[J^*(x) = K^*x^2, \] \hspace{1cm} (1.37)

where the scalar \(K^* \) solves the equation

\[K = F(K), \] \hspace{1cm} (1.38)
with F defined by
\[
F(K) = \frac{a^2 r K}{r + b^2 K} + q. \tag{1.39}
\]
This is the limiting form of Eq. (1.19).

Moreover, the optimal policy is linear of the form
\[
\mu^*(x) = L^* x, \tag{1.40}
\]
where L^* is the scalar given by
\[
L^* = -\frac{abK^*}{r + b^2 K^*}. \tag{1.41}
\]

For justification of Eqs. (1.38)-(1.41), we show that J^* as given by Eq. (1.37), satisfies the Bellman equation
\[
J(x) = \min_{u \in \mathbb{R}} \left\{ qx^2 + ru^2 + J(ax + bu) \right\}, \tag{1.42}
\]
and that $\mu^*(x)$, as given by Eqs. (1.40)-(1.41), attains the minimum above for every x when $J = J^*$. Indeed for any quadratic cost function $J(x) = Kx^2$ with $K \geq 0$, the minimization in Bellman’s equation (1.42) is written as
\[
\min_{u \in \mathbb{R}} \left\{ qx^2 + ru^2 + K(ax + bu)^2 \right\}. \tag{1.43}
\]
Thus it involves minimization of a positive definite quadratic in u and can be done analytically. By setting to 0 the derivative with respect to u of the expression in braces in Eq. (1.43), we obtain
\[
0 = 2ru + 2bK(ax + bu),
\]
so the minimizing control and corresponding policy are given by
\[
\mu_K(x) = L_K x, \tag{1.44}
\]
where
\[
L_K = -\frac{abK}{r + b^2 K}. \tag{1.45}
\]
By substituting this control, the minimized expression (1.43) takes the form
\[
\left(q + rL_K^2 + K(a + bL_K)^2 \right)x^2.
\]
After straightforward algebra, using Eq. (1.45) for L_K, it can be verified that this expression is written as $F(K)x^2$, with F given by Eq. (1.39). Thus when $J(x) = Kx^2$, the Bellman equation (1.42) takes the form
\[
Kx^2 = F(K)x^2
\]
or equivalently \(K = F(K) \) [cf. Eq. (1.38)].

In conclusion, when restricted to quadratic functions \(J(x) = Kx^2 \) with \(K \geq 0 \), the Bellman equation (1.42) is equivalent to the equation

\[
K = F(K) = \frac{a^2rK}{r + b^2K} + q.
\] (1.46)

We refer to this equation as the Riccati equation\(^\dagger\) and to the function \(F \) as the Riccati operator\(^\ddagger\). Moreover, the policy corresponding to \(K^* \), as per Eqs. (1.44)-(1.45), attains the minimum in Bellman’s equation, and is given by Eqs. (1.40)-(1.41).

The Riccati equation can be visualized and solved graphically as illustrated in Fig. 1.5.1. As shown in the figure, the quadratic coefficient \(K^* \) that corresponds to the optimal cost function \(J^* \) [cf. Eq. (1.37)] is the unique solution of the Riccati equation \(K = F(K) \) within the nonnegative real line.

The Riccati Equation for a Stable Linear Policy

We can also characterize the cost function of a policy \(\mu \) that is linear of the form \(\mu(x) = Lx \), and is also stable, in the sense that the scalar \(L \) satisfies \(|a + bL| < 1 \), so that the corresponding closed-loop system

\[
x_{k+1} = (a + bL)x_k
\]

is stable (its state \(x_k \) converges to 0 as \(k \to \infty \)). In particular, we can show that its cost function has the form

\[
J_\mu(x) = KLx^2,
\]
Figure 1.5.1 Graphical construction of the solutions of the Riccati equation (1.38)-(1.39) for the linear quadratic problem. The optimal cost function is $J^*(x) = K^*x^2$, where the scalar K^* solves the fixed point equation $K = F(K)$, with F being the function given by

$$F(K) = \frac{a^2 r K}{r + b^2 K} + q.$$

Note that F is concave and monotonically increasing in the interval $(-r/b^2, \infty)$ and ”flattens out” as $K \to \infty$, as shown in the figure. The quadratic Riccati equation $K = F(K)$ also has another solution, denoted by \bar{K}, which is negative and is thus of no interest.

where K_L solves the equation

$$K = F_L(K),$$

with F_L defined by

$$F_L(K) = (a + bL)^2 K + q + rL^2.$$

This equation is called the *Riccati equation for the stable policy* $\mu(x) = Lx$. It is illustrated in Fig. 1.5.2, and it is linear, with linear coefficient $(a + bL)^2$ that is strictly less than 1. Hence the line that represents the graph of F_L intersects the 45-degree line at a unique point, which defines the quadratic cost coefficient K_L.

The Riccati equation (1.47)-(1.48) for $\mu(x) = Lx$ may be justified by verifying that it is in fact the Bellman equation for μ,

$$J(x) = (q + rL^2)x^2 + J((a + bL)x),$$
Sec. 1.5 Infinite Horizon Linear Quadratic Problems

Figure 1.5.2 Illustration of the construction of the cost function of a linear policy \(\mu(x) = Lx \), which is stable, i.e., \(|a + bL| < 1\). The cost function \(J_\mu(x) \) has the form

\[
J_\mu(x) = K_L x^2,
\]

with \(K_L \) obtained as the unique solution of the linear equation \(K = F_L(K) \), where

\[
F_L(K) = (a + bL)^2 K + q + rL^2,
\]

is the Riccati equation operator corresponding to \(\mu(x) = Lx \). If \(\mu \) is not stable, i.e., \(|a + bL| \geq 1\), we have \(J_\mu(x) = \infty \) for all \(x \neq 0 \), but the equation has \(K = F_L(K) \) still has a solution that is of no interest within our context.

[cf. Eq. (1.31)], restricted to quadratic functions of the form \(J(x) = Kx^2 \).

We note, however, that \(J_\mu(x) = K_L x^2 \) is the solution of the Riccati equation (1.47)-(1.48) only when \(\mu(x) = Lx \) is stable. If \(\mu \) is not stable, i.e., \(|a + bL| \geq 1\), then (since \(q > 0 \) and \(r > 0 \)) we have \(J_\mu(x) = \infty \) for all \(x \neq 0 \). Then, the Riccati equation (1.47)-(1.48) is still defined, but its solution is negative and is of no interest within our context.

Value Iteration

The VI algorithm for our linear quadratic problem is given by

\[
J_{k+1}(x) = \min_{u \in \mathbb{R}} \left\{ qx^2 + ru^2 + J_k(ax + bu) \right\}.
\]

When \(J_k \) is quadratic of the form \(J_k(x) = K_k x^2 \) with \(K_k \geq 0 \), it can be seen that the VI iterate \(J_{k+1} \) is also quadratic of the form \(J_{k+1}(x) = K_{k+1} x^2 \),
Figure 1.5.3 Graphical illustration of value iteration for the linear quadratic problem. It has the form \(K_{k+1} = F(K_k) \), where \(F \) is the Riccati operator,

\[
F(K) = \frac{a^2rK}{r + b^2K} + q.
\]

The algorithm converges to \(K^* \) starting from any \(K_0 \geq 0 \).

where

\(K_{k+1} = F(K_k) \),

with \(F \) being the Riccati operator of Eq. (1.46). The algorithm is illustrated in Fig. 1.5.3. As can be seen from the figure, when starting from any \(K_0 \geq 0 \), the algorithm generates a sequence \(\{K_k\} \) of nonnegative scalars that converges to \(K^* \).

1.5.1 Visualizing Approximation in Value Space - Newton’s Method

The use of Riccati equations allows insightful visualization of approximation in value space. This visualization, although specialized to linear quadratic problems, is consistent with related visualizations for more general infinite horizon problems. In particular, in the books [Ber20a] and [Ber22a], Bellman operators, which define the Bellman equations, are used in place of Riccati operators, which define the Riccati equations.

In summary, we will aim to show that:

(a) Approximation in value space with one-step lookahead can be viewed as a Newton step for solving the Bellman equation, and maps the
terminal cost function approximation \tilde{J} to the cost function J_μ of the one-step lookahead policy; see Fig. 1.5.4.

(b) Approximation in value space with multistep lookahead and truncated rollout can be viewed as a Newton step for solving the Bellman equation, and maps the result of multiple VI iterations starting with the terminal cost function approximation \tilde{J} to the cost function J_μ of the multistep lookahead policy; see Fig. 1.5.5.

Our derivation will be given for the one-dimensional linear quadratic problem, but applies far more generally, as shown in the books [Ber20a] and [Ber22a].

Let us consider one-step lookahead minimization with any terminal cost function approximation of the form $\tilde{J}(x) = Kx^2$, where $K \geq 0$. We have derived the one-step lookahead policy $\mu_K(x)$ in Eqs. (1.44)-(1.45), by minimizing the right side of Bellman’s equation when $J(x) = Kx^2$:

$$\min_{u \in \mathbb{R}} \left\{ qx^2 + ru^2 + K(ax + bu)^2 \right\}.$$

We can break this minimization into a sequence of two minimizations as follows:

$$F(K)x^2 = \min_{L \in \mathbb{R}} \min_{u = Lx} \left\{ qx^2 + ru^2 + K(ax + bu)^2 \right\} = \min_{L \in \mathbb{R}} \left\{ q + bL + K(a + bL)^2 \right\} x^2.$$
From this equation, it follows that

$$F(K) = \min_{L \in \mathbb{R}} F_L(K), \quad (1.49)$$

where the function $F_L(K)$ is defined by

$$F_L(K) = (a + bL)^2K + q + bL. \quad (1.50)$$

Figure 1.5.6 illustrates the relation (1.49)-(1.50), and shows how the graph of the Riccati operator F can be obtained as the lower envelope of the linear operators F_L, as L ranges over the real numbers.

One-Step Lookahead Minimization and Newton’s Method

Let us now fix the terminal cost function approximation to some $\tilde{K}x^2$, where $\tilde{K} \geq 0$, and consider the corresponding one-step lookahead policy, which we will denote by $\tilde{\mu}$. Figure 1.5.7 illustrates the corresponding linear function $F\tilde{L}$, and shows that its graph is a tangent line to the graph of F at the point K [cf. Fig. 1.5.6 and Eq. (1.50)].

Thus the function $F\tilde{L}$ can be viewed as a linearization of F at the point K, and defines a linearized problem: to find a solution of the equation

$$K = F\tilde{L}(K) = q + b\tilde{L}^2 + K(a + b\tilde{L})^2.$$
Sec. 1.5 Infinite Horizon Linear Quadratic Problems

Figure 1.5.6 Illustration of how the graph of the Riccati operator F can be obtained as the lower envelope of the linear operators

$$F_L(K) = (a + bL)^2K + q + rL^2$$

as L ranges over the real numbers. We have

$$F(K) = \min_{L \in \mathbb{R}} F_L(K);$$

cf. Eq. (1.49). Moreover, for any fixed \tilde{K}, the scalar \tilde{L} that attains the minimum is given by

$$\tilde{L} = -\frac{ab\tilde{K}}{r + b^2\tilde{K}}$$

[cf. Eq. (1.45)], and is such that the line corresponding to the graph of F_L is tangent to the graph of F at \tilde{K}, as shown in the figure.

The important point now is that the solution of this equation, denoted K_L, is the same as the one obtained from a single iteration of Newton’s method for solving the Riccati equation, starting from the point \tilde{K}. This is illustrated in Fig. 1.5.7, and is also justified analytically in Exercise 1.6.

To explain this connection, we note that the classical form of Newton’s method for solving a fixed point problem of the form $y = T(y)$, where y is an n-dimensional vector, operates as follows: At the current iterate y_k, we linearize T and find the solution y_{k+1} of the corresponding linear fixed point problem. Assuming T is differentiable, the linearization is obtained
Figure 1.5.7 Illustration of approximation in value space with one-step lookahead for the linear quadratic problem. Given a terminal cost approximation $\tilde{J} = \tilde{K}x^2$, we compute the corresponding linear policy $\tilde{\mu}(x) = \tilde{L}x$, where

$$
\tilde{L} = -\frac{ab\tilde{K}}{r + b^2K},
$$

and the corresponding cost function $K\tilde{L}x^2$, using the Newton step shown.

by using a first order Taylor expansion:

$$
y_{k+1} = T(y_k) + \frac{\partial T(y_k)}{\partial y}(y_{k+1} - y_k),
$$

where $\partial T(y_k)/\partial y$ is the $n \times n$ Jacobian matrix of T evaluated at the vector y_k, as indicated in Fig. 1.5.7.

The most commonly given convergence rate property of Newton’s method is quadratic convergence. It states that near the solution y^*, we have

$$
\|y_{k+1} - y^*\| = O(\|y_k - y^*\|^2),
$$

where $\| \cdot \|$ is the Euclidean norm, and holds assuming the Jacobian matrix exists and is Lipschitz continuous (see [Ber16], Section 1.4). There are extensions of Newton’s method that are based on solving a linearized system at the current iterate, but relax the differentiability requirement to piecewise differentiability, and/or component concavity, while maintaining the either a quadratic or a similarly fast superlinear convergence property of the method; see the monograph [Ber22a] (Appendix A) and the paper [Ber22c], which also provide a convergence analysis.
Sec. 1.5 Infinite Horizon Linear Quadratic Problems

Figure 1.5.8 Illustration the region of stability, i.e., the set of $K \geq 0$ such that the one-step lookahead policy μ_K is stable. This is also the set of initial conditions for which Newton’s method converges to K^* asymptotically.

Note also that if the one-step lookahead policy is stable, i.e.,

$$|a + b\tilde{L}| < 1,$$

then $K_{\tilde{L}}$ is the quadratic cost coefficient of its cost function, i.e.,

$$J_{\tilde{\mu}}(x) = K_{\tilde{L}}x^2.$$

The reason is that $J_{\tilde{\mu}}$ solves the Bellman equation for policy $\tilde{\mu}$. On the other hand, if $\tilde{\mu}$ is not stable, then in view of the positive definite quadratic cost per stage, we have $J_{\tilde{\mu}}(x) = \infty$ for all $x \neq 0$.

Multistep Lookahead

In the case of ℓ-step lookahead minimization, a similar Newton step interpretation is possible. Instead of linearizing F at \bar{K}, we linearize at

$$K_{\ell-1} = F^{\ell-1}(\bar{K}),$$

i.e., the result of $\ell - 1$ successive applications of F starting with \bar{K}. Each application of F corresponds to a value iteration. Thus *the effective starting point for the Newton step is* $F^{\ell-1}(\bar{K})$. Figure 1.5.9 depicts the case $\ell = 2$.
Figure 1.5.9 Illustration of approximation in value space with two-step lookahead for the linear quadratic problem. Starting with a terminal cost approximation $J = J_x^2$, we obtain K_1 using a single value iteration. We then compute the corresponding linear policy $\mu(x) = Lx$, where

$$L = -\frac{abK_1}{r + b^2K_1}$$

and the corresponding cost function K_Lx^2, using the Newton step shown. The figure shows that for any $K \geq 0$, the corresponding ℓ-step lookahead policy will be stable for all ℓ larger than some threshold.

Region of Stability

It is also useful to define the region of stability as the set of $K \geq 0$ such that

$$|a + bL_K| < 1,$$

where L_K is the linear coefficient of the one-step lookahead policy corresponding to K; cf. Eq. (1.45). The region of stability may also be viewed as the region of convergence of Newton’s method. It is the set of starting points K for which Newton’s method, applied to the Riccati equation $F = F(K)$, converges to K^* asymptotically, and with a quadratic convergence rate (asymptotically as $K \to K^*$). Note that for our one-dimensional problem, the region of stability is the interval (K_S, ∞) that is characterized by the single point K_S where F has derivative equal to 1; see Fig. 1.5.8.
For multidimensional problems, the region of stability may not be characterized as easily. Still, however, it is generally true that the region of stability is enlarged as the length of the lookahead increases.

It is interesting to note that as the length of lookahead increases, the effective starting point $F^{\ell-1}(\hat{K})$ is pushed more and more within the region of stability. In particular, for any given $K \geq 0$, the corresponding ℓ-step lookahead policy will be stable for all ℓ larger than some threshold; see Fig. 1.5.9.

We summarize the Riccati equation formulas and the relation between linear policies of the form $\mu(x) = Lx$ and their quadratic cost functions in the following table.

Riccati Equation Formulas for One-Dimensional Problems

Riccati equation for minimization [cf. Eqs. (1.38) and (1.39)]

$$K = F(K), \quad F(K) = \frac{a^2rK}{r + b^2K} + q.$$

Riccati equation for a linear policy $\mu(x) = Lx$

$$K = F_L(K), \quad F_L(K) = (a + bL)^2K + q + rL^2.$$

Cost coefficient K_L of a stable linear policy $\mu(x) = Lx$

$$K_L = \frac{q + rL^2}{1 - (a + bL)^2}.$$

Linear coefficient L_K of the one-step lookahead linear policy μ_K for K in the region of stability [cf. Eq. (1.45)]

$$L_K = \arg\min_L F_L(K) = -\frac{abK}{r + b^2K}.$$

Quadratic cost coefficient \tilde{K} of a one-step lookahead linear policy μ_K for K in the region of stability

Obtained as the solution of the linearized Riccati equation $\tilde{K} = F_{L_K}(\tilde{K})$, or equivalently by a Newton iteration starting from K.

<table>
<thead>
<tr>
<th>Riccati Equation Formulas for One-Dimensional Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riccati equation for minimization [cf. Eqs. (1.38) and (1.39)]</td>
</tr>
<tr>
<td>$K = F(K), \quad F(K) = \frac{a^2rK}{r + b^2K} + q.$</td>
</tr>
<tr>
<td>Riccati equation for a linear policy $\mu(x) = Lx$</td>
</tr>
<tr>
<td>$K = F_L(K), \quad F_L(K) = (a + bL)^2K + q + rL^2.$</td>
</tr>
<tr>
<td>Cost coefficient K_L of a stable linear policy $\mu(x) = Lx$</td>
</tr>
<tr>
<td>$K_L = \frac{q + rL^2}{1 - (a + bL)^2}.$</td>
</tr>
<tr>
<td>Linear coefficient L_K of the one-step lookahead linear policy μ_K for K in the region of stability [cf. Eq. (1.45)]</td>
</tr>
<tr>
<td>$L_K = \arg\min_L F_L(K) = -\frac{abK}{r + b^2K}.$</td>
</tr>
<tr>
<td>Quadratic cost coefficient \tilde{K} of a one-step lookahead linear policy μ_K for K in the region of stability</td>
</tr>
<tr>
<td>Obtained as the solution of the linearized Riccati equation $\tilde{K} = F_{L_K}(\tilde{K})$, or equivalently by a Newton iteration starting from K.</td>
</tr>
</tbody>
</table>
1.5.2 Local and Global Error Bounds for Approximation in Value Space

In approximation in value space, an important analytical issue is to quantify the level of suboptimality of the one-step or multistep lookahead policy obtained. In this section, we focus on a one-step lookahead scheme that produces a policy $\tilde{\mu}$ where \tilde{J} is the terminal quadratic cost function approximation. We will try to estimate the difference $J_{\tilde{\mu}} - J^*$, where $J_{\tilde{\mu}}$ is the cost function of $\tilde{\mu}$ and J^* is the optimal cost function, assuming that \tilde{J} lies within the region of stability, so that $\tilde{\mu}$ is well-defined as a stable policy and $J_{\tilde{\mu}}$ is finite-valued.

There is a classical error bound for the case of a discounted problem with finite state space X, which has the form

$$\| J_{\tilde{\mu}} - J^* \| \leq \frac{2\alpha}{1 - \alpha} \| \tilde{J} - J^* \|; \quad (1.51)$$

where $\| \cdot \|$ denotes the maximum norm,

$$\| J_{\tilde{\mu}} - J^* \| = \max_{x \in X} | J_{\tilde{\mu}}(x) - J^*(x) |, \quad \| \tilde{J} - J^* \| = \max_{x \in X} | \tilde{J}(x) - J^*(x) |;$$

see [Ber19a], Prop. 5.1.1. This bound also applies more generally, to the case where the Bellman equation involves a contraction mapping over a subset of functions; see the RL book [Ber19a], Section 5.9.1, or the abstract DP book [Ber22b], Section 2.2.

Unfortunately, however, this error bound is very conservative, and does not reflect practical reality. The reason is that this is a global error bound, i.e., it holds for all \tilde{J}, even the worst possible. In practice, \tilde{J} is often chosen sufficiently close to J^*, so that the error $J_{\tilde{\mu}} - J^*$ behaves consistently with the superlinear convergence rate of the Newton step that starts at $T^{\ell-1}\tilde{J}$. In other words, for \tilde{J} relatively close to J^*, we have the local estimate

$$\| J_{\tilde{\mu}} - J^* \| = o(\| \tilde{J} - J^* \|). \quad (1.52)$$

In practical terms, there is often a huge difference, both quantitative and qualitative, between the error bounds (1.51) and (1.52).

For an illustration, consider the one-dimensional linear quadratic problem, involving the system

$$x_{k+1} = ax_k + bu_k,$$

and the cost per stage

$$qx_k^2 + ru_k^2.$$

We will consider one-step lookahead, and a quadratic cost function approximation

$$\tilde{J}(x) = \tilde{K} x^2,$$
with \(\tilde{K} \) within the region of stability, which is some interval of the form \((S, \infty)\). The Riccati operator is

\[
F(K) = \frac{a^2 r K}{r + b^2 K} + q,
\]

and the one-step lookahead policy \(\tilde{\mu} \) has cost function

\[
J_{\tilde{\mu}}(x) = K_{\tilde{\mu}} x^2,
\]

where \(K_{\tilde{\mu}} \) is obtained by applying one step of Newton’s method for solving the Riccati equation \(\tilde{K} = F(\tilde{K}) \), starting at \(\tilde{K} = \tilde{K} \).

Let \(S \) be the boundary of the region of stability, i.e., the value of \(K \) at which the derivative of \(F \) with respect to \(K \) is equal to 1:

\[
\left. \frac{\partial F(K)}{\partial K} \right|_{K=S} = 1.
\]

Then the Riccati operator \(F \) is a contraction within any interval \([S, \infty)\) with \(S > S \), with a contraction modulus \(\alpha \) that depends on \(S \). In particular, \(\alpha \) is given by

\[
\alpha = \left. \frac{\partial F(K)}{\partial K} \right|_{K=S}
\]

and satisfies \(0 < \alpha < 1 \) because \(S > S \), and the derivative of \(F \) is positive and monotonically decreasing to 0 as \(K \) increases to \(\infty \).

The error bound (1.51) can be rederived for the case of quadratic functions and can be rewritten in terms of quadratic cost coefficients as

\[
K_{\tilde{\mu}} - K^* \leq \frac{2\alpha}{1 - \alpha} |\tilde{K} - K^*|, \tag{1.53}
\]

where \(K_{\tilde{\mu}} \) is the quadratic cost coefficient of the lookahead policy \(\tilde{\mu} \) [and also the result of a Newton step for solving the fixed point Riccati equation \(F = F(K) \) starting from \(\tilde{K} \)]. A plot of \((K_{\tilde{\mu}} - K^*) \) as a function of \(\tilde{K} \), compared with the bound on the right side of this equation is shown in Fig. 1.5.10. It can be seen that \((K_{\tilde{\mu}} - K^*) \) exhibits the qualitative behavior of Newton’s method, which is very different than the bound (1.53). An interesting fact is that the bound (1.53) depends on \(\alpha \), which in turn depends on how close \(\tilde{K} \) is to the boundary \(S \) of the region of stability, while the local behavior of Newton’s method is independent of \(S \).

1.5.3 Rollout and Policy Iteration

The rollout algorithm starts from some linear stable base policy \(\mu \), and obtains the rollout policy \(\tilde{\mu} \) using a policy improvement operation, which by definition, yields the one-step lookahead policy that corresponds to terminal
Figure 1.5.10 Illustration of the global error bound (1.53) for the one-step lookahead error $K_\mu - K^*$ as a function of \tilde{K}, compared with the true error obtained by one step of Newton’s method starting from \tilde{K}.

The problem data are $a = 2$, $b = 2$, $q = 1$, and $r = 5$. With these numerical values, we have $K^* = 5$ and the region of stability is (S, ∞) with $S = 1.25$. The modulus of contraction α used in the figure is computed at $S = S + 0.5$. Depending on the chosen value of S, α can be arbitrarily close to 1, but decreases as S increases. Note that the error $K_\mu - K^*$ is much smaller when \tilde{K} is larger than K^* than when it is lower, because the slope of F diminishes as K increases. This is not reflected by the global error bound (1.53).

cost approximation J_μ. Figure 1.5.11 illustrates the rollout algorithm. It can be seen from the figure that the rollout policy is in fact an improved policy, in the sense that $J_\mu(x) \leq J_\mu(x)$ for all x. Among others, this implies that the rollout policy is stable.

Since the rollout policy is a one-step lookahead policy, it can also be described using the formulas that we developed earlier in this section. In particular, let the base policy have the form

$$\mu^0(x) = L_0 x,$$

where L_0 is a scalar. We require that the base policy must be stable, i.e., $|a + bL_0| < 1$. From our earlier calculations, we have that the cost function of μ^0 is

$$J_{\mu^0}(x) = K_0 x^2,$$ \hspace{1cm} (1.54)
Sec. 1.5 Infinite Horizon Linear Quadratic Problems

Figure 1.5.11 Illustration of the rollout algorithm for the linear quadratic problem. Starting from a linear stable base policy μ, it generates a stable rollout policy $\tilde{\mu}$. The quadratic cost coefficient of $\tilde{\mu}$ is obtained from the quadratic cost coefficient of μ with a Newton step for solving the Riccati equation.

where

$$K_0 = \frac{q + rL_0^2}{1 - (a + bL_0)^2}.$$ \hspace{1cm} (1.55)

Moreover, the rollout policy μ^1 has the form $\mu^1(x) = L_1 x$, where

$$L_1 = -\frac{abK_0}{r + b^2K_0};$$ \hspace{1cm} (1.56)

cf. Eqs. (1.44)-(1.45).

The PI algorithm is simply the repeated application of nontruncated rollout, and generates a sequence of stable linear policies $\{\mu^k\}$. By replicating our earlier calculations, we see that the policies have the form

$$\mu^k(x) = L_k x, \quad k = 0, 1, \ldots,$$

where L_k is generated by the iteration

$$L_{k+1} = -\frac{abK_k}{r + b^2K_k},$$

with K_k given by

$$K_k = \frac{q + rL_k^2}{1 - (a + bL_k)^2},$$
Figure 1.5.12 Illustration of truncated rollout with a stable base policy \(\mu(x) = Lx \) and terminal cost approximation \(\tilde{K} \) for the linear quadratic problem. In this figure, we use one-step lookahead minimization and the number of rollout steps is \(m = 4 \).

[cf. Eqs. (1.55)-(1.56)].

The corresponding cost function sequence has the form

\[
J_{\mu_k}(x) = K_k x^2;
\]

cf. Eq. (1.54). Part of the classical linear quadratic theory is that \(J_{\mu_k} \) converges to the optimal cost function \(J^* \), while the generated sequence of linear policies \(\{\mu^k\} \), where \(\mu^k(x) = L_k x \), converges to the optimal policy, assuming that the initial policy is linear and stable. The convergence rate of the sequence \(\{K_k\} \) is quadratic, as indicated earlier. This result was proved by Kleinman [Kle68] for the continuous-time multidimensional version of the linear quadratic problem, and it was extended later to more general problems; see the references given in the books [Ber20a] and [Ber22a].

Truncated Rollout

An \(m \)-step truncated rollout scheme with a stable linear base policy \(\mu(x) = Lx \), one-step lookahead minimization, and terminal cost approximation \(\tilde{J}(x) = \tilde{K} x^2 \) is geometrically interpreted as in Fig. 1.5.12. The truncated rollout policy \(\tilde{\mu} \) is obtained by starting at \(\tilde{K} \), executing \(m \) VI steps using \(\mu \), followed by a Newton step for solving the Riccati equation.
We mentioned some interesting performance issues in our discussion of truncated rollout in Section 1.1. In particular we noted that:

(a) Lookahead by rollout may be an economic substitute for lookahead by minimization, in the sense that it may achieve a similar performance for the truncated rollout policy at significantly reduced computational cost.

(b) Lookahead by rollout with a stable policy has a beneficial effect on the stability properties of the lookahead policy.

These statements are difficult to establish analytically in some generality. However, they can be intuitively understood in the context with our one-dimensional linear quadratic problem, using geometrical constructions like the one of Fig. 1.5.12. They are also consistent with the results of computational experimentation. We refer to the monograph [Ber22a] for further discussion.

Newton Step Interpretation of Approximation in Value Space in General

The interpretation of approximation in value space as a Newton step and related notions of stability that we have discussed in this section admit a broad generalization to the infinite horizon problems that we consider in these notes and beyond. The key fact in this respect is that our DP problem formulation allows arbitrary state and control spaces, both discrete and continuous, and can be extended even further to general abstract models with a DP structure; see the abstract DP book [Ber22b].

Within this context the Riccati operator is replaced by an abstract Bellman operator, and valuable insight can be obtained from graphical interpretations of the Bellman equation, the VI and PI algorithms, one-step and multistep approximation in value space, and the region of stability; see the book [Ber22a] for an extensive discussion, and Section 1.6.7 for an example in the context of MPC. Naturally, the graphical interpretations and visualizations are limited to one dimension. However, the visualizations provide insight and motivate conjectures and mathematical analysis, some of which is given in the book [Ber20a].

1.6 EXAMPLES, REFORMULATIONS, AND SIMPLIFICATIONS

In this section we provide a few examples that illustrate problem formulation techniques, exact and approximate solution methods, and adaptations of the basic DP algorithm to various contexts. We refer to DP textbooks for extensive additional discussions of modeling and problem formulation techniques (see e.g., the many examples that can be found in the author's
An important fact to keep in mind is that there are many ways to model a given practical problem in terms of DP, and that there is no unique choice for state and control variables. This will be brought out by the examples in this section, and is facilitated by the generality of DP: its basic algorithmic principles apply for arbitrary state, control, and disturbance spaces, and system and cost functions.

1.6.1 A Few Words About Modeling

In practice, optimization problems seldom come neatly packaged as mathematical problems that can be solved by DP/RL or some other methodology. Generally, a practical problem is a prime candidate for a DP formulation if it involves multiple sequential decisions, which are separated by feedback, i.e., by observation that can be used to enhance the effectiveness of future decisions.

However, there are other types of problems that can be fruitfully formulated by DP. These include the entire class of deterministic problems, where there is no information to be collected: all the information needed in a deterministic problem is either known or can be predicted from the problem data that is available at time 0 (see, e.g., the traveling salesman Example 1.2.3). Moreover, for deterministic problems there is a plethora of non-DP methods, such as linear, nonlinear, and integer programming, random and nonrandom search, discrete optimization heuristics, etc. Still, however, the use of RL methods for deterministic optimization is a major subject in these notes, which will be discussed in Chapter 2. We will argue there that rollout, when suitably applied, can improve substantially on the performance of other heuristic or suboptimal methods, however derived. Moreover, we will see that often for discrete optimization problems the DP sequential structure is introduced artificially, with the aim to facilitate the use of approximate DP/RL methods.

There are also problems that fit quite well into the sequential structure of DP, but can be fruitfully addressed by RL methods that do not have a fundamental connection with DP. An important case in point is policy gradient and policy search methods, which will not be considered in these notes. Here the policy of the problem is parametrized by a set of parameters, so that the cost of the policy becomes a function of these parameters, and can be optimized by non-DP methods such as gradient or random search-based suboptimal approaches. This generally relates to the approximation in policy space approach, which we have discussed in Section 1.3; see also Section 5.7 of the RL book [Ber19a].

As a guide for formulating optimal control problems in a manner that is suitable for a DP solution the following two-stage process is suggested:
(a) Identify the controls/decisions u_k and the times k at which these controls are applied. Usually this step is fairly straightforward. However, in some cases there may be some choices to make. For example in deterministic problems, where the objective is to select an optimal sequence of controls $\{u_0, \ldots, u_{N-1}\}$, one may lump multiple controls to be chosen together, e.g., view the pair (u_0, u_1) as a single choice. This is usually not possible in stochastic problems, where distinct decisions are differentiated by the information/feedback available when making them.

(b) Select the states x_k. The basic guideline here is that x_k should encompass all the information that is relevant for future optimization, i.e., the information that is known to the controller at time k and can be used with advantage in choosing u_k. In effect, at time k the state x_k should separate the past from the future, in the sense that anything that has happened in the past (states, controls, and disturbances from stages prior to stage k) is irrelevant to the choices of future controls as long we know x_k. Sometimes this is described by saying that the state should have a “Markov property” to express an analogy with states of Markov chains, where (by definition) the conditional probability distribution of future states depends on the past history of the chain only through the present state.

The control and state selection may also have to be refined or specialized in order to enhance the application of known results and algorithms. This includes the choice of a finite or an infinite horizon, and the availability of good base policies or heuristics in the context of rollout.

Note that there may be multiple possibilities for selecting the states, because information may be packaged in several different ways that are equally useful from the point of view of control. It may thus be worth considering alternative ways to choose the states; for example try to use states that minimize the dimensionality of the state space. For a trivial example that illustrates the point, if a quantity x_k qualifies as state, then (x_{k-1}, x_k) also qualifies as state, since (x_{k-1}, x_k) contains all the information contained within x_k that can be useful to the controller when selecting u_k. However, using (x_{k-1}, x_k) in place of x_k, gains nothing in terms of optimal cost while complicating the DP algorithm that would have to be executed over a larger space.

The concept of a sufficient statistic, which refers to a quantity that summarizes all the essential content of the information available to the controller, may be useful in providing alternative descriptions of the state space. An important paradigm is problems involving partial or imperfect state information, where x_k evolves over time but is not fully accessible for measurement (for example, x_k may be the position/velocity vector of a moving vehicle, but we may obtain measurements of just the position). If I_k is the collection of all measurements and controls up to time k (the
information vector), it is correct to use I_k as state in a reformulated DP problem that involves perfect state observation. However, a better alternative may be to use as state the conditional probability distribution

$$P_k(x_k \mid I_k),$$

called belief state, which (as it turns out) subsumes all the information that is useful for the purposes of choosing a control. On the other hand, the belief state $P_k(x_k \mid I_k)$ is an infinite-dimensional object, whereas I_k may be finite dimensional, so the best choice may be problem-dependent. Still, in either case, the stochastic DP algorithm applies, with the sufficient statistic [whether I_k or $P_k(x_k \mid I_k)$] playing the role of the state.

A Few Words about the Choice of an RL Method

An attractive aspect of the current RL methodology is that it can address a very broad range of challenging problems, deterministic as well as stochastic, discrete as well as continuous, etc. However, in the practical application of this methodology one has to contend with approximations and limited theoretical guarantees. In particular, several of the RL methods that have been successful in practice have less than solid performance properties, and may not work on a given problem, even one of the type for which they are designed.

This is a reflection of the state of the art in the field: there are no methods that are guaranteed to work for all or even most problems. However, there are enough methods to try on a given problem with a reasonable chance of success in the end. For this reason, it is important to develop insight into the inner workings of each type of method, as a means of selecting the proper type of methods to try on a given problem.†

A related consideration is the context within which a particular method is applied. In particular is it a single problem that is being addressed, such as chess that has fixed rules and a fixed initial condition, or is it a family of related problems that must be periodically be solved with small variations in its data or its initial conditions? Moreover, are the problem data fixed or may they change over time as the system is being controlled? Generally, RL methods that require extensive tuning of parameters, including ones that involve approximation in policy space and the use of neural networks, may be well suited for a stable problem environment and a single problem solution. However, they not well suited for problems with a variable environment and/or real-time changes of model parameters. For such

† Aside from insight and intuition, it is also important to have a foundational understanding of the analytical principles of the field and of the mechanisms underlying the central computational methods. The role of the theory in this respect is to structure mathematically the methodology, guide the art, delineate the sound from the flawed ideas.
problems, RL methods based on approximation in value space and on-line play, possibly involving on-line replanning, are much better suited. Moreover, even when on-line replanning is not needed, on-line play may improve substantially the performance of off-line trained policies. This is due to the Newton step that is implicit in one-step or multistep lookahead minimization, cf. our discussion of the AlphaZero and TD-Gammon architectures in Section 1.1.

1.6.2 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t that is cost-free and absorbing in the sense that for all k,

$$g_k(t, u_k, w_k) = 0, \quad f_k(t, u_k, w_k) = t, \quad \text{for all } w_k \text{ and } u_k \in U_k(t).$$

Thus the control process essentially terminates upon reaching t, even if this happens before the end of the horizon. One may reach t by choice if a special stopping decision is available, or by means of a random transition from another state. Problems involving games, such as chess, Go, backgammon, and others involve a termination state (the end of the game) and have played an important role in the development of the RL methodology.

Generally, when it is known that an optimal policy will reach the termination state with certainty within at most some given number of stages N, the DP problem can be formulated as an N-stage horizon problem, with a very large termination cost for the nontermination states. The reason is that even if the termination state t is reached at a time $k < N$, we can extend our stay at t for an additional $N - k$ stages at no additional cost, so the optimal policy will still be optimal, since it will not incur the large termination cost at the end of the horizon.

Example 1.6.1 (Parking)

A driver is looking for inexpensive parking on the way to his destination. The parking area contains N spaces, numbered $0, \ldots, N - 1$, and a garage following space $N - 1$. The driver starts at space 0 and traverses the parking spaces sequentially, i.e., from space k he goes next to space $k + 1$, etc. Each parking space k costs $c(k)$ and is free with probability $p(k)$ independently of

† Games often involve two players/decision makers, in which case they can be addressed by suitably modified exact or approximate DP algorithms. The DP algorithm that we have discussed in this chapter involves a single decision maker, but can be used to find an optimal policy for one player against a fixed and known policy of the other player.

‡ When an upper bound on the number of stages to termination is not known, the problem may be formulated as an infinite horizon problem of the stochastic shortest path problem.
whether other parking spaces are free or not. If the driver reaches the last parking space \(N - 1 \) and does not park there, he must park at the garage, which costs \(C \). The driver can observe whether a parking space is free only when he reaches it, and then, if it is free, he makes a decision to park in that space or not to park and check the next space. The problem is to find the minimum expected cost parking policy.

We formulate the problem as a DP problem with \(N \) stages, corresponding to the parking spaces, and an artificial termination state \(t \) that corresponds to having parked; see Fig. 1.6.1. At each stage \(k = 1, \ldots, N - 1 \), we have three states: the artificial termination state \(t \), and the two states \(F \) and \(\overline{F} \), corresponding to space \(k \) being free or taken, respectively. At stage 0, we have only two states, \(F \) and \(\overline{F} \), and at the final stage there is only one state, the termination state \(t \). The decision/control is to park or continue at state \(F \) [there is no choice at states \(\overline{F} \) and state \(t \)]. From location \(k \), the termination state \(t \) is reached at cost \(c(k) \) when a parking decision is made (assuming location \(k \) is free). Otherwise, the driver continues to the next state at no cost. At stage \(N \), the driver must park at cost \(C \).

Let us now derive the form of the DP algorithm, denoting:

\[
J_k^*(F): \text{The optimal cost-to-go upon arrival at a space } k \text{ that is free.}
\]

\[
J_k^*(\overline{F}): \text{The optimal cost-to-go upon arrival at a space } k \text{ that is taken.}
\]

\[
J_k^*(t): \text{The cost-to-go of the “parked”/termination state } t.
\]

The DP algorithm for \(k = 0, \ldots, N - 1 \) takes the form

\[
J_k^*(F) = \begin{cases}
\min \left[c(k), p(k+1)J_{k+1}(F) + (1-p(k+1))J_{k+1}(\overline{F}) \right] & \text{if } k < N - 1, \\
\min \left[c(N-1), C \right] & \text{if } k = N - 1.
\end{cases}
\]

\[
J_k^*(\overline{F}) = \begin{cases}
p(k+1)J_{k+1}(F) + (1-p(k+1))J_{k+1}(\overline{F}) & \text{if } k < N - 1, \\
C & \text{if } k = N - 1.
\end{cases}
\]

for the states other than the termination state \(t \), while for \(t \) we have

\[
J_k^*(t) = 0, \quad k = 1, \ldots, N.
\]
The minimization above corresponds to the two choices (park or not park) at the states F that correspond to a free parking space.

While this algorithm is easily executed, it can be written in a simpler and equivalent form. This can be done by introducing the scalars

$$\hat{J}_k = p(k) J^*_k(F) + (1 - p(k)) J^*_k(\overline{F}), \quad k = 0, \ldots, N - 1,$$

which can be viewed as the optimal expected cost-to-go upon arriving at space k but before verifying its free or taken status. Indeed, from the preceding DP algorithm, we have

$$\hat{J}_{N-1} = p(N-1) \min \left[c(N-1), C \right] + (1 - p(N-1)) C,$$

$$\hat{J}_k = p(k) \min \left[c(k), \hat{J}_{k+1} \right] + (1 - p(k)) \hat{J}_{k+1}, \quad k = 0, \ldots, N - 2.$$

From this algorithm we can also obtain the optimal parking policy:

Park at space $k = 0, \ldots, N - 1$ if it is free and we have $c(k) \leq \hat{J}_{k+1}$.

This is an example of DP simplification that occurs when the state involves components that are not affected by the choice of control, and will be addressed in the next section.

Finite to Infinite Horizon Reformulation

There is a conceptually important reformulation that transforms a finite horizon problem, possibly involving a nonstationary system and cost per stage, to an equivalent infinite horizon problem. The reformulation is based on introducing an expanded state space, which is the union of the state spaces of the finite horizon problem plus an artificial cost-free termination state that the system moves into at the end of the horizon. This reformulation is of great conceptual value, as it provides a mechanism to bring to bear ideas that can be most conveniently understood within an infinite horizon context. For example, it helps to understand the synergy of off-line training and on-line play based on Newton’s method, and the related insights that explain the good performance of rollout algorithms in practice.

To define the reformulation, let us consider the N-stage horizon stochastic problem of Section 1.3.1, whose system has the form

$$x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, \ldots, N - 1, \quad (1.57)$$

and let us denote by X_k, $k = 0, \ldots, N$, and U_k, $k = 0, \ldots, N - 1$, the corresponding state spaces and control spaces, respectively. We introduce an artificial termination state t, and we consider an infinite horizon problem with state and control spaces X and U given by

$$X = (\bigcup_{k=0}^N X_k) \cup \{t\}, \quad U = \bigcup_{k=0}^{N-1} U_k; \quad (1.58)$$
Figure 1.6.2 Illustration of the infinite horizon equivalent of a finite horizon problem. The state space is \(X = \bigcup_{k=0}^{N} X_k \) ∪ \{t\}, and the control space is \(U = \bigcup_{k=0}^{N-1} U_k \). Transitions from states \(x_k \in X_k \) lead to states in \(x_{k+1} \in X_{k+1} \), according to the system equation \(x_{k+1} = f_k(x_k, u_k, w_k) \), and they are stochastic when they involve the random disturbance \(w_k \). The transition from states \(x_N \in X_N \) lead deterministically to the termination state at cost \(g_N(x_N) \). The termination state \(t \) is cost-free and absorbing.

The infinite horizon optimal cost \(J^*(x_k) \) and optimal policy \(\mu^*(x_k) \) at state \(x_k \in X_k \) of the infinite horizon problem are equal to optimal cost-to-go \(J_k^*(x_k) \) and optimal policy \(\mu_k^*(x_k) \) of the finite horizon problem.

see Fig. 1.6.2.

The system equation and the control constraints of this problem are also reformulated so that states in \(X_k \), \(k = 0, \ldots, N - 1 \), are mapped to states in \(X_{k+1} \), according to Eq. (1.57), while states \(x_N \in X_N \) are mapped to the termination state \(t \) at cost \(g_N(x_N) \). Upon reaching \(t \), the state stays at \(t \) at no cost. Thus the policies of the infinite horizon problem map states \(x_k \in X_k \) to controls in \(U_k(x_k) \subset U_k \), and consist of functions \(\mu_k(x_k) \) that are policies of the finite horizon problem. Moreover, the Bellman equation for the infinite horizon problem is identical to the DP algorithm for the finite horizon problem.
It can be seen that the optimal cost and optimal control, $J^*(x_k)$ and $\mu^*(x_k)$, at a state $x_k \in X_k$ in the infinite horizon problem are equal to the optimal cost-to-go $J_k^*(x_k)$ and optimal control $\mu_k^*(x_k)$ of the original finite horizon problem, respectively; cf. Fig. 1.6.2. Moreover approximation in value space and rollout in the finite horizon problem translate to infinite horizon counterparts, and can be understood as Newton steps for solving the Bellman equation of the infinite horizon problem (or equivalently the DP algorithm of the finite horizon problem).

In summary, finite horizon problems can be viewed as infinite horizon problems with a special structure that involves a termination state t, and the state and control spaces of Eq. (1.58), as illustrated in Fig. 1.6.2. The Bellman equation of the infinite horizon problem coincides with the DP algorithm of the finite horizon problem. The PI algorithm for the infinite horizon problem can be translated directly to a PI algorithm for the finite horizon problem, involving repeated policy evaluations and policy improvements. Finally, the Newton step interpretations for approximation in value space and rollout schemes for the infinite horizon problem have straightforward analogs for finite horizon problems, and explain the powerful cost improvement mechanism that underlies the rollout algorithm and its variations.

1.6.3 State Augmentation, Time Delays, Forecasts, and Uncontrollable State Components

In practice, we are often faced with situations where some of the assumptions of our stochastic optimal control problem are violated. For example, the disturbances may involve a complex probabilistic description that may create correlations that extend across stages, or the system equation may include dependences on controls applied in earlier stages, which affect the state with some delay.

Generally, in such cases the problem can be reformulated into our DP problem format through a technique, which is called state augmentation because it typically involves the enlargement of the state space. The general guideline in state augmentation is to include in the enlarged state at time k all the information that is known to the controller at time k and can be used with advantage in selecting u_k. State augmentation allows the treatment of time delays in the effects of control on future states, correlated disturbances, forecasts of probability distributions of future disturbances, and many other complications. We note, however, that state augmentation often comes at a price: the reformulated problem may have a very complex state space. We provide some examples.

Time Delays

In some applications the system state x_{k+1} depends not only on the preceding state x_k and control u_k, but also on earlier states and controls. Such
situations can be handled by expanding the state to include an appropriate number of earlier states and controls.

As an example, assume that there is at most a single stage delay in the state and control; i.e., the system equation has the form

\[x_{k+1} = f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k), \quad k = 1, \ldots, N - 1, \quad (1.59) \]

\[x_1 = f_0(x_0, u_0, w_0). \]

If we introduce additional state variables \(y_k \) and \(s_k \), and we make the identifications \(y_k = x_{k-1}, z_k = u_{k-1} \), the system equation (1.59) yields

\[
\begin{pmatrix}
 x_{k+1} \\
 y_{k+1} \\
 z_{k+1}
\end{pmatrix} =
\begin{pmatrix}
 f_k(x_k, y_k, u_k, z_k, w_k) \\
 x_k \\
 u_k
\end{pmatrix},
\quad (1.60)
\]

By defining \(\tilde{x}_k = (x_k, y_k, z_k) \) as the new state, we have

\[\tilde{x}_{k+1} = \tilde{f}_k(\tilde{x}_k, u_k, w_k), \]

where the system function \(\tilde{f}_k \) is defined from Eq. (1.60).

By using the preceding equation as the system equation and by expressing the cost function in terms of the new state, the problem is reduced to a problem without time delays. Naturally, the control \(u_k \) should now depend on the new state \(\tilde{x}_k \), or equivalently a policy should consist of functions \(\mu_k \) of the current state \(x_k \), as well as the preceding state \(x_{k-1} \) and the preceding control \(u_{k-1} \).

When the DP algorithm for the reformulated problem is translated in terms of the variables of the original problem, it takes the form

\[
J^*_N(x_N) = g_N(x_N),
\]

\[
J^*_{N-1}(x_{N-1}, x_{N-2}, u_{N-2}) = \min_{u_{N-1} \in U_{N-1}(x_{N-1})} E_{w_{N-1}} \left\{ g_{N-1}(x_{N-1}, u_{N-1}, w_{N-1}) + J^*_N(f_{N-1}(x_{N-1}, x_{N-2}, u_{N-1}, u_{N-2}, w_{N-1})) \right\},
\]

\[
J^*_k(x_k, x_{k-1}, u_{k-1}) = \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + J^*_{k+1}(f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k), x_k, u_k) \right\}, \quad k = 1, \ldots, N - 2,
\]

\[
J^*_0(x_0) = \min_{u_0 \in U_0(x_0)} E_{w_0} \left\{ g_0(x_0, u_0, w_0) + J^*_1(f_0(x_0, u_0, w_0), x_0, u_0) \right\}.
\]
Similar reformulations are possible when time delays appear in the cost or the control constraints; for example, in the case where the cost has the form

\[E \left\{ g_N(x_N, x_{N-1}) + g_0(x_0, u_0, w_0) + \sum_{k=1}^{N-1} g_k(x_k, x_{k-1}, u_k, w_k) \right\}. \]

The extreme case of time delays in the cost arises in the nonadditive form

\[E\{ g_N(x_N, x_{N-1}, \ldots, x_0, u_{N-1}, \ldots, u_0, w_{N-1}, \ldots, w_0) \}. \]

Then, the problem can be reduced to the standard problem format, by using as augmented state

\[\tilde{x}_k = (x_k, x_{k-1}, \ldots, x_0, u_{k-1}, \ldots, u_0, w_{k-1}, \ldots, w_0) \]

and \(E\{ g_N(\tilde{x}_N) \} \) as reformulated cost. Policies consist of functions \(\mu_k \) of the present and past states \(x_k, \ldots, x_0 \), the past controls \(u_{k-1}, \ldots, u_0 \), and the past disturbances \(w_{k-1}, \ldots, w_0 \). Naturally, we must assume that the past disturbances are known to the controller. Otherwise, we are faced with a problem where the state is imprecisely known to the controller, which will be discussed in the next section.

Forecasts

Consider a situation where at time \(k \) the controller has access to a forecast \(y_k \) that results in a reassessment of the probability distribution of the subsequent disturbance \(w_k \) and, possibly, future disturbances. For example, \(y_k \) may be an exact prediction of \(w_k \) or an exact prediction that the probability distribution of \(w_k \) is a specific one out of a finite collection of distributions. Forecasts of interest in practice are, for example, probabilistic predictions on the state of the weather, the interest rate for money, and the demand for inventory. Generally, forecasts can be handled by introducing additional state variables corresponding to the information that the forecasts provide. We will illustrate the process with a simple example.

Assume that at the beginning of each stage \(k \), the controller receives an accurate prediction that the next disturbance \(w_k \) will be selected according to a particular probability distribution out of a given collection of distributions \(\{ P_1, \ldots, P_m \} \): i.e., if the forecast is \(i \), then \(w_k \) is selected according to \(P_i \). The a priori probability that the forecast will be \(i \) is denoted by \(p_i \) and is given.

The forecasting process can be represented by means of the equation

\[y_{k+1} = \xi_k, \]
where y_{k+1} can take the values 1, \ldots, m, corresponding to the m possible forecasts, and ξ_k is a random variable taking the value i with probability p_i. The interpretation here is that when ξ_k takes the value i, then w_{k+1} will occur according to the distribution P_i.

By combining the system equation with the forecast equation $y_{k+1} = \xi_k$, we obtain an augmented system given by

$$
\begin{pmatrix}
 x_{k+1} \\
 y_{k+1}
\end{pmatrix} =
\begin{pmatrix}
 f_k(x_k, u_k, w_k) \\
 \xi_k
\end{pmatrix}.
$$

The new state and disturbance are

$$
\tilde{x}_k = (x_k, y_k), \quad \tilde{w}_k = (w_k, \xi_k).
$$

The probability distribution of \tilde{w}_k is determined by the distributions P_i and the probabilities p_i, and depends explicitly on \tilde{x}_k (via y_k) but not on the prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast as a stochastic DP problem. Note that the control applied depends on both the current state and the current forecast. The DP algorithm takes the form

$$
J^*_N(x_N, y_N) = g_N(x_N),
$$

$$
J^*_k(x_k, y_k) = \min_{u_k \in U_k(x_k)} \mathbb{E}_{w_k} \left\{ g_k(x_k, u_k, w_k) + \sum_{i=1}^{m} p_i J^*_{k+1}(f_k(x_k, u_k, w_k), i) \mid y_k \right\},
$$

where y_k may take the values 1, \ldots, m, and the expectation over w_k is taken with respect to the distribution P_{y_k}.

Note that the preceding formulation admits several extensions. One example is the case where forecasts can be influenced by the control action (e.g., pay extra for a more accurate forecast), and may involve several future disturbances. However, the price for these extensions is increased complexity of the corresponding DP algorithm.

Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of several components, some of which cannot be affected by the choice of control. In such cases the DP algorithm can be simplified considerably, and be executed over the controllable components of the state.

As an example, let the state of the system be a composite (x_k, y_k) of two components x_k and y_k. The evolution of the main component, x_k, is affected by the control u_k according to the equation

$$
x_{k+1} = f_k(x_k, y_k, u_k, w_k),
$$
where the distribution $P_k(w_k \mid x_k, y_k, u_k)$ is given. The evolution of the
two components, y_k, is governed by a given conditional distribution $P_k(y_k \mid x_k)$ and cannot be affected by the control, except indirectly through x_k.

One is tempted to view y_k as a disturbance, but there is a difference: y_k is
observed by the controller before applying u_k, while w_k occurs after u_k is
applied, and indeed w_k may probabilistically depend on u_k.

It turns out that we can formulate a DP algorithm that is executed
ever over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” (see also the parking Ex-
ample 1.6.1). In particular, let $J_k^*(x_k, y_k)$ denote the optimal cost-to-go at
stage k and state (x_k, y_k), and define

$$
\hat{J}_k(x_k) = E_{y_k} \left\{ J_k^*(x_k, y_k) \mid x_k \right\}.
$$

Note that the preceding expression can be interpreted as an “average cost-
to-go” at x_k (averaged over the values of the uncontrollable component y_k).

Then, similar to the parking Example 1.6.1, a DP algorithm that generates
$\hat{J}_k(x_k)$ can be obtained, and has the following form:

$$
\hat{J}_k(x_k) = E_{y_k} \left\{ \min_{u_k \in U_k(x_k, y_k)} \left(g_k(x_k, y_k, u_k, w_k) + \hat{J}_{k+1}(f_k(x_k, y_k, u_k, w_k)) \mid x_k, y_k, u_k \right) \right\}.
$$

This is a consequence of the calculation

$$
\hat{J}_k(x_k) = E_{y_k} \left\{ J_k^*(x_k, y_k) \mid x_k \right\} = E_{y_k} \left\{ \min_{u_k \in U_k(x_k, y_k)} \left(g_k(x_k, y_k, u_k, w_k) + J_{k+1}^*(x_{k+1}, y_{k+1}) \mid x_k, y_k, u_k \right) \right\}
\hat{J}_{k+1}(f_k(x_k, y_k, u_k, w_k)) \mid x_k, y_k, u_k \right\}.
$$

Note that the minimization in the right-hand side of the preceding
equation must still be performed for all values of the full state (x_k, y_k) in
order to yield an optimal control law as a function of (x_k, y_k). Nonetheless,
the equivalent DP algorithm (1.62) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate $\hat{J}_k(x_k)$ than to approximate $J_k^*(x_k, y_k)$; see the following dis-
cussions of forecasts and of the game of tetris.
As an example, consider the augmented state resulting from the incorporation of forecasts, as described earlier. Then, the forecast \(y_k \) represents an uncontrolled state component, so that the DP algorithm can be simplified as in Eq. (1.62). In particular, assume that the forecast \(y_k \) can take values \(i = 1, \ldots, m \) with probability \(p_i \). Then, by defining

\[
\hat{J}_k(x_k) = \sum_{i=1}^{m} p_i J^*_k(x_k, i), \quad k = 0, 1, \ldots, N - 1,
\]

and \(\hat{J}_N(x_N) = g_N(x_N) \), we have, using Eq. (1.61),

\[
\hat{J}_k(x_k) = \sum_{i=1}^{m} p_i \min_{u_k \in \mathcal{U}_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) \right\} + \hat{J}_{k+1} \left(f_k(x_k, u_k, w_k) \right) \bigg| y_k = i \},
\]

which is executed over the space of \(x_k \) rather than \(x_k \) and \(y_k \). Note that this is a simpler algorithm to approximate than the one of Eq. (1.61).

Uncontrollable state components often occur in arrival systems, such as queueing, where action must be taken in response to a random event (such as a customer arrival) that cannot be influenced by the choice of control. Then the state of the arrival system must be augmented to include the random event, but the DP algorithm can be executed over a smaller space, as per Eq. (1.62). Here is an example of this type.

Example 1.6.2 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square in the grid can be full or empty, making up a “wall of bricks” with “holes” and a “jagged top” (see Fig. 1.6.3). The squares fill up as blocks of different shapes fall from the top of the grid and are added to the top of the wall. As a given block falls, the player can move horizontally and rotate the block in all possible ways, subject to the constraints imposed by the sides of the grid and the top of the wall. The falling blocks are generated independently according to some probability distribution, defined over a finite set of standard shapes. The game starts with an empty grid and ends when a square in the top row becomes full and the top of the wall reaches the top of the grid. When a row of full squares is created, this row is removed, the bricks lying above this row move one row downward, and the player scores a point. The player’s objective is to maximize the score attained (total number of rows removed) up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy as a finite horizon stochastic DP problem, with very long horizon. The state consists of two components:

1. The board position, i.e., a binary description of the full/empty status of each square, denoted by \(x \).
85

Sec. 1.6 Examples, Variations, and Simplifications

(2) The shape of the current falling block, denoted by \(y \).

The control, denoted by \(u \), is the horizontal positioning and rotation applied to the falling block. There is also an additional termination state which is cost-free. Once the state reaches the termination state, it stays there with no change in score. Moreover there is a very large amount added to the score when the end of the horizon is reached without the game having terminated.

The shape \(y \) is generated according to a probability distribution \(p(y) \), independently of the control, so it can be viewed as an uncontrollable state component. The DP algorithm (1.62) is executed over the space of board positions \(x \) and has the intuitive form

\[
\hat{J}_k(x) = \sum_y p(y) \max_u \left[g(x, y, u) + \hat{J}_{k+1}(f(x, y, u)) \right], \quad \text{for all } x, \quad (1.63)
\]

where

\[
g(x, y, u) \quad \text{is the number of points scored (rows removed)},
\]

\[
f(x, y, u) \quad \text{is the next board position (or termination state)},
\]

when the state is \((x, y)\) and control \(u \) is applied, respectively. The DP algorithm (1.63) assumes a finite horizon formulation of the problem.

Alternatively, we may consider an undiscounted infinite horizon formulation, involving a termination state (i.e., a stochastic shortest path problem). The “reduced” form of Bellman’s equation, which corresponds to the DP algorithm (1.63), has the form

\[
\hat{J}(x) = \sum_y p(y) \max_u \left[g(x, y, u) + \hat{J}(f(x, y, u)) \right], \quad \text{for all } x.
\]

The value \(\hat{J}(x) \) can be interpreted as an “average score” at \(x \) (averaged over the values of the uncontrollable block shapes \(y \)).
Finally, let us note that despite the simplification achieved by eliminating the uncontrollable portion of the state, the number of states x is still enormous, and the problem can only be addressed by suboptimal methods.†

1.6.4 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value of the current state x_k, so a policy consists of a sequence of functions $\mu_k(\cdot)$, $k = 0, \ldots, N - 1$. However, in many practical settings this assumption is unrealistic, because some components of the state may be inaccessible for observation, the sensors used for measuring them may be inaccurate, or the cost of measuring them more accurately may be prohibitive.

Often in such situations the controller has access to only some of the components of the current state, and the corresponding observations may also be corrupted by stochastic uncertainty. For example in three-dimensional motion problems, the state may consist of the six-tuple of position and velocity components, but the observations may consist of noise-corrupted radar measurements of the three position components. This gives rise to problems of *partial* or *imperfect* state information, which have received a lot of attention in the optimization and artificial intelligence literature (see e.g., [Ber17a], [RuN16]; these problems are also popularly referred to with the acronym POMDP for *partially observed Markovian Decision Problem*).

Generally, solving a POMDP exactly is typically intractable in practice, even though there are DP algorithms for doing so. The most common approach is to replace the state x_k with a *belief state*, which we will denote by b_k. It is the probability distribution of x_k given all the observations that have been obtained by the controller up to time k, and it can serve as “state” in an appropriate DP algorithm. The belief state can in principle be computed and updated by a variety of methods that are based on Bayes’ rule, such as *Kalman filtering* (see e.g., [AnM79], [KuV86], [Kri16], [ChC17]) and *particle filtering* (see e.g., [GSS93], [DoJ09], [Can16], [Kri16]).

In problems where the state x_k can take a finite but large number of values, say n, the belief states comprise an n-dimensional simplex, so discretization becomes problematic. As a result, alternative suboptimal solution methods are often used in partial state information problems.

† Tetris has received a lot of attention as a challenging stochastic testbed for RL algorithms over a period spanning 20 years (1995-2015), starting with the papers [TsV96], [BeI96], and the neuro-dynamic programming book [BeT96], and ending with the papers [GGS13], [SGG15], which contain many references to related works in the intervening years. All of these works are based on approximation in value space and approximate policy iteration.
Sec. 1.6 Examples, Variations, and Simplifications

Figure 1.6.4 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space \(k = 0, 1, \ldots, N - 1 \) at cost \(c(k) \), if the space is free, can move to \(k - 1 \) at cost \(t_k^- \) or can move to \(k + 1 \) at cost \(t_k^+ \). At space \(N \) (the garage) the driver must park at cost \(C \).

Example 1.6.3 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example 1.6.1. As in that example, a driver is looking for inexpensive parking on the way to his destination, along a line of \(N \) parking spaces with a garage at the end. The difference is that the driver can move in either direction, rather than just forward towards the garage. In particular, at space \(i \), the driver can park at cost \(c(i) \) if \(i \) is free, can move to \(i - 1 \) at a cost \(t_i^- \) or can move to \(i + 1 \) at a cost \(t_i^+ \). Moreover, the driver records and remembers the free/taken status of the spaces previously visited and may return to any of these spaces; see Fig. 1.6.4.

Let us assume that the probability \(p(i) \) of a space \(i \) being free changes over time, i.e., a space found free (or taken) at a given visit may get taken (or become free, respectively) by the time of the next visit. The initial probabilities \(p(i) \), before visiting any spaces, are known, and the mechanism by which these probabilities change over time is also known to the driver. As an example, we may assume that at each time stage, \(p(i) \) increases by a certain known factor with some probability \(\xi \) and decreases by another known factor with the complementary probability \(1 - \xi \).

Here the belief state is the vector of current probabilities

\[
(p(0), \ldots, p(N - 1)),
\]

and it can be updated with a simple algorithm at each time based on the new observation: the free/taken status of the space visited at that time.

Despite their inherent computational difficulty, it turns out that conceptually, partial state information problems are no different than the perfect state information problems we have been addressing so far. In fact by various reformulations, we can reduce a partial state information problem to one with perfect state information, which involves a different and more complicated state, called a *sufficient statistic*. Once this is done, we can state an exact DP algorithm that is defined over the space of the sufficient statistic. One possible sufficient statistic is the belief state described...
earlier. The corresponding DP algorithm has the form

$$J^*_k(b_k) = \min_{u_k \in U_k} \left[\hat{g}_k(b_k, u_k) + E_{z_{k+1}} \left\{ J^*_{k+1}(F_k(b_k, u_k, z_{k+1})) \mid b_k, u_k \right\} \right],$$

(1.64)

where:

- $J^*_k(b_k)$ denotes the optimal cost-to-go starting from belief state b_k at stage k.
- U_k is the control constraint set at time k (since the state x_k is unknown at stage k, U_k must be independent of x_k).
- $\hat{g}_k(b_k, u_k)$ denotes the expected stage cost of stage k. It is calculated as the expected value of the stage cost $g_k(x_k, u_k, w_k)$, with the joint distribution of (x_k, w_k) determined by the belief state b_k and the distribution of w_k.
- $F_k(b_k, u_k, z_{k+1})$ denotes the belief state at the next stage, given that the current belief state is b_k, control u_k is applied, and observation z_{k+1} is received following the application of u_k:

$$b_{k+1} = F_k(b_k, u_k, z_{k+1}).$$

(1.65)

This is the system equation for a perfect state information problem with state b_k, control u_k, “disturbance” z_{k+1}, and cost per stage $\hat{g}_k(b_k, u_k)$. The function F_k is viewed as a sequential belief estimator, which updates the current belief state b_k based on the new observation z_{k+1}. It is given by either an explicit formula or an algorithm (such as Kalman filtering or particle filtering) that is based on the probability distribution of z_k and the use of Bayes’ rule.

The expected value $E_{z_{k+1}} \left\{ \cdot \mid b_k, u_k \right\}$ is taken with respect to the distribution of z_{k+1}, given b_k and u_k. Note that z_{k+1} is random, and its distribution depends on x_k and u_k, so the expected value

$$E_{z_{k+1}} \left\{ J^*_{k+1}(F_k(b_k, u_k, z_{k+1})) \mid b_k, u_k \right\}$$

in Eq. (1.64) is a function of b_k and u_k.

The algorithm (1.64) is just the ordinary DP algorithm for the perfect state information problem shown in Fig. 1.6.5. It involves the system/belief estimator (1.65) and the cost per stage $\hat{g}_k(b_k, u_k)$. Note that since b_k takes values in a continuous space, the algorithm (1.64) will typically require an approximate implementation, using approximation in value space methods.

We refer to the textbook [Ber17a], Chapter 4, for a detailed derivation of the DP algorithm (1.64), and to the monograph [BeS78] for a mathematical treatment that applies to infinite-dimensional state and disturbance spaces as well.
1.6.5 Multiagent Problems and Multiagent Rollout

Let us consider the discounted infinite horizon problem and a special structure of the control space, whereby the control u consists of m components, $u = (u_1, \ldots, u_m)$, with a separable control constraint structure $u^\ell \in U^\ell(x)$, $\ell = 1, \ldots, m$. Thus the control constraint set is the Cartesian product

$$U(x) = U^1(x) \times \cdots \times U^m(x),$$

where the sets $U^\ell(x)$ are given. This structure is inspired by applications involving distributed decision making by multiple agents with communication and coordination between the agents; see Fig. 1.6.6.

In particular, we will view each component u^ℓ, $\ell = 1, \ldots, m$, as being chosen from within $U^\ell(x)$ by a separate “agent” (a decision making entity). For the sake of the following discussion, we assume that each set $U^\ell(x)$ is finite. Then the one-step lookahead minimization of the standard rollout scheme with base policy μ is given by

$$\hat{u} \in \arg\min_{u \in U(x)} E_w \left\{ g(x, u, w) + \alpha J_\mu (f(x, u, w)) \right\},$$

and involves as many as n^m Q-factors, where n is the maximum number of elements of the sets $U^\ell(x)$ [so that n^m is an upper bound to the number of controls in $U(x)$, in view of its Cartesian product structure (1.66)]. Thus the standard rollout algorithm requires an exponential [order $O(n^m)$] number of Q-factor computations per stage, which can be overwhelming even for moderate values of m.

Figure 1.6.5 Schematic illustration of the view of an imperfect state information problem as one of perfect state information, whose state is the belief state b_k, i.e., the conditional probability distribution of x_k given all the observations up to time k. The observation z_{k+1} plays the role of the stochastic disturbance. The function F_k is a sequential estimator that updates the current belief state b_k.
Figure 1.6.6 Schematic illustration of a multiagent problem. There are multiple “agents,” and each agent \(\ell = 1, \ldots, m \) controls its own decision variable \(u^\ell \). At each stage, agents exchange new information and also exchange information with the “environment,” and then select their decision variables for the stage.

This potentially large computational overhead motivates a far more computationally efficient rollout algorithm, whereby the one-step lookahead minimization (1.67) is replaced by a sequence of \(m \) successive minimizations, \textit{one-agent-at-a-time}, with the results incorporated into the subsequent minimizations. In particular, given a base policy \(\mu = (\mu^1, \ldots, \mu^m) \), we perform at state \(x \) the sequence of minimizations

\[
\tilde{\mu}^1(x) \in \arg \min_{u^1 \in U^1(x)} E_w \left\{ g(x, u^1, \mu^2(x), \ldots, \mu^m(x), w) + \alpha J_\mu(f(x, u^1, \mu^2(x), \ldots, \mu^m(x), w)) \right\},
\]

\[
\tilde{\mu}^2(x) \in \arg \min_{u^2 \in U^2(x)} E_w \left\{ g(x, \tilde{\mu}^1(x), u^2, \mu^3(x), \ldots, \mu^m(x), w) + \alpha J_\mu(f(x, \tilde{\mu}^1(x), u^2, \mu^3(x), \ldots, \mu^m(x), w)) \right\},
\]

\[
\vdots \quad \ldots \quad \ldots \quad \ldots
\]

\[
\tilde{\mu}^m(x) \in \arg \min_{u^m \in U^m(x)} E_w \left\{ g(x, \tilde{\mu}^1(x), \tilde{\mu}^2(x), \ldots, \tilde{\mu}^{m-1}(x), u^m, w) + \alpha J_\mu(f(x, \tilde{\mu}^1(x), \tilde{\mu}^2(x), \ldots, \tilde{\mu}^{m-1}(x), u^m, w)) \right\}.
\]

Thus each agent component \(u^\ell \) is obtained by a minimization with the preceding agent components \(u^1, \ldots, u^{\ell-1} \) fixed at the previously computed values of the rollout policy, and the following agent components \(u^{\ell+1}, \ldots, u^m \) fixed at the values given by the base policy. This algorithm requires order
Sec. 1.6 Examples, Variations, and Simplifications

Figure 1.6.7 Equivalent formulation of the stochastic optimal control problem for the case where the control u consists of m components u^1, u^2, \ldots, u^m:

$$u = (u^1, \ldots, u^m) \in U(x) = U^1(x) \times \cdots \times U^m(x).$$

The figure depicts the kth stage transitions. Starting from state x, we generate the intermediate states

$$(x, u^1), (x, u^1, u^2), \ldots, (x, u^1, \ldots, u^{m-1}),$$

using the respective controls u^1, \ldots, u^{m-1}. The final control u^m leads from $(x, u^1, \ldots, u^{m-1})$ to $\bar{x} = f(x, u, w)$, and the random cost $g(x, u, w)$ is incurred.

$O(nm)$ Q-factor computations per stage, a potentially huge computational saving over the order $O(n^m)$ computations required by standard rollout.

A key idea here is that the computational requirements of the rollout one-step minimization (1.67) are proportional to the number of controls in the set $U(x_k)$ and are independent of the size of the state space. This motivates a reformulation of the problem, first suggested in the book [BeT96], Section 6.1.4, whereby control space complexity is traded off with state space complexity, by “unfolding” the control u_k into its m components, which are applied one agent-at-a-time rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the collective decision u_k into m individual component decisions, thereby reducing the complexity of the control space while increasing the complexity of the state space. The potential advantage is that the extra state space complexity does not affect the computational requirements of some RL algorithms, including rollout.

To this end, we introduce a modified but equivalent problem, involving one-at-a-time agent control selection. At the generic state x, we break down the control u into the sequence of the m controls u^1, u^2, \ldots, u^m, and between x and the next state $\bar{x} = f(x, u, w)$, we introduce artificial intermediate “states” $(x, u^1), (x, u^1, u^2), \ldots, (x, u^1, \ldots, u^{m-1})$, and corresponding transitions. The choice of the last control component u^m at “state” $(x, u^1, \ldots, u^{m-1})$ marks the transition to the next state $\bar{x} = f(x, u, w)$ according to the system equation, while incurring cost $g(x, u, w)$; see Fig. 1.6.7.

It is evident that this reformulated problem is equivalent to the origi-
nal, since any control choice that is possible in one problem is also possible
in the other problem, while the cost structure of the two problems is the
same. In particular, every policy $\mu = (\mu_1, \ldots, \mu^m)$ of the original problem,
including a base policy in the context of rollout, is admissible for the reformu-
lated problem, and has the same cost function for the original as well as the reformulated problem.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing $m - 1$ additional layers of states,
and the corresponding $m - 1$ cost-to-go functions

$$J^1(x, u^1), J^2(x, u^1, u^2), \ldots, J^{m-1}(x, u^1, \ldots, u^{m-1}).$$

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the Q-factor minimization (1.67) is performed for just
one state at each stage.

The major fact that can be proved about multiagent rollout (see the end-of-chapter references) is that it achieves cost improvement:

$$J_\mu(x) \leq J_\tilde{\mu}(x), \quad \text{for all } x,$$

where $J_\mu(x)$ is the cost function of the base policy $\mu = (\mu_1, \ldots, \mu^m)$, and
$J_\tilde{\mu}(x)$ is the cost function of the rollout policy $\tilde{\mu} = (\tilde{\mu}_1, \ldots, \tilde{\mu}^m)$, starting
from state x. Furthermore, this cost improvement property can be ex-
tended to multiagent PI schemes that involve one-agent-at-a-time policy
improvement operations, and have sound convergence properties. More-
over, multiagent rollout becomes the starting point for various related PI
schemes that are well suited for distributed operation in important practi-

cal contexts involving multiple autonomous decision makers; see the book
[Ber20a] and the papers [Ber20b], [Ber20c].

Example 1.6.4 (Spiders and Flies)

This example is representative of a broad range of practical problems such as
multirobot service systems involving delivery, maintenance and repair, search
and rescue, firefighting, etc. Here there are m spiders and several flies moving
on a 2-dimensional grid; cf. Fig. 1.6.8. The objective is for the spiders to catch
all the flies as fast as possible.

During a stage, each fly moves to a some other position according to a
given state-dependent probability distribution. Each spider learns the current
state (the vector of spiders and fly locations) at the beginning of each stage,
and either moves to a neighboring location or stays where it is. Thus each
spider has as many as 5 choices at each stage. The control is $u = (u^1, \ldots, u^m)$,
where u^ℓ is the choice of the ℓth spider, so there are about 5^m possible values
of u.

To apply multiagent rollout, we need a base policy. A simple possibility
is to use the policy that directs each spider to move on the path of minimum
Figure 1.6.8 Illustration of a 2-dimensional spiders-and-fly problem with 20 spiders and 5 flies (cf. Example 1.6.4). The flies move randomly, regardless of the position of the spiders. During a stage, each spider moves to a neighboring location or stays where it is, so there are 5 moves per spider (except for spiders at the edges of the grid). The total number of possible joint spiders moves is a little less than 5^{20}.

distance to the closest fly position. According to the multiagent rollout formalism, the spiders choose their moves one-at-time in the order from 1 to m, taking into account the current positions of the flies and the earlier moves of other spiders, and assuming that future moves will be chosen according to the base policy, which is a tractable computation.

In particular, at the beginning at the typical stage, spider 1 selects its best move (out of the no more than 5 possible moves), assuming the other spiders 2, \ldots, m will move towards their closest surviving fly during the current stage, and all spiders will move towards their closest surviving fly during the following stages, up to the time where no surviving flies remain. Spider 1 then broadcasts its selected move to all other spiders. Then spider 2 selects its move taking into account the move already chosen by spider 1, and assuming that spiders 3, \ldots, m will move towards their closest surviving fly during the current stage, and all spiders will move towards their closest surviving fly during the following stages, up to the time where no surviving flies remain. Spider 2 then broadcasts its choice to all other spiders. This process of one-spider-at-a-time move selection is repeated for the remaining spiders 3, \ldots, m, marking the end of the stage.

Note that while standard rollout computes and compares 5^m Q-factors (actually a little less to take into account edge effects), multiagent rollout computes and compares ≤ 5 moves per spider, for a total of less than $5m$. Despite this tremendous computational economy, experiments with this type
of spiders and flies problems have shown that multiagent rollout achieves a comparable performance to the one of standard rollout.

1.6.6 Problems with Unknown Parameters - Adaptive Control

Our discussion so far dealt with problems with a known mathematical model, i.e., one where the system equation, cost function, control constraints, and probability distributions of disturbances are perfectly known. The mathematical model may be available through explicit mathematical formulas and assumptions, or through a computer program that can emulate all of the mathematical operations involved in the model, including Monte Carlo simulation for the calculation of expected values.

It is important to note here that from our point of view, it makes no difference whether the mathematical model is available through closed form mathematical expressions or through a computer simulator: the methods that we discuss are valid either way, only their suitability for a given problem may be affected by the availability of mathematical formulas.

In practice, however, it is common that the system parameters are either not known exactly or can change over time. As an example consider our oversimplified cruise control system that we noted in Example 1.3.1 or its infinite horizon version. The state evolves according to

$$x_{k+1} = x_k + bu_k + w_k,$$

where x_k is the deviation $v_k - \bar{v}$ of the vehicle’s velocity v_k from the nominal \bar{v}, u_k is the force that propels the car forward, and w_k is the disturbance that has nonzero mean. However, the coefficient b and the distribution of w_k change frequently, and cannot be modeled with any precision because they depend on unpredictable time-varying conditions, such as the slope and condition of the road, and the weight of the car (which is affected by the number of passengers). Moreover, the nominal velocity \bar{v} is set by the driver, and when it changes it may affect the parameter b in the system equation, and other parameters.

In this section, we will briefly review some of the most commonly used approaches for dealing with unknown parameters in optimal control theory.

† The difficulties of decision and control within a changing environment are often underestimated. Among others, they complicate the balance between off-line training and on-line play, which we discussed in Section 1.1 in connection the AlphaZero. It is worth keeping in mind that as much as learning to play high quality chess is a great challenge, the rules of play are stable and do not change unpredictably in the middle of a game! Problems with changing system parameters can be far more challenging!

‡ Adaptive cruise control, which can also adapt the car’s velocity based on its proximity to other cars, has been studied extensively and has been incorporated in several commercially sold car models.
and practice. We should note also that unknown problem environments are an integral part of the artificial intelligence view of RL. In particular, to quote from the popular book by Sutton and Barto [SuB18], RL is viewed as “a computational approach to learning from interaction,” and “learning from interaction with the environment is a foundational idea underlying nearly all theories of learning and intelligence.”

The idea of learning from interaction with the environment is often connected with the idea of exploring the environment to identify its characteristics. In control theory this is often viewed as part of the system identification methodology, which aims to construct mathematical models of dynamic systems. The system identification process is often combined with the control process to deal with unknown or changing problem parameters, in a framework that is sometimes called dual control. This is one of the most challenging areas of stochastic optimal and suboptimal control, and has been studied intensively since the early 1960s.

Robust and Adaptive Control

Given a controller design that has been obtained assuming a nominal DP problem model, one possibility is to simply ignore changes in problem parameters. We may then try to investigate the performance of the current design for a suitable range of problem parameter values, and ensure that it is adequate for the entire range. This is sometimes called a robust controller design. For example, consider the oversimplified cruise control system of Eq. (1.68) with a linear controller of the form \(\mu(x) = Lx \) for some scalar \(L \). Then we check the range of parameters \(b \) for which the current controller is stable (this is the interval of values \(b \) for which \(|1 + bL| < 1 \)), and ensure that \(b \) remains within that range during the system’s operation.

The more general class of methods where the controller is modified in response to problem parameter changes is part of a broad field known as adaptive control, i.e., control that adapts to changing parameters. This is a rich methodology with many and diverse applications. Our discussion of adaptive control in these notes will be limited. Let us just mention for the moment a simple time-honored adaptive control approach for continuous-state problems called PID (Proportional-Integral-Derivative) control, for which we refer to the control literature, including the books by Aström and Hagghund [AsH95], [AsH06], and the end-of-chapter references on adaptive control (also the discussion in Section 5.7 of the RL textbook [Ber19a]).

In particular, PID control aims to maintain the output of a single-input single-output dynamic system around a set point or to follow a given trajectory, as the system parameters change within a relatively broad range. In its simplest form, the PID controller is parametrized by three scalar parameters, which may be determined by a variety of methods, some of them manual/heuristic. PID control is used widely and with success, although
its range of application is mainly restricted to single-input, single-output continuous-state control systems.

Dealing with Unknown Parameters by System Identification

In PID control, no attempt is made to maintain a mathematical model and to track unknown model parameters as they change. An alternative and apparently reasonable form of suboptimal control is to separate the control process into two phases, a system identification phase and a control phase. In the first phase the unknown parameters are estimated, while the control takes no account of the interim results of estimation. The final parameter estimates from the first phase are then used to implement an optimal or suboptimal policy in the second phase. This alternation of estimation and control phases may be repeated several times during any system run in order to take into account subsequent changes of the parameters. Moreover, it is not necessary to introduce a hard separation between the identification and the control phases. They may be going on simultaneously, with new parameter estimates being introduced into the control process, whenever this is thought to be desirable; see Fig. 1.6.9.

One drawback of this approach is that it is not always easy to determine when to terminate one phase and start the other. A second difficulty, of a more fundamental nature, is that the control process may make some of the unknown parameters invisible to the estimation process. This is known as the problem of parameter identifiability, which is discussed in the context of optimal control in several sources, including [BoV79] and [Kum83]; see also [Ber17a], Section 6.7.
Example 1.6.5 (Parameter Identifiability Under Closed-Loop Control)

For a simple example, consider the scalar system

\[x_{k+1} = ax_k + bu_k, \quad k = 0, \ldots, N - 1, \]

and the quadratic cost

\[\sum_{k=1}^{N} (x_k)^2. \]

Assuming perfect state information, if the parameters \(a \) and \(b \) are known, it can be seen that the optimal control law is

\[\mu_k^*(x_k) = -\frac{a}{b} x_k, \]

which sets all future states to 0. Assume now that the parameters \(a \) and \(b \) are unknown, and consider the two-phase method. During the first phase the control law

\[\tilde{\mu}_k(x_k) = \gamma x_k \quad (1.69) \]

is used (\(\gamma \) is some scalar; for example, \(\gamma = -\frac{\bar{a}}{\bar{b}} \), where \(\bar{a} \) and \(\bar{b} \) are some a priori estimates of \(a \) and \(b \), respectively). At the end of the first phase, the control law is changed to

\[\mu_k(x_k) = -\frac{\hat{a}}{\hat{b}} x_k, \]

where \(\hat{a} \) and \(\hat{b} \) are the estimates obtained from the estimation process. However, with the control law (1.69), the closed-loop system is

\[x_{k+1} = (a + b\gamma)x_k, \]

so the estimation process can at best yield the value of \(a + b\gamma \) but not the values of both \(a \) and \(b \). In other words, the estimation process cannot discriminate between pairs of values \((a_1, b_1)\) and \((a_2, b_2)\) such that

\[a_1 + b_1\gamma = a_2 + b_2\gamma. \]

Therefore, \(a \) and \(b \) are not identifiable when feedback control of the form (1.69) is applied.

On-line parameter estimation algorithms, which address among others the issue of identifiability, have been discussed extensively in the control theory literature, but the corresponding methodology is complex and beyond our scope in these notes. However, assuming that we can make the estimation phase work somehow, we are free to revise the controller using
the newly estimated parameters in a variety of ways, in an on-line replanning process.

Unfortunately, there is still another difficulty with this type of on-line replanning: it may be hard to recompute an optimal or near-optimal policy on-line, using a newly identified system model. In particular, it may be impossible to use time-consuming methods that involve for example the training of a neural network or discrete/integer control constraints. A simpler possibility is to use rollout, which we discuss next.†

Adaptive Control by Rollout and On-Line Replanning

We will now consider an approach for dealing with unknown or changing parameters, which is based on on-line replanning. We have discussed this approach in the context of rollout and multiagent rollout, where we stressed the importance of fast on-line policy improvement.

Let us assume that some problem parameters change and the current controller becomes aware of the change “instantly” (i.e., very quickly before the next stage begins). The method by which the problem parameters are recalculated or become known is immaterial for the purposes of the following discussion. It may involve a limited form of parameter estimation, whereby the unknown parameters are “tracked” by data collection over a few time stages, with due attention paid to issues of parameter identifiability; or it may involve new features of the control environment, such as a changing number of servers and/or tasks in a service system (think of new spiders and/or flies appearing or disappearing unexpectedly in the spiders-and-flies Example 1.6.4).

We thus assume away/ignore issues of parameter estimation, and focus on revising the controller by on-line replanning based on the newly obtained parameters. This revision may be based on any suboptimal method, but rollout with the current policy used as the base policy is particularly attractive. Here the advantage of rollout is that it is simple and reliable. In particular, it does not require a complicated training procedure to revise the current policy, based for example on the use of neural networks or other approximation architectures, so no new policy is explicitly computed in response to the parameter changes. Instead the current policy is used as

† Another possibility is to deal with this difficulty by precomputation. In particular, assume that the set of problem parameters may take a known finite set of values (or example each set of parameter values may correspond to a distinct maneuver of a vehicle, motion of a robotic arm, flying regime of an aircraft, etc). Then we may precompute a separate controller for each of these values. Once the control scheme detects a change in problem parameters, it switches to the corresponding predesigned current controller. This is sometimes called a multiple model control design or gain scheduling, and has been applied with success in various settings over the years.
the base policy for rollout, and the available controls at the current state are compared by a one-step or multistep minimization, with cost function approximation provided by the base policy (cf. Fig. 1.6.10). Note also that over time the base policy may also be revised (on the basis of an unspecified rationale), in which case the rollout policy will be revised both in response to the changed current policy and in response to the changing parameters. This is necessary in particular when the constraints of the problem change.

The principal requirement for using rollout in an adaptive control context is that the rollout control computation should be fast enough to be performed between stages. Note, however, that accelerated/truncated versions of rollout, as well as parallel computation, can be used to meet this time constraint.

The following example considers on-line replanning with the use of rollout in the context of the simple one-dimensional linear quadratic problem that we discussed earlier in this chapter. The purpose of the example is to illustrate analytically how rollout with a policy that is optimal for a nominal set of problem parameters works well when the parameters change from their nominal values. This property is not practically useful in linear
quadratic problems because when the parameter change, it is possible to calculate the new optimal policy in closed form, but it is indicative of the performance robustness of rollout in other contexts. Generally, adaptive control by rollout and on-line replanning makes sense in situations where the calculation of the rollout controls for a given set of problem parameters is faster and/or more convenient than the calculation of the optimal controls for the same set of parameter values. These problems include cases involving nonlinear systems and/or difficult (e.g., integer) constraints.

Example 1.6.6 (On-Line Replanning for Linear Quadratic Problems Based on Rollout)

Consider the deterministic undiscounted infinite horizon linear quadratic problem. It involves the linear system

$$x_{k+1} = x_k + bu_k,$$

and the quadratic cost function

$$\lim_{N \to \infty} \sum_{k=0}^{N-1} (x_k^2 + ru_k^2).$$

The optimal cost function is given by

$$J^*(x) = K^* x^2,$$

where K^* is the unique positive solution of the Riccati equation

$$K = \frac{rK}{r + b^2K} + 1. \quad (1.70)$$

The optimal policy has the form

$$\mu^*(x) = L^* x, \quad (1.71)$$

where

$$L^* = -\frac{bK^*}{r + b^2K^*}. \quad (1.72)$$

As an example, consider the optimal policy that corresponds to the nominal problem parameters $b = 2$ and $r = 0.5$: this is the policy (1.71)-(1.72), with K obtained as the positive solution of the quadratic Riccati Eq. (1.70) for $b = 2$ and $r = 0.5$. In particular, we can verify that

$$K = \frac{2 + \sqrt{6}}{4}.$$

From Eq. (1.72) we then obtain

$$L = -\frac{2 + \sqrt{6}}{5 + 2\sqrt{6}} \quad (1.73)$$
We will now consider changes of the values of b and r while keeping L constant, and we will compare the quadratic cost coefficient of the following three cost functions as b and r vary:

(a) The optimal cost function $K^* x^2$, where K^* is given by the positive solution of the Riccati Eq. (1.70).

(b) The cost function $K_L x^2$ that corresponds to the base policy

$$
\mu_L(x) = Lx,
$$

where L is given by Eq. (1.73). From our earlier discussion, we have

$$
K_L = \frac{1 + rL^2}{1 - (1 + bL)^2}.
$$

(c) The cost function $\tilde{K}_L x^2$ that corresponds to the rollout policy

$$
\tilde{\mu}_L(x) = \tilde{L}x,
$$

obtained by using the policy μ_L as base policy. Using the formulas given earlier, we have

$$
\tilde{L} = -\frac{bK_L}{r + b^2 K_L},
$$

and

$$
\tilde{K}_L = \frac{1 + r\tilde{L}^2}{1 - (1 + b\tilde{L})^2}.
$$

Figure 1.6.11 shows the coefficients K^*, K_L, and \tilde{K}_L for a range of values of r and b. We have

$$
K^* \leq \tilde{K}_L \leq K_L.
$$

The difference $K_L - K^*$ is indicative of the robustness of the policy μ_L, i.e., the performance loss incurred by ignoring the values of b and r, and continuing to use the policy μ_L, which is optimal for the nominal values $b = 2$ and $r = 0.5$, but suboptimal for other values of b and r. The difference $\tilde{K}_L - K^*$ is indicative of the performance loss due to using on-line replanning by rollout rather than using optimal replanning. Finally, the difference $K_L - \tilde{K}_L$ is indicative of the performance improvement due to on-line replanning using rollout rather than keeping the policy μ_L unchanged.

Note that Fig. 1.6.11 illustrates the behavior of the error ratio

$$
\frac{\tilde{J} - J^*}{J - J^*},
$$

where for a given initial state, \tilde{J} is the rollout performance, J^* is the optimal performance, and J is the base policy performance. This ratio approaches 0 as $J - J^*$ becomes smaller because of the quadratic convergence rate of Newton’s method that underlies the rollout algorithm.
Figure 1.6.11 Illustration of adaptive control by rollout under changing problem parameters. The quadratic cost coefficients K^* (optimal, denoted by solid line), K_L (base policy, denoted by circles), and \tilde{K}_L (rollout policy, denoted by asterisks) for the two cases where $r = 0.5$ and b varies, and $b = 2$ and r varies. The value of L is fixed at the value that is optimal for $b = 2$ and $r = 0.5$ [cf. Eq. (1.73)].

The rollout policy performance is very close to the one of the exactly reoptimized policy, while the base policy yields much worse performance. This is a consequence of the quadratic convergence rate of Newton’s method that underlies rollout:

$$\lim_{J \to J^*} \frac{\hat{J} - J^*}{J - J^*} = 0,$$

where for a given initial state, \hat{J} is the rollout performance, J^* is the optimal performance, and J is the base policy performance.
An Alternative View of Adaptive Control as POMDP

The preceding adaptive control formulation strictly separates the dual objective of estimation and control: first parameter identification and then controller reoptimization (either exact or rollout-based). In an alternative adaptive control formulation, the parameter estimation and the application of control are done simultaneously, and indeed part of the control effort may be directed towards improving the quality of future estimation. This alternative (and more principled) approach is based on a view of adaptive control as a partially observed Markovian decision problem (POMDP) with a special structure. We will see in Section 2.11 that this approach is well-suited for approximation in value space schemes, including forms of rollout.

To describe briefly the adaptive control reformulation as POMDP, we introduce a system whose state consists of two components:

(a) A perfectly observed component \(x_k \) that evolves over time according to a discrete-time equation.

(b) A component \(\theta \) which is unobserved but stays constant, and is estimated through the perfect observations of the component \(x_k \).

We view \(\theta \) as a parameter in the system equation that governs the evolution of \(x_k \). Thus we have

\[
x_{k+1} = f_k(x_k, \theta, u_k, w_k),
\]

where \(u_k \) is the control at time \(k \), selected from a set \(U_k(x_k) \), and \(w_k \) is a random disturbance with given probability distribution that depends on \((x_k, \theta, u_k) \). For convenience, we will assume that \(\theta \) can take one of \(m \) known values \(\theta_1, \ldots, \theta_m \).

The a priori probability distribution of \(\theta \) is given and is updated based on the observed values of the state components \(x_k \) and the applied controls \(u_k \). In particular, the information vector

\[
I_k = \{x_0, \ldots, x_k, u_0, \ldots, u_{k-1}\}
\]

is available at time \(k \), and is used to compute the conditional probabilities

\[
b_{k,i} = P\{\theta = \theta^i \mid I_k\}, \quad i = 1, \ldots, m.
\]

These probabilities form a vector

\[
b_k = (b_{k,1}, \ldots, b_{k,m}),
\]

which together with the perfectly observed state \(x_k \), form the pair \((x_k, b_k) \), which is the belief state of the POMDP at time \(k \). The overall control scheme takes the form illustrated in Fig. 1.6.12.
As discussed in Section 1.6.4, an exact DP algorithm can be written for the equivalent POMDP, and this algorithm is suitable for using approximation in value space and rollout. We will describe this approach in some detail in Section 2.11. Related ideas will also be discussed in the context of Bayesian estimation and sequential estimation in Section 2.10.

Note that the case of a deterministic system

\[x_{k+1} = f_k(x_k, \theta, u_k), \]

is particularly interesting, because we can then typically expect that the true parameter \(\theta^* \) will be identified in a finite number of stages. The reason is that at each stage \(k \), we are receiving a noiseless observation relating to \(\theta \), namely the state \(x_k \). Once the true parameter \(\theta^* \) is identified, the problem becomes one of perfect state information.

1.6.7 Model Predictive Control

In this section, we will provide a brief summary of the model predictive control (MPC) methodology for control system design, with a view towards its connection with approximation in value space and the rollout algorithm. We will focus on classical control problems, where the objective is to keep the state of a deterministic system close to the origin of the state space (see Fig. 1.6.13). Another type of classical control problem is to keep the system close to a given trajectory (see Fig. 1.6.14) can also be treated by forms of MPC, but will not be discussed in these notes.

We discussed earlier the linear quadratic approach, whereby the system is represented by a linear model, the cost is quadratic in the state and the control, and there are no state and control constraints. The linear
Sec. 1.6 Examples, Variations, and Simplifications

Keep the state near some given point
Traditionally 0 (the origin)
\[\theta - 0, \dot{\theta} - 0 \]

Figure 1.6.13 Illustration of a classical regulation problem, known as the “cart-pole problem” or “inverse pendulum problem.” The state is the two-dimensional vector of angular position and angular velocity. We aim to keep the pole at the upright position (state equal to 0) by exerting horizontal force \(u \) on the cart.

quadratic and other approaches based on state variable system representations and optimal control became popular, starting in the late 50s and early 60s. Unfortunately, however, the analytically convenient linear quadratic problem formulations are often not satisfactory. There are two main reasons for this:

(a) The system may be nonlinear, and it may be inappropriate to use for control purposes a model that is linearized around the desired point or trajectory. Moreover, some of the control variables may be naturally discrete, and this is incompatible with the linear system viewpoint.

(b) There may be control and/or state constraints, which are not handled adequately through quadratic penalty terms in the cost function. For example, the motion of a car may be constrained by the presence of obstacles and hardware limitations (see Fig. 1.6.14). The solution obtained from a linear quadratic model may not be suitable for such a problem, because quadratic penalties treat constraints “softly” and may produce trajectories that violate the constraints.

These inadequacies of the linear quadratic formulation have motivated MPC, which combines elements of several ideas that we have discussed so far, such as multistep lookahead, rollout with a base policy, and certainty equivalence. Aside from dealing adequately with state and control constraints, MPC is well-suited for on-line replanning, like all rollout methods.

Note that the ideas of MPC were developed independently of the
Fig. 1.6.14 Illustration of constrained motion of a car from point A to point B. There are state (position/velocity) constraints, and control (acceleration) constraints. When there are mobile obstacles, the state constraints may change unpredictably, necessitating on-line replanning.

approximate DP/RL methodology. However, the two fields are closely related, and there is much to be gained from understanding one field within the context of the other, as the subsequent development will aim to show. A major difference between MPC and finite-state stochastic control problems that are popular in the RL/artificial intelligence literature is that in MPC the state and control spaces are continuous/infinite, such as for example in self-driving cars, the control of aircraft and drones, or the operation of chemical processes.

In this section, we will primarily focus on the undiscounted infinite horizon deterministic problem, which involves the system

\[x_{k+1} = f(x_k, u_k), \]

whose state \(x_k \) and control \(u_k \) are finite-dimensional vectors. The cost per stage is assumed nonnegative

\[g(x_k, u_k) \geq 0, \quad \text{for all } (x_k, u_k), \]

(e.g., a positive definite quadratic cost). There are control constraints \(u_k \in U(x_k) \), and to simplify the following discussion, we will initially consider
Figure 1.6.15 Illustration of the problem solved by a classical form of MPC at state x_k. We minimize the cost function over the next ℓ stages while imposing the requirement that $x_{k+\ell} = 0$. We then apply the first control of the optimizing sequence. In the context of rollout, the minimization over u_k is the one-step lookahead, while the minimization over $u_{k+1}, \ldots, u_{k+\ell-1}$ that drives $x_{k+\ell}$ to 0 is the base heuristic.

For a given initial state x_0, we want to obtain a sequence $\{u_0, u_1, \ldots\}$ that satisfies the control constraints, while minimizing the total cost.

This is a classical problem in control system design, known as the regulation problem, where the aim is to keep the state of the system near the origin (or more generally some desired set point), in the face of disturbances and/or parameter changes. In an important variant of the problem, there are additional state constraints of the form $x_k \in X$, and there arises the issue of maintaining the state within X, not just at the present time but also in future times. We will address this issue later in this section.

The Classical Form of MPC - View as a Rollout Algorithm

We will first focus on a classical form of the MPC algorithm, proposed in the form given here by Keerthi and Gilbert [KeG88]. In this algorithm, at each encountered state x_k, we apply a control \bar{u}_k that is computed as follows; see Fig. 1.6.15:

(a) We solve an ℓ-stage optimal control problem involving the same cost function and the requirement that the state after ℓ steps is driven to

\[
\begin{align*}
 f(0, \bar{u}_k) &= 0, \quad g(0, \bar{u}_k) = 0 & \text{for some control } \bar{u}_k \in U(0).
\end{align*}
\]

no state constraints. We assume that the system can be kept at the origin at zero cost, i.e.,

\[
\begin{align*}
 f(0, u_k) = 0, \quad g(0, u_k) = 0 & \quad \text{for some control } u_k \in U(0).
\end{align*}
\]
0, i.e., \(x_{k+\ell} = 0 \). This is the problem

\[
\min_{u_t, t = k, \ldots, k + \ell - 1} \sum_{t=k}^{k+\ell-1} g(x_t, u_t),
\]

subject to the system equation constraints

\[
x_{t+1} = f(x_t, u_t), \quad t = k, \ldots, k + \ell - 1,
\]

the control constraints

\[
u_t \in U(x_t), \quad t = k, \ldots, k + \ell - 1,
\]

and the terminal state constraint

\[
x_{k+\ell} = 0.
\]

Here \(\ell \) is an integer with \(\ell > 1 \), which is chosen in some largely empirical way.

(b) If \(\{\tilde{u}_k, \ldots, \tilde{u}_{k+\ell-1}\} \) is the optimal control sequence of this problem, we apply \(\tilde{u}_k \) and we discard the other controls \(\tilde{u}_{k+1}, \ldots, \tilde{u}_{k+\ell-1} \).

(c) At the next stage, we repeat this process, once the next state \(x_{k+1} \) is revealed.

To make the connection of the preceding MPC algorithm with rollout, we note that the one-step lookahead function \(\tilde{J} \) implicitly used by MPC [cf. Eq. (1.75)] is the cost function of a certain stable base policy. This is the policy that drives to 0 the state after \(\ell - 1 \) stages (not \(\ell \) stages) and keeps the state at 0 thereafter, while observing the state and control constraints, and minimizing the associated \((\ell-1) \)-stages cost. This rollout view of MPC was first discussed in the author’s paper [Ber05]. It is useful for making a connection with the approximate DP/RL, rollout, and its interpretation in terms of Newton’s method. In particular, an important consequence is that the MPC policy is stable, since rollout with a stable base policy can be shown to yield a stable policy under very general conditions, as we have noted earlier for the special case of linear quadratic problems in Section 1.5; cf. Fig. 1.5.11.

We may also equivalently view the preceding MPC algorithm as rollout with \(\ell \)-step lookahead, where \(1 < \ell < \ell \), with the base policy that drives to 0 the state after \(\ell - \ell \) stages and keeps the state at 0 thereafter. This suggests variations of MPC that involve truncated rollout with terminal cost function approximation, which we will discuss shortly.

Terminal Cost Approximation - Stability Issues

In a common variant of MPC, the requirement of driving the system state to 0 in \(\ell \) steps in the \(\ell \)-stage MPC problem (1.75), is replaced by a terminal cost \(G(x_{k+\ell}) \), which is positive everywhere except at 0. Thus at state \(x_k \), we solve the problem

\[
\min_{u_t, t=k,\ldots,k+\ell-1} \left[G(x_{k+\ell}) + \sum_{t=k}^{k+\ell-1} g(x_t, u_t) \right],
\]

(1.79)

instead of problem (1.75) where we require that \(x_{k+\ell} = 0 \). This variant can be viewed as rollout with one-step lookahead, and a base policy, which at state \(x_{k+1} \) applies the first control \(\tilde{u}_{k+1} \) of the sequence \(\{\tilde{u}_{k+1}, \ldots, \tilde{u}_{k+\ell-1}\} \) that minimizes

\[
G(x_{k+\ell}) + \sum_{t=k+1}^{k+\ell-1} g(x_t, u_t).
\]

It can also be viewed outside the context of rollout, as approximation in value space with \(\ell \)-step lookahead minimization and terminal cost approximation given by \(G \). Thus the preceding MPC controller may have a cost function that is much closer to \(J^* \) than \(G \) is.

An important question is to choose the terminal cost approximation so that the resulting MPC controller is stable. Our discussion of Section 1.5 on the region of stability of approximation in value space schemes applies here. In particular, under the nonnegative cost assumption of this section, the MPC controller can be proved to be stable if a single value iteration (VI) starting from \(G \) produces a function that takes uniformly smaller values than \(G \):

\[
\min_{u \in U(x)} \left\{ g(x, u) + G(f(x, u)) \right\} \leq G(x), \quad \text{for all } x.
\]

(1.80)

Figure 1.6.16 provides a graphical illustration. It shows that this condition guarantees that successive iterates of value iteration, as implemented through multistep lookahead, lie within the region of the stability, so that the policy produced by MPC is stable.

We also expect that as the length \(\ell \) of the lookahead minimization is increased, the stability properties of the MPC controller are improved. In particular, *given \(G \geq 0 \), the resulting MPC controller is likely to be stable for \(\ell \) sufficiently large*, since the VI algorithm ordinarily converges to \(J^* \), which lies within the region of stability. Results of this type are known within the MPC framework under various conditions (see the papers by Mayne at al. [MRR00], Magni et al. [MDM01], the MPC book [RMD17], and the author’s book [Ber20a], Section 3.1.2). Our discussion of stability in Section 1.5 is also relevant within this context; cf. Fig. 1.5.9.
Figure 1.6.16 Illustration of the Bellman operator, defined by

\[
(TJ)(x) = \min_{u \in U(x)} \left\{ g(x, u) + J(f(x, u)) \right\}, \quad \text{for all } x.
\]

The condition in (1.80) can be written compactly as \((TG)(x) \leq G(x)\) for all \(x\). When satisfied by the terminal cost function \(G\), it guarantees stability of the MPC policy \(\tilde{\mu}\) with \(\ell\)-step lookahead minimization. In this figure, \(\ell = 3\).

In another variant of MPC, in addition to the terminal cost function approximation \(G\), we use truncated rollout, which involves running some stable base policy \(\mu\) for a number of steps \(m\); see Fig. 1.6.17. This is quite similar to standard truncated rollout, except that the computational solution of the lookahead minimization problem (1.79) may become complicated when the control space is infinite. As discussed earlier in Section 1.5, increasing the length of the truncated rollout enlarges the region of stability of the MPC controller. The reason is that by increasing the length of the truncated rollout, we push the start of the Newton step towards of the cost function \(J_\mu\) of the stable policy, which lies within the region of stability. The base policy may also be used to address state constraints; see the papers by Rosolia and Borelli [RoB17], [RoB19], and the discussions in the author’s RL books [Ber20a], [Ber22a].

Finally, let is note that when faced with changing problem parameters, it is natural to consider on-line replanning as per our earlier adaptive
Sec. 1.6 Examples, Variations, and Simplifications

Figure 1.6.17 An MPC scheme with ℓ-step lookahead minimization, m-step truncated rollout with a stable base policy μ, and a terminal cost function approximation G, together with its interpretation as a Newton step. In this figure, $\ell = 2$ and $m = 4$. The truncated rollout with base policy μ consists of m value iterations with the Bellman operator corresponding to μ, which is given by

$$(T_\mu J)(x) = g(x, \mu(x)) + J(f(x, \mu(x))).$$

Thus, truncated rollout applies m value iterations with base policy μ, starting with the function G and yielding the function $T_\mu^m G$. Then $\ell - 1$ value iterations are applied to $T_\mu^m G$ through the $(\ell - 1)$-step minimization. Finally, the Newton step is applied to $T^{\ell-1}(T_\mu^m G)$ to yield the cost function of the MPC policy $\tilde{\mu}$. As m increases, the starting point for the Newton step moves closer to J_μ, which lies within the region of stability.

cost function parameters become available, MPC can adapt accordingly by introducing the new parameter estimates into the ℓ-stage optimization problem in (a) above.

control discussion. In this context, once new estimates of system and/or cost function parameters become available, MPC can adapt accordingly by introducing the new parameter estimates into the ℓ-stage optimization problem in (a) above.
State Constraints, Invariant Sets, and Off-Line Training

Our discussion so far has skirted a major issue in MPC, which is that there may be additional state constraints of the form \(x_k \in X \), for all \(k \), where \(X \) is some subset of the true state space. Indeed much of the original work on MPC was motivated by control problems with state constraints, imposed by the physics of the problem, which could not be handled effectively with the nice unconstrained framework of the linear quadratic problem that we have discussed in Section 1.5.

To deal with additional state constraints of the form \(x_k \in X \), where \(X \) is some subset of the state space, the MPC problem to be solved at the \(k \)th stage [cf. Eq. (1.79)] must be modified. Assuming that the current state \(x_k \) belongs to the constraint set \(X \), the MPC problem should take the form

\[
\min_{u_t, t=k,\ldots,k+\ell-1} \left[G(x_{k+\ell}) + \sum_{t=k}^{k+\ell-1} g(x_t, u_t) \right], \tag{1.81}
\]

subject to the control constraints

\[
u_t \in U(x_t), \quad t = k, \ldots, k + \ell - 1, \tag{1.82}\]

and the state constraints

\[
x_t \in X, \quad t = k + 1, \ldots, k + \ell. \tag{1.83}\]

The control \(\tilde{u}_k \) thus obtained will generate a state

\[
x_{k+1} = f(x_k, \tilde{u}_k)
\]

that will belong to \(X \), and similarly the entire state trajectory thus generated will satisfy the state constraint \(x_t \in X \) for all \(t \), assuming that the initial state does.

However, there is an important difficulty with the preceding MPC scheme, namely there is no guarantee that the problem (1.81)-(1.83) has a feasible solution for all initial states \(x_k \in X \). Here is a simple example.

Example 1.6.7 (State Constraints in MPC)

Consider the scalar system

\[
x_{k+1} = 2x_k + u_k,
\]

with control constraint

\[
|u_k| \leq 1,
\]

and state constraints of the form \(x_k \in X \), for all \(k \), where

\[
X = \{ x_k \mid |x_k| \leq \beta \}. \tag{1.84}
\]
Sec. 1.6 Examples, Variations, and Simplifications

System:
\[x_{k+1} = 2x_k + u_k \]

Control constraint:
\[|u_k| \leq 1 \]

\(\beta \)

Largest Invariant Set

\(\beta \)

\(-\beta \)

\(-1 \)

\(0 \)

\(1 \)

\(x \)

\(k \)

Figure 1.6.18 An illustration of invariance of a state constraint set \(X \). Here the sets of the form \(X = \{x_k \mid |x_k| \leq \beta\} \) are invariant for \(\beta \leq 1 \). For \(\beta = 1 \), we obtain the largest invariant set (the one that contains all other invariant sets). The figure shows some state trajectories produced by MPC. Note that starting with an initial condition \(x_0 \) with \(|x_0| > 1 \) (or \(|x_0| < 1 \)) the closed-loop system obtained by MPC is unstable (or stable respectively); cf. the red and green trajectories shown.

Then if \(\beta > 1 \), the state constraint cannot be satisfied for all initial states \(x_0 \in X \). In particular, if we take \(x_0 = \beta \), then \(2x_0 > 2 \) and \(x_1 = 2x_0 + u_0 \) will satisfy \(x_1 > x_0 = \beta \) for any value of \(u_0 \) with \(|u_0| \leq 1 \). Similarly the entire sequence of states \(\{x_k\} \) generated by any set of feasible controls will satisfy

\[x_{k+1} > x_k \quad \text{for all } k, \quad x_k \uparrow \infty. \]

The state constraint can be satisfied only for initial states \(x_0 \) in the set \(\hat{X} \) given by

\[\hat{X} = \{x_k \mid |x_k| \leq 1\}; \]

see Fig. 1.6.18, which also illustrates the trajectories generated by the MPC scheme of Eq. (1.79), which does not involve state constraints.

The preceding example illustrates a fundamental point in state-constrained MPC: the state constraint set \(X \) must be invariant in the sense that starting from any one of its points \(x_k \) there must exist a control \(u_k \in U(x_k) \) for which the next state \(x_{k+1} = f(x_k, u_k) \) must belong to \(X \). Mathematically, \(X \) is invariant if

for every \(x \in X \), there exists \(u \in U(x) \) such that \(f(x, u) \in X \).

In particular, it can be seen that the set \(X \) of Eq. (1.84) is invariant if and only if \(\beta \leq 1 \).

Given an MPC calculation of the form (1.81)-(1.83), we must make sure that the set \(X \) is invariant, or else it should be replaced by an invariant
subset $\hat{X} \subset X$. Then the MPC calculation (1.81)-(1.83) will be feasible provided the initial state x_0 belongs to \hat{X}.

This brings up the question of how we compute an invariant subset of a given constraint set, which is typically an off-line calculation that cannot be performed during on-line play. It turns out that given X there exists a largest possible invariant subset of X, which can be computed in the limit with an algorithm that resembles value iteration. In particular, starting with $X_0 = X$, we obtain a nested sequence of subsets through the recursion

$$X_{k+1} = \{ x \in X_k \mid f(x,u) \text{ belongs to } X_k \text{ for some } u \in U(x) \}, \quad k \geq 0.$$

(1.85)

Clearly we have $X_{k+1} \subset X_k$ for all k, and under mild conditions it can be shown that the intersection set

$$\hat{X} = \cap_{k=0}^\infty X_k,$$

is the largest invariant subset of X; see the author’s PhD thesis [Ber71] and subsequent paper [Ber72], which introduced the concept of invariance and its use in satisfying state constraints in control over a finite and an infinite horizon.†

As an example, it can be verified that the sequence of value iterates (1.85) starting with a set $X_0 = \{ x \mid |x| \leq \beta \}$ with $\beta > 1$ is given by

$$X_k = \{ x \mid |x| \leq \beta_k \}, \quad \text{with } \beta_0 = \beta \text{ and } \beta_{k+1} = \frac{\beta_k}{2} \quad \text{for all } k \geq 0.$$

It can thus be seen that we have $\beta_{k+1} < \beta_k$ for all k and $\beta_k \downarrow 1$, so that the intersection $\hat{X} = \cap_{k=0}^\infty X_k$ yields the largest invariant set

$$\hat{X} = \{ x_k \mid |x_k| \leq 1 \}.$$

There are several ways to compute invariant subsets of constraint sets X, for which we refer to the aforementioned author’s work and the MPC literature; see e.g., the book by Rawlings, Mayne, and Diehl [RMD17], and the survey by Mayne [May14], which give additional references. An important point here is that the computation of an invariant subset of the given constraint set X must be done off-line with one of several available algorithmic approaches, so it becomes part of the off-line training (in addition to the terminal cost function G). A relatively simple possibility is to compute an invariant subset \hat{X} that corresponds to some nominal policy $\hat{\mu}$ [i.e., starting from any point $x \in \hat{X}$, the state $f(x,\hat{\mu}(x))$ belongs to \hat{X}]. Such an invariant subset may be obtained by some form of simulation using

† The term used in [Ber71] and [Ber72] is reachability of a target tube $\{ X, X, \ldots \}$, which is synonymous to invariance of X.

the policy $\hat{\mu}$. Moreover, $\hat{\mu}$ can also be used for truncated rollout and also provide a terminal cost function approximation.

Given an off-line training process, which provides an invariant set \hat{X}, a terminal cost function G, and possibly a base policy for truncated rollout, MPC becomes an on-line play algorithm for which our earlier discussion applies. Note, however, that in an adaptive control context, where a model is estimated on-line as it is changing, it may be difficult to recompute on-line an invariant set that can be used to enforce the state constraints of the problem. This is particularly so if the states constraints change themselves as part of the changing problem data.

Stochastic MPC by Certainty Equivalence

Let us finally mention that while in this section we have focused on deterministic problems, there are variants of MPC, which include the treatment of uncertainty. The books and papers cited earlier contain several ideas along these lines; see for example the books by Kouvaritakis and Cannon [KoC16], Rawlings, Mayne, and Diehl [RMD17], and the survey by Mesbah [Mes16].

In this connection it is also worth mentioning the certainty equivalence approach that we discussed briefly earlier. In particular, upon reaching state x_k we may perform the MPC calculations after replacing the uncertain quantities w_{k+1}, w_{k+2}, \ldots with deterministic quantities $\bar{w}_{k+1}, \bar{w}_{k+2}, \ldots$, while allowing for the stochastic character of the disturbance w_k of just the current stage k. Note that only the first step of this MPC calculation is stochastic. Thus the calculation needed per stage is not much more difficult that the one for deterministic problems, while still implementing a Newton step for solving the associated Bellman equation; see our earlier discussion, and also Section 2.5.3 of the RL book [Ber19a] and Section 3.2 of the book [Ber22a].

1.7 REINFORCEMENT LEARNING AND DECISION/CONTROL

The current state of RL has greatly benefited from the cross-fertilization of ideas from decision and control, and from artificial intelligence; see Fig. 1.7.1. The strong connections between these two fields are now widely recognized. Still, however, there are cultural differences, including the traditional reliance on mathematical analysis for the decision and control field, and the emphasis on challenging problem implementations in the artificial intelligence field. Moreover, substantial differences in language and emphasis remain between RL-based discussions (where artificial intelligence-related terminology is used) and DP-based discussions (where optimal control-related terminology is used).
Figure 1.7.1 A schematic illustration of the synergy of ideas between artificial intelligence on one hand, and decision and control on the other.

1.7.1 Terminology

The terminology used in these notes is standard in DP and optimal control, and in an effort to forestall confusion of readers that are accustomed to either the AI or the optimal control terminology, we provide a list of terms commonly used in RL, and their optimal control counterparts.

(a) **Environment** = System.

(b) **Agent** = Decision maker or controller.

(c) **Action** = Decision or control.

(d) **Reward of a stage** = (Opposite of) Cost of a stage.

(e) **State value** = (Opposite of) Cost starting from a state.

(f) **Value (or reward) function** = (Opposite of) Cost function.

(g) **Maximizing the value function** = Minimizing the cost function.

(h) **Action (or state-action) value** = Q-factor (or Q-value) of a state-control pair. (Q-value is also used often in RL.)

(i) **Planning** = Solving a DP problem with a known mathematical model.

(j) **Learning** = Solving a DP problem without using an explicit mathematical model. (This is the principal meaning of the term “learning” in RL. Other meanings are also common.)
Sec. 1.7 Reinforcement Learning and Decision/Control

(k) **Self-learning** (or self-play in the context of games) = Solving a DP problem using some form of policy iteration.

(l) **Deep reinforcement learning** = Approximate DP using value and/or policy approximation with deep neural networks.

(m) **Prediction** = Policy evaluation.

(n) **Generalized policy iteration** = Optimistic policy iteration.

(o) **State abstraction** = State aggregation.

(p) **Temporal abstraction** = Time aggregation.

(q) **Learning a model** = System identification.

(r) **Episodic task or episode** = Finite-step system trajectory.

(s) **Continuing task** = Infinite-step system trajectory.

(t) **Experience replay** = Reuse of samples in a simulation process.

(u) **Bellman operator** = DP mapping or operator.

(v) **Backup** = Applying the DP operator at some state.

(w) **Sweep** = Applying the DP operator at all states.

(x) **Greedy policy with respect to a cost function** J = Minimizing policy in the DP expression defined by J.

(y) **Afterstate** = Post-decision state.

(z) **Ground truth** = Empirical evidence or information provided by direct observation.

Some of the preceding terms will be introduced in future chapters; see also the RL textbook [Ber19a]. The reader may then wish to return to this section as an aid in connecting with the relevant RL literature.

1.7.2 Notation

Unfortunately the confusion arising from different terminology has been exacerbated by the use of different notations. The present notes roughly follow the “standard” notation of the Bellman/Pontryagin optimal control era; see e.g., the classical books by Athans and Falb [AtF66], Bellman [Bel67], and Bryson and Ho [BrH75]. This notation is consistent with the author’s other DP books, and is the most appropriate for a unified treatment of the subject, which simultaneously addresses discrete and continuous spaces problems.

A summary of our most prominently used symbols is as follows:

(a) x: state.

(b) w: control.
118 Exact and Approximate Dynamic Programming Chap. 1

(c) J: cost function.
(d) g: cost per stage.
(e) f: system function.
(f) i: discrete state.
(g) $p_{xy}(u)$: transition probability from state x to state y under control u.
(h) α: discount factor in discounted problems.

The x-u-J notation is standard in optimal control textbooks (e.g., the books by Athans and Falb [AtF66], and Bryson and Ho [BrH75], as well as the more recent book by Liberzon [Lib11]). The notations f and g are also used most commonly in the literature of the early optimal control period as well as later (unfortunately the more natural symbol “c” has not been used much in place of “g” for the cost per stage). The discrete system notations i and $p_{ij}(u)$ are very common in the discrete-state Markov decision problem and operations research literature, where discrete-state problems have been treated extensively [sometimes the alternative notation $p(j \mid i, u)$ is used for the transition probabilities].

The artificial intelligence literature addresses for the most part finite-state Markov decision problems, most frequently the discounted and stochastic shortest path infinite horizon problems. The most commonly used notation is s for state, a for action, $r(s, a, s')$ for reward per stage, $p(s' \mid s, a)$ or $p(s, a, s')$ for transition probability from s to s' under action a, and γ for discount factor. However, this type of notation is not well suited for continuous spaces models, which are of major interest in these notes. The reason is that it requires the use of transition probability distributions defined over continuous spaces, and it leads to more complex and less intuitive mathematics. Moreover the transition probability notation makes no sense for deterministic problems, which involve no probabilistic structure at all.

1.8 NOTES, SOURCES, AND EXERCISES

In this first chapter of our course notes we have aimed to provide an overview of the approximate DP/RL landscape, which can serve as the foundation for a deeper in-class development of other RL topics. In particular, we have described in varying levels of depth the following:

(a) The algorithmic foundation of exact DP in all its major forms: deterministic and stochastic, discrete and continuous, finite and infinite horizon.

(b) Approximation in value space with one-step and multistep lookahead, the workhorse of RL, which underlies its major success stories, including AlphaZero. We contrasted approximation in value space with
approximation in policy space, and discussed how the two may be combined.

(c) The fundamental division between off-line training and on-line play in the context of approximation in value space. We highlighted how their synergy can be intuitively explained in terms of Newton’s method.

(d) The fundamental methods of policy iteration and rollout, the former being primarily an off-line method, and the latter being primarily a less ambitious on-line method. Both methods and their variants bear a close relation to Newton’s method and draw their effectiveness from this relation.

(e) Some major models with a broad range of applications, such as discrete optimization, POMDP, multiagent problems, adaptive control, and model predictive control. We delineated their principal characteristics and the major RL implementation issues within their contexts.

(f) The use of function approximation, which has been a recurring theme in our presentation. We have hinted at several points some of the principal schemes for approximation, e.g., neural networks and feature-based architectures.

One of the principal aims of this first chapter was to provide a foundational platform for multiple RL courses that explore at a deeper level various algorithmic methodologies, such as:

1. Rollout and policy iteration.
2. Neural networks and other approximation architectures for off-line training.
3. A broader discussion of sequential decision making in contexts involving changing system parameters, sequential estimation, and simultaneous system identification and control.
4. Stochastic algorithms, such as temporal difference methods and Q-learning, which can be used for off-line policy evaluation in the context of approximate policy iteration.
5. Aggregation, which can be used for cost function approximation in the context of approximation in value space.
6. Sampling methods to collect data for off-line training in the context of cost and policy approximations.
7. Statistical estimates and efficiency enhancements of various sampling methods used in simulation-based schemes. This includes confidence intervals and computational complexity estimates.
8. On-line methods for specially structured contexts, including problems of the multi-armed bandit type.
(9) Simulation-based algorithms for approximation in policy space, including policy gradient and random search methods.

(10) A deeper exploration of control system design methodologies such as model predictive control, and its applications in robotics and automated transportation.

For our course we focus mostly on the methodologies (1) and (2) above, in Chapters 2 and 3, respectively, and also (3) in Sections 2.10 and 2.11. In a different course, other choices from the above list may be made.

Notes and Sources for Individual Sections

Sections 1.1-1.4: Our discussion of exact DP in this chapter has been brief since our focus in this course will be on approximate DP and RL. The author’s DP textbook [Ber17a] provides an extensive discussion of finite horizon exact DP, and its applications to discrete and continuous spaces problems, using a notation and style that is consistent with the one used here. The books by Puterman [Put94] and by the author [Ber12] provide detailed treatments of infinite horizon finite-state stochastic DP problems. The book [Ber12] also covers continuous/infinite state and control spaces problems, including the linear quadratic problems that we have discussed for one-dimensional problems in this chapter. Continuous spaces problems present special analytical and computational challenges, which are at the forefront of research of the RL methodology.

Some of the more complex mathematical aspects of exact DP are discussed in the monograph by Bertsekas and Shreve [BeS78], particularly the probabilistic/measure-theoretic issues associated with stochastic optimal control, including partial state information problems. This monograph provides an extensive treatment of these issues. The follow up work by Huizhen Yu and the author [YuB15] resolves the special measurability issues that relate to policy iteration, and provides additional analysis relating to value iteration. The second volume of the author’s DP book [Ber12], Appendix A, provides an accessible summary introduction of the measure-theoretic framework of the book [BeS78].† In the RL literature, the mathematical difficulties around measurability are usually neglected.

† The rigorous mathematical theory of stochastic optimal control, including the development of an appropriate measure-theoretic framework, dates to the 60s and 70s. It culminated in the monograph [BeS78], which provides the now “standard” framework, based on the formalism of Borel spaces, lower semianalytic functions, and universally measurable policies. This development involves daunting mathematical complications, which stem, among others, from the fact that when a Borel measurable function $F(x,u)$ of the two variables x and u, is minimized with respect to u, the resulting function

$$G(x) = \min_u F(x,u)$$
(as they are in the present notes), and this is fine because they do not play an important role in applications. Moreover, measurability issues do not arise for problems involving finite or countably infinite state and control spaces. We note, however, that there are quite a few published works in RL as well as exact DP, which purport to address measurability issues with a mathematical narrative that is either confusing or plain incorrect.

The third edition of the author’s abstract DP monograph [Ber22b], expands on the original 2013 first edition, and aims at a unified development of the core theory and algorithms of total cost sequential decision problems. It addresses simultaneously stochastic, minimax, game, risk-sensitive, and other DP problems, through the use of abstract DP operators (or Bellman operators as we call them here). The idea is to gain insight through abstraction. In particular, the structure of a DP model is encoded in its abstract Bellman operator, which serves as the “mathematical signature” of the model. Thus, characteristics of this operator (such as monotonicity and contraction) largely determine the analytical results and computational algorithms that can be applied to that model. Abstract DP ideas are also useful for visualizations and interpretations of RL methods using the Newton method formalism that we have discussed somewhat briefly in these notes in the context of linear quadratic problems.

Rollout algorithms for discrete optimization problems were introduced in the paper by Bertsekas, Tsitsiklis, and Wu [BTW97], and the neuro-dynamic programming book [BeT96]. They are described in varying levels of detail in the RL books [Ber19a], [Ber20a], which also include extensive journal references to successful applications.

Approximation in value space, rollout, and policy iteration are the principal subjects of these notes.† These are very powerful and general

† The name “rollout” (also called “policy rollout”) was introduced by Tesauro and Galperin [TeG96] in the context of rolling the dice in the game of backgammon. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling out” many games starting from that position to the end of the game. To quote from the paper [TeG96]: “In backgammon parlance, the expected value of a position is known as the “equity” of the position, and estimating the equity by Monte-Carlo sampling is known as performing a “rollout.” This involves playing
techniques: they can be applied to deterministic and stochastic problems, finite and infinite horizon problems, discrete and continuous spaces problems, and mixtures thereof. Rollout is reliable, easy to implement, and can be used in conjunction with on-line replanning.

As we have noted, rollout with a given base policy is simply the first iteration of the policy iteration algorithm starting from the base policy. Truncated rollout can be interpreted as an “optimistic” form of a single policy iteration, whereby a policy is evaluated inexactly, by using a limited number of value iterations; see the books [Ber20a], [Ber22a].

Policy iteration, which will be viewed here as the repeated use of rollout, is more ambitious and challenging than rollout. It requires off-line training, possibly in conjunction with the use of neural networks. Together with its neural network and distributed implementations, it will be discussed in more detail later. Note that rollout does not require any off-line training, once the base policy is available; this is its principal advantage over policy iteration.

Section 1.5: There is a vast literature on linear quadratic problems. The connection of policy iteration with Newton’s method within this context and its quadratic convergence rate was first derived by Kleinman [Kle68] for continuous-time problems (the corresponding discrete-time result was given by Hewer [Hew71]). For followup work, which relates to policy iteration with approximations, see Feitzinger, Hylla, and Sachs [FHS09], and Hylla [Hyl11].

The connection of approximation in value space with Newton’s method, and its connections with MPC and adaptive control was first presented in the author’s book [Ber20a], the papers [Ber21], [Ber22c], and in the book the position out to completion many times with different random dice sequences, using a fixed policy P to make move decisions for both sides.”

† Truncated rollout was also proposed in [TeG96]. To quote from this paper: “Using large multi-layer networks to do full rollouts is not feasible for real-time move decisions, since the large networks are at least a factor of 100 slower than the linear evaluators described previously. We have therefore investigated an alternative Monte-Carlo algorithm, using so-called “truncated rollouts.” In this technique trials are not played out to completion, but instead only a few steps in the simulation are taken, and the neural net’s equity estimate of the final position reached is used instead of the actual outcome. The truncated rollout algorithm requires much less CPU time, due to two factors: First, there are potentially many fewer steps per trial. Second, there is much less variance per trial, since only a few random steps are taken and a real-valued estimate is recorded, rather than many random steps and an integer final outcome. These two factors combine to give at least an order of magnitude speed-up compared to full rollouts, while still giving a large error reduction relative to the base player.” Analysis and computational experience with truncated rollout since 1996 are consistent with the preceding assessment.
Sec. 1.8 Notes, Sources, and Exercises

[Ber22a], which contains an extensive discussion. This connection provides the starting point for an in-depth understanding of the synergy between the off-line training and the on-line play components of the approximation in value space architecture.

Note that in approximation in value space, we are applying Newton’s method to solution of a system of equations (the Bellman equation). This context has no connection with the “gradient descent” methods that are popular for solution of special types of optimization problems in RL, arising for example in neural network training problems (see Chapter 3). In particular, there are no gradient descent methods that can be used for the solution of systems of equations such as the Bellman equation. There are, however, “first order” deterministic algorithms such as the Gauss-Seidel and Jacobi methods (and stochastic asynchronous extensions) that can be applied to the solution of systems of equations with special structure, including Bellman equations. Such methods include various Q-learning algorithms, which are discussed in the neuro-dynamic programming book by Bertsekas and Tsitsiklis [BeT89], as well as the recent book by Meyn [Mey22]. They are generally far slower than Newton’s method, and have limited value in on-line play contexts.

Section 1.6: Many applications of DP are presented in the 1st volume of the author’s DP book [Ber17a]. This book also covers a broad variety of state augmentation and problem reformulation techniques, including the mathematics of how problems with imperfect state information (POMDP) can be transformed to perfect state information problems.

Multiagent problem research has a long history (Marschak [Mar55], Radner [Rad62], Witsenhausen [Wit68], [Wit71a], [Wit71b]), and was researched extensively in the 70s; see the review paper by Ho [Ho80] and the references cited there. The names used for the field at that time were team theory and decentralized control. For a sampling of subsequent works in team theory and multiagent optimization, we refer to the papers by Krainak, Speyer, and Marcus [KLM82a], [KLM82b], and de Waal and van Schuppen [WaS00]. For more recent works, see Nayyar, Mahajan, and Teneketzis [NMT13], Nayyar and Teneketzis [NaT19], Li et al. [LTZ19], Qu and Li [QuL19], Gupta [Gup20], the book by Zoppoli, Sanguineti, Gnecco, and Parisini [ZSG20], and the references quoted there. In addition to the aforementioned works, surveys of multiagent sequential decision making from an RL perspective were given by Busoniu, Babuska, and De Schutter [BBD08], [BBD10b].

We note that the term “multiagent” has been used with several different meanings in the literature. For example some authors place emphasis on the case where the agents do not have common information when selecting their decisions. This gives rise to sequential decision problems with “nonclassical information patterns,” which can be very complex, partly because they cannot be addressed by exact DP. Other authors adopt as their
starting point a problem where the agents are “weakly” coupled through
the system equation, the cost function, or the constraints, and consider
methods whereby the weak coupling is exploited to address the problem
through (suboptimal) decoupled computations.

Agent-by-agent minimization in multiagent approximation in value
space and rollout was proposed in the author’s paper [Ber19c], which also
discusses extensions to infinite horizon policy iteration algorithms, and
explores connections with the concept of person-by-person optimality from
team theory; see also the textbook [Ber20a], the papers [Ber19d], [Ber20b].
A computational study where several of the multiagent algorithmic ideas
were tested and validated is the paper by Bhattacharya et al. [BKB20].
This paper considers a large-scale multi-robot routing and repair problem,
involving partial state information, and explores some of the attendant im-
plementation issues, including autonomous multiagent rollout, through the
use of policy neural networks and other precomputed signaling policies.

The subject of adaptive control has a long history and its litera-
ture is very extensive; see the books by Aström and Wittenmark [AsW94],
Aström and Hagglund [AsH95], [AsH06], Bodson [Bod20], Goodwin and
Sin [GoS84], Ioannou and Sun [IoS96], Jiang and Jiang [JiJ17], Krstic,
Kanellopoulos, and Kokotovic [KKK95], Kumar and Varaiya [KuV86],
Liu, et al. [LWW17], Lavretsky and Wise [LaW13], Narendra and An-
naswamy [NaA12], Sastry and Bodson [SaB11], Slotine and Li [SL91], and
Vrabie, Vamvoudakis, and Lewis [VVL13]. These books describe a vast
array of methods spanning 60 years, and ranging from adaptive and PID
model-free approaches, to simultaneous or sequential control and identifi-
cation (also known as the “dual control problem”), to time series models,
to extremum-seeking methods, to simulation-based RL techniques, etc.†

The research on problems involving unknown models and using data
for model identification prior to or simultaneously with control was rekin-
dled with the advent of the artificial intelligence side of RL and its focus
on the active exploration of the environment. Here there is emphasis in
“learning from interaction with the environment” [SuB18] through the use
of (possibly hidden) Markov decision models, machine learning, and neural
networks, in a wide array of methods that are under active development at
present. This is more or less the same as the classical problems of dual and
adaptive control that have been discussed since the 60s from a control the-
ory perspective. In these notes we will not deal with control of unknown
models, except tangentially, and in the context of on-line replanning for
problems with changing model parameters.

† The ideas of PID control originated even earlier. According to Wikipedia,
“a formal control law for what we now call PID or three-term control was first
developed using theoretical analysis, by Russian American engineer Nicolas Mi-
norsky” [Min22].
The literature on MPC is voluminous. Some early widely cited papers are Clarke, Mohtadi, and Tuffs [CMT87a], [CMT87b], and Keerthi and Gilbert [KeG88]. For surveys, which give many of the early references, see Morari and Lee [MoL99], Mayne et al. [MRR00], and Findeisen et al. [FIA03]; and for a more recent review, see Mayne [May14]. The connections between MPC and rollout were discussed in the author’s survey [Ber05a]. Textbooks on MPC include Maciejowski [Mac02], Goodwin, Seron, and De Dona [GSD06], Camacho and Bordons [CaB07], Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad, and Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17].

Reinforcement Learning Sources

The approximate DP and RL literature has expanded tremendously since the connections between DP and RL became apparent in the late 80s and early 90s. We restrict ourselves to mentioning textbooks, research monographs, and broad surveys, which supplement our discussions, express related viewpoints, and collectively provide a guide to the literature. Moreover, inevitably our referencing reflects a cultural bias, and an overemphasis on sources that are familiar to the author and are written in a similar style to the present notes (including the author’s own works). Thus we wish to apologize in advance for the many omissions of important research references that are somewhat outside our own understanding and view of the field.

Two books were written in the 1990s, setting the tone for subsequent developments in the field. One in 1996 by Bertsekas and Tsitsiklis [BeT96], which reflects a decision, control, and optimization viewpoint, and another in 1998 by Sutton and Barto, which reflects an artificial intelligence viewpoint (a 2nd edition, [SuB18], was published in 2018). We refer to the former book and also to the author’s DP textbooks [Ber12], [Ber17a] for a broader discussion of some of the topics of these notes, including algorithmic convergence issues and additional DP models, such as those based on average cost and semi-Markov problem optimization. Note that both of these books deal with finite-state Markovian decision models and use a transition probability notation, as they do not address continuous spaces problems, which are also of major interest in these notes.

More recent books are by Gosavi [Gos15] (a much expanded 2nd edition of his 2003 monograph), which emphasizes simulation-based optimization and RL algorithms, Cao [Cao07], which focuses on a sensitivity approach to simulation-based methods, Chang, Fu, Hu, and Marcus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes finite-horizon/multistep lookahead schemes and adaptive sampling, Busoni, Babuska, De Schutter, and Ernst [BBD10a], which focuses on function approximation methods for continuous space systems and includes a discussion of random search methods, Szepesvari [Sze10], which is a short
monograph that selectively treats some of the major RL algorithms such as
temporal differences, armed bandit methods, and Q-learning, Powell [Pow11],
which emphasizes resource allocation and operations research applications,
Powell and Ryzhov [PoR12], which focuses on specialized topics in
learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adaptive
control, Kochenderfer et al. [KAC15], which selectively discusses applications
and approximations in DP and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent/team problems with nonclassical
information patterns. The book by [Mey22] focuses on the connections of RL
and optimal control, similar to the present notes, but is more mathematically
oriented, and treats stochastic problems and algorithms in far more
detail.

There are also several books that, while not exclusively focused on DP
and/or RL, touch upon several of the topics of these notes. The book by
Borkar [Bor08] is an advanced monograph that addresses rigorously many
of the convergence issues of iterative stochastic algorithms in approximate
DP, mainly using the so called ODE approach. The book by Meyn [Mey07]
is broader in its coverage, but discusses some of the popular approximate
DP/RL algorithms. The book by Haykin [Hay08] discusses approximate
DP in the broader context of neural network-related subjects. The book
by Krishnamurthy [Kri16] focuses on partial state information problems,
with discussion of both exact DP, and approximate DP/RL methods. The
textbooks by Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad, and
Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17] collectively
provide a comprehensive view of the MPC methodology. The book by Lattimore
and Szepesvari [LaS20] is focused on multiarmed bandit methods.
The book by Brandimarte [Bra21] is a tutorial introduction to DP/RL that
emphasizes operations research applications and includes MATLAB codes.
The book by Hardt and Recht [HaR21] focuses on broader subjects of ma-
chine learning, but covers selectively approximate DP and RL topics as well.

The present notes are similar in style, terminology, and notation to
the author’s recent RL textbooks [Ber19a], [Ber20a], [Ber22a], and the 3rd
edition of the abstract DP monograph [Ber22b], which collectively pro-
vide a fairly comprehensive account of the subject. In particular, the 2019
RL textbook includes a broader coverage of approximation in value space
methods, including certainty equivalent control and aggregation methods.
It also covers substantially policy gradient methods for approximation in
policy space, which we will not address here. The 2020 book focuses more
closely on rollout, policy iteration, and multiagent problems. The 2022
book focuses on the connection of approximation in value space with New-
ton’s method, relying on analysis first provided in the book [Ber20a] and the
paper [Ber22c]. The abstract DP monograph [Ber22b] is an advanced treat-
ment of exact DP, which provides the mathematical framework of Bellman
operators that are central for some of the Newton method visualizations
presented in the present notes and in the books [Ber20a], [Ber22a].

In addition to textbooks, there are many surveys and short research
monographs relating to our subject, which are rapidly multiplying in nu-
mer. Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
2
sch [SBP04] describe some approximation methods that we will not be cov-
ering in much detail in these notes: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
metho2
lo2
do2
lo2
gical point of view that explores connections with other Monte
carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markovian decision problems from
an artificial intelligence viewpoint), Geffner and Bonet [GeB13] (which
deals with problems in search and automated planning), Schmidhuber
Sch15, Arulkumaran et al. [ADB17], Li [Li17], Busoniu et al. [BDT18],
and Caterini and Chang [CaC18] (which deal with reinforcement learn-
ing schemes that are based on the use of deep neural networks), Recht
[Rec18a] (which focuses on continuous spaces optimal control), and the
author’s [Ber05a] (which focuses on rollout algorithms and model predictive
control), [Ber11a] (which focuses on approximate policy iteration), [Ber18a]
(which focuses on aggregation methods), and [Ber20b] (which focuses on
multiagent problems).
1.1 (Computational Exercise - Traveling Salesman Problem)

Consider a modified version of the four-city traveling salesman problem of Example 1.2.3, where there is a fifth city E. The intercity travel costs are shown in Fig. 1.8.1, which also gives the solutions to parts (a), (b), and (c).

(a) Use exact DP with starting city A to verify that the optimal tour is ABDECA with cost 20.

(b) Verify that the nearest neighbor heuristic starting with city A generates the tour ACDBEA with cost 48.

(c) Apply rollout with one-step lookahead minimization, using as base heuristic the nearest neighbor heuristic. Show that it generates the tour AECDBA with cost 37.

Illustration of the algorithm: At city A, the nearest neighbor heuristic generates the tour ACDBEA with cost 48, as per part (b). At city A, the rollout algorithm considers the four options of moving to cities B, C, D, E, or equivalently to states AB, AC, AD, AE, and it computes the nearest neighbor-generated tours corresponding to each of these states. These tours are ABCDEA with cost 49, ACDBEA with cost 48, ADCEBA with cost 10.
63, and AECDBA with cost 37. The tour AECDBA has the least cost, so the rollout algorithm moves to city E or equivalently to state AE.

At AE, the rollout algorithm considers the three options of moving to cities B, C, D, or equivalently to states AEB, AEC, AED, and it computes the nearest neighbor-generated tours corresponding to each of these states. These tours are AEBCDA with cost 42, AECDBA with cost 37, AEDCBA with cost 63. The tour AECDBA has the least cost, so the rollout algorithm moves to city C or equivalently to state AEC.

At AEC, the rollout algorithm considers the two options of moving to cities B, D, and compares the nearest neighbor-generated tours corresponding to each of these. These tours are AECBDA with cost 52 and AECDBA with cost 37. The tour AECDBA has the least cost, so the rollout algorithm moves to city D or equivalently to state AECD. Then the rollout algorithm has only one option and generates the tour AECDBA with cost 37.

(d) Apply rollout with two-step lookahead minimization, using as base heuristic the nearest neighbor heuristic. This rollout algorithm operates as follows. For \(k = 1, 2, 3 \), it starts with a \(k \)-city partial tour, it generates every possible two-city addition to this tour, uses the nearest neighbor heuristic to complete the tour, and selects as next city to add to the \(k \)-city partial tour the city that corresponds to the best tour thus obtained (only one city is added to the current tour at each step of the algorithm, not two). Show that this algorithm generates the optimal tour.

(e) Estimate roughly the complexity of the computations in parts (a), (b), (c), and (d), assuming a generic \(N \)-city traveling salesman problem. \textit{Answer:} The exact DP algorithm requires \(O(N^N) \) computation, since there are

\[
(N - 1) + (N - 1)(N - 2) + \cdots + (N - 1)(N - 2) \cdots 2 + (N - 1)(N - 2) \cdots 2 \cdot 1
\]

arcs in the DP graph to consider, and this number can be estimated as \(O(N^N) \). The nearest neighbor heuristic that starts at city A performs \(O(N) \) comparisons at each of \(N \) stages, so it requires \(O(N^2) \) computation. The rollout algorithm at stage \(k \) runs the nearest neighbor heuristic \(N - k \) times, so it must run the heuristic \(O(N^2) \) times for a total computation of \(O(N^4) \). Thus the rollout algorithm’s complexity involves a low order polynomial increase over the complexity of the base heuristic, something that is generally true for practical discrete optimization problems. Note that even though this may represent a substantial increase in computation over the base heuristic, it is a potentially enormous improvement over the complexity of the exact DP algorithm.

1.2 (Computational Exercise - A Stochastic Investment Problem)

This exercise deals with a computational comparison of the optimal policy, a heuristic policy, and on-line approximation in value space using the heuristic policy, in the context of the following problem.

An investor wants to sell a given amount of stock at any one of \(N \) time periods. The initial price of the stock is an integer \(x_0 \). The price \(x_k \), if it is
positive and it is less than a given positive integer value \bar{x}, it evolves according to

$$
x_{k+1} = \begin{cases}
x_k + 1 & \text{with probability } p^+, \\
x_k & \text{with probability } 1 - p^+ - p^-, \\
x_k - 1 & \text{with probability } p^-,
\end{cases}
$$

where p^+ and p^- have known values with

$$0 < p^- \leq p^+, \quad p^+ + p^- < 1.$$

If $x_k = 0$, then x_{k+1} moves to 1 with probability p^+, and stays unchanged at 0 with probability $1 - p^+$. If $x_k = \bar{x}$, then x_{k+1} moves to $\bar{x} - 1$ with probability p^-, and stays unchanged at \bar{x} with probability $1 - p^-$.

At each period $k = 0, \ldots, N - 1$ for which the stock has not yet been sold, the investor (with knowledge of the current price x_k), can either sell the stock at the current price x_k or postpone the sale for a future period. If the stock has not been sold at any of the periods $k = 0, \ldots, N - 1$, it must be sold at period N at price x_N. The investor wants to maximize the expected value of the sale. For the following computations, use reasonable values of your choice for N, p^+, p^-, \bar{x}, and x_0 (you should choose x_0 between 0 and \bar{x}). You are encouraged to experiment with different sets of values. A set of values that you may try first is

$$N = 14, \quad x_0 = 3, \quad \bar{x} = 7, \quad p^+ = p^- = 0.25.$$

(a) Formulate the problem as a finite horizon DP problem by identifying the state, control, and disturbance spaces, the system equation, the cost function, and the probability distribution of the disturbance. Write the corresponding exact DP algorithm, and use it to compute the optimal policy and the optimal cost as a function of x_0.

Solution: The optimal reward-to-go is generated by the following DP algorithm:

$$J^*_N(x_N) = x_N, \quad (1.86)$$

and for $k = 0, \ldots, N - 1$, if $x_k = 0$, then

$$J^*_k(0) = p^+ J^*_{k+1}(1) + (1 - p^+) J^*_{k+1}(0), \quad (1.87)$$

if $x_k = \bar{x}$, then

$$J^*_k(\bar{x}) = \bar{x}, \quad (1.88)$$

(since the price cannot go higher than \bar{x}, once at \bar{x}, but can go lower), and if $0 < x_k < \bar{x}$, then

$$J^*_k(x_k) = \max \{ x_k, p^+ J^*_{k+1}(x_k+1) + (1 - p^+ - p^-) J^*_{k+1}(x_k) + p^- J^*_{k+1}(x_k-1) \}. \quad (1.89)$$

The optimal policy is to sell at $x_k = 1, \ldots, \bar{x} - 1$, if x_k attains the maximum in the above equation, and not to sell otherwise. When $x_k = 0$, it is optimal not to sell, while when $x_k = \bar{x}$, it is optimal to sell.
Sec. 1.8 Notes, Sources, and Exercises

Figure 1.8.2 Table of values of optimal reward-to-go, obtained by exact DP, and corresponding optimal policy [cf. the algorithm (1.86)-(1.89)]. Only the states x_k that are reachable from x_0 at time k are considered (this is the state space for time k).

The values of $J^*_k(x_k)$ and the optimal policy are tabulated as shown in Fig. 1.8.2. For this figure, all the calculations are done for the following special case:

$$N = 10, \quad x_0 = 2, \quad \bar{x} = 10, \quad p^+ = p^- = 0.25.$$

These values are also used for parts (b) and (c). However, you are asked to solve the problem for different values as noted earlier. Note that for the problem to have an interesting solution, the problem data must be chosen so that the problem's policies are materially affected by the presence of the upper and lower bounds on the price x_k. As an example consider the case where

$$N = 10, \quad x_0 = 20, \quad \bar{x} = 40, \quad p^+ = p^- = 0.25.$$

Then the bounds $0 \leq x_k$ and $x_k \leq \bar{x}$ never become “active,” and it can be verified that the optimal expected reward is $J^*_0(x_0) = x_0$, while all policies are optimal and attain this optimal expected reward.

(b) Suppose the investor adopts a heuristic, referred to as base heuristic, whereby he/she sells the stock if its price is greater or equal to βx_0, where β is some number with $\beta > 1$. Write an exact DP algorithm to compute the expected value of the sale under this heuristic.

Solution: The reward-to-go for the base heuristic starting from state x_k, denoted $J_b^k(x_k)$, can be generated by the following (exact) DP algorithm.
Figure 1.8.3 Table of rewards-to-go for the base policy with $\beta = 1.4$, starting from x_0 [cf. the algorithm (1.90)-(1.93) for $k = 0$].

(Note here the use of superscript x_k in the quantities $J^x_{x_n}(x_n)$ computed by the algorithm. The reason is that the computed values $J^x_{x_n}(x_n)$ depend on x_k, which incidentally implies that base heuristic is not sequentially consistent, as defined later in Section 2.3.2 of these notes.) The algorithm is given by

$$J^x_{x_N}(x_N) = x_N,$$ \hspace{1cm} (1.90)

and for $n = k, \ldots, N - 1$, if $0 < x_n < \beta x_k$, then

$$J^x_{x_n}(x_n) = p^+ J^x_{x_{n+1}}(x_{n+1}) + (1-p^+ - p^-) J^x_{x_{n+1}}(x_n) + p^- J^x_{x_n}(x_n-1).$$ \hspace{1cm} (1.91)

if $x_n = 0$, then

$$J^x_{x_n}(0) = p^+ J^x_{x_{n+1}}(1) + (1-p^+ - p^-) J^x_{x_n}(0),$$ \hspace{1cm} (1.92)

and if $x_n \geq \beta x_k$, then

$$J^x_{x_n}(x_n) = x_n.$$ \hspace{1cm} (1.93)

The values of $J^x_{x_k}(x_k)$ computed by this algorithm are shown in Fig. 1.8.3, together with the decisions applied by the base heuristic.

While the reward-to-go for the base heuristic starting from state x_k is very simple to compute for our problem, in order to apply the rollout algorithm only the values $J^x_{x_{k+1}}(x_{k+1})$, $J^x_{x_{k+1}}(x_k)$, and $J^x_{x_{k+1}}(x_{k-1})$ need to be calculated for each state x_k encountered during on-line operation. Moreover, the base heuristic’s reward-to-go $J^x_{x_k}(x_k)$ can also be computed on-line by Monte Carlo simulation for the relevant states x_k. This would be the principal option in a more complicated problem where the exact DP algorithm is too time-consuming.
(c) Apply approximation in value space with one-step lookahead minimization and with function approximation that is based on the heuristic of part (b). In particular, use $J_N(x_N) = x_N$, and for $k = 1, \ldots, N-1$, use $J_k(x_k)$ that is equal to the expected value of the sale when starting at x_k and using the heuristic that sells the stock when its price exceeds βx_k. Use exact DP as well as Monte Carlo simulation to compute/approximate on-line the needed values $J_k(x_k)$. Compare the expected values of sale price computed with the optimal, heuristic, and approximation in value space methods.

Solution: The rollout policy $\tilde{\pi} = \{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\}$ is determined by the base heuristic, where for every possible state x_k, and stage $k = 0, \ldots, N-1$, the rollout decision $\tilde{\mu}_k(x_k)$ is

$$\tilde{\mu}_k(x_k) = \begin{cases} \text{sell at } x_k, & \text{if } p^+ J_k^{x_k+1}(x_k + 1) + (1 - p^+ - p^-) J_k^{x_k}(x_k) + p^- J_k^{x_k-1}(x_k - 1) \leq x_k, \\ \text{don't sell at } x_k, & \text{otherwise.} \end{cases}$$

The sell or don’t sell decision of the rollout algorithm is made on-line according to the preceding criterion, at each state x_k encountered during on-line operation.

Figure 1.8.4 shows the rollout policy, which is computed by the preceding equations using the rewards-to-go of the base heuristic $J_k^{x_k}(x_k)$, as given in Fig. 1.8.3. Once the rollout policy is computed, the corresponding reward function $J_k(x_k)$ can be calculated similar to the case of the base heuristic. Of course, during on-line operation, the rollout decision need only be computed for the states x_k encountered on-line.

The important observation when comparing Figs. 1.8.3 and 1.8.4 is that the rewards-to-go of the rollout policy are greater or equal to the ones for the base heuristic. In particular, starting from x_0, the rollout policy attains reward 2.269, and the base heuristic attains reward 2.268. The optimal policy attains reward 2.4. The rollout policy reward is slightly closer to the optimal than the base heuristic reward.

The rollout reward-to-go values shown in Fig. 1.8.4 are “exact,” and correspond to the favorable case where the heuristic rewards needed at x_k, $J_k^{x_k+1}(x_k + 1)$, $J_k^{x_k}(x_k)$, and $J_k^{x_k-1}(x_k - 1)$, are computed exactly by DP or by infinite-sample Monte Carlo simulation.

When finite-sample Monte Carlo simulation is used to approximate the needed base heuristic rewards at state x_k, i.e., $J_k^{x_k+1}(x_k+1)$, $J_k^{x_k}(x_k)$, and $J_k^{x_k-1}(x_k-1)$, the performance of the rollout algorithm will be degraded. In particular, by using a computer program to implement rollout with Monte Carlo simulation, it can be shown that when $J_k^{x_k+1}(x_k + 1)$, $J_k^{x_k}(x_k)$, and $J_k^{x_k-1}(x_k - 1)$ are approximated using a 20-sample Monte-Carlo simulation per reward value, the rollout algorithm achieves reward 2.264 starting from x_0. This reward is evaluated by (almost exact) 400-sample Monte Carlo simulation of the rollout algorithm.
When \(J^{x_{k+1}}_{k+1}(x_k + 1) \), \(J^{x_k}_{k}(x_k) \), and \(J^{x_k}_{k-1}(x_k - 1) \) were approximated using a 200-sample Monte-Carlo simulation per reward value, the rollout algorithm achieves reward 2.273 [as evaluated by (almost exact) 400-sample Monte Carlo simulation of the rollout algorithm]. Thus with 20-sample simulation, the rollout algorithm performs worse than the base heuristic starting from \(x_0 \). With the more accurate 200-sample simulation, the rollout algorithm performs better than the base heuristic starting from \(x_0 \), and performs nearly as well as the optimal policy (but still somewhat worse than in the case where exact values of the needed base heuristic rewards are used (based on an “infinite” number Monte Carlo samples).

It is worth noting here that the heuristic is not a legitimate policy because at any state \(x_n \) it makes a decision that depends on the state \(x_k \) where it started. Thus the heuristic’s decision at \(x_n \) depends not just on \(x_n \), but also on the starting state \(x_k \). However, the rollout algorithm is always an approximation in value space scheme with approximation reward \(\tilde{J}_k(x_k) \) defined by the heuristic, and it provides a legitimate policy.

(d) Repeat part (c) but with two-step instead of one-step lookahead minimization.

Answer: The implementation is very similar to the one-step lookahead case. The main difference is that at state \(x_k \), the rollout algorithm needs to calculate the base heuristic reward values \(J^{x_{k+2}}_{k+2}(x_k + 2) \), \(J^{x_{k+1}}_{k+1}(x_k + 1) \), \(J^{x_k}_{k+2}(x_k) \), \(J^{x_{k+1}}_{k+1}(x_k - 1) \), and \(J^{x_{k+2}}_{k+2}(x_k - 2) \). Thus the on-line Monte Carlo simulation work is accordingly increased. Generally the simulation work per stage of the rollout algorithm is proportional to \(2\ell + 1 \), when \(\ell \)-stage
lookahead minimization is used, since the number of leaves at the end of the lookahead tree is $2\ell + 1$.

1.3 (Computational Exercise - Spiders and Flies)

Consider the spiders and flies problem of Example 1.6.4 with two differences: the five flies stay still (rather than moving randomly), and there are only two spiders, both of which start at the fourth square from the right at the top row of the grid of Fig. 1.6.8. The base policy is to move each spider one square towards its nearest fly, with distance measured by the Manhattan metric, and with preference given to a horizontal direction over a vertical direction in case of a tie. Apply the multiagent rollout algorithm of Section 1.6.5, and compare its performance with the one of the ordinary rollout algorithm, and with the one of the base policy. This problem is also discussed in Section 2.9.

1.4 (Computational Exercise - Linear Quadratic Problem)

In a more realistic version of the cruise control system of Example 1.3.1, the system has the form

$$x_{k+1} = ax_k + bu_k + w_k,$$

where the coefficient a satisfies $0 < a \leq 1$, and the disturbance w_k has zero mean and variance σ^2. The cost function has the form

$$(x_N - \bar{x}_N)^2 + \sum_{k=0}^{N-1} \left((x_k - \bar{x}_k)^2 + ru_k^2 \right),$$

where $\bar{x}_0, \ldots, \bar{x}_N$ are given nonpositive target values (a velocity profile) that serve to adjust the vehicle’s velocity, in order to maintain a safe distance from the vehicle ahead, etc. In a practical setting, the velocity profile is recalculated by using on-line radar measurements.

Design an experiment to compare the performance of a fixed linear policy π, derived for a fixed nominal velocity profile, and the performance of the algorithm that uses on-line replanning, whereby the optimal policy π^* is recalculated each time the velocity profile changes. Compare with the performance of the rollout policy $\tilde{\pi}$ that uses π as the base policy and on-line replanning.

1.5 (Computational Exercise - Parking Problem)

In reference to Example 1.6.3, a driver aims to park at an inexpensive space on the way to his destination. There are L parking spaces available and a garage at the end. The driver can move in either direction. For example if he is in space i he can either move to $i - 1$ with a cost $t - i$, or to $i + 1$ with a cost $t + i$, or he can park at a cost $c(i)$ (if the parking space i is free). The only exception is when he arrives at the garage (indicated by index N) and he has to park there at a cost C. Moreover, after the driver visits a parking space he remembers its free/taken status and has an option to return to any parking space he has already
visited. However, the driver must park within a given number of stages N, so that the problem has a finite horizon. The initial probability of space i being free is given, and the driver can only observe the free/taken status of a parking only after he/she visits the space. Moreover, the free/taken status of a parking visited so far does not change over time.

Write a program to calculate the optimal solution using exact dynamic programming over a state space that is as small as possible. Try to experiment with different problem data, and try to visualize the optimal cost/policy with suitable graphical plots. Comment on run-time as you increase the number of parking spots L.

1.6 (Newton’s Method for Solving the Riccati Equation)

The classical form of Newton’s method applied to a scalar equation of the form $H(K) = 0$ takes the form

$$K_{k+1} = K_k - \left(\frac{\partial H(K_k)}{\partial K} \right)^{-1} H(K_k),$$

where $\frac{\partial H(K_k)}{\partial K}$ is the derivative of H, evaluated at the current iterate K_k. This exercise shows algebraically (rather than graphically), within the context of linear quadratic problems, that in approximation in value space with quadratic cost approximation, the cost function of the corresponding one-step lookahead policy is the result of a Newton step for solving the Riccati equation. To this end, we will apply Newton’s method to the solution of the Riccati Eq. (1.39), which we write in the form

$$H(K) = 0,$$

where

$$H(K) = K - \frac{a^2 r K}{r + b^2 K} - q.$$ \hspace{1cm} (1.95)

(a) Show that the operation that generates K_L starting from K is a Newton iteration of the form (1.94). In other words, show that for all K that lead to a stable one-step lookahead policy, we have

$$K_L = K - \left(\frac{\partial H(K)}{\partial K} \right)^{-1} H(K),$$

where we denote by

$$K_L = \frac{q + rL^2}{1 - (a + bL)^2}$$ \hspace{1cm} (1.97)

the quadratic cost coefficient of the one-step lookahead linear policy $\mu(x) = Lx$ corresponding to the cost function approximation $J(x) = Kx^2$:

$$L = -\frac{abK}{r + b^2 K}.$$ \hspace{1cm} (1.98)
Proof: Our approach for showing the Newton step formula (1.96) is to express each term in this formula in terms of L, and then show that the formula holds as an identity for all L. To this end, we first note from Eq. (1.98) that K can be expressed in terms of L as

$$K = -\frac{rL}{b(a+bL)}. \quad (1.99)$$

Furthermore, by using Eqs. (1.98) and (1.99), $H(K)$ as given in Eq. (1.95) can be expressed in terms of L as follows:

$$H(K) = -\frac{rL}{b(a+bL)} + \frac{arL}{b} - q. \quad (1.100)$$

Moreover, by differentiating the function H of Eq. (1.95), we obtain after a straightforward calculation

$$\frac{\partial H(K)}{\partial K} = 1 - \frac{a^2r^2}{(r + b^2K)^2} = 1 - (a + bL)^2, \quad (1.101)$$

where the second equation follows from Eq. (1.98). Having expressed all the terms in the Newton step formula (1.96) in terms of L through Eqs. (1.97), (1.99), (1.100), and (1.101), we can write this formula in terms of L only as

$$\frac{q + rL^2}{1 - (a + bL)^2} = -\frac{rL}{b(a+bL)} - \frac{1}{1 - (a + bL)^2} \left(-\frac{rL}{b(a+bL)} + \frac{arL}{b} - q \right),$$

or equivalently as

$$q + rL^2 = -\frac{rL(1 - (a + bL)^2)}{b(a+bL)} + \frac{rL}{b(a+bL)} - \frac{arL}{b} + q.$$

A straightforward calculation now shows that this equation holds as an identity for all L.

(b) What happens when K lies outside the region of stability?

(c) Show that in the case of ℓ-step lookahead, the analog of the quadratic convergence rate estimate has the form

$$|K_L - K^*| \leq c|F^{\ell-1}(\tilde{K}) - K^*|^2,$$

where $F^{\ell-1}(\tilde{K})$ is the result of the $(\ell - 1)$-fold application of the mapping F to \tilde{K}. Thus a stronger bound for $|K_L - K^*|$ is obtained.
1.7 (Post-Decision States)

The purpose of this exercise is to demonstrate a type of DP simplification that arises often (see [Ber12], Section 6.1.5 for further discussion). Consider the finite horizon stochastic DP problem and assume that the system equation has a special structure whereby from state x_k after applying u_k we move to an intermediate "post-decision state"

$$y_k = p_k(x_k, u_k)$$

at cost $g_k(x_k, u_k)$. Then from y_k we move at no cost to the new state x_{k+1} according to

$$x_{k+1} = h_k(y_k, w_k) = h_k(p_k(x_k, u_k), w_k),$$

(1.102)

where the distribution of the disturbance w_k depends only on y_k, and not on prior disturbances, states, and controls. Denote by $J_k(x_k)$ the optimal cost-to-go starting at time k from state x_k, and by $V_k(y_k)$ the optimal cost-to-go starting at time k from post-decision state y_k.

(a) Use Eq. (1.102) to verify that a DP algorithm that generates only J_k is given by

$$J_k(x_k) = \min_{u_k \in U_k(x_k)} \left[g(x_k, u_k) + E_{w_k} \left\{ J_{k+1} \left(h_k(p_k(x_k, u_k), w_k) \right) \right\} \right].$$

(b) Show that a DP algorithm that generates both J_k and V_k is given by

$$J_k(x_k) = \min_{u_k \in U_k(x_k)} \left[g(x_k, u_k) + V_k \left(p_k(x_k, u_k) \right) \right];$$

$$V_k(y_k) = E_{w_k} \left\{ J_{k+1} \left(h_k(y_k, w_k), w_k \right) \right\}.$$

(c) Show that a DP algorithm that generates only V_k for all k is given by

$$V_k(y_k) = E_{w_k} \left\{ \min_{u_{k+1} \in U_{k+1}(h_k(y_k, w_k))} \left[g_{k+1}(h_k(y_k, w_k), u_{k+1}) + V_{k+1}(p_{k+1}(h_k(y_k, w_k), u_{k+1})) \right] \right\}.$$