Chapter 2

Approximation in Value Space

DRAFT

This is Chapter 2 of the draft textbook “Reinforcement Learning and Optimal Control.” The chapter represents “work in progress,” and it will be periodically updated. It more than likely contains errors (hopefully not serious ones). Furthermore, its references to the literature are incomplete. Your comments and suggestions to the author at dimitrib@mit.edu are welcome. The date of last revision is given below.

The date of last revision is given below. (A “revision” is any version of the chapter that involves the addition or the deletion of at least one paragraph or mathematically significant equation.)

April 1, 2019
Contents

2.1. General Issues of Approximation in Value Space p. 6
 2.1.2. Off-Line and On-Line Methods p. 8
 2.1.3. Model-Based Simplification of the Lookahead Minimization p. 9
 2.1.4. Model-Free Q-Factor Approximation in Value Space p. 10
 2.1.5. Approximation in Policy Space on Top of Approximation in Value Space p. 13
 2.1.6. When is Approximation in Value Space Effective? . p. 14

2.2. Multistep Lookahead p. 15
 2.2.1. Multistep Lookahead and Rolling Horizon p. 17
 2.2.2. Multistep Lookahead and Deterministic Problems . p. 18

2.3. Problem Approximation p. 20
 2.3.1. Enforced Decomposition p. 20
 2.3.2. Probabilistic Approximation - Certainty Equivalent Control p. 27

2.4. Rollout . p. 33
 2.4.1. On-Line Rollout for Deterministic Discrete Optimization p. 35
 2.4.2. Stochastic Rollout and Monte Carlo Tree Search . p. 44
 2.4.3. Rollout with an Expert p. 54

2.5. On-Line Rollout for Deterministic Infinite-Spaces Problems - Optimization Heuristics p. 56
 2.5.1. Model Predictive Control p. 58
 2.5.2. Target Tubes and the Constrained Controllability Condition p. 64
 2.5.3. Variants of Model Predictive Control p. 68

2.6. Notes and Sources p. 70
As we noted in Chapter 1, the exact solution of optimal control problems by DP is often impossible. To a great extent, the reason lies in what Bellman has called the “curse of dimensionality.” This refers to a rapid increase of the required computation and memory storage as the problem’s size increases. Moreover, there are many circumstances where the structure of the given problem is known well in advance, but some of the problem data, such as various system parameters, may be unknown until shortly before control is needed, thus seriously constraining the amount of time available for the DP computation. These difficulties motivate suboptimal control schemes that strike a reasonable balance between convenient implementation and adequate performance.

The philosophy that guides our subsequent presentation is based on the author’s view of the present state of the art in the field: there are no RL methods that are guaranteed to work for all or even most DP problems, but there are enough methods to try on a given problem with a reasonable chance of success in the end. With this in mind, we will present a broad variety of methods, aiming to provide intuition into their inner workings, as well as an understanding of their analytical and computational properties. We present some analysis, usually based on DP principles, but we do not provide solid performance guarantees for most of our methods. We also discuss the potential merits of different methods within particular practical contexts, but our discussion is speculative and should be taken with a grain of salt and/or adapted to the context at hand.

With the above in mind, we lay out in this chapter a broad landscape of methods for approximations in finite horizon DP. Many of these methods will be adapted to infinite horizon in Chapters 4-6, together with some additional methods that are specific to the infinite horizon context.

Approximation in Value Space

There are two general approaches for DP-based suboptimal control. The first is *approximation in value space*, where we approximate the optimal cost-to-go functions J^*_k with some other functions \tilde{J}_k. We then replace J^*_k in the DP equation with \tilde{J}_k. In particular, at state x_k, we use the control obtained from the minimization

$$\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\}. \tag{2.1}$$

This defines a suboptimal policy $\{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\}$. There are several possibilities for selecting or computing the functions \tilde{J}_k, which are discussed in this chapter, and also in subsequent chapters.

Note that the expected value expression appearing in the right-hand side of Eq. (2.1) can be viewed as an approximate Q-factor

$$\tilde{Q}_k(x_k, u_k) = E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\},$$
and the minimization in Eq. (2.1) can be written as

$$\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k),$$

(cf. Section 1.2). This also suggests a variant of approximation in value space, which is based on using Q-factor approximations that may be obtained directly, i.e., without the intermediate step of obtaining the cost function approximations \tilde{J}_k. In what follows in this chapter, we will focus on cost function approximation, but we will occasionally digress to discuss direct Q-factor approximation.

Approximation in Value Space - Multistep Lookahead

Approximation in value space based on the minimization (2.1) is commonly referred to as **one-step lookahead**, because the future costs are approximated by \tilde{J}_{k+1}, after a single step. An important variation is **multistep lookahead**, whereby at state x_k we minimize the cost of the first $\ell > 1$ stages with the future costs approximated by a function $\tilde{J}_{k+\ell}$. For example, in two-step lookahead the function J_{k+1} is given by

$$\tilde{J}_{k+1}(x_{k+1}) = \min_{u_{k+1} \in U_{k+1}(x_{k+1})} E\left\{ g_{k+1}(x_{k+1}, u_{k+1}, w_{k+1})
+ J_{k+2}(f_{k+1}(x_{k+1}, u_{k+1}, w_{k+1})) \right\},$$

where \tilde{J}_{k+2} is some approximation of the optimal cost-to-go function J^*_k. Actually, as the preceding two-step lookahead case illustrates, one may view ℓ-step lookahead as the special case of one-step lookahead where the lookahead function is the optimal cost function of an $(\ell - 1)$-stage DP problem with a terminal cost at the end of the $\ell - 1$ stages, which is equal to $\tilde{J}_{k+\ell}$. However, it is often important to discuss ℓ-step lookahead separately, in order to address special implementation issues that do not arise in the context of one-step lookahead.

The motivation for ℓ-step lookahead is that it may not require a very accurate cost function approximation $\tilde{J}_{k+\ell}$ relative to the case $\ell = 1$. Otherwise, for the same quality of cost function approximation, better performance may be obtained as ℓ becomes larger. This makes intuitive sense, since the cost of more stages is treated exactly at each state x_k. Indeed this expectation is typically realized in practice, although one can construct artificial examples when this is not so (see Section 2.2.1). Generally, one should at least try to use the largest value of ℓ for which the overhead for solving the ℓ-step lookahead minimization problem online is acceptable.

In our initial discussion of approximation in value space of Section 2.1, we will focus on one-step lookahead. There are straightforward extensions of the main ideas to the multistep context, which we will discuss in Section 2.2.
Approximation in Policy Space

The major alternative to approximation in value space is approximation in policy space, whereby we select the policy by using optimization over a suitably restricted class of policies, usually a parametric family of some form. An important advantage of this approach is that the computation of controls during on-line operation of the system is often much easier compared with the minimization (2.1). However, this advantage can also be gained by combining approximation in value space with policy approximation in a two-stage scheme:

(a) Obtain the approximately optimal cost-to-go functions \tilde{J}_k, thereby defining a corresponding suboptimal policy $\tilde{\mu}_k$, $k = 0, \ldots, N - 1$, via the one-step lookahead minimization (2.1).

(b) Approximate $\tilde{\mu}_k$, $k = 0, \ldots, N - 1$, using a training set consisting of a large number q of sample pairs

$$(x^s_k, u^s_k), \quad s = 1, \ldots, q,$$

where $u^s_k = \tilde{\mu}_k(x^s_k)$. For example, introduce a parametric family of policies

$$\mu_k(x_k, r_k), \quad k = 0, \ldots, N - 1,$$

of some form, where r_k is a parameter, such as a family represented by a neural net, and then estimate the parameters r_k using some form of regression, e.g.,

$$r_k \in \arg\min_r \sum_{s=1}^q \| u^s_k - \mu_k(x^s_k, r) \|^2.$$

In this chapter we discuss primarily approximation in value space, although some of the ideas are also relevant to approximation in policy space. We focus on finite horizon problems, postponing the discussion of infinite horizon problems for Chapter 4 and later. However, the finite horizon ideas are relevant to the infinite horizon setting, and many of the methods of the present chapter and Chapter 3 also apply with small modifications to infinite horizon problems.

† It is implicitly assumed here (and in similar situations later) that the controls are members of a Euclidean space so that the distance between two controls can be measured by their normed difference. Otherwise the norm should be replaced by some distance metric within the control space. Parametric approximation architectures, and their training through the use of data and regression techniques are described in Chapter 3.
Model-Based Versus Model-Free Implementation

Generally, a finite horizon DP problem is defined by the state, control, and disturbance spaces, the functions \(f_k \) and \(g_k \), the control constraint sets \(U_k(x_k) \), and the probability distributions of the disturbances. We refer to these as the mathematical model of the problem. It is important to note that there is only one mathematical model for a given problem, but there may be several different implementations of a given method for solving the problem exactly or approximately. Some of these implementations may rely exclusively on analytical calculations using the mathematical model and others may rely in addition to Monte Carlo simulation.

In this book we will use an unambiguous technical characterization of a model-free method or (more accurately) a model-free implementation of a given method. For us the key attribute of an implementation is whether an analytical formula-based calculation or a Monte Carlo simulation is used to compute expected values such as those arising in one-step and multistep lookahead expressions. We thus distinguish between two types of implementations of the various methods given in this book:

(a) In the model-based case, we assume that the conditional probability distribution of \(w_k \), given \((x_k, u_k)\), is available in essentially closed form. By this we mean that the value of \(p_k(w_k \mid x_k, u_k) \) is available for any triplet \((x_k, u_k, w_k)\). Moreover, the functions \(g_k \) and \(f_k \) are also available. In a model-based implementation, expected values, such as the one in the lookahead expression of Eq. (2.1), are obtained with algebraic calculations as opposed to Monte Carlo simulation.

(b) In the model-free case, the calculation of the expected value in the expression of Eq. (2.1), and other related expressions, is done with Monte Carlo simulation. There may be two possible reasons for this.

(1) An analytical expression of the probabilities \(p_k(w_k \mid x_k, u_k) \) is not available, but instead there is a computer program/simulator that for any given state \(x_k \) and control \(u_k \), simulates sample probabilistic transitions to a successor state \(x_{k+1} \), and generates the corresponding transition costs. In this case the expected value can be computed approximately by Monte Carlo simulation.†

(2) The probabilities \(p_k(w_k \mid x_k, u_k) \) are available for any triplet \((x_k, u_k, w_k)\), but for reasons of computational efficiency we prefer to compute the expected value in the expression (2.1) by

† The term Monte Carlo simulation mostly refers to the use of a software simulator. However, a hardware or a combined hardware/software simulator may also be used in some practical situations to generate samples that are used for Monte Carlo averaging.
using sampling and Monte Carlo simulation. Thus the expected value is computed as in the case where an analytical expression of the probabilities \(p_k(w_k | x_k, u_k) \) is not available, but instead there is a computer simulator.\(^\dagger\)

Note that for deterministic problems there is no expected value to compute, so methods for these problems typically come under the model-based category, even if values of the functions \(g_k \) and \(f_k \) become available through complicated computer calculations. Still however, Monte Carlo simulation may enter the solution process of a deterministic problem for a variety of reasons. For example the games of chess and Go are perfectly deterministic, but the AlphaGo and AlphaZero programs (Silver et al. [SHM16], [SHS17]) use randomized policies and rely heavily on Monte Carlo tree search techniques, which use sampling and will be discussed later in Section 2.4. The same is true for some policy gradient methods, which will be discussed in Chapter 4.

To summarize, the use of sampling and Monte Carlo simulation is the defining attribute for an implementation to be model-based or model-free in the terminology of this book. This view of a model-free approach aims to avoid ambiguities in cases where the mathematical model is available to use for closed form calculations, but Monte Carlo simulation is used anyway for reasons of convenience or computational efficiency.

2.1 GENERAL ISSUES OF APPROXIMATION IN VALUE SPACE

There are two major issues in a value space approximation scheme, and each of the two can be considered separately from the other:

1. Obtaining \(\tilde{J}_k \), i.e., the method to compute the lookahead functions \(\tilde{J}_k \) that are involved in the lookahead minimization (2.1). There are quite a few approaches here (see Fig. 2.1.1). Several of them are discussed in this chapter, and more will be discussed in subsequent chapters.

2. Control selection, i.e., the method to perform the minimization (2.1) and implement the suboptimal policy \(\tilde{\mu}_k \). Again there are several exact and approximate methods for control selection, some of which will be discussed in this chapter (see Fig. 2.1.1).

In this section we will provide a high level discussion of these issues, focusing exclusively on the case of one-step lookahead.

\(^\dagger\) The idea of using Monte Carlo simulation to compute complicated integrals or even sums of many numbers is used widely in various types of numerical computations. It encompasses efficient Monte Carlo techniques known as Monte Carlo integration and importance sampling; see textbooks such as [Liu01], [AsG10], [RoC10] for detailed developments.
Sec. 2.1 General Issues of Approximation in Value Space

Regarding the computation of \tilde{J}_k, we will consider four types of methods:

(a) **Problem approximation (Section 2.3)**: Here the functions \tilde{J}_k in Eq. (2.1) are obtained as the optimal or nearly optimal cost functions of a simplified optimization problem, which is more convenient for computation. Simplifications may include, exploiting decomposable structure, ignoring various types of uncertainties, and reducing the size of the state space. The latter form of simplification is known as aggregation, and is discussed separately in Chapter 6.

(b) **On-line approximate optimization (Section 2.4)**: These methods often involve the use of a suboptimal policy or heuristic, which is applied on-line when needed to approximate the true optimal cost-to-go values. The suboptimal policy may be obtained by any other method, e.g., problem approximation. *Rollout algorithms* and *model predictive control* are prime examples of these methods.

(c) **Parametric cost approximation (Chapter 3)**: Here the functions \tilde{J}_k in Eq. (2.1) are obtained from a given parametric class of functions $\tilde{J}_k(x_k, r_k)$, where r_k is a parameter vector, selected by a suitable algorithm. The parametric class is typically obtained by using prominent characteristics of x_k called *features*, which can be obtained either through insight into the problem at hand, or by using training data and some form of neural network.

(d) **Aggregation (Chapter 6)**: This is a special but rather sophisticated form of problem approximation. A simple example is to select a set

Figure 2.1.1 Schematic illustration of various options for approximation in value space with one-step lookahead. The lookahead function values $\tilde{J}_{k+1}(x_{k+1})$ approximate the optimal cost-to-go values $J^*_k(x_{k+1})$, and can be computed by a variety of methods. There may be additional approximations in the minimization over u_k and in the computation of the expected value over w_k; see Section 2.1.1.
of representative states for each stage, restrict the DP algorithm to these states only, and approximate the costs-to-go of other states by interpolation between the optimal costs-to-go of the representative states. In another example of aggregation, the state space is divided into subsets, and each subset is viewed as a state of an “aggregate DP problem.” The functions J_k are then derived from the optimal cost functions of the aggregate problem. The state space partition can be arbitrary, but is often determined by using features (states with “similar” features are grouped together). Moreover, aggregation can be combined in complementary fashion with the methods (a)-(c) above, and can use as a starting point an approximate cost-to-go function produced by any one of these methods; e.g., apply a parametric approximation method and enhance the resulting cost function through local corrections obtained by aggregation.

Additional variations of the above methods are obtained when used in combination with approximate minimization over u_k in Eq. (2.1), and also when the expected value over w_k is computed approximately via a certainty equivalence approximation (cf. Section 2.3.2) or adaptive simulation and Monte Carlo tree search (Sections 2.1.2 and 2.4.2).

2.1.2 Off-Line and On-Line Methods

In approximation in value space an important consideration is whether the cost-to-go functions J_{k+1} and the suboptimal control functions $\hat{\mu}_k$, $k = 0, \ldots, N - 1$, of Eq. (2.1) are computed off-line (i.e., before the control process begins, and for all x_k and k), or on-line (i.e., after the control process begins, when needed, and for just the states x_k to be encountered).

Usually, for challenging problems, the controls $\hat{\mu}_k(x_k)$ are computed on-line, since their storage may be difficult for a large state space. However, the on-line or off-line computation of J_{k+1} is an important design choice. We thus distinguish between:

(i) **Off-line methods**, where the entire function \hat{J}_{k+1} in Eq. (2.1) is computed for every k, before the control process begins. The values $\hat{J}_{k+1}(x_{k+1})$ are either stored in memory or can be obtained with a simple and fast computation, as needed in order to compute controls by one-step lookahead. The advantage of this is that most of the computation is done off-line, before the first control is applied at time 0. Once the control process starts, no extra computation is needed to obtain $\hat{J}_{k+1}(x_{k+1})$ for implementing the corresponding suboptimal policy.

(ii) **On-line methods**, where most of the computation is performed just after the current state x_k becomes known, the values $\hat{J}_{k+1}(x_{k+1})$ are computed only at the relevant next states x_{k+1}, and are used to compute the control to be applied via Eq. (2.1). In contrast with the off-
line approximation methods, these methods are well-suited for on-line replanning, whereby the problem data may change over time. Examples of typically off-line schemes are neural network and other parametric approximations, as well as aggregation. Examples of typically on-line schemes are rollout and model predictive control. Schemes based on problem approximation may be either on-line or off-line depending on other problem-related factors. Of course there are also problem-dependent hybrid methods, where significant computation is done off-line to expedite the on-line computation of needed values of J_{k+1}.

2.1.3 Model-Based Simplification of the Lookahead Minimization

We will now consider ways to facilitate the calculation of the suboptimal control $\mu_k(x_k)$ at state x_k via the minimization of the one-step lookahead expression

$$E \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k)) \right\}, \tag{2.2}$$

once the cost-to-go approximating functions \hat{J}_{k+1} have been selected. In this section, we will assume that we have a mathematical model, i.e., that the functions g_k and f_k are available in essentially closed form, and that the conditional probability distribution of w_k, given (x_k, u_k), is also available. Moreover, Monte Carlo simulation is not used to compute the expected value in Eq. (2.2). We will address the model-free case in the next section.

Important issues here are the computation of the expected value (if the problem is stochastic) and the minimization over $u_k \in \mathcal{U}(x_k)$ in Eq. (2.2). Both of these operations may involve substantial work, which is of particular concern when the minimization is to be performed on-line.

One possibility to eliminate the expected value from the expression (2.2) is (assumed) certainty equivalence. Here we choose a typical value \bar{w}_k of w_k, and use the control $\bar{\mu}_k(x_k)$ that solves the deterministic problem

$$\min_{u_k \in \mathcal{U}(x_k)} \left[g_k(x_k, u_k, \bar{w}_k) + \hat{J}_{k+1}(f_k(x_k, u_k, \bar{w}_k)) \right]. \tag{2.3}$$

The approach of turning a stochastic problem into a deterministic one by replacing uncertain quantities with single typical values highlights the possibility that \hat{J}_{k+1} may itself be obtained by using deterministic methods. We will discuss this approach and its variations in greater detail later in this chapter (see Section 2.3).

Let us now consider the issue of algorithmic minimization over $\mathcal{U}_k(x_k)$ in Eqs. (2.2) and (2.3). If $\mathcal{U}_k(x_k)$ is a finite set, the minimization can be done by brute force, through exhaustive computation and comparison of the relevant cost expressions. This of course can be very time consuming, particularly for multistep lookahead, but parallel computation can be used with great effect for this purpose as well as for the calculation...
of the expected value in the expression (2.2)]. For some discrete control problems, integer programming techniques may also be used. Moreover, for deterministic problems with multistep lookahead, sophisticated exact or approximate shortest path methods may be considered; several methods of this type are available, such as label correcting methods, A^* methods, and their variants (see Section 4.4.1, and the author’s books [Ber98] and [Ber17] for detailed accounts, which are consistent with the context of this chapter).

When the control constraint set is infinite, it may be replaced by a finite set through discretization. However, a more efficient alternative may be to use continuous space nonlinear programming techniques. This possibility can be attractive for deterministic problems, which lend themselves better to continuous space optimization; an example is the model predictive control context (see Section 2.5).

For stochastic problems with continuous control spaces and either one-step or multistep lookahead, the methodology of stochastic programming may be useful. This methodology bears a close connection with linear and nonlinear programming methods. We refer to the textbook [Ber17] for a discussion of its application to the approximate DP context, and references to the relevant literature. Still another possibility to simplify the one-step lookahead minimization (2.2) is based on Q-factor approximation, which is also suitable for model-free policy implementation, as we discuss next.

2.1.4 Model-Free Q-Factor Approximation in Value Space

One of the major aims of this book is to discuss methods where a mathematical model [the system functions f_k, the probability distribution of w_k, and the one-stage cost functions g_k] is not used because it is either hard to construct, or simply inconvenient. We assume instead that the system and cost structure can be simulated in software far more easily (think, for example, control of a queueing network with complicated but well-defined service disciplines at the queues).†

In this section, we will review some of the high-level ideas of passing from model-based to model-free policy implementations for stochastic problems. In particular, we assume that:

(a) There is a computer program/simulator that for any given state x_k and control $u_k \in U_k(x_k)$, simulates sample probabilistic transitions to a successor state x_{k+1}, and generates the corresponding transition costs.

(b) A cost function approximation \tilde{J}_{k+1} is available. Approaches to obtain \tilde{J}_{k+1} in model-free fashion will be discussed in the context of

† Another possibility is to use the real system to provide the next state and transition cost, but we will not deal explicitly with this case in this book.
specific methods later. For example \tilde{J}_{k+1} may be obtained by solving a simpler problem for which a model is available, or it may be separately obtained without a mathematical model, by using a simulator.

We want to use the functions \tilde{J}_{k+1} and the simulator to compute or approximate the Q-factors

$$E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\},$$

(2.4)

for all $u_k \in U_k(x_k)$, and then find the minimal Q-factor and corresponding one-step lookahead control.

Given a state x_k, we may use the simulator to compute these Q-factors for all the pairs (x_k, u_k), $u_k \in U_k(x_k)$, and then select the minimizing control. However, in many cases this can be very time-consuming. To deal with this difficulty, we may introduce a parametric family/approximation architecture of Q-factor functions,

$$\tilde{Q}_k(x_k, u_k, r_k),$$

where r_k is the parameter vector and use a least squares fit/regression to approximate the expected value that is minimized in Eq. (2.2). One possibility is to use a neural network parametric architecture; see Chapter 3, where we discuss methods for selecting and training parametric architectures. The steps are as follows:

Summary of Q-Factor Approximation Based on Approximation in Value Space

Assume that the value of $\tilde{J}_{k+1}(x_{k+1})$ is available for any given x_{k+1}:

(a) Use the simulator to collect a large number of "representative" quadruplets $(x^s_k, u^s_k, x^s_{k+1}, g^s_k)$, and corresponding Q-factors

$$\beta^s_k = g^s_k + \tilde{J}_{k+1}(x^s_{k+1}), \quad s = 1, \ldots, q.$$ (2.5)

Here x^s_{k+1} is the simulator’s output of the next state

$$x^s_{k+1} = f_k(x^s_k, u^s_k, w^s_k)$$

that corresponds to some disturbance w^s_k. This disturbance also determines the one-stage-cost sample

$$g^s_k = g_k(x^s_k, u^s_k, w^s_k).$$

The simulator need not output w^s_k; only the sample next state x^s_{k+1} and sample cost g^s_k are needed (see Fig. 2.1.2).
Figure 2.1.2 Schematic illustration of the simulator used for a model-free Q-factor approximation, assuming approximate cost functions \tilde{J}_{k+1} are known. The input to the simulator are sample state-control pairs (x^s_k, u^s_k), and the outputs are a next state sample x^{s+1}_k and cost sample g^s_k. These correspond to a disturbance w^s_k according to

$$x^{s+1}_k = f_k(x^s_k, u^s_k, w^s_k), \quad g^s_k = g_k(x^s_k, u^s_k, w^s_k).$$

The actual value of w^s_k need not be output by the simulator. The sample Q-factors β^s_k are generated according to Eq. (2.5), and are used in the least squares regression (2.6) to yield a parametric Q-factor approximation \tilde{Q}_k and the policy implementation (2.7).

(b) Compute the parameter \bar{r}_k by the least-squares regression

$$\bar{r}_k \in \arg \min_{r_k} \sum_{s=1}^g (\tilde{Q}_k(x^s_k, u^s_k, r_k) - \beta^s_k)^2. \quad (2.6)$$

(c) Use the policy

$$\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k, \bar{r}_k). \quad (2.7)$$

Note some important points about the preceding procedure:

1. It is model-free in the sense that it is based on Monte Carlo simulation. Moreover, it does not need the functions f_k and g_k, and the probability distribution of w_k to generate the policy $\tilde{\mu}_k$ through the least squares regression (2.6) and the Q-factor minimization (2.7). The simulator to collect the samples (2.5) and the cost function approximation \tilde{J}_{k+1} suffice.

2. Two approximations are potentially required: One to compute \tilde{J}_{k+1}, which is needed for the samples β^s_k [cf. Eq. (2.5)], and another to compute \tilde{Q}_k through the regression (2.6). The approximation methods to obtain \tilde{J}_{k+1} and \tilde{Q}_k may be unrelated.

3. The policy $\tilde{\mu}_k$ obtained through the minimization (2.7) is not the
same as the one obtained through the minimization (2.2). There are two reasons for this. One is the approximation error introduced by the Q-factor architecture \tilde{Q}_k, and the other is the simulation error introduced by the finite-sample regression (2.6). We have to accept these sources of error as the price to pay for the convenience of not requiring a mathematical model for policy implementation.

Let us also mention a variant of the least squares minimization in Eq. (2.6), which is to use a regularized minimization where a quadratic regularization term is added to the least squares objective. This term is a multiple of the squared deviation $\|r - \hat{r}\|^2$ of r from some initial guess \hat{r}. Moreover, in some cases, a nonquadratic minimization may be used in place of Eq. (2.6) to determine \hat{r}_k, but in this book we will focus on least squares exclusively.

2.1.5 Approximation in Policy Space on Top of Approximation in Value Space

A common approach for approximation in policy space, is to introduce a parametric family of policies $\tilde{\mu}_k(x_k, r_k)$, where r_k is a parameter vector. The parametrization may involve a neural network as we will discuss in Chapter 3. Alternatively, the parametrization may involve problem-specific features, exploiting the special structure of the problem at hand.

A general scheme for parametric approximation in policy space is to obtain a large number of sample state-control pairs (x_{s_k}, u_{s_k}), $s = 1, \ldots, q$, such that for each s, u_{s_k} is a “good” control at state x_{s_k}. We can then choose the parameter r_k by solving the least squares/regression problem

$$
\min_{r_k} \sum_{s=1}^q \|u_{s_k} - \tilde{\mu}_k(x_{s_k}, r_k)\|^2
$$

(possibly with added regularization). In particular, we may determine u_{s_k} using a human or a software “expert” that can choose “near-optimal” controls at given states, so $\tilde{\mu}_k$ is trained to match the behavior of the expert. Methods of this type are commonly referred to as supervised learning in artificial intelligence (see also the discussion in Section 5.7.2).

A special case of the above procedure, which connects with approximation in value space, is to generate the sample state-control pairs (x_{k_s}, u_{k_s}) through a one-step lookahead minimization of the form

$$
\begin{align*}
\min_{u_{k+1}} E \left\{ g_k(x_{k_s}, u, w_k) + \tilde{J}_{k+1}(f_k(x_{k_s}, u, w_k)) \right\}
\end{align*}
$$

(2.9)

where \tilde{J}_{k+1} is a suitable (separately obtained) approximation in value space; cf. Eq. (2.2), or an approximate Q-factor based minimization

$$
\begin{align*}
\min_{u_{k+1}} \tilde{Q}_k(x_{k_s}, u, \tilde{r}_k)
\end{align*}
$$

(2.10)
Approximation in Value Space Chap. 2

[cf. Eq. (2.7)]. In this case, we collect the sample state-control pairs \((x^s_k, u^s_k), s = 1, \ldots, q\), by using approximation in value space through Eq. (2.9) or Q-factor approximation through Eq. (2.10), and then apply approximation in policy space through Eq. (2.8) (i.e., approximation in policy space is built on top of approximation in value space).

A major advantage of schemes based on the minimization (2.8) is that once the parametrized policy is obtained, the on-line implementation of the policy is fast and does not involve extensive calculations such as minimizations of the form (2.9) or (2.10). This advantage is generally shared by schemes that are based on approximation in policy space.

2.1.6 When is Approximation in Value Space Effective?

An important question is what constitutes good approximating functions \(\tilde{J}_k\) in a one-step lookahead scheme. An answer that suggests itself is that \(\tilde{J}_k\) should be “close” to the optimal cost-to-go function \(J^*_k\) for all \(k\). This guarantees a certain degree of quality of the approximation scheme, but is neither necessary nor is it satisfied by all or even most good practical schemes.

For example if the approximating values \(\tilde{J}_k(x_k)\) differ from the optimal values \(J^*_k(x_k)\) uniformly by the same constant, the policy obtained by the approximation in value space scheme (2.1) is optimal. This suggests that a better condition might be that relative values of \(\tilde{J}_k\) and \(J^*_k\) should be “close” to each other, i.e.,

\[
\tilde{J}_k(x_k) - \tilde{J}_k(x'_k) \approx J^*_k(x_k) - J^*_k(x'_k),
\]

for all pairs of states \(x_k\) and \(x'_k\). Still, however, this guideline neglects the role of the first stage cost (or the cost of the first \(\ell\) stages in the case of \(\ell\)-step lookahead).

A more accurate predictor of good quality of the suboptimal policy obtained is that the Q-factor approximation error \(Q_k(x_k, u) - \tilde{Q}_k(x_k, u)\) changes gradually as \(u\) changes, where \(Q_k\) and \(\tilde{Q}_k\) denote the exactly optimal Q-factor and its approximation, respectively. For a heuristic explanation, suppose that approximation in value space generates a control \(\tilde{u}_k\) at a state \(x_k\) where another control \(u_k\) is optimal. Then we have

\[
\tilde{Q}_k(x_k, u_k) - \tilde{Q}_k(x_k, \tilde{u}_k) \geq 0,
\] (2.11)

since \(\tilde{u}_k\) minimizes \(\tilde{Q}_k(x_k, \cdot)\), and

\[
Q_k(x_k, \tilde{u}_k) - Q_k(x_k, u_k) \geq 0,
\] (2.12)

since \(u_k\) minimizes \(Q_k(x_k, \cdot)\). If \(\tilde{u}_k\) is far from optimal, the Q-factor difference in Eq. (2.12) will be large, and by adding Eq. (2.11), it follows that the expression

\[
(Q_k(x_k, \tilde{u}_k) - \tilde{Q}_k(x_k, \tilde{u}_k)) - (Q_k(x_k, u_k) - \tilde{Q}_k(x_k, u_k))
\]
Sec. 2.2 Multistep Lookahead

2.2 MULTISTEP LOOKAHEAD

In the preceding section, we discussed approximation in value space with one-step lookahead. In this section, we focus on the more ambitious, but also computationally more intensive multistep lookahead scheme.
Approximation in Value Space Chap. 2

First ℓ Steps “Future”

DP minimization

Lookahead Minimization Cost-to-go Approximation

\[
\min_{u_k, u_{k+1}, \ldots, u_{k+\ell-1}} E \left\{ g_k(x_k, u_k, w_k) + \sum_{m=k+1}^{k+\ell-1} g_m(x_m, \mu_m(x_m), w_m) + \tilde{J}_{k+\ell}(x_{k+\ell}) \right\}
\]

Figure 2.2.1 Illustration of approximation in value space with ℓ-step lookahead. At state x_k, we solve an ℓ-stage version of the problem, with $\tilde{J}_{k+\ell}$ as terminal cost function approximation. We use at x_k the first control of the ℓ-stage policy thus obtained, while discarding the others.

To illustrate, in two-step lookahead, at time k and state x_k, we use the control obtained from the minimization

\[
\hat{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\},
\]

where for all possible states x_{k+1} that can be generated via the system equation starting from x_k, we have

\[
\tilde{J}_{k+1}(x_{k+1}) = \min_{u_{k+1} \in U_{k+1}(x_{k+1})} E \left\{ g_{k+1}(x_{k+1}, u_{k+1}, w_{k+1}) + \tilde{J}_{k+2}(f_{k+1}(x_{k+1}, u_{k+1}, w_{k+1})) \right\},
\]

where \tilde{J}_{k+2} is some approximation of the optimal cost-to-go function J^*_k.

Thus two-step lookahead amounts to solving a two-stage version of the DP problem with x_k as the initial state and \tilde{J}_{k+2} as the terminal cost function. Given x_k, the solution of this DP problem yields a two-stage policy that consists of the single control u_k for the first lookahead stage, plus a control $\mu_{k+1}(x_{k+1})$ for each value of $x_{k+1} = f_k(x_k, u_k, w_k)$ that can occur at the second lookahead stage $k+1$. However, once this two-stage policy is computed, the controls $\mu_{k+1}(x_{k+1})$ are discarded, and only u_k is used as the control applied by the two-step lookahead policy at x_k. At the next stage, this process is repeated, i.e., we solve a two-stage DP problem with x_{k+1} as the initial state and \tilde{J}_{k+3} as the terminal cost function.

Policies with lookahead of $\ell > 2$ stages are similarly defined: at state x_k, we solve an ℓ-stage version of the DP problem with x_k as the initial state and $\tilde{J}_{k+\ell}$ as the terminal cost function, and use the first control of the ℓ-stage policy thus obtained, while discarding the others; see Fig. 2.2.1. Of course, in the final stages where $k > N - \ell$, we should shorten the size of lookahead to $N - k$. Note that the simplifications in the one-step lookahead minimization discussed in the preceding section (assumed certainty equivalence, adaptive sampling, model-free policy implementation, etc) extend to multistep lookahead.
2.2.1 Multistep Lookahead and Rolling Horizon

There are several ways to compute the lookahead functions $\tilde{J}_{k+\ell}$ in ℓ-step lookahead, similar to the one-step lookahead case. However, there may also be additional possibilities: with sufficiently long lookahead, we may capture enough of the character of the DP problem at hand so that a sophisticated choice of $\tilde{J}_{k+\ell}$ may not be needed.

In particular, we may set $\tilde{J}_{k+\ell}(x_{k+\ell}) \equiv 0$, or set

$$\tilde{J}_{k+\ell}(x_{k+\ell}) = g_N(x_{k+\ell}).$$

The idea is to use a sufficiently large number of lookahead steps ℓ to ensure a reasonably faithful approximation of the optimal Q-factors Q_k or cost-to-go functions $J^*_{k+\ell}$ within a constant.† This is also referred to as the rolling horizon approach, but essentially it is the same as multistep lookahead with a simplified cost-to-go approximation. Note that the idea of a rolling horizon is well-suited and applies with few modifications to infinite horizon problems as well.‡

Typically, as the size ℓ of the lookahead is chosen larger, the need for a good choice of $\tilde{J}_{k+\ell}$ tends to diminish. The reason is that the effective cost-to-go approximation in ℓ-step lookahead consists of two components:

(a) The cost of an $(\ell - 1)$ step problem involving the last $(\ell - 1)$ stages of the ℓ-step lookahead.

(b) The terminal cost approximation $\tilde{J}_{k+\ell}$.

Since the $(\ell-1)$-step problem is treated by exact optimization, the overall approximation will be accurate if the contribution of the terminal cost approximation is relatively insignificant. This is likely to be true with large enough ℓ.

In view of the advantages offered by multistep lookahead, one is tempted to conjecture that if ℓ is increased, then the performance of the lookahead policy is improved. This, however, need not be true always, essentially because beyond the next ℓ stages, the policy may be “blind”

† See the discussion in Section 2.1.6. Generally, rolling horizon schemes tend to work well if the probability distribution of the state $k+\ell$ steps ahead is roughly independent of the current state and control, or is concentrated around “low cost” states.

‡ For infinite horizon problems the cost-to-go approximations \tilde{J}_k will typically be the same at all stages k, i.e., $\tilde{J}_k \equiv \tilde{J}$ for some \tilde{J}. As a result, the limited lookahead approach produces a stationary policy. In the case of discounted problems with an infinite horizon (see Chapter 4), a simple approach is to use a rolling horizon that is long enough so that the tail cost is negligible and can be replaced by zero, but it is also possible to use a small number of lookahead stages ℓ, as long as we compensate with a terminal cost function approximation \tilde{J}.
Approximation in Value Space Chap. 2

Figure 2.2.2 The 4-stage deterministic shortest problem of Example 2.2.1, illustrating how using a longer lookahead with a cost function approximation $\tilde{J}_k(x_k) \equiv 0$ may degrade the performance of the policy obtained.

to the presence of particularly “favorable” or “unfavorable” states. The following example is an illustration.

Example 2.2.1

This is an oversimplified example that demonstrates a pitfall of the multistep lookahead and rolling horizon approaches with approximate cost-to-go functions

$$J_{k+\ell}(x_{k+\ell}) \equiv 0.$$

It may happen that with longer lookahead the quality of the suboptimal control obtained is degraded.

Consider the 4-stage deterministic shortest problem of Fig. 2.2.2. At the initial state there are two possible controls, denoted u and u'. At all other states there is only one control available, so a policy is specified by just the initial choice between u and u'. The costs of the four transitions on the upper and the lower path are shown next to the corresponding arcs (0, 1, 2, 1 for the upper path, and 0, 2, 0, 10 on the lower path). From the initial state, 2-step lookahead with terminal cost approximation $\tilde{J}_2 = 0$, compares $0 + 1$ with $0 + 2$ and prefers the optimal control u, while 3-step lookahead with terminal cost approximation $J_3 = 0$, compares $0 + 1 + 2$ with $0 + 2 + 0$ and prefers the suboptimal control u'. Thus using a longer lookahead yields worse performance. The problem here has to do with large cost changes at the “edge” of the lookahead (a cost of 0 just after the 2-step lookahead, followed by a cost of 10 just after the 3-step lookahead).

2.2.2 Multistep Lookahead and Deterministic Problems

Generally, the implementation of multistep lookahead can be prohibitively time-consuming for stochastic problems, because it requires at each step the solution of a stochastic DP problem with a horizon that is equal to
Sec. 2.2 Multistep Lookahead

When the problem is stochastic, one may consider an approximation to \(\ell \)-step lookahead, which is based on deterministic computations. This is a hybrid, partially deterministic approach, whereby at state \(x_k \), we allow for a stochastic disturbance \(w_k \) at the current stage, but fix the future disturbances \(w_{k+1}, \ldots, w_{k+\ell-1} \), up to the end of the lookahead horizon, to some typical values. This allows us to bring to bear deterministic shortest path methods in the computation of approximate costs-to-go beyond the first stage.

In particular, with this approach, when at state \(x_k \), the needed values \(\hat{J}_{k+1}(x_{k+1}) \) are the ones corresponding to \(x_{k+1} = f_k(x_k, u_k, w_k) \), for all \(u_k \in U_k(x_k) \) and \(w_k \). Each of these values will be computed by solving an \((\ell-1) \)-step deterministic shortest path problem that starts at \(x_{k+1} \) and...
involves the typical values of the disturbances $w_{k+1}, \ldots, w_{k+\ell-1}$. Once the values $\hat{J}_{k+1}(x_{k+1})$ are obtained, they will be used to compute the approximate Q-factors of pairs (x_k, u_k) using the formula

$$\tilde{Q}_k(x_k, u_k) = E\left\{ g_k(x_k, u_k, w_k) + \hat{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\},$$

which incorporates the first stage uncertainty. Finally, the control chosen by such a scheme at time k will be

$$\tilde{\mu}_k(x_k) \in \arg\min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k);$$

cf. Eq. (2.7).

The approach of fixing uncertain quantities to typical values for approximation purposes is generally referred to as (assumed) certainty equivalence, and will be discussed at length in Section 2.3.2. The idea of using multistep lookahead for deterministic problems will also be reexamined in the context of the rollout algorithm in Section 2.4.1.

2.3 PROBLEM APPROXIMATION

A key issue in implementing a limited lookahead policy is the choice of the cost-to-go approximation at the end of the lookahead. In this section, we discuss the problem approximation approach whereby we approximate the optimal cost function J^*_k with some function \tilde{J}_k derived from a related but simpler problem (for example the optimal cost-to-go function of that problem). In the following subsections we consider two approaches:

1. Simplifying the structure of the problem through enforced decomposition, e.g., replacing coupling constraints with simpler decoupled constraints or with Lagrange multiplier-related penalties.

2. Simplifying the probabilistic structure of the problem, e.g., replacing stochastic disturbances with deterministic ones.

Another approach that can be viewed as problem approximation is aggregation, whereby the original problem is approximated with a related “aggregate” problem that has smaller dimension or fewer states. This problem is solved exactly to yield a cost-to-go approximation for the original problem. Aggregation is also related to the feature-based parametric approximation ideas of Chapter 3, and will be discussed in Chapter 6.

2.3.1 Enforced Decomposition

The simplification/approximation approach is often well-suited for problems involving a number of subsystems that are coupled through the system
Sec. 2.3 Problem Approximation

equation, or the cost function, or the control constraints, but the degree of coupling is “relatively weak.” It is difficult to define precisely what constitutes “weak coupling,” but in specific problem contexts, usually this type of structure is easily recognized. For such problems it is often sensible to introduce approximations by artificially decoupling the subsystems in some way, thereby creating either a simpler problem or a simpler cost calculation, where subsystems can be dealt with in isolation.

There are a number of different ways to effect enforced decomposition, and the best approach is often problem-dependent. Generally, for a deterministic problem, enforced decomposition can be applied both off-line and on-line to produce a suboptimal control sequence. For a stochastic problem, it can be applied with off-line computation of the approximate cost-to-go functions \(\tilde{J}_k \) and on-line computation of the corresponding suboptimal policy. We will illustrate these two possibilities with various application contexts in what follows.

Optimization of One Subsystem at a Time

When a problem involves multiple subsystems, a potentially interesting approximation approach is to optimize one subsystem at a time. In this way the control computation at time \(k \) may become simpler.

As an example consider an \(N \)-stage deterministic problem, where the control \(u_k \) at state \(x_k \) consists of \(n \) components, \(u_k = \{u_{1k}, \ldots, u_{nk}\} \), with \(u_{ik} \) corresponding to the \(i \)th subsystem. Then to compute a cost-to-go approximation at a given state \(x_k \), one may optimize over the control sequence of a single subsystem, while keeping the controls of the remaining subsystems at some nominal values. Thus, upon arriving at \(x_k \), we first optimize over the control sequence \(\{u^1_{1k}, u^1_{k+1}, \ldots, u^1_{N-1}\} \) of the first subsystem, then optimize over the controls of the second subsystem, and so on, while keeping the controls of the other subsystem at the latest “optimal” values computed.

There are several possible variations; for example to make the order in which the subsystems are considered subject to optimization as well, or to repeat cycling through the subsystems multiple times, each time using the results of the latest computation as nominal values of subsystem controls. This is similar to a “coordinate descent” approach, used in other optimization contexts.

Additional variations are obtained when we use approximate minimization over \(u_k \) in Eq. (2.1), and also when the expected value over \(w_k \) is computed approximately via adaptive simulation or a certainty equivalence approximation (cf. Section 2.1).

Example 2.3.1 (Vehicle Routing)

Consider \(n \) vehicles that move along the arcs of a given graph. Each node of the graph has a known “value” and the first vehicle that will pass through
Figure 2.3.1 Schematic illustration of the vehicle routing problem and the one-vehicle-at-a-time approach. As an example, given the position pair $x_k = (1, 4)$ of the two vehicles and the current valuable tasks at positions 6 and 9, we consider moves to all possible positions pairs x_{k+1}:

$$ (2, 2), (2, 3), (2, 6), (2, 7), (3, 2), (3, 3), (3, 6), (3, 7). $$

From each of these pairs, we first compute the best route of vehicle 1 assuming vehicle 2 does not move, and then the best route vehicle 2, taking into account the previously computed route of vehicle 1. We then select the pair x_{k+1} that results in optimal value, and move the vehicles to the corresponding positions.

the node will collect its value, while vehicles that pass subsequently through the node do not collect any value. This may serve as a model of a situation where there are various valuable tasks to be performed at the nodes of a transportation network, and each task can be performed at most once and by a single vehicle. We assume that each vehicle starts at a given node and after at most a given number of arc moves, it must return to some other given node. The problem is to find a route for each vehicle satisfying these constraints, so that the total value collected by the vehicles is maximized.

This is a difficult combinatorial problem that in principle can be approached by DP. In particular, we can view as state the n-tuple of current positions of the vehicles together with the list of nodes that have been visited by some vehicle in the past, and have thus “lost” their value. Unfortunately, the number of these states is enormous (it increases exponentially with the number of nodes and the number of vehicles). The version of the problem that involves a single vehicle, while still difficult in principle, can often be solved in reasonable time either exactly by DP or fairly accurately using a suitable heuristic. Thus a one-step lookahead policy suggests itself, with the value-to-go approximation obtained by solving single vehicle problems.

In particular, in a one-step lookahead scheme, at a given time k and from a given state x_k we consider all possible n-tuples of moves by the n vehicles. At the resulting state x_{k+1} corresponding to each n-tuple of vehicle
Problem Approximation

moves, we approximate the optimal value-to-go with the value corresponding to a suboptimal set of paths. These paths are obtained as follows: we fix an order of the vehicles and we calculate a path for the first vehicle, starting at \(x_{k+1} \), assuming the other vehicles do not move. (This is done either optimally by DP, or near optimally using some heuristic.) Then we calculate a path for the second vehicle, taking into account the value collected by the first vehicle, and we similarly continue: for each vehicle, we calculate in the given order a path, taking into account the value collected by the preceding vehicles. We end up with a set of paths that have a certain total value associated with them. This is the value \(J_{k+1}(x_{k+1}) \) associated with the successor state \(x_{k+1} \).

We repeat with all successor states \(x_{k+1} \) corresponding to all the \(n \)-tuples of vehicle moves that are possible at \(x_k \). We then use as suboptimal control at \(x_k \) the \(n \)-tuple of moves that yields the best value; see Fig. 2.3.1.

There are several enhancements and variations of the scheme just described. For example, we can consider multiple alternative orders for optimizing paths one-at-a-time, and choose the \(n \)-tuple of moves that corresponds to the best value obtained. Other variations may include travel costs between nodes of the graph, and constraints on how many tasks can be performed by each vehicle.

Constraint Decoupling by Constraint Relaxation

Let us now consider problems involving coupled subsystems where the coupling comes only through the control constraint. Typical cases involve the allocation of a limited resource to a set of subsystems whose system equations are completely decoupled from each other. We will illustrate with examples a few enforced decomposition approaches to deal with such situations. The first approach is constraint relaxation, whereby the constraint set is replaced by another constraint set that does not involve coupling.

Example 2.3.2 (Restless Multiarmed Bandit Problems)

An interesting DP model, generally referred to as the multiarmed bandit problem, involves \(n \) projects of which only one can be worked on at any time period. Each project \(i \) is characterized at time \(k \) by its state \(x_{i,k} \). If project \(i \) is worked on at time \(k \), one receives an expected reward \(R_i(x_{i,k}) \), and the state \(x_{i,k} \) then evolves according to the equation

\[
x_{i,k+1} = f_i(x_{i,k}, w_{i,k}), \quad \text{if } i \text{ is worked on at time } k,
\]

where \(w_{i,k} \) is a random disturbance with probability distribution depending on \(x_{i,k} \) but not on prior disturbances. If project \(i \) is not worked on, its state changes according to

\[
x_{i,k+1} = \tilde{f}_i(x_{i,k}, \tilde{w}_k),
\]

where \(\tilde{f} \) is a given function and \(\tilde{w}_k \) is a random disturbance with distribution depending on \(x_{i,k} \) but not on prior disturbances. Furthermore, a reward \(\tilde{R}_i(x_{i,k}) \) is earned, where \(\tilde{R} \) is a given function. The projects are coupled through the
control constraint (only one of the projects may be worked on at any one period).† A suboptimal enforced decomposition approach is to consider the single project problems where a single project is worked on through the entire remaining horizon, and add the contributions of the single problems to form an optimal reward approximation.

In particular, suppose that the optimal reward function $J^*_k(x^1, \ldots, x^n)$ is approximated by a separable function of the form

$$\sum_{i=1}^{n} \tilde{J}^i_k(x^i),$$

where each \tilde{J}^i_k is a function that quantifies the contribution of the ith project to the total reward. The corresponding one-step lookahead policy selects at time k the project i that maximizes

$$R^i(x^i) + \sum_{j \neq i} \overline{R} (x^j) + E \left\{ \tilde{J}^i_{k+1} \left(f^i(x^i, w^i) \right) \right\} + \sum_{j \neq i} E \left\{ \tilde{J}^j_{k+1} \left(\overline{f}^j(x^j, w^j) \right) \right\},$$

which can also be written as

$$R^i(x^i) - \overline{R} (x^i) + E \left\{ \tilde{J}^i_{k+1} \left(f^i(x^i, w^i) \right) - \tilde{J}^i_{k+1} \left(\overline{f}^i(x^i, w^i) \right) \right\} + \sum_{j=1}^{n} \left\{ \overline{R} (x^j) + E \left\{ \tilde{J}^j_{k+1} \left(\overline{f}^j(x^j, w^j) \right) \right\} \right\}.$$

Noting that the last term in the above expression does not depend on i, it follows that the one-step lookahead policy takes the form

$$\text{work on project } i \text{ if } \tilde{m}^i_k(x^i) = \max_j \{ \tilde{m}^j_k(x^i) \},$$

where for all i,

$$\tilde{m}^i_k(x^i) = R^i(x^i) - \overline{R} (x^i) + E \left\{ \tilde{J}^i_{k+1} \left(f^i(x^i, w^i) \right) - \tilde{J}^i_{k+1} \left(\overline{f}^i(x^i, w^i) \right) \right\}.$$

† In the classical and simplest version of the problem, the state of a project that is not worked on remains unchanged and produces no reward, i.e.,

$$x^i_{k+1} = x^i_k, \quad \overline{R} (x^i_k) = 0, \quad \text{if } i \text{ is not worked on at time } k.$$

This problem admits optimal policies with a nice structure that can be computationally exploited. The problem has a long history and is discussed in many sources; we refer to [Ber12] and the references quoted there. In particular, in favorable instances of the problem, optimal policies have the character of an index rule, which is structurally similar to the decoupled suboptimal decision rules discussed in this section, and has been analyzed extensively, together with its variations and special cases. The term “restless” in the title of the present example, introduced by Whittle [Whi88], refers to the fact that the states of the projects that are not worked on may change.
An important question for the implementation of the preceding suboptimal control scheme is the determination of the separable reward function terms \tilde{J}_{k+1}^i. There are several possibilities here, and the best choice may strongly depend on the problem’s structure. One possibility is to compute \tilde{J}_{k+1}^i as the optimal cost-to-go function for a problem involving just project i, i.e., assuming that none of the other projects $j \neq i$ will be worked on for the remaining periods $k+1, \ldots, N-1$. This corresponds to restricting the control constraint set of the problem, and involves a single-project optimization that may be tractable.

An alternative possibility is to use a separable parametric approximation of the form

$$
\sum_{i=1}^{n} \tilde{J}_{k+1}^i(x_{k+1}^i, r_{k+1}^i),
$$

where r_{k+1}^i are vectors of “tunable” parameters. The values of r_{k+1}^i can be obtained by some training algorithm such as the ones to be discussed in Chapter 3.

Constraint Decoupling by Lagrangian Relaxation

Another approach to deal with coupled constraints is to replace them with linear Lagrange multiplier-related penalty functions that are added to the cost function. We illustrate this approach with an extension of the preceding multiarmed bandit Example 2.3.2.

Example 2.3.3 (Separable Lower Bound Approximation in Multiarmed Bandit Problems)

Let us consider a version of the multiple projects Example 2.3.2 involving a more general form of control. Here there are n subsystems, with a control u_k^i applied to subsystem i at time k. Instead of the requirement that only one subsystem is worked on at any one time, we assume a control constraint of the form

$$
u_k = (u_k^1, \ldots, u_k^n) \in U, \quad k = 0, 1, \ldots,
$$

where the set U is given (Example 2.3.2 is obtained as the special case where U consists of the union of the coordinate vectors, i.e., those whose components are equal to 0, except for one component that is equal to 1). The ith subsystem is described by

$$
x_{k+1}^i = f^i(x_k^i, u_k^i, w_k^i), \quad i = 1, \ldots, n, \quad k = 0, 1, \ldots,
$$

where x_k^i is the state taking values in some space, u_k^i is the control, w_k^i is a random disturbance, and f^i is a given function. We assume that w_k^i is selected according to a probability distribution that may depend on x_k^i and u_k^i, but not on prior disturbances or the disturbances w_k^j of the other subsystems $j \neq i$. The cost incurred at the kth stage by the ith subsystem is

$$
g^i(x_k^i, u_k^i, w_k^i), \quad (2.13)
$$
where \(g^i \) is a given one-stage cost function. For notational convenience, we assume stationarity of the system equation, the constraints, and the cost per stage, but the approach to be discussed applies to the nonstationary case as well.

One possibility for a separable approximation of the problem is to replace the constraint \(u_k \in U \) by a smaller or larger decoupled constraint, i.e., requiring that

\[
u^i_k \in U^i, \quad i = 1, \ldots, n, \quad k = 0, 1, \ldots,
\]

where the subsets \(U^1, \ldots, U^n \) satisfy \(U^1 \times \cdots \times U^n \subset U \) or \(U \subset U^1 \times \cdots \times U^n \), respectively.

We discuss another possibility for the case where the constraint set \(U \) includes linear inequality constraints. As a simple example, let us focus on a constraint set \(U \) of the form

\[
U = \left\{ (u^1, \ldots, u^n) \, \bigg| \, u^i \in U^i \subset \mathbb{R}, \; i = 1, \ldots, n, \; \sum_{i=1}^{n} c^i u^i \leq b \right\}, \tag{2.14}
\]

where \(c^1, \ldots, c^n \), and \(b \) are some scalars.† Here we replace the coupling constraint

\[
\sum_{i=1}^{n} c^i u^i_k \leq b, \quad k = 0, 1, \ldots, \tag{2.15}
\]

by a “relaxed” (larger) constraint whereby we require that

\[
\sum_{k=0}^{N-1} \sum_{i=1}^{n} c^i u^i_k \leq Nb. \tag{2.16}
\]

Roughly speaking, the constraint (2.16) requires that the coupling constraint (2.15) is satisfied “on the average,” over the \(N \) stages.

We may now obtain a lower bound approximation of the optimal cost of our problem by assigning a scalar Lagrange multiplier \(\lambda \geq 0 \) to the constraint (2.16), and add a Lagrangian term

\[
\lambda \left(\sum_{k=0}^{N-1} \sum_{i=1}^{n} c^i u^i_k - Nb \right) \tag{2.17}
\]

to the cost function. This amounts to replacing the \(k \)th stage cost (2.13) by

\[
g^i(x^i_k, u^i_k, w^i_k) + \lambda c^i u^i_k,
\]

while replacing the coupling constraint (2.14) with the decoupled constraint

\[
u^i_k \in U^i, \quad i = 1, \ldots, n,
\]

† More general cases, where \(u^i \) and \(b \) are multi-dimensional, and \(c^i \) are replaced by matrices of appropriate dimension, can be handled similarly, albeit with greater computational complications.
Sec. 2.3 Problem Approximation

cf. Eq. (2.14). This is a lower bound approximation, as is typical in Lagrange multiplier-based decomposition approaches in linear and nonlinear programming (see e.g., [BeT97], [Ber16b]). To see this, note that for every feasible solution of the original problem, the Lagrangian term (2.17) makes a nonpositive contribution when added to the cost function, while with the constraint relaxed, the resulting optimal cost can only be reduced further.

With the subsystems now decoupled, we may solve each single subsystem problem separately, thereby obtaining a separable lower bound approximation

\[\sum_{i=1}^{n} \tilde{J}_k(x_i^k, \lambda) \]

for every \(k = 1, \ldots, N - 1 \). This approximation can in turn be used to obtain a suboptimal one-step lookahead policy. Note that we may also try to optimize the approximation over \(\lambda \), either by ad hoc experimentation or by a more systematic optimization method.† Another possibility is to use a more general Lagrangian term of the form

\[\left(\sum_{k=0}^{N-1} \lambda_k \sum_{i=1}^{n} c^i u_k^i - Nb \right), \]

in place of the term (2.17), where \(\lambda_0, \ldots, \lambda_{N-1} \geq 0 \) are time-varying scalar multipliers.

2.3.2 Probabilistic Approximation - Certainty Equivalent Control

We will now consider problem approximation based on modifying the underlying probabilistic structure. The most common example of this type is the certainty equivalent controller (CEC). It replaces the stochastic disturbances with deterministic variables that are fixed at some “typical” values. Thus it acts as if a form of the certainty equivalence principle were holding, cf. the discussion of linear quadratic problems in Section 1.3.7.

The advantage of the CEC is that it involves a much less demanding computation than the stochastic DP algorithm: it requires the solution of a deterministic optimal control problem at each stage. This problem yields an optimal control sequence, the first component of which is used at the current stage, while the remaining components are discarded. Thus the CEC is able to deal with stochastic and even partial information problems by using the more flexible and potent methodology of deterministic optimal control.

† Maximization of the lower bound approximation over \(\lambda \) is an interesting possibility. This is common in duality-based optimization. Generally the approach of this example falls within the framework of Lagrangian relaxation, a decomposition method that is based on the use of Lagrange multipliers and duality theory; see e.g., [BeT97], [Ber15a], [Ber16a].
We will describe the CEC for the stochastic DP problem of Section 1.2. Suppose that for every state-control pair \((x_k, u_k)\) we have selected a “typical” value of the disturbance, which we denote by \(\tilde{w}_k(x_k, u_k)\). For example the expected values
\[
\tilde{w}_k(x_k, u_k) = E\{w_k \mid x_k, u_k\},
\]
can serve as typical values, if the disturbance spaces are convex subsets of Euclidean spaces [so that they include \(\tilde{w}_k(x_k, u_k)\)].

To implement the CEC at state \(x_k\) and stage \(k\) we solve a deterministic optimal control problem obtained from the original problem by replacing all uncertain quantities by their typical values. In particular, we solve the problem
\[
\min_{x_{i+1} = f_i(x_i, \mu_i(x_i), \tilde{w}_i(x_i, u_i)), \ u_i \in U_i(x_i), \ i = k, \ldots, N-1} \left[g_N(x_N) + \sum_{i=k}^{N-1} g_i(x_i, u_i, \tilde{w}_i(x_i, u_i)) \right].
\] (2.18)

If \(\{\tilde{u}_k, \ldots, \tilde{u}_{N-1}\}\) is the optimal control sequence for this problem, we use the first control in this sequence and discard the remaining controls:
\[
\tilde{\mu}_k(x_k) = \tilde{u}_k.
\]

An alternative implementation of the CEC is to compute off-line an optimal policy
\[
\{\mu^d_0(x_0), \ldots, \mu^d_{N-1}(x_{N-1})\}
\]
for the deterministic problem
\[
\begin{align*}
\text{minimize} & \quad g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), \tilde{w}_k(x_k, u_k)) \\
\text{subject to} & \quad x_{k+1} = f_k(x_k, \mu_k(x_k), \tilde{w}_k(x_k, u_k)), \quad \mu_k(x_k) \in U_k, \quad k \geq 0,
\end{align*}
\] (2.19)
by using the DP algorithm. Then the control input \(\tilde{\mu}_k(I_k)\) applied by the CEC at time \(k\) is given by
\[
\tilde{\mu}_k(I_k) = \mu^d_k(x_k).
\]
The two variants of the CEC just given are equivalent in terms of performance. The main difference is that the first variant is well-suited for on-line replanning, while the second variant is more suitable for an off-line implementation.

Finally, let us note that the CEC can be extended to partial state information problems, where the state \(x_k\) is not known at time \(k\), but instead an estimate of \(x_k\) is available, which is based on measurements that have been obtained up to time \(x_k\). In this case, we find a suboptimal control similarly, as in Eqs. (2.18) and (2.19), but with \(x_k\) replaced by the estimate, as if this estimate were exact.
Certainty Equivalent Control with Heuristics

Even though the CEC approach simplifies a great deal the computations, it still requires the optimal solution of a deterministic tail subproblem at each stage [cf. Eq. (2.18)]. This problem may still be difficult, and a more convenient approach may be to solve it suboptimally using a heuristic algorithm. In particular, given the state \(x_k \) at time \(k \), we may use some (easily implementable) heuristic to find a suboptimal control sequence \(\{ \tilde{u}_k, \tilde{u}_{k+1}, \ldots, \tilde{u}_{N-1} \} \) for the problem of Eq. (2.18), and then use \(\tilde{u}_k \) as the control for stage \(k \).

An important enhancement of this idea is to use minimization over the first control \(u_k \) and to use the heuristic only for the remaining stages \(k + 1, \ldots, N - 1 \). To implement this variant of the CEC, we must apply at time \(k \) a control \(\tilde{u}_k \) that minimizes over \(u_k \in U_k(x_k) \) the expression

\[
g_k(x_k, u_k, \tilde{w}_k(x_k, u_k)) + H_{k+1}(x_{k+1}), \tag{2.20}
\]

where

\[
x_{k+1} = f_k(x_k, u_k, \tilde{w}_k(x_k, u_k)), \tag{2.21}
\]

and \(H_{k+1} \) is the cost-to-go function corresponding to the heuristic, i.e., \(H_{k+1}(x_{k+1}) \) is the cost incurred over the remaining stages \(k + 1, \ldots, N - 1 \) starting from a state \(x_{k+1} \), using the heuristic. This is a hybrid approach: it resembles one-step lookahead with lookahead function \(H_{k+1} \), and it resembles certainty equivalence in that the uncertain quantities have been replaced by their typical values.

Note that for any next state \(x_{k+1} \), it is not necessary to have a closed-form expression for the heuristic cost-to-go \(H_{k+1}(x_{k+1}) \). Instead we can generate this cost by running the heuristic from \(x_{k+1} \) and computing the corresponding cost. Thus all the possible next states \(x_{k+1} \) must be computed for all possible values of the control \(u_k \), and then the heuristic must be run from each of these \(x_{k+1} \) to calculate \(H_{k+1}(x_{k+1}) \), which is needed in the minimization of the expression (2.20).

Example 2.3.4 (Parking with Probability Estimates)

Consider the one-directional parking problem of Example 1.3.3, where a driver is looking for a parking space along a line of \(N \) spaces, with a garage at the end of the line (position \(N \)). The driver starts at space 0 and traverses the parking spaces sequentially, i.e., continues to subsequent spaces, up to a decision to park in space \(k \) at cost \(c(k) \), if space \(k \) is free, or upon reaching the garage where parking is mandatory at cost \(C \). In Example 1.3.3, we assumed that space \(k \) is free with a given and fixed probability \(p(k) \), independently of whether other parking spaces are free or not.

Assume instead that \(p(k) \) is an estimate that is based on the driver’s observations of the status of preceding spaces. For example, this estimation process may involve exploiting probabilistic relations that may exist between
the parking statuses of different spaces. In particular, let us assume that
the driver, upon arrival at space \(k\), can estimate the belief state of the spaces
that lie ahead, i.e., the vector of conditional probabilities \(p(k+1), \ldots, p(N)\)
given the observations of the spaces 0, \ldots, \(k\).

The problem now becomes very hard to solve by exact DP, because the
state space is infinite: at time \(k\) the state consists of the free/taken status
of the current position \(k\), plus the belief state of the spaces that lie ahead.

However, a simple suboptimal approach to the problem can be based on cer-
tainty equivalence: at time \(k\), we fix the free/taken probabilities of the spaces
that lie ahead to their current belief values, and act as if these values will
not change in the future. Then upon reaching space \(k\), the fast DP algo-
rithm of Example 1.3.3 can be used to solve on-line the corresponding fixed
probabilities problem, and to find the corresponding suboptimal decision.

As an illustration, let \(p(k)\) be estimated by using the ratio \(R(k)\) of the
number of free spaces encountered up to reaching space \(k\) divided by the total
number \(k + 1\). Knowing \(R(k)\), the driver adjusts the probabilities \(p(m)\) for
\(m > k\) to the level

\[
p(m, R(k)) = \gamma p(m) + (1 - \gamma) R(k),
\]

where \(\gamma\) is a known constant between 0 and 1. The problem can then be
solved by exact DP, by using as state at time \(k\) the free/taken status of space
\(k\) together with the ratio \(R(k)\) [in the terminology of Section 1.3, \(R(k)\) is a
sufficient statistic, which contains all the relevant information for the purposes
of control]. The number of possible values of \(R(k)\) grows exponentially with
\(k\), so the solution by exact DP may become intractable for large \(N\). However,
by applying the probabilistic approximation approach of the present example,
the corresponding suboptimal policy may be easily obtained and implemented
on-line.

Partial Certainty Equivalent Control

In the preceding descriptions of the CEC all future and present uncertain
quantities are fixed at their typical values. A useful variation is to fix at
typical values only some of these quantities. For example, a partial state in-
formation problem may be treated as one of perfect state information, using
an estimate \(\hat{x}_k\) of \(x_k\) as if it were exact, while fully taking into account the
stochastic nature of the disturbances. Thus, if \(\{\mu_0^p(x_0), \ldots, \mu_{N-1}^p(x_{N-1})\}\)
is an optimal policy obtained from the DP algorithm for the stochastic
perfect state information problem

\[
\begin{align*}
\text{minimize} & \quad E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\} \\
\text{subject to} & \quad x_{k+1} = f_k(x_k, \mu_k(x_k), w_k), \quad \mu_k(x_k) \in U_k, \quad k = 0, \ldots, N - 1,
\end{align*}
\]

then the control input applied by this variant of CEC at time \(k\) is \(\mu_k^p(\hat{x}_k)\),
where \(\hat{x}_k\) is the estimate of \(x_k\) given the information available up to time
\(k\). Let us provide an example.
Example 2.3.5 (The Unscrupulous Innkeeper)

Consider an innkeeper who charges one of \(m \) different rates \(r_1, \ldots, r_m \) for a room as the day progresses, depending on whether he has many or few vacancies, so as to maximize his expected total income during the day. A quote of a rate \(r_i \) is accepted with probability \(p_i \) and is rejected with probability \(1 - p_i \), in which case the customer departs, never to return during that day. When the number \(y \) of customers that will ask for a room during the rest of the day (including the customer currently asking for a room) is known and the number of vacancies is \(x \), the optimal expected income \(\tilde{J}(x, y) \) of the innkeeper is given by the DP algorithm

\[
\tilde{J}(x, y) = \max_{i=1, \ldots, m} \left[p_i \left(r_i + \tilde{J}(x-1, y-1) \right) + (1 - p_i) \tilde{J}(x, y-1) \right],
\tag{2.22}
\]

for all \(x \geq 1 \) and \(y \geq 1 \), with initial conditions

\[
\tilde{J}(x, 0) = \tilde{J}(0, y) = 0, \quad \text{for all } x \text{ and } y.
\]

This algorithm can be used to obtain the values of \(\tilde{J}(x, y) \) for all pairs \((x, y)\).

Consider now the case where the innkeeper does not know \(y \) at the times of decision, but instead only maintains a probability distribution for \(y \). Then, it can be seen that the problem becomes a difficult partial state information problem. The exact DP algorithm should then be executed over the set of the pairs of \(x \) and the belief state of \(y \). Yet a reasonable partially stochastic CEC is based on approximating the optimal cost-to-go of subsequent decisions with \(\tilde{J}(x-1, \tilde{y}-1) \) or \(\tilde{J}(x, \tilde{y}-1) \), where the function \(\tilde{J} \) is calculated by the preceding recursion (2.22) and \(\tilde{y} \) is an estimate of \(y \), such as the closest integer to the expected value of \(y \). In particular, according to this one-step lookahead policy, when the innkeeper has a number of vacancies \(x \geq 1 \), he quotes to the current customer the rate that maximizes

\[
p_i \left(r_i + \tilde{J}(x-1, \tilde{y}-1) - \tilde{J}(x, \tilde{y}-1) \right).
\]

Thus in this suboptimal scheme, the innkeeper acts as if the state estimate \((x, \tilde{y})\) were exact.

Other Variations of Certainty Equivalent Control

It is also possible to use more general approaches to implement one-step lookahead control based on simplification of the probabilistic structure of the problem. The possibilities are highly problem-dependent by nature, but we may distinguish a few general techniques, which we illustrate through examples.
Example 2.3.6 (Decoupling Disturbance Distributions)

Let us consider a CEC approach in the context of enforced decomposition (cf. Section 2.3.1) when the subsystems are coupled only through the disturbance. In particular, consider n subsystems of the form

$$x_{k+1}^i = f^i(x_k^i, u_k^i, w_k^i), \quad i = 1, \ldots, n.$$

Here the ith subsystem has its own state x_k^i, control u_k^i, and cost per stage $g^i(x_k^i, u_k^i, w_k^i)$, but the probability distribution of w_k^i depends on the full state $x_k = (x_1^k, \ldots, x_n^k)$.

A natural form of suboptimal control is to solve at each stage k and for each i, the ith subsystem optimization problem where the probability distribution of the future disturbances $w_{k+1}^i, \ldots, w_{N-1}^i$ is “decoupled,” in the sense that it depends only on the corresponding “local” states $x_{k+1}^i, \ldots, x_{N-1}^i$. This distribution may be derived by using some nominal values $\tilde{x}_{k+1}^j, \ldots, \tilde{x}_{N-1}^j, j \neq i$, of the future states of the other subsystems, and these nominal values may in turn depend on the full current state x_k. The first control π_k in the optimal policy thus obtained is applied at the ith subsystem in stage k, and the remaining portion of this policy is discarded.

Example 2.3.7 (Approximation Using Weighted Scenarios)

We noted earlier the possibility to approximate the optimal cost-to-go with a CEC approach, whereby for a given state x_{k+1} at time $k+1$, we fix the remaining disturbances at some nominal values $\tilde{w}_{k+1}, \ldots, \tilde{w}_{N-1}$, and we compute an optimal control or heuristic-based trajectory starting from x_{k+1} at time $k+1$.

This CEC approximation involves a single nominal trajectory of the remaining uncertainty. To strengthen this approach, it is natural to consider multiple trajectories of the uncertainty, called scenarios. We may then construct a “weighted scenarios” approximation to the optimal cost-to-go, which involves the cost of either an optimal or a heuristic policy for each scenario.

Mathematically, we assume that we have a method, which at a given state x_{k+1}, generates q uncertainty sequences

$$w^s(x_{k+1}) = (w_{k+1}^s, \ldots, w_{N-1}^s), \quad s = 1, \ldots, q.$$

These are the scenarios considered at state x_{k+1}. The optimal cost $J_{k+1}^*(x_{k+1})$ is then approximated by

$$\tilde{J}_{k+1}(x_{k+1}, r) = \sum_{s=1}^q r_s C_s(x_{k+1}), \quad (2.23)$$
At State x_k

DP minimization

First ℓ Steps

\[\min_{u_k, \mu_{k+1}, \ldots, \mu_{k+\ell-1}} \mathbb{E}\left\{ g_k(x_k, u_k, w_k) + \sum_{m=k+1}^{k+\ell-1} g_m(x_m, \mu_m(x_m), w_m) + \tilde{J}_{k+\ell}(x_{k+\ell}) \right\} \]

“Future”

Heuristic Cost

Start End Plus Terminal Cost Approximation

Lookahead Minimization

Figure 2.4.1 The structure of rollout with ℓ-step lookahead at state x_k. It involves:

(a) Multistep lookahead over ℓ stages (possibly $\ell = 1$).

(b) Running a heuristic algorithm/base policy from state $x_{k+\ell}$ for a number of steps, say m.

(c) Adding a cost function approximation at the end of the $\ell + m$ steps.

The approximate cost $\tilde{J}_{k+\ell}(x_{k+\ell})$ is the sum of the base policy costs of the m stages plus the terminal cost function approximation from state $x_{k+\ell+m}$. In the pure form of rollout, the base policy is run to the end of the horizon, and the terminal cost function approximation is zero.

where $r = (r_1, \ldots, r_q)$ is a probability distribution, i.e., a vector of nonnegative parameters that add to 1, and $C_s(x_{k+1})$ is the cost corresponding to an occurrence of the scenario $w^s(x_{k+1})$, when starting from state x_{k+1} and using either an optimal or a given heuristic policy.

There may be several problem-dependent ways to generate the scenarios, possibly including randomization and/or simulation. The parameters r_1, \ldots, r_q may depend on the time index, and may be interpreted as “aggregate probabilities” that encode the aggregate effect on the cost-to-go function of uncertainty sequences that are similar to the scenario $w^s(x_{k+1})$. They may be computed using some ad hoc scheme, or some more systematic approach. The idea of simplifying the probabilistic model of the system, possibly using a model-free Monte-Carlo type of process, is also related to the rollout approach that is the subject of the next section.

2.4 ROLLOUT

The principal aim of rollout is *policy improvement*, i.e., start with a sub-optimal/heuristic policy, called the base policy (or sometimes, the default policy, or the base heuristic), and produce an improved policy by limited lookahead minimization with use of the heuristic at the end. This latter policy is called the rollout policy, and the fact that it is indeed “improved” will be established, under various conditions, in what follows in this section and also in Chapter 4.
In its pure ℓ-step lookahead form, rollout can be defined very simply: it is approximation in value space with the approximate cost-to-go values $\tilde{J}_{k+1}(x_{k+\ell})$ calculated by running the base policy, starting from each possible next state $x_{k+\ell}$. There is also a “truncated” variant of rollout for problems involving a long horizon, where the base policy is used for a limited number of steps, and some cost function approximation is added at the end to take into account the cost of the remaining steps (see Fig. 2.4.1). This cost function approximation is often simple (for example equal to zero), particularly when the base policy is run for a fairly large number of steps (or to the end of the horizon), but it may also be quite complex, and may also involve a sophisticated off-line training process, involving for example a neural network (see Chapter 3).

The choice of the base policy is of course important for the performance of the rollout approach. However, experimental evidence has shown that surprisingly good rollout performance may be attained even with a relatively poor base heuristic, particularly when long multistep lookahead is used. Generally speaking, there is no restriction on the base policy. It may be obtained in a variety of ways, including sophisticated off-line methods. What is important in the context of rollout is that the cost-to-go values of the base policy starting from any state can be calculated on-line in some way, possibly including simulation.

There is an important connection of rollout with the method of policy iteration for infinite horizon problems, which we will discuss in Chapter 4. We will see there that the pure form of the rollout policy (no cost function approximation) can be viewed as the result of a single policy iteration, starting from the base policy. Reversely, policy iteration can be viewed as a perpetual rollout algorithm, whereby a sequence of policies is generated, each one being a rollout policy obtained by using the preceding one as a base policy (see the discussion of Section 5.7.3).

Finally, let us note that rollout with terminal cost function approximation from state $\tilde{J}(x_{k+\ell+m})$ after $\ell + m$ steps (cf. Fig. 2.4.1), can be viewed as an approximate $(\ell + m)$-lookahead scheme. The approximation is due to the use of the base policy for the last m stages of the $(\ell + m)$-step minimization, in place of an optimal policy.

We will first describe rollout for finite-state deterministic problems and one-step lookahead, and then for stochastic problems, in Sections 2.4.1 and 2.4.2, respectively. We will also develop some variants of rollout that involve cost function evaluation by a human or software expert in Section 2.4.3. In Section 2.5, we will discuss rollout for infinite-spaces problems, including the important case of model predictive control. Furthermore, we will revisit rollout schemes in Section 5.1.2, in the context of infinite horizon problems.
2.4.1 On-Line Rollout for Deterministic Discrete Optimization

Let us consider a deterministic DP problem with a finite number of controls and a given initial state (so the number of states is also finite); cf. Section 1.3.2. We first focus on the pure form of rollout that involves a single step lookahead and no terminal cost approximation. Given a state x_k at time k, this algorithm considers all the tail subproblems that start at every possible next state x_{k+1}, and solves them suboptimally by using some algorithm, referred to as base heuristic.† Thus when at x_k, rollout generates on-line the next states x_{k+1} that correspond to all $u_k \in U_k(x_k)$, and uses the base heuristic to compute the sequence of states $\{x_{k+1}, \ldots, x_N\}$ and controls $\{u_{k+1}, \ldots, u_{N-1}\}$ such that

$$x_{i+1} = f_i(x_i, u_i), \quad i = k, \ldots, N-1.$$

The rollout algorithm then applies the control that minimizes over $u_k \in U_k(x_k)$ the tail cost expression for stages k to N:

$$g_k(x_k, u_k) + g_{k+1}(x_{k+1}, u_{k+1}) + \cdots + g_{N-1}(x_{N-1}, u_{N-1}) + g_N(x_N). \quad (2.24)$$

Equivalently, and more succinctly, the rollout algorithm applies at state x_k the control $\tilde{\mu}_k(x_k)$ given by the minimization

$$\tilde{\mu}_k(x_k) \in \text{arg min}_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k),$$

where $\tilde{Q}_k(x_k, u_k)$ is the approximate Q-factor defined by

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)), \quad (2.25)$$

with $H_{k+1}(x_{k+1})$ denoting the cost of the base heuristic starting from state x_{k+1} [i.e., $H_{k+1}(x_{k+1})$ is the sum of all the terms in Eq. (2.24), except the first]; see Fig. 2.4.2. The rollout process defines a suboptimal policy $\tilde{\pi} = \{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\}$, referred to as the rollout policy.

Example 2.4.1 (Traveling Salesman Problem)

Let us consider the traveling salesman problem, whereby a salesman wants to find a minimum mileage/cost tour that visits each of N given cities $c = 0, \ldots, N-1$ exactly once and returns to the city he started from (cf. Example 1.3.1). With each pair of distinct cities c, c', we associate a traversal cost $g(c, c')$. Note that we assume that we can go directly from every city to every other city. There is no loss of generality in doing so because we can assign

† For deterministic problems we prefer to use the term “base heuristic” rather than “base policy” for reasons to be explained later in this section, in the context of the notion of sequential consistency.
a very high cost \(g(c, c') \) to any pair of cities \((c, c')\) that is precluded from participation in the solution. The problem is to find a visit order that goes through each city exactly once and whose sum of costs is minimum.

There are many heuristic approaches for solving the traveling salesman problem. For illustration purposes, let us focus on the simple nearest neighbor heuristic, which constructs a sequence of partial tours, i.e., sequences of ordered collections of distinct cities. Here, we select a single city \(c_0 \) and at each iteration, we add to the current partial tour a city that does not close a cycle and minimizes the cost of the enlargement. In particular, after \(k \) iterations, we have a sequence \(\{c_0, \ldots, c_k\} \) consisting of distinct cities, and at the next iteration, we add a new city \(c_{k+1} \) that minimizes \(g(c_k, c_{k+1}) \) over all cities \(c_{k+1} \neq c_0, \ldots, c_k \). After the nearest neighbor heuristic selects city \(c_{N-1} \), a complete tour is formed with total cost

\[
g(c_0, c_1) + \cdots + g(c_{N-2}, c_{N-1}) + g(c_{N-1}, c_0). \tag{2.26}
\]

We can formulate the traveling salesman problem as a DP problem as we discussed in Example 1.3.1. We choose a starting city, say \(c_0 \), as the initial state \(x_0 \). Each state \(x_k \) corresponds to a partial tour \((c_0, c_1, \ldots, c_k)\) consisting of distinct cities. The states \(x_{k+1} \), next to \(x_k \), are sequences of the form \((c_0, c_1, \ldots, c_k, c_{k+1})\) that correspond to adding one more unvisited city \(c_{k+1} \neq c_0, c_1, \ldots, c_k \) (thus the unvisited cities are the feasible controls at a given partial tour/state). The terminal states \(x_N \) are the complete tours of the form \((c_0, c_1, \ldots, c_{N-1}, c_0)\), and the cost of the corresponding sequence of city choices is the cost of the corresponding complete tour. Thus a state trajectory yields a complete tour with total cost given by Eq. (2.26).

Let us now use as a base heuristic the nearest neighbor method. The corresponding rollout algorithm operates as follows: After \(k < N-1 \) iterations, we have a state \(x_k \), i.e., sequence \(\{c_0, \ldots, c_k\} \) consisting of distinct cities. At the next iteration, we add one more city as follows: We run the nearest neighbor heuristic starting from each of the sequences of the form...
Sec. 2.4 Rollout

Figure 2.4.3 Schematic illustration of rollout with the nearest neighbor heuristic for the traveling salesman problem. The initial state x_0 consists of a single city. The final state x_N is a complete tour of N cities, containing each city exactly once.

$\{c_0, \ldots, c_k, c\}$ where $c \neq c_0, \ldots, c_k$. We then select as next city c_{k+1} the city c that yielded the minimum cost tour under the nearest neighbor heuristic; see Fig. 2.4.3.

Cost Improvement with a Rollout Algorithm - Sequential Consistency

The definition of the rollout algorithm leaves open the choice of the base heuristic. There are several types of suboptimal solution methods that can be used as base heuristics, such as greedy algorithms, local search, genetic algorithms, tabu search, and others. Clearly we want to choose a base heuristic that strikes a good balance between quality of solutions produced and computational tractability.

Intuitively, we expect that the rollout policy’s performance is no worse than the one of the base heuristic. Since rollout optimizes over the first control before applying the heuristic, it makes sense to conjecture that it performs better than applying the heuristic without the first control optimization. However, some special conditions must hold in order to guarantee this cost improvement property. We provide two such conditions, sequential consistency and sequential improvement, and then show how to modify the algorithm to deal with the case where these conditions are not met.

We say that the base heuristic is **sequentially consistent** if it has the property that when it generates the sequence

\[\{x_k, x_{k+1}, \ldots, x_N\}\]

starting from state x_k, it also generates the sequence

\[\{x_{k+1}, \ldots, x_N\}\]
starting from state x_{k+1}. In other words, the base heuristic is sequentially consistent if it “stays the course”: when the starting state x_k is moved forward to the next state x_{k+1} of its state trajectory, the heuristic will not deviate from the remainder of the trajectory.

As an example, the reader may verify that the nearest neighbor heuristic described in the traveling salesman Example 2.4.1 is sequentially consistent. Similar examples include the use of many types of greedy heuristics (see [Ber17], Section 6.4). Generally most heuristics used in practice satisfy the sequential consistency condition at “most” states x_k. However, some heuristics of interest may violate this condition at some states.

Conceptually, it is important to note that sequential consistency is equivalent to the heuristic being a legitimate DP policy. By this we mean that there exists a policy $\{\mu_0, \ldots, \mu_{N-1}\}$ such that the sequence generated by the base heuristic starting from any state x_k is the same as the one generated by $\{\mu_0, \ldots, \mu_{N-1}\}$ starting from the same state x_k. To see this, note that a policy clearly has the sequential consistency property, and conversely, a sequentially consistent base heuristic defines a policy: the one that moves from x_k to the state x_{k+1} that lies on the path $\{x_k, x_{k+1}, \ldots, x_N\}$ generated by the base heuristic.

Based on this fact, we can show that the rollout algorithm obtained with a sequentially consistent base heuristic yields no worse cost than the base heuristic. In particular, consider the rollout policy $\tilde{\pi} = \{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\}$, and let $J_{k, \tilde{\pi}}(x_k)$ denote the cost obtained with $\tilde{\pi}$ starting from x_k. We claim that

$$J_{k, \tilde{\pi}}(x_k) \leq H_k(x_k), \quad \text{for all } x_k \text{ and } k,$$ \hspace{1cm} (2.27)

where $H_k(x_k)$ denotes the cost of the base heuristic starting from x_k.

We prove this inequality by induction. Clearly it holds for $k = N$, since $J_{N, \tilde{\pi}} = H_N = g_N$. Assume that it holds for index $k + 1$. For any state x_k, let \overline{u}_k be the control applied by the base heuristic at x_k. Then we have

$$J_{k, \tilde{\pi}}(x_k) = g_k(x_k, \tilde{\mu}_k(x_k)) + J_{k+1, \tilde{\pi}}\left(f_k(x_k, \tilde{\mu}_k(x_k))\right)$$

$$\leq g_k(x_k, \tilde{\mu}_k(x_k)) + H_{k+1}\left(f_k(x_k, \tilde{\mu}_k(x_k))\right)$$

$$= \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)) \right]$$

$$\leq g_k(x_k, \overline{u}_k) + H_{k+1}(f_k(x_k, \overline{u}_k))$$

$$= H_k(x_k),$$

where:

(a) The first equality is the DP equation for the rollout policy $\tilde{\pi}$.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.
The third equality is the DP equation for the policy that corresponds to the base heuristic (this is the step where we need sequential consistency).

This completes the induction proof of the cost improvement property (2.27).

Sequential Improvement

We will now show that the rollout policy has no worse performance than its base heuristic under a condition that is weaker than sequential consistency. Let us recall that the rollout algorithm $\tilde{\pi} = \{\tilde{\mu}_0, \ldots, \tilde{\mu}_{N-1}\}$ is defined by the minimization

$$\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k)$$

where $\tilde{Q}_k(x_k, u_k)$ is the approximate Q-factor defined by

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)),$$

[cf. Eqs. (2.25)], and $H_{k+1}(f_k(x_k, u_k))$ denotes the cost of the base heuristic starting from state $f_k(x_k, u_k)$.

We say that the base heuristic is **sequentially improving**, if for all x_k and k, we have

$$\min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)) \right] \leq H_k(x_k). \quad (2.29)$$

In words, the sequential improvement property (2.29) states that

Minimal heuristic Q-factor at $x_k \leq$ Heuristic cost at x_k. \quad (2.30)

To show that a sequentially improving heuristic yields policy improvement, simply note that from the calculation of Eq. (2.28), replacing the last two steps (that rely on sequential consistency) with Eq. (2.29), we have

$$J_{k, \tilde{\pi}}(x_k) \leq H_k(x_k), \quad \text{for all } x_k \text{ and } k.$$

Thus the rollout algorithm obtained with a sequentially improving base heuristic, will improve or at least will perform no worse than the base heuristic, from every starting state x_k. Note that when the heuristic is sequentially consistent it is also sequentially improving. This follows from Eq. (2.30), since for a sequentially consistent heuristic, the heuristic cost at x_k is equal to the Q-factor of the control \overline{u}_k that the heuristic applies at x_k,

$$g_k(x_k, \overline{u}_k) + H_{k+1}(f_k(x_k, \overline{u}_k)).$$
which is greater or equal to the minimal Q-factor at \(x_k \). This implies Eq. (2.29).

Empirically, it has been observed that the cost improvement obtained by rollout with a sequentially improving heuristic is typically considerable and often dramatic. Generally, however, it is hard to provide solid theoretical support for this observation. Several case studies support the consistently good performance of rollout (at least in the pure form described above); see the end of chapter references. The textbook [Ber17], Section 6.4, provides some detailed worked-out examples. The price for the performance improvement is extra computation that is typically equal to the computation time of the base heuristic times a factor that is a low order polynomial of the problem size.

On the other hand the sequential improvement condition may not hold for a given base heuristic. It is thus important to know that any heuristic can be made to be sequentially improving with a simple modification, as we explain next.

The Fortified Rollout Algorithm

We will describe a variant of the rollout algorithm that implicitly uses a sequentially improving base heuristic, so that it has the sequential improvement property (2.29). This variant, called the fortified rollout algorithm, starts at \(x_0 \), and generates step-by-step a sequence of states \(\{x_0, x_1, \ldots, x_N\} \) and corresponding sequence of controls. Upon reaching state \(x_k \) it stores the trajectory

\[
\mathcal{T}_k = \{x_0, u_0, \ldots, u_{k-1}, x_k\}
\]

that has been constructed up to stage \(k \), called permanent trajectory, and it also stores a tentative trajectory

\[
\mathcal{T}_k = \{x_k, u_k, x_{k+1}, \ldots, x_{N-1}, x_N\}
\]

with corresponding cost

\[
C(\mathcal{T}_k) = g_k(x_k, u_k) + g_{k+1}(x_{k+1}, u_{k+1}) + \cdots + g_{N-1}(x_{N-1}, u_{N-1}) + g_N(x_N).
\]

The tentative trajectory is such that \(\mathcal{T}_k \cup \mathcal{T}_k \) is the best end-to-end trajectory computed up to stage \(k \) of the algorithm. Initially, \(\mathcal{T}_0 \) is the trajectory generated by the base heuristic starting at the initial state \(x_0 \). The idea now is to deviate from the rollout algorithm at every state \(x_k \) where the base heuristic produces a trajectory with larger cost than \(\mathcal{T}_k \), and use \(\mathcal{T}_k \) instead.

In particular, upon reaching state \(x_k \), we run the rollout algorithm as earlier, i.e., for every \(u_k \in U_k(x_k) \) and next state \(x_{k+1} = f_k(x_k, u_k) \), we
Sec. 2.4 Rollout

Figure 2.4.4 Schematic illustration of fortified rollout. After \(k \) steps, we have constructed the permanent trajectory

\[\mathcal{P}_k = \{ x_0, u_0, \ldots, u_{k-1}, x_k \}, \]

and the tentative trajectory

\[\mathcal{T}_k = \{ x_k, u_k, \bar{x}_{k+1}, u_{k+1}, \ldots, u_{N-1}, \bar{x}_N \} \]

such that \(\mathcal{P}_k \cup \mathcal{T}_k \) is the best end-to-end trajectory computed so far. We now run the rollout algorithm at \(x_k \), i.e., we find the control \(\bar{u}_k \) that minimizes over \(u_k \) the sum of \(g_k(x_k, u_k) \) plus the heuristic cost from the state \(x_{k+1} = f_k(x_k, u_k) \), and the corresponding trajectory

\[\mathcal{T}_k = \{ x_k, \bar{u}_k, \bar{x}_{k+1}, \bar{u}_{k+1}, \ldots, \bar{u}_{N-1}, \bar{x}_N \}. \]

If the cost of the end-to-end trajectory \(\mathcal{P}_k \cup \mathcal{T}_k \) is lower than the cost of \(\mathcal{P}_k \cup \bar{\mathcal{T}}_k \), we add \((\bar{u}_k, \bar{x}_{k+1})\) to the permanent trajectory and set the tentative trajectory to

\[\mathcal{T}_{k+1} = \{ \bar{x}_{k+1}, \bar{u}_{k+1}, \ldots, \bar{u}_{N-1}, \bar{x}_N \}. \]

Otherwise we add \((u_k, x_{k+1})\) to the permanent trajectory and set the tentative trajectory to

\[\mathcal{P}_{k+1} = \{ u_{k+1}, \bar{u}_{k+1}, \ldots, \bar{u}_{N-1}, \bar{x}_N \}. \]

Note that the fortified rollout will produce a different result than the ordinary rollout if the heuristic when started from \(x_{k+1} \) constructs a trajectory that is different than the tail portion of the tentative trajectory that starts at \(\bar{x}_{k+1} \).

run the base heuristic from \(x_{k+1} \), and find the control \(\bar{u}_k \) that gives the best trajectory, denoted

\[\bar{\mathcal{T}}_k = \{ x_k, \bar{u}_k, \bar{x}_{k+1}, \bar{u}_{k+1}, \ldots, \bar{u}_{N-1}, \bar{x}_N \} \]

with corresponding cost

\[C(\bar{\mathcal{T}}_k) = g_k(x_k, \bar{u}_k) + g_{k+1}(\bar{x}_{k+1}, \bar{u}_{k+1}) + \cdots + g_{N-1}(\bar{x}_{N-1}, \bar{u}_{N-1}) + g_N(\bar{x}_N). \]

Whereas the ordinary rollout algorithm would choose control \(\bar{u}_k \) and move to \(\bar{x}_{k+1} \), the fortified algorithm compares \(C(\mathcal{T}_k) \) and \(C(\bar{\mathcal{T}}_k) \), and depending
on which of the two is smaller, chooses \overline{u}_k or \tilde{u}_k and moves to \overline{x}_{k+1} or to \tilde{x}_{k+1}, respectively. In particular, if $C(\overline{T}_k) \leq C(\tilde{T}_k)$ the algorithm sets the next state and corresponding tentative trajectory to

$$x_{k+1} = \overline{x}_{k+1}, \quad \overline{T}_{k+1} = \{\overline{x}_{k+1}, \overline{u}_{k+1}, \ldots, \overline{u}_{N-1}, \overline{x}_N\},$$

and if $C(T_k) > C(\tilde{T}_k)$ it sets the next state and corresponding tentative trajectory to

$$x_{k+1} = \tilde{x}_{k+1}, \quad \tilde{T}_{k+1} = \{\tilde{x}_{k+1}, \tilde{u}_{k+1}, \ldots, \tilde{u}_{N-1}, \tilde{x}_N\}.$$

In other words the fortified rollout at x_k follows the current tentative trajectory T_k unless a lower cost trajectory \tilde{T}_k is discovered by running the base heuristic from all possible next states x_{k+1}. It follows that at every state the trajectory that consists of the union of the permanent and the tentative trajectories, has no larger cost than the initial tentative trajectory, which is the one produced by the base heuristic starting from x_0. Moreover, it can be seen that if the base heuristic is sequentially improving, the rollout algorithm and its fortified version coincide. Experimental evidence suggests that it is often important to use the fortified version if the base heuristic is not sequentially improving.

Finally we note that the fortified rollout may be viewed as the ordinary rollout algorithm applied to a modified version of the original problem and modified base heuristic that has the sequential improvement property. The corresponding construction is somewhat tedious and will not be given; we refer to [BTW97] and [Ber17], Section 6.4.2.

Using Multiple Heuristics

In many problems, several promising heuristics may be available. It is then possible to use all of these heuristics in the rollout framework. The idea is to construct a superheuristic, which selects the best trajectory produced by all the base heuristic trajectories. The superheuristic can then be used as the base heuristic for a rollout algorithm.

In particular, let us assume that we have M base heuristics, and that the mth of these, given a state x_{k+1}, produces a trajectory

$$\tilde{T}^m_{k+1} = \{x_{k+1}, \tilde{u}^m_{k+1}, \ldots, \tilde{u}^m_{N-1}, \tilde{x}^m_N\},$$

and corresponding cost $C(\tilde{T}^m_{k+1})$. The superheuristic then produces at x_{k+1} the trajectory \tilde{T}^m_{k+1} for which $C(\tilde{T}^m_{k+1})$ is minimum.

An interesting property, which can be readily verified by using the definitions, is that if all the base heuristics are sequentially improving, the same is true for the superheuristic. Moreover, there is a fortified version of the rollout algorithm, which has the property that it produces a trajectory with no worse cost than all the trajectories produced by the M base heuristics when started at the initial state x_0.

Truncated Rollout Algorithms with Multistep Lookahead and Terminal Cost Function Approximation

We may incorporate multistep lookahead into the deterministic rollout framework. To describe two-step lookahead in its most straightforward implementation, suppose that after k steps we have reached state x_k. We then consider the set of all two-step-ahead states x_{k+2}, we run the base heuristic starting from each of them, and compute the two-stage cost to get from x_k to x_{k+2}, plus the cost of the base heuristic from x_{k+2}. We select the state, say \tilde{x}_{k+2}, that is associated with minimum cost, compute the controls \tilde{u}_k and \tilde{u}_{k+1} that lead from x_k to \tilde{x}_{k+2}, and choose \tilde{u}_k as the next rollout control and $x_{k+1} = f_k(x_k, \tilde{u}_k)$ as the next state; see Fig. 2.4.5. The extension of the algorithm to lookahead of more than two steps is straightforward: instead of the two-step-ahead states x_{k+2} we run the base heuristic starting from all the possible ℓ-step ahead states $x_{k+\ell}$, etc.

An important variation for problems with a large number of stages, is truncated rollout with terminal cost approximation. Here the rollout trajectories are obtained by running the base heuristic from the leaf nodes of the lookahead tree, and they are truncated after a given number of steps, while a terminal cost approximation is added to the heuristic cost to compensate for the resulting error; see Fig. 2.4.5. One possibility that works well for
many problems is to simply set the terminal cost approximation to zero. Alternatively, the terminal cost function approximation may be obtained using some off-line training process that may involve an approximation architecture such as a neural network (see Chapter 3).

Among other variations of deterministic multistep rollout, let us mention a fortified version, which maintains a tentative trajectory, along the lines described earlier for the one-step lookahead case. In still another version of ℓ-step lookahead rollout, we may consider “pruning” the lookahead tree. By this we mean disregarding some of the states that are ℓ steps or less ahead, which are judged less promising according to some criterion (for example the costs of the base heuristic after a one-step lookahead); see Fig. 2.4.6. This may be viewed as selective depth lookahead, and aims to limit the number of times that the base heuristic is applied, which can become overwhelming as the length of lookahead is increased. We will encounter again the idea of selective depth lookahead in the context of stochastic rollout and Monte Carlo tree search (see the next section), where in addition to the length of lookahead, the accuracy of the simulation to evaluate the cost of the base heuristic is adapted to the results of earlier computations.

Finally, let us mention a variant of rollout that maintains multiple trajectories, extending from a given state x_k to possibly multiple next states x_{k+1}. These states are the ones considered “most promising” based on the current results of the base heuristic (like being “ϵ-best”), but may be discarded later based on subsequent computations. Such extended forms of rollout are restricted to deterministic problems, and tend to be problem-dependent. We will not consider them further in this book.

2.4.2 Stochastic Rollout and Monte Carlo Tree Search

We will now discuss the extension of the rollout algorithm to stochastic finite-state DP problems. We will restrict ourselves to the case where the base heuristic is a policy $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$ (i.e., is sequentially consistent, in the context of deterministic problems). It is possible to consider more general rollout algorithms that involve base heuristics with a sequential improvement property, but we will not pursue this idea, as it does not seem to have been applied so far in interesting stochastic contexts.

We first note that the cost improvement property that we showed for deterministic problems under the sequential consistency condition carries through for stochastic problems. In particular, let us denote by $J_{k,\pi}(x_k)$ the cost corresponding to starting the base policy at state x_k, and by $J_{k,\tilde{\pi}}(x_k)$ the cost corresponding to starting the rollout algorithm at state x_k. We claim that

$$J_{k,\tilde{\pi}}(x_k) \leq J_{k,\pi}(x_k), \quad \text{for all } x_k \text{ and } k.$$

We prove this inequality by induction similar to the deterministic case. Clearly it holds for $k = N$, since $J_{N,\tilde{\pi}} = J_{N,\pi} = g_N$. Assuming that
Sec. 2.4 Rollout

Figure 2.4.6 Illustration of a form of deterministic rollout with selective depth lookahead. After \(k \) steps of the algorithm, we have a trajectory that starts at the initial state \(x_0 \) and ends at state \(x_k \). We then generate the set of all possible next states (states \(x_{k+1}^1, x_{k+1}^2, x_{k+1}^3, x_{k+1}^4 \) in the figure). We “evaluate” these states using the base heuristic, and select some of them for “expansion,” i.e., we generate their next states \(x_{k+2} \), evaluate them using the base heuristic, and continue. In the end we have a selective depth tree of next states, and the base heuristic costs from the leaves of the tree. The state \(x_{k+1} \) that corresponds to smallest overall cost is chosen by the selective depth lookahead rollout algorithm. For problems with a large number of stages, we can also truncate the rollout trajectories and add a terminal cost function approximation as compensation for the resulting error; cf. Fig. 2.4.5.

It holds for index \(k + 1 \), we have for all \(x_k \),

\[
J_{k+1}(x_k) = E \left\{ g_k(x_k, \hat{\mu}_k(x_k), w_k) + J_{k+1}(f_k(x_k, \hat{\mu}_k(x_k), w_k)) \right\}
\]

\[
\leq E \left\{ g_k(x_k, \hat{\mu}_k(x_k), w_k) + J_{k+1}(f_k(x_k, \hat{\mu}_k(x_k), w_k)) \right\}
\]

\[
= \min_{u_k \in U_k(x_k)} E \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k)) \right\}
\]

\[
\leq E \left\{ g_k(x_k, \mu_k(x_k), w_k) + J_{k+1}(f_k(x_k, \mu_k(x_k), w_k)) \right\}
\]

\[
= J_{k}(x_k),
\]
where:

(a) The first equality is the DP equation for the rollout policy $\tilde{\pi}$.
(b) The first inequality holds by the induction hypothesis.
(c) The second equality holds by the definition of the rollout algorithm.
(d) The third equality is the DP equation for the policy π that corresponds to the base heuristic.

The induction proof of the cost improvement property (2.27) is thus complete.

Similar to deterministic problems, it has been observed empirically that for stochastic problems the rollout policy not only does not deteriorate the performance of the base policy, but also typically produces substantial cost improvement; see the case studies referenced at the end of the chapter.

Simulation-Based Implementation of the Rollout Algorithm

A conceptually straightforward way to compute the rollout control at a given state x_k and time k is to consider each possible control $u_k \in U_k(x_k)$ and to generate a “large” number of simulated trajectories of the system starting from (x_k, u_k). Thus a simulated trajectory has the form

$$x_{i+1} = f_i(x_i, \mu_i(x_i), w_i), \quad i = k + 1, \ldots, N - 1,$$

where $\{\mu_{k+1}, \ldots, \mu_{N-1}\}$ is the tail portion of the base policy, the first generated state is

$$x_{k+1} = f_k(x_k, u_k, w_k),$$

and the disturbance sequences $\{w_k, \ldots, w_{N-1}\}$ are independent random samples. The costs of the trajectories corresponding to a pair (x_k, u_k) can be viewed as samples of the Q-factor

$$Q_k(x_k, u_k) = E\left\{g_k(x_k, u_k, w_k) + J_{k+1, \tilde{\pi}}(f_k(x_k, u_k, w_k))\right\},$$

where $J_{k+1, \tilde{\pi}}$ is the cost-to-go function of the base policy, i.e., $J_{k+1, \tilde{\pi}}(x_{k+1})$ is the cost of using the base policy starting from x_{k+1}. For problems with a large number of stages, it is also common to truncate the rollout trajectories and add a terminal cost function approximation as compensation for the resulting error.

By Monte Carlo averaging of the costs of the sample trajectories plus the terminal cost (if any), we obtain an approximation to the Q-factor $Q_k(x_k, u_k)$ for each control $u_k \in U_k(x_k)$, which we denote by $\tilde{Q}_k(x_k, u_k)$. We then compute the (approximate) rollout control $\tilde{\mu}_k(x_k)$ with the minimization

$$\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k). \quad (2.31)$$
Figure 2.4.7 Illustration of rollout for backgammon. At a given position and roll of the dice, the set of all possible moves is generated, and the outcome of the game for each move is evaluated by “rolling out” (simulating to the end) many games using a suboptimal/heuristic backgammon player (the TD-Gammon player was used for this purpose in [TeG96]), and by Monte-Carlo averaging the scores. The move that results in the best average score is selected for play.

Example 2.4.2 (Backgammon)

The first impressive application of rollout was given for the ancient two-player game of backgammon, in the paper by Tesauro and Galperin [TeG96]; see Fig. 2.4.7. They implemented a rollout algorithm, which attained a level of play that was better than all computer backgammon programs, and eventually better than the best humans. Tesauro had proposed earlier the use of one-step and two-step lookahead with lookahead cost function approximation provided by a neural network, resulting in a backgammon program called TD-Gammon [Tes89a], [Tes89b], [Tes92], [Tes94], [Tes95], [Tes02]. TD-Gammon was trained with the use of the TD(λ) algorithm that will be discussed in Section 5.5, and was used as the base heuristic (for each of the two players) to simulate game trajectories. The rollout algorithm also involved truncation of long game trajectories, using a terminal cost function approximation based on TD-Gammon. Game trajectories are of course random, since they involve the use of dice at each player’s turn. Thus the scores of many trajectories have to be generated and Monte Carlo averaged to assess the probability of a win from a given position.

An important issue to consider here is that backgammon is a two-player game and not an optimal control problem that involves a single decision maker. While there is a DP theory for sequential zero-sum games, this theory has not been covered in this book. Thus how are we to interpret rollout algorithms in the context of two-player games? The answer is to treat the
two players unequally: one player uses the heuristic policy exclusively (TD-Gammon in the present example). The other player takes the role of the optimizer, and tries to improve on the heuristic policy (TD-Gammon) by using rollout. Thus “policy improvement” in the context of the present example means that when playing against a TD-Gammon opponent, the rollout player achieves a better score on the average than if he/she were to play with the TD-Gammon strategy. In particular, the theory does not guarantee that a rollout player that is trained using TD-Gammon for both players will do better than TD-Gammon would against a non-TD-Gammon opponent. While this is a plausible practical hypothesis, it is one that can only be tested empirically.

Most of the currently existing computer backgammon programs descend from TD-Gammon. Rollout-based backgammon programs are the most powerful in terms of performance, consistent with the principle that a rollout algorithm performs better than its base heuristic. However, they are too time-consuming for real-time play, because of the extensive on-line simulation requirement at each move (the situation in backgammon is exacerbated by its high branching factor, i.e., for a given position, the number of possible successor positions is quite large, as compared for example with chess). They have been used in a limited diagnostic way to assess the quality of neural network-based programs (many articles and empirical works on computer backgammon are posted on-line; see e.g., http://www.bkgm.com/articles/page07.html).

Monte Carlo Tree Search

In the rollout implementation just described, we implicitly assumed that once we reach state x_k, we generate the same large number of trajectories starting from each pair (x_k, u_k), with $u_k \in U(x_k)$, to the end of the horizon. The drawback of this is threefold:

(a) The trajectories may be too long because the horizon length N is large (or infinite, in an infinite horizon context).

(b) Some of the controls u_k may be clearly inferior to others, and may not be worth as much sampling effort.

(c) Some of the controls u_k that appear to be promising, may be worth exploring better through multistep lookahead.

This has motivated variants, generally referred to as *Monte Carlo tree search* (MCTS for short), which aim to trade off computational economy with a hopefully small risk of degradation in performance. Variants of this type involve, among others, early discarding of controls deemed to be inferior based on the results of preliminary calculations, and simulation that is limited in scope (either because of a reduced number of simulation samples, or because of a shortened horizon of simulation, or both).

In particular, a simple remedy for (a) above is to use rollout trajectories of reasonably limited length, with some terminal cost approximation at the end (in an extreme case, the rollout may be skipped altogether for some states, i.e., rollout trajectories have zero length). The terminal cost func-
tion may be very simple (such as zero) or may be obtained through some auxiliary calculation. In fact the base policy used for rollout may be the one that provides the terminal cost function approximation, as noted for the rollout-based backgammon algorithm of Example 2.4.2. In particular, an approximation to the cost function of the base policy may be obtained by training some approximation architecture, such as a neural network (see Chapter 3), and may be used as a terminal cost function.

A simple but less straightforward remedy for (b) is to use some heuristic or statistical test to discard some of the controls \(u_k\), as soon as this is suggested by the early results of simulation. Similarly, to implement (c) one may use some heuristic to increase the length of lookahead selectively for some of the controls \(u_k\). This is similar to the selective depth lookahead procedure for deterministic rollout that we illustrated in Fig. 2.4.6.

The MCTS approach can be based on sophisticated procedures for implementing and combining the ideas just described. The implementation is often adapted to the problem at hand, but the general idea is to use the interim results of the computation and statistical tests to focus the simulation effort along the most promising directions. Thus to implement MCTS one needs to maintain a lookahead tree, which is expanded as the relevant Q-factors are evaluated by simulation, and which balances the competing desires of exploitation and exploration (generate and evaluate controls that seem most promising in terms of performance versus assessing the potential of inadequately explored controls). Ideas that were developed in the context of multiarmed bandit problems have played an important role in the construction of this type of MCTS procedures (see the end-of-chapter references).

Example 2.4.3 (Statistical Tests for Adaptive Sampling with a One-Step Lookahead)

Let us consider a typical one-step lookahead selection strategy that is based on adaptive sampling. We are at a state \(x_k\) and we try to find a control \(\hat{u}_k\) that minimizes an approximate Q-factor

\[
\hat{Q}_k(x_k, u_k) = E\{q_k(x_k, u_k, w_k) + \hat{J}_{k+1}(f_k(x_k, u_k, w_k))\}
\]

over \(u_k \in U_k(x_k)\), by averaging samples of \(\hat{Q}_k(x_k, u_k)\). We assume that \(U_k(x_k)\) contains \(m\) elements, which for simplicity are denoted \(1, \ldots, m\). At the \(n\)th sampling period, knowing the outcomes of the preceding sampling periods, we select one of the \(m\) controls, say \(i\), and we draw a sample of \(\hat{Q}_k(x_k, i)\), whose value is denoted by \(S_{i\ell}\). Thus after the \(n\)th sampling period we have an estimate \(Q_{i,n}\) of the Q-factor of each control \(i = 1, \ldots, m\) that has been sampled at least once, given by

\[
Q_{i,n} = \frac{\sum_{\ell=1}^{n}\delta(i_\ell = i)S_{i\ell}}{\sum_{\ell=1}^{n}\delta(i_\ell = i)}
\]
Figure 2.4.8 Illustration of one-step lookahead MCTS at a state x_k. The Q-factor sampled next corresponds to the control i with minimum sum of exploitation index (here taken to be the running average $Q_{i,n}$) and exploration index ($R_{i,n}$, possibly given by the UCB rule).

where

$$\delta(i_{\ell} = i) = \begin{cases} 1 & \text{if } i_{\ell} = i, \\ 0 & \text{if } i_{\ell} \neq i. \end{cases}$$

Thus $Q_{i,n}$ is the empirical mean of the Q-factor of control i (total sample value divided by total number of samples), assuming that i has been sampled at least once.

After n samples have been collected, with each control sampled at least once, we may declare the control i that minimizes $Q_{i,n}$ as the “best” one, i.e., the one that truly minimizes the Q-factor $Q_k(x_k, i)$. However, there is a positive probability that there is an error: the selected control may not minimize the true Q-factor. In adaptive sampling, roughly speaking, we want to design the sample selection strategy and the criterion to stop the sampling, in a way that keeps the probability of error small (by allocating some sampling effort to all controls), and the number of samples limited (by not wasting samples on controls i that appear inferior based on their empirical mean $Q_{i,n}$).

Intuitively, a good sampling policy will balance at time n the desires of exploitation and exploration (i.e., sample controls that seem most promising, in the sense that they have a small empirical mean $Q_{i,n}$, versus assessing the potential of inadequately explored controls, those i that have been sampled a small number of times). Thus it makes sense to sample next the control i that minimizes the sum

$$T_{i,n} + R_{i,n}$$

of two indexes: an exploitation index $T_{i,n}$ and an exploration index $R_{i,n}$. Usually the exploitation index is chosen to be the empirical mean $Q_{i,n}$, and the exploration index is based on a confidence interval formula and depends on the sample count

$$s_i = \sum_{\ell=1}^{n} \delta(i_{\ell} = i)$$
of control i. A frequently suggested choice is the UCB rule (upper confidence bound), which sets

$$R_{i,n} = -c \sqrt{\frac{\log n}{s_i}},$$

where c is a positive constant that is selected empirically (some analysis suggests values near $c = \sqrt{2}$, assuming that $Q_{i,n}$ is normalized to take values in the range $[-1, 0]$). The UCB rule, first proposed in the paper [ACF02], has been extensively discussed in the literature both for one-step and for multistep lookahead [where it is called UCT (UCB applied to trees; see [KoS16])]. Its justification is based on probabilistic analyses that relate to the multiarmed bandit problem, and is beyond our scope. Alternatives to the UCT formula have been suggested, and in fact the exploitation term has a different form from the one above in the AlphaZero program, and depends on the depth of lookahead (see Silver et al. [SHS17]).

Sampling policies for MCTS with multistep lookahead are based on similar sampling ideas to the case of one-step lookahead. A simulated trajectory is run from a node i of the lookahead tree that minimizes the sum $T_{i,n} + R_{i,n}$ of an exploitation index and an exploration index. There are several schemes of this type, but the details are beyond our scope (see the end-of-chapter references).

A major success has been the use of MCTS in two-player game contexts, such as the AlphaGo computer program (Silver et al. [SHM16]), which performs better than the best humans in the game of Go. This program integrates several of the techniques discussed in this chapter, and in Chapters 3 and 4, including MCTS and rollout using a base policy that is trained off-line using a deep neural network. We will discuss neural network training techniques in Chapter 3. The AlphaZero program, which has performed spectacularly well against humans and other programs in the games of Go and chess (Silver et al. [SHS17]), bears some similarity with AlphaGo, and critically relies on MCTS, but does not use rollout.

Randomized Policy Improvement by MCTS

We have described rollout and MCTS as schemes for policy improvement: start with a base policy, and compute an improved policy based on the results of one-step lookahead or multistep lookahead followed by simulation with the base policy. We have implicitly assumed that both the base policy and the rollout policy are deterministic in the sense that they map each state x_k into a unique control $\hat{\mu}_k(x_k)$ [cf. Eq. (2.31)]. In some contexts, success has been achieved with randomized policies, which map a state x_k to a probability distribution over the set of controls $U_k(x_k)$, rather than mapping onto a single control. In particular, the AlphaGo and AlphaZero programs use MCTS to generate and use for training purposes randomized policies, which specify at each board position the probabilities with which the various moves are selected.
A randomized policy can be used as a base policy in a rollout context in exactly the same way as a deterministic policy: for a given state x_k, we just generate sample trajectories and associated sample Q-factors, starting from each leaf-state of the lookahead tree that is rooted at x_k. We then average the corresponding Q-factor samples. However, the rollout/improved policy, as we have described it, is a deterministic policy, i.e., it applies at x_k the control $\hat{\mu}_k(x_k)$ that is “best” according to the results of the rollout [cf. Eq. (2.31)]. Still, however, if we wish to generate an improved policy that is randomized, we can simply change the probabilities of different controls in the direction of the deterministic rollout policy. This can be done by increasing by some amount the probability of the “best” control $\hat{\mu}_k(x_k)$ from its base policy level, while proportionally decreasing the probabilities of the other controls.

The use of MCTS provides a related method to “improve” a randomized policy. In the process of adaptive simulation that is used in MCTS, we generate frequency counts of the different controls, i.e., the proportion of rollout trajectories associated each $u_k \in U_k(x_k)$. We can then obtain the rollout randomized policy by moving the probabilities of the base policy in the direction suggested by the frequency counts, i.e., increase the probability of high-count controls and reduce the probability of the others. This type of policy improvement is reminiscent of gradient-type methods, and has been successful in a number of applications; see Section 5.7 for further discussion, and the end-of-chapter references for such policy improvement implementations in AlphaGo, AlphaZero, and other application contexts.

Variance Reduction in Rollout - Comparing Advantages

When using simulation, sampling is often organized to effect variance reduction. By this we mean that for a given problem, the collection and use of samples is structured so that the variance of the simulation error is made smaller, with the same amount of simulation effort. There are several methods of this type for which we refer to textbooks on simulation (see, e.g., Ross [Ros12], and Rubinstein and Kroese [RuK17]).

In this section we discuss a method to reduce the effects of the simulation error in the calculation of the Q-factors in the context of rollout. The key idea is that the selection of the rollout control depends on the values of the Q-factor differences

$$\hat{Q}_k(x_k, u_k) - \hat{Q}_k(x_k, \hat{u}_k)$$

for all pairs of controls (u_k, \hat{u}_k). These values must be computed accurately, so that the controls u_k and \hat{u}_k can be accurately compared. On the other hand, the simulation/approximation errors in the computation of the individual Q-factors $\hat{Q}_k(x_k, u_k)$ may be magnified through the preceding differencing operation.
An alternative approach is to approximate the Q-factor difference \(\hat{Q}_k(x_k, u_k) - \hat{Q}_k(x_k, \hat{u}_k) \) by sampling the difference

\[
C_k(x_k, u_k, w_k) - C_k(x_k, \hat{u}_k, w_k),
\]

(2.32)

where \(w_k = (w_k, w_{k+1}, \ldots, w_{N-1}) \) is the same disturbance sequence for the two controls \(u_k \) and \(\hat{u}_k \), and

\[
C_k(x_k, u_k, w_k) = g_N(x_N) + g_k(x_k, u_k, w_k) + \sum_{i=k+1}^{N-1} g_i(x_i, \mu_i(x_i), w_i),
\]

with \(\{\mu_{k+1}, \ldots, \mu_{N-1}\} \) being the tail portion of the base policy. For this to make sense, it is necessary that the probability distribution of each disturbance \(w_i \) does not depend on \(x_i \) and \(u_i \).

The approximation that is based on the difference (2.32), which involves a common disturbance \(w_k \) for \(u_k \) and \(\hat{u}_k \), may be far more accurate than the one obtained by differencing samples of \(C_k(x_k, u_k, w_k) \) and \(C_k(x_k, \hat{u}_k, \hat{w}_k) \), which involve two different disturbances \(w_k \) and \(\hat{w}_k \). Indeed, by introducing the zero mean sample errors

\[
D_k(x_k, u_k, w_k) = C_k(x_k, u_k, w_k) - \hat{Q}_k(x_k, u_k),
\]

it can be seen that the variance of the error in estimating \(\hat{Q}_k(x_k, u_k) - \hat{Q}_k(x_k, \hat{u}_k) \) with the former method will be no larger than with the latter method if and only if

\[
E_{w_k, \hat{w}_k} \left\{ |D_k(x_k, u_k, w_k) - D_k(x_k, \hat{u}_k, \hat{w}_k)|^2 \right\} \geq E_{w_k} \left\{ |D_k(x_k, u_k, w_k) - D_k(x_k, \hat{u}_k, w_k)|^2 \right\}.
\]

By expanding the quadratic forms and using the fact \(E\{D_k(x, u_k, w_k)\} = 0 \), we see that this condition is equivalent to

\[
E\{D_k(x_k, u_k, w_k)D_k(x_k, \hat{u}_k, w_k)\} \geq 0;
\]

(2.33)

i.e., the errors \(D_k(x_k, u_k, w_k) \) and \(D_k(x_k, \hat{u}_k, w_k) \) being nonnegatively correlated. A little thought should convince the reader that this property is likely to hold in many types of problems.

Roughly speaking, the relation (2.33) holds if changes in the value of \(u_k \) (at the first stage) have little effect on the value of the error \(D_k(x_k, u_k, w_k) \) relative to the effect induced by the randomness of \(w_k \). To see this, suppose that there exists a scalar \(\gamma < 1 \) such that, for all \(x_k, u_k, \) and \(\hat{u}_k \), there holds

\[
E \left\{ |D_k(x_k, u_k, w_k) - D_k(x_k, \hat{u}_k, w_k)|^2 \right\} \leq \gamma E \left\{ |D_k(x_k, u_k, w_k)|^2 \right\}.
\]

(2.34)
Then we have, by using the generic relation $ab \geq a^2 - |a| \cdot |b - a|$ for two scalars a and $b,$

$$D_k(x_k, u_k, w_k)D_k(x_k, \hat{u}_k, w_k) \geq |D_k(x_k, u_k, w_k)|^2 - |D_k(x_k, u_k, w_k)| \cdot |D_k(x_k, \hat{u}_k, w_k) - D_k(x_k, u_k, w_k)|,$$

from which we obtain

$$E\left\{D_k(x_k, u_k, w_k)D_k(x_k, \hat{u}_k, w_k)\right\} \geq E\left\{|D_k(x_k, u_k, w_k)|^2\right\} - E\left\{|D_k(x_k, u_k, w_k)| \cdot |D_k(x_k, \hat{u}_k, w_k) - D_k(x_k, u_k, w_k)|\right\} \geq E\left\{|D_k(x_k, u_k, w_k)|^2\right\} - \frac{1}{2}E\left\{|D_k(x_k, u_k, w_k)|^2\right\} - \frac{1}{2}E\left\{|D_k(x_k, \hat{u}_k, w_k) - D_k(x_k, u_k, w_k)|^2\right\} \geq \frac{1}{2} - \gamma E\left\{|D_k(x_k, u_k, w_k)|^2\right\},$$

where for the second inequality we use the generic relation $-|a| \cdot |b| \geq -\frac{1}{2}(a^2 + b^2)$ for two scalars a and $b,$ and for the third inequality we use Eq. (2.34).

Thus, under the assumption (2.34), the condition (2.33) holds and guarantees that by averaging cost difference samples rather than differencing (independently obtained) averages of cost samples, the simulation error variance does not increase.

Let us finally note the potential benefit of using Q-factor differences in contexts other than rollout. In particular when approximating Q-factors $Q_k(x_k, u_k)$ using parametric architectures (Section 3.4 in the next chapter), it may be important to approximate and compare instead the differences

$$A_k(x_k, u_k) = Q_k(x_k, u_k) - \min_{u_k \in U_k(x_k)} Q_k(x_k, u_k).$$

The function $A_k(x_k, u_k)$ is also known as the advantage of the pair $(x_k, u_k),$ and can serve just as well as $Q_k(x_k, u_k)$ for the purpose of comparing controls, but may work better in the presence of approximation errors. This question is discussed further in Section 3.4.

2.4.3 Rollout with an Expert

We will now consider a rollout algorithm for a general discrete deterministic optimization context, similar to the one discussed in Section 1.3.2. The distinguishing characteristic of this context is that we do not know the cost
function of the problem. Instead we have access to an expert who can rank any two feasible solutions.

More specifically, the problem is to select a sequence \(u = (u_1, \ldots, u_N) \), with each \(u_k \) belonging to a given finite set \(U_k \), so as to minimize a function \(G(u) \) subject to the constraint \(u \in U_1 \times \cdots \times U_N \). We assume the following:

(a) The function \(G \) is not known. Instead, we can use an “expert” who can compare any two feasible sequences \(u \) and \(\pi \), in the sense that he/she can determine whether

\[
G(u) > G(\pi), \quad \text{or} \quad G(u) \leq G(\pi).
\]

(b) A heuristic algorithm is available such that given any \(k = 1, \ldots, N-1 \), and a partial solution \((u_1, \ldots, u_k) \), can generate a complete feasible solution by concatenating the given partial solution \((u_1, \ldots, u_k) \) with a sequence \((\tilde{u}_{k+1}, \ldots, \tilde{u}_N) \). This complete feasible solution is denoted

\[
S_k(u_1, \ldots, u_k) = (u_1, \ldots, u_k, \tilde{u}_{k+1}, \ldots, \tilde{u}_N).
\]

It is important to note here that the deterministic rollout algorithm of Section 2.4.1 can be applied to this problem, even though the cost function \(G \) is unknown. The reason is that the rollout algorithm uses the cost function only as a means of ranking complete solutions in terms of their cost. Thus, if the ranking of any two solutions can be revealed by the expert, this is all that is needed.† In particular, the rollout algorithm of Section 2.4.1 can be described as follows:

We start with an artificial empty solution, and at the typical step, given the partial solution \((u_1, \ldots, u_k) \), \(k < N \), we generate all possible one-step-extended solutions

\[
(u_1, \ldots, u_k, u_{k+1}), \quad u_{k+1} \in U_{k+1},
\]

and use the expert to rank the finite set of complete solutions

\[
S_{k+1}(u_1, \ldots, u_k, u_{k+1}), \quad u_{k+1} \in U_{k+1}.
\]

We then select the component \(u_{k+1} \) that is ranked best by the expert, extend the partial solution \((u_1, \ldots, u_k) \) by adding \(u_{k+1} \), and repeat with the new partial solution \((u_1, \ldots, u_k, u_{k+1}) \).

† Note that for this to be true, it is critically important that the solution space be finite, and that the expert ranks solutions using some underlying (though unknown) cost function. In particular, the expert’s rankings should have a transitivity property: if \(u \) is ranked better than \(u' \) and \(u' \) is ranked better than \(u'' \), then \(u \) is ranked better than \(u'' \).
Learning to Emulate the Expert

Let us now consider the case where an expert is not available but can be emulated by training with the use of data. In particular, suppose that we are given a set of pairs \((u^s, \pi^s)\), \(s = 1, \ldots, q\), with

\[
G(u^s) > G(\pi^s), \quad s = 1, \ldots, q,
\]

which we can use for training. Such a set may be obtained in a variety of ways, including querying the expert. We may then train a parametric approximation architecture such as a neural network to produce a function \(\hat{G}(u, r)\), where \(r\) is a parameter vector, and use this function in place of \(G(u)\) to implement the preceding rollout algorithm.

A training method, known as comparison training, has been suggested for this purpose, and has been used in a variety of game contexts, including backgammon and chess by Tesauro [Tes89b], [Tes01]. Briefly, the training set of pairs \((u^s, \pi^s)\), \(s = 1, \ldots, q\), is used to generate for each data pair \((u^s, \pi^s)\) satisfying Eq. (2.35), two solution-cost pairs

\[(u, 1), (\pi, -1), \quad s = 1, \ldots, q.\]

A parametric architecture \(\hat{G}(\cdot, r)\), involving a parameter vector \(r\), such as a neural network, is then trained by regularized regression with these data to produce an approximation \(\hat{G}(\cdot, \pi)\) to be used in place of \(G(\cdot)\) in a rollout scheme. We refer to Chapter 3 and to the aforementioned papers by Tesauro for implementation details of the regression procedure.

2.5 ON-LINE ROLLOUT FOR DETERMINISTIC INFINITE-SPACES PROBLEMS - OPTIMIZATION HEURISTICS

We have considered so far discrete-spaces applications of rollout, where the relevant Q-factors at each state \(x_k\) are evaluated by simulation and compared by exhaustive comparison. To implement this approach in a continuous-spaces setting, the control constraint set must first be discretized, which is often inconvenient and ineffective. In this section we will discuss an alternative approach for deterministic problems that can deal with an infinite number of controls and Q-factors at \(x_k\) without discretization. The idea is to use a base heuristic that involves a continuous optimization, and to rely on a nonlinear programming method to solve the corresponding lookahead optimization problem.

To get a sense of the basic idea, consider the one-step lookahead rollout minimization

\[
\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k),
\]
where $\hat{Q}_k(x_k, u_k)$ is the approximate Q-factor

$$\hat{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)), \quad (2.37)$$

with $H_{k+1}(x_{k+1})$ being the cost of the base heuristic starting from state x_{k+1} [cf. Eq. (2.25)]. Suppose that we have a differentiable closed-form expression for H_{k+1}, and the functions g_k and f_k are known and are differentiable with respect to u_k. Then the Q-factor $\hat{Q}_k(x_k, u_k)$ of Eq. (2.37) is also differentiable with respect to u_k, and its minimization (2.36) may be addressed with one of the many gradient-based methods that are available for differentiable unconstrained and constrained optimization.

The preceding approach requires that the heuristic cost $H_{k+1}(x_{k+1})$ be available in closed form, which is highly restrictive, but this difficulty can be circumvented by using a base heuristic that is itself based on multistep optimization. In particular, suppose that $H_{k+1}(x_{k+1})$ is the optimal cost of some $(\ell-1)$-stage deterministic optimal control problem that is related to the original problem. Then the rollout algorithm (2.36)-(2.37) can be implemented by solving the $(\ell-1)$-stage deterministic optimal control problem, which seamlessly concatenates the first stage minimization over u_k [cf. Eq. (2.36)], with the $(\ell-1)$-stage minimization of the base heuristic; see Fig. 2.5.1. This ℓ-stage problem may be solvable on-line by standard continuous spaces nonlinear programming or optimal control methods. An important example of methods of this type arises in control system design and is discussed next.
2.5.1 Model Predictive Control

We will consider a classical control problem, where the objective is to keep the state of a deterministic system close to the origin of the state space or close to a given trajectory. This problem has a long history, and has been addressed by a variety of sophisticated methods. Starting in the late 50s and early 60s, approaches based on state variable system representations and optimal control became popular. The linear-quadratic approach, which we have illustrated by example in Section 1.3.7, was developed during this period, and is still used extensively. Unfortunately, however, linear-quadratic models are often not satisfactory. There are two main reasons for this:

(a) The system may be nonlinear, and it may be inappropriate to use for control purposes a model that is linearized around the desired point or trajectory.

(b) There may be control and/or state constraints, which are not handled adequately through quadratic penalty terms in the cost function. For example, the motion of a robot may be constrained by the presence of obstacles and hardware limitations (see Fig. 2.5.2). The solution
obtained from a linear-quadratic model may not be suitable for such a problem, because quadratic penalties treat constraints “softly” and may produce trajectories that violate the constraints.

These inadequacies of the linear-quadratic model have motivated a methodology, called model predictive control (MPC for short), which combines elements of several ideas that we have discussed so far: multistep lookahead, rollout with infinite control spaces, and certainty equivalence. Aside from resolving the difficulty with infinitely many Q-factors at x_k, while dealing adequately with state and control constraints, MPC is well-suited for on-line replanning, like all rollout methods.

We will focus primarily on the most common form of MPC, where the system is either deterministic, or else it is stochastic, but it is replaced with a deterministic version by using typical values in place of the uncertain quantities, similar to the certainty equivalent control approach. Moreover we will consider the case where the objective is to keep the state close to the origin; this is called the regulation problem. Similar approaches have been developed for the problem of maintaining the state of a nonstationary system along a given state trajectory, and also, with appropriate modifications, to control problems involving disturbances.

In particular, we will consider a deterministic system

$$x_{k+1} = f_k(x_k, u_k),$$

whose state x_k and control u_k are vectors that consist of a finite number of scalar components. The cost per stage is assumed nonnegative

$$g_k(x_k, u_k) \geq 0,$$

(e.g., a quadratic cost). We impose state and control constraints

$$x_k \in X_k, \quad u_k \in U_k(x_k), \quad k = 0, 1, \ldots .$$

We also assume that the system can be kept at the origin at zero cost, i.e.,

$$f_k(0, \overline{u}_k) = 0, \quad g_k(0, \overline{u}_k) = 0 \quad \text{for some control } \overline{u}_k \in U_k(0). \quad (2.38)$$

For a given initial state $x_0 \in X_0$, we want to obtain a sequence $\{u_0, u_1, \ldots \}$ such that the states and controls of the system satisfy the state and control constraints with small total cost.

The MPC Algorithm

Let us describe the MPC algorithm for the deterministic problem just described. At the current state x_k:

(a) MPC solves an ℓ-step lookahead version of the problem, which requires that $x_{k+\ell} = 0.$
(b) If \(\tilde{u}_k, \ldots, \tilde{u}_{k+\ell-1} \) is the optimal control sequence of this problem, MPC applies \(\tilde{u}_k \) and discards the other controls \(\tilde{u}_{k+1}, \ldots, \tilde{u}_{k+\ell-1} \).

(c) At the next stage, MPC repeats this process, once the next state \(x_{k+1} \) is revealed.

In particular, at the typical stage \(k \) and state \(x_k \in X_k \), the MPC algorithm solves an \(\ell \)-stage optimal control problem involving the same cost function and the requirement \(x_{k+\ell} = 0 \). This is the problem

\[
\min_{u_i, i = k, \ldots, k+\ell-1} \sum_{i=k}^{k+\ell-1} g_i(x_i, u_i),
\]

subject to the system equation constraints

\[x_{i+1} = f_i(x_i, u_i), \quad i = k, \ldots, k + \ell - 1, \]

the state and control constraints

\[x_i \in X_i, \quad u_i \in U_i(x_i), \quad i = k, \ldots, k + \ell - 1, \]

and the terminal state constraint

\[x_{k+\ell} = 0. \]

Let \(\{\tilde{u}_k, \tilde{u}_{k+1}, \ldots, \tilde{u}_{k+\ell-1}\} \) be a corresponding optimal control sequence. The MPC algorithm applies at stage \(k \) the first component \(\tilde{u}_k \) of this sequence, and discards the remaining components; see Fig. 9.3.†

To guarantee that there is an integer \(\ell \) such that the preceding MPC algorithm is feasible, we assume the following.

Constrained Controllability Condition

There exists an integer \(\ell > 1 \) such that for every initial state \(x_k \in X_k \), we can find a sequence of controls \(u_k, \ldots, u_{k+\ell-1} \) that drive to 0 the state \(x_{k+\ell} \) of the system at time \(k + \ell \), while satisfying all the intermediate state and control constraints

\[
\begin{align*}
 u_k &\in U_k(x_k), \quad x_{k+1} \in X_{k+1}, \ldots, \\
 x_{k+\ell-1} &\in X_{k+\ell-1}, \quad u_{k+\ell-1} \in U_{k+\ell-1}(x_{k+\ell-1}).
\end{align*}
\]

† In the case, where we want the system to follow a given nominal trajectory, rather than stay close to the origin, we should modify the MPC optimization to impose as a terminal constraint that the state \(x_{k+\ell} \) should be a point on the nominal trajectory (instead of \(x_{k+\ell} = 0 \)). We should also change the cost function to reflect a penalty for deviating from the given trajectory.
Finding an integer ℓ that satisfies the constrained controllability condition is an important issue to which we will return later.\footnote{In the case where we want the system to follow a given nominal trajectory, rather than stay close to the origin, we may want to use a time-dependent lookahead length ℓ_k, to exercise tighter control over critical parts of the nominal trajectory.} Generally the constrained controllability condition tends to be satisfied if the control constraints are not too stringent, and the state constraints do not allow a large deviation from the origin. In this case not only we can implement MPC, but also the resulting closed-loop system will tend to be stable; see the following discussion of stability, and Example 2.5.2.

Note that the actual state trajectory produced by MPC may never reach the origin (see the subsequent Example 2.5.1). This is because we use only the first control \tilde{u}_k of the kth stage sequence $\{\tilde{u}_k, \tilde{u}_{k+1}, \ldots, \tilde{u}_{k+\ell-1}\}$, which aims at $x_{k+\ell} = 0$. At the next stage $k+1$ the control generated by MPC may be different than \tilde{u}_{k+1}, because it will aim one step further to the terminal condition $x_{k+\ell+1} = 0$.

To make the connection of MPC with rollout, we note that the one-step lookahead function \tilde{J} implicitly used by MPC [cf. Eq. (2.39)] is the cost-to-go function of a certain base heuristic. This is the heuristic that drives to 0 the state after $\ell-1$ stages (not ℓ stages) and keeps the state at 0 thereafter, while observing the state and control constraints, and minimizing the associated $(\ell-1)$ stages cost, in the spirit of our earlier discussion; cf. Fig. 2.5.1.
Sequential Improvement Property and Stability Analysis

It turns out that the base heuristic just described is sequentially improving, so MPC has a cost improvement property, of the type discussed in Section 2.4.1. To see this, let us denote by \(J_k(x_k) \) the optimal cost of the \(\ell \)-stage problem solved by MPC when at a state \(x_k \in X_k \). Let also \(H_k(x_k) \) and \(H_{k+1}(x_{k+1}) \) be the optimal heuristic costs of the corresponding \((\ell-1)\)-stage optimization problems that start at \(x_k \) and \(x_{k+1} \), and drive the states \(x_{k+\ell-1} \) and \(x_{k+\ell} \), respectively, to 0. Thus, by the principle of optimality, we have the DP equation

\[
\hat{J}_k(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)) \right].
\]

Since having one less stage at our disposal to drive the state to 0 cannot decrease the optimal cost, we have

\[
\hat{J}_k(x_k) \leq H_k(x_k).
\]

By combining the preceding two relations, we obtain

\[
\min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k)) \right] \leq H_k(x_k), \tag{2.40}
\]

which is the sequential improvement condition for the base heuristic [cf. Eq. (2.29)].

Often the primary objective in MPC, aside from fulfilling the state and control constraints, is to obtain a stable closed-loop system, i.e., a system that naturally tends to stay close to the origin. This is typically expressed adequately by the requirement of a finite cost over an infinite number of stages:

\[
\sum_{k=0}^{\infty} g_k(x_k, u_k) < \infty, \tag{2.41}
\]

where \(\{x_0, u_0, x_1, u_1, \ldots\} \) is the state and control sequence generated by MPC.

We will now show that the stability condition (2.41) is satisfied by the MPC algorithm. Indeed, from the sequential improvement condition (2.40), we have

\[
g_k(x_k, u_k) + H_{k+1}(x_{k+1}) \leq H_k(x_k), \quad k = 0, 1, \ldots \tag{2.42}
\]

Adding this relation for all \(k \) in a range \([0, K]\), where \(K = 0, 1, \ldots \), we obtain

\[
H_{K+1}(x_{K+1}) + \sum_{k=0}^{K} g_k(x_k, u_k) \leq H_0(x_0).
\]

\[\dagger\] Note that the base heuristic is not sequentially consistent, as it fails to satisfy the definition given in Section 2.4.1 (see the subsequent Example 2.5.1).
Since $H_{K+1}(x_{K+1}) \geq 0$, it follows that
\[\sum_{k=0}^{K} g_k(x_k, u_k) \leq H_0(x_0), \quad K = 0, 1, \ldots, \] (2.43)
and taking the limit as $K \to \infty$,
\[\sum_{k=0}^{\infty} g_k(x_k, u_k) \leq H_0(x_0) < \infty, \] (2.44)

$[H_0(x_0)$ is finite because the transfer from x_0 to $x_\ell = 0$ is feasible by the constrained controllability condition]. We have thus verified the stability condition (2.41).

Example 2.5.1

Consider a scalar linear system and a quadratic cost
\[x_{k+1} = x_k + u_k, \quad g_k(x_k, u_k) = x_k^2 + u_k^2, \]
where the state and control constraints are
\[x_k \in X_k = \{ x \mid |x| \leq 1.5 \}, \quad u_k \in U_k(x_k) = \{ u \mid |u| \leq 1 \}. \]

We apply the MPC algorithm with $\ell = 2$. For this value of ℓ, the constrained controllability assumption is satisfied, since the 2-step sequence of controls
\[u_0 = -\text{sgn}(x_0), \quad u_1 = -x_1 = -x_0 + \text{sgn}(x_0) \]
drives the state x_2 to 0, for any x_0 with $|x_0| \leq 1.5$.

At state $x_k \in X_k$, MPC minimizes the two-stage cost
\[x_k^2 + u_k^2 + (x_k + u_k)^2 + u_{k+1}^2, \]
subject to the control constraints
\[|u_k| \leq 1, \quad |u_{k+1}| \leq 1, \]
and the state constraints
\[|x_{k+1}| \leq 1.5, \quad x_{k+2} = x_k + u_k + u_{k+1} = 0. \]

This is a quadratic programming problem, which can be solved with available software, and in this case analytically, because of its simplicity. In particular, it can be verified that the minimization yields
\[\tilde{u}_k = -\frac{2}{3} x_k, \quad \tilde{u}_{k+1} = -(x_k + \tilde{u}_k). \]
Thus the MPC algorithm selects \(\tilde{u}_k = -\frac{2}{3} x_k \), which results in the closed-loop system

\[
x_{k+1} = \frac{1}{3} x_k, \quad k = 0, 1, \ldots
\]

Note that while this closed-loop system is stable, its state is never driven to 0 if started from \(x_0 \neq 0 \). Moreover, it is easily verified that the base heuristic is not sequentially consistent. For example, starting from \(x_k = 1 \), the base heuristic generates the sequence

\[
\{x_k = 1, u_k = -\frac{2}{3}, x_{k+1} = \frac{1}{3}, u_{k+1} = -\frac{1}{3}, x_{k+2} = 0, u_{k+2} = 0, \ldots\}
\]

while starting from the next state \(x_{k+1} = \frac{1}{3} \) it generates the sequence

\[
\{x_{k+1} = \frac{1}{3}, u_{k+1} = -\frac{2}{9}, x_{k+2} = \frac{1}{9}, u_{k+2} = -\frac{1}{9}, x_{k+3} = 0, u_{k+3} = 0, \ldots\}
\]

so the sequential consistency condition of Section 2.4.1 is violated.

Regarding the choice of the horizon length \(\ell \) for the MPC calculations, note that if the constrained controllability assumption is satisfied for some value of \(\ell \), it is also satisfied for all larger values of \(\ell \). This argues for a large value of \(\ell \). On the other hand, the optimal control problem solved at each stage by MPC becomes larger and hence more difficult as \(\ell \) increases. Thus, the horizon length is usually chosen on the basis of some experimentation: first ensure that \(\ell \) is large enough for the constrained controllability assumption to hold, and then by further experimentation to ensure overall satisfactory performance.

2.5.2 Target Tubes and the Constrained Controllability Condition

We now return to the constrained controllability condition, which asserts that the state constraint sets \(X_k \) are such that starting from anywhere within \(X_k \), it is possible to drive to 0 the state of the system within some number of steps \(\ell \), while staying within \(X_m \) at each intermediate step \(m = k + 1, \ldots, m = k + \ell - 1 \). Unfortunately, this assumption masks some major complications. In particular, the control constraint set may not be sufficiently rich to compensate for natural instability tendencies of the system. As a result it may be impossible to keep the state within \(X_k \) over a sufficiently long period of time, something that may be viewed as a form of instability. Here is an example.

Example 2.5.2

Consider the scalar linear system

\[
x_{k+1} = 2x_k + u_k,
\]
which is unstable, and the control constraint

$$|u_k| \leq 1.$$

Then if $0 \leq x_0 < 1$, it can be seen that by using the control $u_0 = -1$, the next state satisfies,

$$x_1 = 2x_0 - 1 < x_0,$$

and is closer to 0 than the preceding state x_0. Similarly, using controls $u_k = -1$, every subsequent state x_{k+1} will get closer to 0 than x_k. Eventually, after a sufficient number of steps \bar{k}, with controls $u_k = -1$ for $k < \bar{k}$, the state $x_{\bar{k}}$ will satisfy

$$0 \leq x_{\bar{k}} \leq \frac{1}{2}.$$

Once this happens, the feasible control $u_{\bar{k}} = -2x_{\bar{k}}$ will drive the state $x_{\bar{k}+1}$ to 0.

Similarly, when $-1 < x_0 \leq 0$, by applying control $u_k = 1$ for a sufficiently large number of steps \bar{k}, the state $x_\bar{k}$ will be driven into the region $[-1/2, 0]$, and then the feasible control $u_{\bar{k}} = -2x_{\bar{k}}$ will drive the state $x_{\bar{k}+1}$ to 0.

Suppose now that the control constraint is $|u_k| \leq 1$ and the state constraint is of the form $X_k = [-\beta, \beta]$ for all k, and let us explore what happens for different values of β. The preceding discussion shows that if $0 < \beta < 1$ the constrained controllability assumption is satisfied, and for every initial state $x_0 \in X_0$, the states x_k can be kept within X_k and can be driven to 0 in a finite number ℓ of steps. The number ℓ depends on β, and in particular if $0 < \beta < 1/2$, ℓ can be taken equal to 1.

On the other hand, if $\beta \geq 1$, it is impossible to drive the state to 0 from every initial state $x_0 \in [1, \beta]$ without violating the constraint $|u_k| \leq 1$, so the constrained controllability assumption is violated. In fact if the initial state satisfies $|x_0| > 1$, the state trajectory diverges in the sense that $|x_k| \to \infty$ for any control sequence that satisfies the constraint $|u_k| \leq 1$; see Fig. 2.5.4. Thus if $\beta \geq 1$, either a larger control constraint set or an initial condition that is close to 0, or both, are needed to satisfy the constrained controllability condition and to improve the stability properties of the closed-loop system.

The critical construction in the preceding example is to identify sets of states $\overline{X}_k \subset X_k$ such that starting from within \overline{X}_k we are guaranteed to stay within the “tube” \{\overline{X}_{k+1}, \overline{X}_{k+2}, \ldots, \overline{X}_N\} for all subsequent times with appropriate choices of control. Tubes of this type can serve as state constraints in MPC. Moreover, when the sets \overline{X}_k are bounded, a guarantee that the state can stay within the tube amounts to a form of closed-loop stability guarantee. In the remainder if this section, we will address the issue of how such tubes can be constructed.

Formally, a tube \{\overline{X}_0, \overline{X}_1, \ldots, \overline{X}_N\} is just a sequence of subsets with $\overline{X}_k \subset X_k$ for all $k = 0, \ldots, N$. The tube is called reachable if it has the property that for every k and $x_k \in \overline{X}_k$ there exists a $u_k \in U_k(x_k)$ such that $f_k(x_k, u_k) \in \overline{X}_{k+1}$. A reachable tube was also called an effective
Figure 2.5.4 Illustration of state trajectories under MPC for Example 2.5.2. If the initial state lies within the set \((-1, 1)\) the constrained controllability condition is satisfied for sufficiently large \(\ell\), and the MPC algorithm yields a stable controller. If the initial state lies outside this set, MPC cannot be implemented because the constrained controllability condition fails to holds. Moreover, the system is unstable starting from such an initial state. In this example, the largest reachable tube is \(\{X, X, \ldots\}\) with \(X = \{x \mid |x| \leq 1\}\).

target tube in [Ber71], and for simplicity it will be called a **target tube** in this section; the latter name is widely used in the current literature.† If the original tube of state constraints \(\{X_0, X_1, \ldots, X_N\}\) is not reachable, the constrained controllability condition cannot be satisfied, since then there will be states outside the tube starting from which we can never reenter the tube. In this case, it is necessary to compute a reachable tube to use as a set of state constraints in place of the original tube \(\{X_0, X_1, \ldots, X_N\}\). Thus obtaining a reachable tube is a prerequisite towards satisfying the constrained controllability assumption, and serves as the first step in the analysis and design of MPC schemes with state constraints.

Given an \(N\)-stage deterministic problem with state constraints \(x_k \in X_k, k = 0, \ldots, N\), we can obtain a reachable tube \(\{\overline{X}_0, \overline{X}_1, \ldots, \overline{X}_N\}\) by a recursive algorithm that starts with

\[
\overline{X}_N = X_N,
\]

† The concept of target tubes and reachability in discrete-time systems was introduced in the author’s 1971 Ph.D. thesis ([Ber71], available on-line) and associated papers [BeR71], [Ber72], [BeR73], where various methods for constructing target tubes were given, for both deterministic and minimax/game problems, including easily characterized ellipsoids for linear systems. Reachability can be defined for finite horizon as well as infinite horizon problems. Reachability concepts were studied by several authors much later, particularly for MPC and related contexts, and have been generalized to continuous-time systems (see the end-of-chapter references).
Sec. 2.5 Rollout for Deterministic Infinite-Spaces Problems

and generates \mathbf{X}_k, $k = 0, \ldots, N - 1$, going backwards,

$$\mathbf{X}_k = \{ x_k \in X_k \mid \text{for some } u_k \in U_k(x_k) \text{ we have } f_k(x_k, u_k) \in \mathbf{X}_{k+1} \}.$$

Generally, it is difficult to compute the sets \mathbf{X}_k of the reachable tube, but algorithms that produce inner approximations have been constructed. The author’s thesis [Ber71] and subsequent papers [BeR71], [Ber72], [BeR73], [Ber07], gave inner ellipsoidal approximations for both finite and infinite horizon problems with perfect and partial state information, which involve linear systems and ellipsoidal constraints. Other authors have developed polyhedral approximations; see the textbook by Borelli, Bemporad, and Morari [BBM17].

Example 2.5.2 (continued)

Here if the state constraints are

$$X_k = \{ x_k \mid |x_k| \leq 1 \}, \quad k = 0, 1, \ldots, N, \quad (2.45)$$

the tube $\{X_k \mid k = 0, \ldots, N\}$ is reachable for any N. However, this is not true for the constraint sets

$$X_k = \{ x_k \mid |x_k| \leq 2 \}, \quad k = 0, 1, \ldots, N.$$

For example for $x_0 = 2$ the next state $x_1 = 2x_0 + u_k = 4 + u_k$ will not satisfy $|x_1| \leq 2$ for any of the feasible controls u_k with $|u_k| \leq 1$. Thus it is necessary to replace the tube of original constraints $\{X_k \mid k = 0, \ldots, N\}$ with a reachable tube $\{\overline{X}_k \mid k = 0, \ldots, N\}$. It can be verified that the largest tube that is reachable for any value of N is the one with

$$\overline{X}_k = \{ x_k \mid |x_k| \leq 1 \}, \quad k = 0, 1, \ldots, N.$$

Calculating a reachable tube is relatively easy for one-dimensional problems, but becomes complicated for multidimensional problems, where approximations are required in general.

Finally, let us consider the case of the quadratic cost per stage

$$g_k(x_k, u_k) = x_k^2 + u_k^2,$$

and MPC implemented with $\ell = 2$. As noted earlier, in order for the MPC minimizations to be feasible for $\ell = 2$, the initial condition must satisfy $|x_0| \leq 1$. A calculation very similar to the one of Example 2.5.1 shows that MPC applies at time k the control $\tilde{u}_k = -(5/3)x_k$. The state of the closed-loop system evolves according to

$$x_{k+1} = \frac{1}{3} x_k,$$

and tends to 0 asymptotically.
Note that there is a subtle difference between reachability of the tube \(\{X_k \mid k = 0, \ldots, N\} \) and satisfying the constrained controllability condition. The latter implies the former, but the converse is not true, as the preceding example illustrates. In particular, if \(X_k \) is given by Eq. (2.45), the tube is reachable, but the constrained controllability assumption is not satisfied because starting at the boundary of \(X_k \), we cannot drive the state to 0 in any number of steps, using controls \(u_k \) with \(|u_k| \leq 1 \). By contrast, if we remove from \(X_k \) the boundary points 1 and -1, the tube is still reachable while the constrained controllability condition is satisfied. Generally, except for boundary effects of this type, tube reachability typically implies the constrained controllability condition.

2.5.3 Variants of Model Predictive Control

The MPC scheme that we have described is just the starting point for a broad methodology with many variations, which often relate to the suboptimal control methods that we have discussed so far in this chapter. For example, in the problem solved by MPC at each stage, instead of the requirement of driving the system state to 0 in \(\ell \) steps, one may use a large penalty for the state being nonzero after \(\ell \) steps. Then, the preceding stability analysis goes through, as long as the terminal penalty is chosen so that the sequential improvement condition (2.40) is satisfied and Eq. (2.44) can be shown. We can view the terminal penalty as a terminal cost function approximation in the context of rollout.

In another variant, instead of aiming to drive the state to 0 after \(\ell \) steps, one aims to reach a sufficiently small neighborhood of the origin, within which a stabilizing controller, designed by other methods, may be used.

We finally mention variants of MPC methods, which combine rollout and terminal cost function approximation, and which can deal with uncertainty and system disturbances. A method of this type will be described in Section 5.1 in the context of infinite horizon problems, but can be adapted to finite horizon problems as well; see also the end-of-chapter references.

As an illustration, let us provide an example of a scheme that combines MPC with certainty equivalent control ideas (cf. Section 2.3.2).

Example 2.5.3 (MPC for Stochastic Systems and Certainty Equivalent Approximation)

Consider the stochastic system

\[
x_{k+1} = f_k(x_k, u_k, w_k),
\]

with the expected cost of a policy \(\pi = \{\mu_0, \ldots, \mu_{N-1}\} \) starting at \(x_0 \) defined by

\[
J_\pi(x_0) = E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\};
\]
Sec. 2.5 Rollout for Deterministic Infinite-Spaces Problems

cf. the framework of Section 1.2. We assume that for all \(k \), there are state and control constraints of the form

\[x_k \in X_k, \quad u_k \in U_k(x_k), \]

and that the stochastic disturbances \(w_k \) take values within some known set \(W_k \).

An important characteristic of this problem is that a policy must maintain reachability of the tube \(\{X_0, X_1, \ldots\} \), even under worst-case disturbance values. For this it is necessary that for each state \(x_k \in X_k \), the control \(u_k \) is chosen from within the subset \(\tilde{U}_k(x_k) \) given by

\[
\tilde{U}_k(x_k) = \{ u_k \in U_k(x_k) \mid f(x_k, u_k, w_k) \in X_k, \text{ for all } w_k \in W_k \}.
\]

We assume that \(\tilde{U}_k(x_k) \) is nonempty for all \(x_k \in X_k \) and is somehow available. This is not automatically satisfied; similar to the deterministic case discussed earlier, the target tube \(\{X_0, X_1, \ldots\} \) must be properly constructed using reachability methods, the sets \(U_k(x_k) \) must be sufficiently “rich” to ensure that this is possible, and the sets \(\tilde{U}_k(x_k) \) must be computed.

We will now describe a rollout/MPC method that generalizes the one given earlier for deterministic problems. It satisfies the state and control constraints, and uses assumed certainty equivalence to define the base policy over \(\ell - 1 \) steps, where \(\ell > 1 \) is some integer. In particular, at a given state \(x_k \in X_k \), this method first fixes the disturbances \(w_{k+1}, \ldots, w_{k+\ell-1} \) to some typical values. It then applies the control \(\tilde{u}_k \) that minimizes over \(u_k \in \tilde{U}_k(x_k) \) the Q-factor

\[
\tilde{Q}_k(x_k, u_k) = E\left\{ g(x_k, u_k, w_k) + H_{k+1}(f(x_k, u_k, w_k)) \right\}, \tag{2.46}
\]

where \(H_{k+1}(x_{k+1}) \) is the optimal cost of the deterministic transfer from \(x_{k+1} \) to 0 in \(\ell - 1 \) steps with controls \(\tilde{u}_m \) from the sets \(\tilde{U}_m(x_m) \), \(m = k+1, \ldots, k+\ell-1 \), and with the disturbances fixed at their typical values. Here we require a constrained controllability condition that guarantees that this transfer is possible.

Note that the minimization over \(u_k \in \tilde{U}_k(x_k) \) of the Q-factor (2.46) can be implemented by optimizing over sequences \(\{u_k, u_{k+1}, \ldots, u_{k+\ell-1}\} \) an \(\ell \)-stage trajectory of a deterministic system. This is the problem that seamlessly concatenates the first stage minimization over \(u_k \) [cf. Eq. (2.46)] with the \((\ell - 1)\)-stage minimization of the base heuristic. Consistent with the general rollout approach of this section, it may be possible to address this problem with gradient-based optimization methods.

A drawback of the MPC method of the preceding example is that it may not be well suited for on-line implementation because of the substantial amount of computation required at each state \(x_k \). An alternative is to introduce approximation in policy space on top of approximation in value space; cf. Section 2.1.5. To this end, we can generate a large number of
Approximation in Value Space Chap. 2

Sample states \(x_s^k, s = 1, \ldots, q \), and calculate the corresponding controls \(u_k^s \) using the Q-factor minimization

\[
u_k^s \in \arg \min_{u_k \in U(x_k^s)} E\left\{ g(x_k^s, u_k, w_k) + H_{k+1} \left(f(x_k^s, u_k, w_k) \right) \right\},
\]

[cf. Eq. (2.46)]. We can then use the pairs \((x_k^s, u_k^s), s = 1, \ldots, q\), and some form of regression to train a Q-factor parametric architecture \(\tilde{Q}_k(x_k, u_k, \bar{r}_k) \) such as a neural network [cf. the approximation in policy space approach of Eq. (2.6)]. Once this is done, the MPC controls can be generated on-line using the minimization

\[
\tilde{\mu}_k(x_k) \in \arg \min_{u_k \in \tilde{U}_k(x_k)} \tilde{Q}_k(x_k, u_k, \bar{r}_k);
\]

cf. Eq. (2.7). This type of approximation in policy space approach may be applied more broadly in MPC methods where the on-line computational requirements are excessive.

2.6 NOTES AND SOURCES

Section 2.1: Approximation in value space has been considered in an ad hoc manner since the early days of DP, motivated by the curse of dimensionality. The idea was reframed and coupled with model-free simulation methods that originated in the late 1980s in artificial intelligence. Since that time, approximation in value space has been one of the two pillars of approximate DP/RL. The other pillar is approximation in policy space, which was discussed briefly in Section 2.1 and will be revisited in Section 5.7.

Section 2.3: The problem approximation approach has a long history in optimal control and operations research. The author’s paper [Ber07] describes a few enforced decomposition schemes based on constraint relaxation. The book [Ber17], Section 6.2.1, provides some additional examples from flexible manufacturing and multiarmed bandit problems; see also the thesis by Kimemia [Kim82], and the papers by Kimemia, Gershwin, and Bertsekas [KGB82], and Whittle [Whi88].

Section 2.4: The main idea of rollout algorithms, obtaining an improved policy starting from some other suboptimal policy, has appeared in several DP application contexts. The name “rollout” was coined by Tesauro in specific reference to rolling the dice in the game of backgammon [TeG96]. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling out” many games starting from that position, using a simulator, and the results are averaged to provide a “score” for the position; see Example 2.4.2. The use of the name “rollout” has gradually expanded beyond its original
context; for example the samples collected through simulated trajectories are referred to as “rollouts” by some authors. In this book, we will adopt the original intended meaning: policy improvement starting from a base policy, which is evaluated with some form of Monte Carlo simulation.

The application of rollout algorithms to discrete deterministic optimization problems, the notions of sequential consistency, sequential improvement, fortified rollout, and the use of multiple heuristics (also called “parallel rollout”) were first given in the paper by Bertsekas, Tsitsiklis, and Wu [BTW97], and also in the neuro-dynamic programming book by Bertsekas and Tsitsiklis [BeT96]. Rollout algorithms for stochastic problems were further formalized in the papers by Bertsekas [Ber97b], and Bertsekas and Castanon [BeC99]. A discussion of rollout algorithms as applied to network optimization problems may be found in the author’s textbook [Ber98]. The rollout scheme of Section 2.4.3, which uses an expert, is new in the form given here but is inspired by the method of comparison learning proposed by Tesauro [Tes89a], [Tes89b], [Tes01], and subsequently used by several other authors (for some recent references, see [DNW16], [CTW19]). This is a general method for training an approximation architecture to select between two alternatives, using a data set of expert choices.

For more recent work on rollout algorithms and related methods, see Secomandi [Sec00], [Sec01], [Sec03], Ferris and Voelker [FeV02], [FeV04], McGovern, Moss, and Barto [MMB02], Savagaonkar, Givan, and Chong [SGC02], Bertsimas and Popescu [BeP03], Guerriero and Mancini [GuM03], Tu and Pattipati [TuP03], Wu, Chong, and Givan [WCG03], Chang, Givan, and Chong [CGC04], Meloni, Paccarelli, and Pranzo [MPP04], Yan, Diaconis, Rusmevichientong, and Van Roy [YDR04], Besse and Chaib-draa [BeC08], Sun et al. [SZL08], Bertazzi et al. [BBG13], Sun et al. [SLJ13], Tesauro et al. [TGL13], Beyme and Leung [BeL14], Goodson, Thomas, and Ohlmann [GTO15], Li and Womer [LiW15], Mastin and Jaillet [MaJ15], Huang, Jia, and Guan [HJG16], Simroth, Holfeld, and Brunsch [SHB15], and Lan, Guan, and Wu [LGW16]. For a recent survey by the author, see [Ber13b]. These works discuss a broad variety of applications and case studies, and generally report positive computational experience.

The idea of rollout that uses limited lookahead, adaptive pruning of the lookahead tree, and cost function approximation at the end of the lookahead horizon was suggested by Tesauro and Galperin [TeG96] in the context of backgammon. Related ideas appeared earlier in the paper by Abramson [Abr90], in a game playing context. The paper and monograph by Chang, Hu, Fu, and Marcus [CFH05], [CFH13] proposed and analyzed adaptive sampling in connection with DP, including statistical tests to control the sampling process. The name “Monte Carlo tree search” (Section 2.4.2) has become popular, and in its current use, it encompasses a broad range of methods that involve adaptive sampling, rollout, extensions to sequential games, and the use and analysis of various statistical tests. We refer to the papers by Coulom [Cou06], the survey by Browne et al. [BPW12], and the
discussion by Fu [Fu17]. The development of statistical tests for adaptive sampling has been influenced by works on multiarmed bandit problems; see the papers by Lai and Robbins [LaR85], Agrawal [Agr95], Burnetas and Katehakis [BuK97], Meuleau and Bourgine [MeB99], Auer, Cesa-Bianchi, and Fischer [ACF02], Peret and Garcia [PeG04], Kocsis and Szepesvari [KoS06], and the monograph by Munos [Mun14]. The technique for variance reduction in the calculation of Q-factor differences (Section 2.4.2) was given in the author’s paper [Ber97b].

Section 2.5: The MPC approach is popular in a variety of control system design contexts, and particularly in chemical process control and robotics, where meeting explicit control and state constraints is an important practical issue. The connection of MPC with rollout algorithms was made in the author’s review paper [Ber05a]. The stability analysis given here is based on the work of Keerthi and Gilbert [KeG88]. For an early survey of the field, which gives many of the early references, see Morari and Lee [MoL99], and for a more recent survey see Mayne [May14]. For related textbooks, see Maciejowski [Mac02], Camacho and Bordons [CaB04], Kouvaritakis and Cannon [KoC15], and Borelli, Bemporad, and Morari [BBM17].

In our account of MPC, we have restricted ourselves to deterministic problems possibly involving tight state constraints as well as control constraints. Problems with stochastic uncertainty and state constraints are more challenging because of the difficulty of guaranteeing that the constraints are satisfied; see the survey by Mayne [May14] for a review of various approaches that have been used in this context. The textbook [Ber17], Section 6.4, describes MPC for problems with set membership uncertainty and state constraints, using target tube/reachability concepts, which originated in the author’s PhD thesis and subsequent papers [Ber71], [Ber72a], [BeR71a], [BeR71b], [BeR73]. Target tubes were used subsequently in MPC and other contexts by several authors; see the surveys by Blanchini [Bla99] and Mayne [May14]. Reachability for continuous-time games has been studied by Mitchell, Bayen, and Tomlin [MBT05]. For an alternative recent approach to reachability, which is based on the notion of Conditional Value-at-Risk (CVaR), see Chapman et al. [CLT19].