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Preface

Turning to the succor of modern computing machines, let us
renounce all analytic tools.

Richard Bellman [Bel57]

From a teleological point of view the particular numerical solution
of any particular set of equations is of far less importance than
the understanding of the nature of the solution.

Richard Bellman [Bel57]

In this book we consider large and challenging multistage decision problems,
which can be solved in principle by dynamic programming (DP for short),
but their exact solution is computationally intractable. We discuss solution
methods that rely on approximations to produce suboptimal policies with
adequate performance. These methods are collectively known by several
essentially equivalent names: reinforcement learning, approximate dynamic
programming , and neuro-dynamic programming. We will use primarily the
most popular name: reinforcement learning.

Our subject has benefited greatly from the interplay of ideas from
optimal control and from artificial intelligence. One of the aims of the
book is to explore the common boundary between these two fields and to
form a bridge that is accessible by workers with background in either field.
Another aim is to organize coherently the broad mosaic of methods that
have proved successful in practice while having a solid theoretical and/or
logical foundation. This may help researchers and practitioners to find
their way through the maze of competing ideas that constitute the current
state of the art.

There are two general approaches for DP-based suboptimal control.
The first is approximation in value space, where we approximate in some
way the optimal cost-to-go function with some other function. The ma-
jor alternative to approximation in value space is approximation in policy

ix



x Preface

space, whereby we select the policy by using optimization over a suitably
restricted class of policies, usually a parametric family of some form. In
some schemes these two types of approximation may be combined, aiming
to capitalize on the advantages of both. Generally, approximation in value
space is tied more closely to the central DP ideas of value and policy it-
eration than approximation in policy space, which relies on gradient-like
descent, a more broadly applicable optimization mechanism.

While we provide a substantial treatment of approximation in policy
space, most of the book is focused on approximation in value space. Here,
the control at each state is obtained by optimization of the cost over a
limited horizon, plus an approximation of the optimal future cost. The
latter cost, which we generally denote by J̃ , is a function of the state where
we may be. It may be computed by a variety of methods, possibly involving
simulation and/or some given or separately derived heuristic/suboptimal
policy. The use of simulation often allows for implementations that do not
require a mathematical model, a major idea that has allowed the use of DP
beyond its classical boundaries.

We discuss selectively four types of methods for obtaining J̃ :

(a) Problem approximation: Here J̃ is the optimal cost function of a re-
lated simpler problem, which is solved by exact DP. Certainty equiv-
alent control and enforced decomposition schemes are discussed in
some detail.

(b) Rollout and model predictive control : Here J̃ is the cost function of
some known heuristic policy. The needed cost values to implement a
rollout policy are often calculated by simulation. While this method
applies to stochastic problems, the reliance on simulation favors de-
terministic problems, including challenging combinatorial problems
for which heuristics may be readily implemented. Rollout may also
be combined with adaptive simulation and Monte Carlo tree search,
which have proved very effective in the context of games such as
backgammon, chess, Go, and others.

Model predictive control was originally developed for continuous-
space optimal control problems that involve some goal state, e.g.,
the origin in a classical control context. It can be viewed as a special-
ized rollout method that is based on a suboptimal optimization for
reaching a goal state.

(c) Parametric cost approximation: Here J̃ is chosen from within a para-
metric class of functions, including neural networks, with the param-
eters “optimized” or “trained” by using state-cost sample pairs and
some type of incremental least squares/regression algorithm. Ap-
proximate policy iteration and its variants are covered in some detail,
including several actor and critic schemes. These involve policy eval-
uation with simulation-based training methods, and policy improve-
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ment that may rely on approximation in policy space.

(d) Aggregation: Here J̃ is the optimal cost function of some approxi-
mation to the original problem, called aggregate problem, which has
fewer states. The aggregate problem can be formulated in a variety
of ways, and may be solved by using exact DP techniques. Its opti-
mal cost function is then used as J̃ in a limited horizon optimization
scheme. Aggregation may also be used to provide local improvements
to parametric approximation schemes that involve neural networks or
linear feature-based architectures.

We have adopted a gradual expository approach, which proceeds
along four directions:

(1) From exact DP to approximate DP : We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

(2) From finite horizon to infinite horizon problems : We first discuss fi-
nite horizon exact and approximate DP methodologies, which are in-
tuitive and mathematically simple in Chapters 1-3. We then progress
to infinite horizon problems in Chapters 4-6.

(3) From deterministic to stochastic models: We often discuss separately
deterministic and stochastic problems. The reason is that determinis-
tic problems are simpler and offer special advantages for some of our
methods.

(4) From model-based to model-free implementations: Reinforcement lear-
ning methods offer a major potential benefit over classical DP ap-
proaches, which were practiced exclusively up to the early 90s: they
can be implemented by using a simulator/computer model rather than
a mathematical model. In our presentation, we first discuss model-
based implementations, and then we identify schemes that can be
appropriately modified to work with a simulator.

After the first chapter, each new class of methods is introduced as a
more sophisticated or generalized version of a simpler method introduced
earlier. Moreover, we illustrate some of the methods by means of examples,
which should be helpful in providing insight into their use, but may also
be skipped selectively and without loss of continuity.

The mathematical style of this book is somewhat different from the
one of the author’s DP books [Ber12], [Ber17], [Ber18a], and the 1996
neuro-dynamic programming (NDP) research monograph, written jointly
with John Tsitsiklis [BeT96]. While we provide a rigorous, albeit short,
mathematical account of the theory of finite and infinite horizon DP, and
some fundamental approximation methods, we rely more on intuitive ex-
planations and less on proof-based insights. Moreover, our mathematical
requirements are quite modest: calculus, a minimal use of matrix-vector al-
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gebra, and elementary probability (mathematically complicated arguments
involving laws of large numbers and stochastic convergence are bypassed
in favor of intuitive explanations).

Still in our use of a more intuitive but less proof-oriented expository
style, we have followed a few basic principles. The most important of
these is to maintain rigor in the use of natural language. The reason is
that with fewer mathematical arguments and proofs, precise language is
essential to maintain a logically consistent exposition. In particular, we
have aimed to define terms unambiguously, and to avoid using multiple
terms with essentially identical meaning. Moreover, when circumstances
permitted, we have tried to provide enough explanation/intuition so that
a mathematician can find the development believable and even construct
the missing rigorous proofs.

We note that several of the methods that we present are often suc-
cessful in practice, but have less than solid performance properties. This
is a reflection of the state of the art in the field: there are no methods that
are guaranteed to work for all or even most problems, but there are enough
methods to try on a given problem with a reasonable chance of success in
the end.† To aid in this process, we place primary emphasis on developing
intuition into the inner workings of each type of method. Still, however, it is
important to have a foundational understanding of the analytical principles
of the field and of the mechanisms underlying the central computational
methods. To quote a statement from the preface of the NDP monograph
[BeT96]: “It is primarily through an understanding of the mathematical
structure of the NDP methodology that we will be able to identify promis-
ing or solid algorithms from the bewildering array of speculative proposals
and claims that can be found in the literature.”

Another statement from a recent NY Times article [Str18], in connec-
tion with DeepMind’s remarkable AlphaZero chess program, is also worth
quoting: “What is frustrating about machine learning, however, is that
the algorithms can’t articulate what they’re thinking. We don’t know why
they work, so we don’t know if they can be trusted. AlphaZero gives every
appearance of having discovered some important principles about chess,
but it can’t share that understanding with us. Not yet, at least. As human
beings, we want more than answers. We want insight. This is going to be

† While reinforcement learning rests on the mathematical principles of DP, it

also relies on multiple interacting approximations whose effects are hard to predict
and quantify in practice. It may be hoped that with further theoretical and

applications research, the state of the subject will improve and clarify. However,

it can be said that in its current form, reinforcement learning is an exploding
field, which is complicated, unclean, and somewhat confusing (something that

the front cover image of the book also tries to convey). Reinforcement learning is

not unique in this. One may think of other important optimization areas where
a similar state of the art has prevailed for a long time.
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a source of tension in our interactions with computers from now on.”† To
this we may add that human insight can only develop within some struc-
ture of human thought, and it appears that mathematical reasoning with
algorithmic models is the most suitable structure for this purpose.

I would like to express my appreciation to the many students and
colleagues that contributed directly or indirectly to the book. A special
thanks is due to my principal collaborators on the subject, over the last 25
years, particularly John Tsitsiklis, Janey (Huizhen) Yu, and Mengdi Wang.
Moreover, sharing insights with Ben Van Roy over the years has been im-
portant in shaping my thinking. Interactions with Ben Recht regarding
policy gradient methods were also very helpful. The projects that my stu-
dents worked on as part of DP courses I taught at MIT inspired many ideas
that indirectly found their way into the book. I want to express my thanks
to the many readers, who proofread parts of the book. In this respect I
would like to single out Yuchao Li who made many helpful comments, and
Thomas Stahlbuhk, who went through the entire book with great care, and
offered numerous insightful suggestions.

The book took shape while teaching a course on the subject at the
Arizona State University (ASU) during a two-month period starting in
January 2019. Videolectures and slides from this class are available from
my website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to the book.
The hospitable and stimulating environment at ASU contributed much
to my productivity during this period, and for this I am very thankful to
Stephanie Gil, as well as other colleagues from ASU, including Heni Ben
Amor, Esma Gel, Subbarao (Rao) Kambhampati, Angelia Nedic, Giulia
Pedrielli, Jennie Si, and Petr Sulc. Moreover, Stephanie together with her

† The two 1957 Bellman quotations at the beginning of this preface also

express this tension, although the first of these, while striking and widely cited,

is admittedly taken a little out of context (throughout his work on practical
applications, Bellman remained a mathematical analyst at heart). Bellman’s

fascinating autobiography [Bel84] contains a lot of information on the origins of

DP (and approximate DP as well!); selected quotations from this autobiography
have been compiled by his collaborator Dreyfus [Dre02]. Among others, Bellman

states that “In order to make any progress, it is necessary to think of approximate
techniques, and above all, of numerical algorithms. Finally, having devoted a

great deal of time and effort, mostly fruitless, to the analysis of many varieties

of simple models, I was prepared to face up to the challenge of using dynamic
programming as an effective tool for obtaining numerical answers to numerical

questions.” He goes on to attribute his motivation to work on numerical DP to

the emergence of the (then primitive) digital computer, which he calls “Sorcerer’s
Apprentice.”
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students, Sushmita Bhattacharya and Thomas Wheeler, collaborated with
me on research and implementation of various methods, contributed many
insights, and tested out several variations.

Dimitri P. Bertsekas

June 2019

NOTE ABOUT THE EBOOK EDITION

This 2021 ebook edition contains minor editorial changes to the 2019 orig-
inal version, which were prompted by the publication of my companion
research monograph

Rollout, Policy Iteration, and Distributed Reinforcement Learning,
Athena Scientific, 2020, ISBN 978-1-886529-07-6

This latter monograph focuses more closely on several topics related to
rollout, approximate policy iteration, multiagent problems, discrete and
Bayesian optimization, and distributed computation, which are either dis-
cussed in less detail or not covered at all in the present book. Moreover, the
monograph’s development follows somewhat more narrowly the AlphaZero
and TD-Gammon paradigms, and their off-line training/on-line play algo-
rithmic structure, which is the key to their success.

On the other hand, the present book provides a more comprehensive
coverage of reinforcement learning, and includes the development of topics
that are not covered at all in the 2020 book, such as approximation in policy
space, aggregation, and temporal difference methods. It also contains, in
Chapters 4 and 5, a proof-based development of some of the infinite horizon
exact and approximate DP theory.

My website

http://web.mit.edu/dimitrib/www/RLbook.html

contains class notes, and a series of videolectures and slides from my 2021
course, which address a selection of topics from both books. The videolec-
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2 Exact Dynamic Programming Chap. 1

In this chapter, we provide some background on exact dynamic program-
ming (DP for short), with a view towards the suboptimal solution methods
that are the main subject of this book. These methods are known by
several essentially equivalent names: reinforcement learning, approximate
dynamic programming , and neuro-dynamic programming. In this book, we
will use primarily the most popular name: reinforcement learning (RL for
short).

We first consider finite horizon problems, which involve a finite se-
quence of successive decisions, and are thus conceptually and analytically
simpler. We defer the discussion of the more intricate infinite horizon
problems to Chapters 4-6. We also discuss separately deterministic and
stochastic problems (Sections 1.1 and 1.2, respectively). The reason is that
deterministic problems are simpler and lend themselves better as an en-
try point to the optimal control methodology. Moreover, they have some
favorable characteristics, which allow the application of a broader variety
of methods. For example, simulation-based methods are greatly simplified
and sometimes better understood in the context of deterministic optimal
control.

Finally, in Section 1.3 we provide various examples of DP formula-
tions, illustrating some of the concepts of Sections 1.1 and 1.2. The reader
with substantial background in DP may wish to just scan Section 1.3 and
skip to the next chapter, where we start the development of the approxi-
mate DP methodology.

1.1 DETERMINISTIC DYNAMIC PROGRAMMING

All DP problems involve a discrete-time dynamic system that generates a
sequence of states under the influence of control. In finite horizon problems
the system evolves over a finite number N of time steps (also called stages).
The state and control at time k are denoted by xk and uk, respectively. In
deterministic systems, xk+1 is generated nonrandomly, i.e., it is determined
solely by xk and uk.

1.1.1 Deterministic Problems

A deterministic DP problem involves a discrete-time dynamic system of
the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.1)

where

k is the time index,

xk is the state of the system, an element of some space,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk) that depends on xk,
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......

Control uk

k Cost gk(xk, uk)
) xk xk+1 +1 xN

Stage k k Future Stages

) x0

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN )

Deterministic Transition

Deterministic Transition xk+1 = fk(xk, uk)

Figure 1.1.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1.

N is the horizon or number of times control is applied.

The set of all possible xk is called the state space at time k. It can be
any set and can depend on k; this generality is one of the great strengths
of the DP methodology. Similarly, the set of all possible uk is called the
control space at time k. Again it can be any set and can depend on k.

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gk(xk, uk), accumulates over
time. Formally, gk is a function of (xk, uk) that takes real number values,
and may depend on k. For a given initial state x0, the total cost of a control
sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN ) +
N−1
∑

k=0

gk(xk, uk), (1.2)

where gN(xN ) is a terminal cost incurred at the end of the process. The to-
tal cost is a well-defined number, since the control sequence {u0, . . . , uN−1}
together with x0 determines exactly the state sequence {x1, . . . , xN} via
the system equation (1.1). We want to minimize the cost (1.2) over all
sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby ob-
taining the optimal value†

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1),

as a function of x0. Figure 1.1.1 illustrates the main elements of the prob-
lem.

We will next illustrate deterministic problems with some examples.

† We use throughout “min” (in place of “inf”) to indicate minimal value over

a feasible set of controls, even when we are not sure that the minimum is attained
by some feasible control.
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.
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Figure 1.1.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xk. Arcs correspond to state-control pairs (xk , uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively. We
view the cost gk(xk, uk) of the transition as the length of this arc. The problem
is equivalent to finding a shortest path from initial node s to terminal node t.

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state xk the
possible transitions to next states xk+1. The nodes of the graph correspond
to states xk and the arcs of the graph correspond to state-control pairs
(xk, uk). Each arc with start node xk corresponds to a choice of a single
control uk ∈ Uk(xk) and has as end node the next state fk(xk, uk). The
cost of an arc (xk, uk) is defined as gk(xk, uk); see Fig. 1.1.2. To handle the
final stage, an artificial terminal node t is added. Each state xN at stage
N is connected to the terminal node t with an arc having cost gN (xN ).

Note that control sequences {u0, . . . , uN−1} correspond to paths orig-
inating at the initial state (node s at stage 0) and terminating at one of the
nodes corresponding to the final stage N . If we view the cost of an arc as
its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial
node s of the graph to the terminal node t. Here, by the length of a path
we mean the sum of the lengths of its arcs.†

Generally, combinatorial optimization problems can be formulated
as deterministic finite-state finite-horizon optimal control problem. The
following scheduling example illustrates the idea.

† It turns out also that any shortest path problem (with a possibly nona-
cyclic graph) can be reformulated as a finite-state deterministic optimal control

problem, as we will show in Section 1.3.1. See [Ber17], Section 2.1, and [Ber91],

[Ber98] for an extensive discussion of shortest path methods, which connects with
our discussion here.
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CDA

CCD

CBD

CBD

CDB

CDB

+1 Initial State A C AB AC CA CD ABC
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SC

Figure 1.1.3 The transition graph of the deterministic scheduling problem
of Example 1.1.1. Each arc of the graph corresponds to a decision leading
from some state (the start node of the arc) to some other state (the end node
of the arc). The corresponding cost is shown next to the arc. The cost of the
last operation is shown as a terminal cost next to the terminal nodes of the
graph.

Example 1.1.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cmn for passing from any operation m to any
other operation n is given. There is also an initial startup cost SA or SC for
starting with operation A or C, respectively (cf. Fig. 1.1.3). The cost of a
sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost

SA +CAC + CCD +CDB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
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problem are shown in Fig. 1.1.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD
with certainty, and has cost CCD. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.1.3. The optimal solution
corresponds to the path that starts at the initial state and ends at some state
at the terminal time and has minimum sum of arc costs plus the terminal
cost.

Continuous-Spaces Optimal Control Problems

Many classical problems in control theory involve a continuous state space,
such as a Euclidean space, i.e., the space of n-dimensional vectors of real
variables, where n is some positive integer. The following is representative
of the class of linear-quadratic problems , where the system equation is
linear, the cost function is quadratic, and there are no control constraints.
In our example, the states and controls are one-dimensional, but there are
multidimensional extensions, which are very popular (see [Ber17], Section
3.1).

Example 1.1.2 (A Linear-Quadratic Problem)

A certain material is passed through a sequence of N ovens (see Fig. 1.1.4).
Denote

x0: initial temperature of the material,

xk, k = 1, . . . , N : temperature of the material at the exit of oven k,

uk−1, k = 1, . . . , N : heat energy applied to the material in oven k.
In practice there will be some constraints on uk, such as nonnegativity.
However, for analytical tractability one may also consider the case where
uk is unconstrained, and check later if the solution satisfies some natural
restrictions in the problem at hand.

We assume a system equation of the form

xk+1 = (1− a)xk + auk, k = 0, 1, . . . , N − 1,

where a is a known scalar from the interval (0, 1). The objective is to get
the final temperature xN close to a given target T , while expending relatively
little energy. We express this with a cost function of the form

r(xN − T )2 +

N−1
∑

k=0

u2
k,

where r > 0 is a given scalar that trades off the error in attaining the final
temperature with the expended energy.
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Oven 1 Oven 2 Final Temperature

0 u1
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x1

Initial Temperature Initial Temperature
Initial Temperature x0 x2

Figure 1.1.4 The linear-quadratic problem of Example 1.1.2 for N = 2. The
temperature of the material evolves according to the system equation xk+1 =
(1− a)xk + auk, where a is some scalar with 0 < a < 1.

Linear-quadratic problems with no constraints on the state or the con-
trol admit a nice analytical solution, as we will see later in Section 1.3.7.
In another frequently arising optimal control problem there are linear con-
straints on the state and/or the control. In the preceding example it would
have been natural to require that ak ≤ xk ≤ bk and/or ck ≤ uk ≤ dk, where
ak, bk, ck, dk are given scalars. Then the problem would be solvable not only
by DP but also by quadratic programming methods. Generally determin-
istic optimal control problems with continuous state and control spaces
(in addition to DP) admit a solution by nonlinear programming methods,
such as gradient, conjugate gradient, and Newton’s method, which can be
suitably adapted to their special structure.

1.1.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The
algorithm rests on a simple idea, the principle of optimality , which roughly
states the following; see Fig. 1.1.5.

Principle of Optimality

Let {u∗
0, . . . , u

∗

N−1} be an optimal control sequence, which together
with x0 determines the corresponding state sequence {x∗

1, . . . , x
∗

N} via
the system equation (1.1). Consider the subproblem whereby we start
at x∗

k at time k and wish to minimize the “cost-to-go” from time k to
time N ,

gk(x∗

k, uk) +
N−1
∑

m=k+1

gm(xm, um) + gN (xN ),

over {uk, . . . , uN−1} with um ∈ Um(xm), m = k, . . . , N − 1. Then the
truncated optimal control sequence {u∗

k, . . . , u
∗

N−1} is optimal for this
subproblem.

The subproblem referred to above is called the tail subproblem that
starts at x∗

k. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive
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Tail subproblem TimeFuture Stages Terminal Cost k N
k N

{

Cost 0 Cost

Optimal control sequence

Optimal control sequence {u∗

0
, . . . , u∗

k
, . . . , u∗

N−1
}

Tail subproblem Time x
∗

k
Tail subproblem Time

Figure 1.1.5 Illustration of the principle of optimality. The tail {u∗

k, . . . , u
∗

N−1}
of an optimal sequence {u∗

0, . . . , u
∗

N−1} is optimal for the tail subproblem that
starts at the state x∗

k of the optimal trajectory {x∗
1, . . . , x

∗

N}.

justification is simple. If the truncated control sequence {u∗

k, . . . , u
∗

N−1}
were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach
x∗

k (since the preceding choices of controls, u∗
0, . . . , u

∗

k−1, do not restrict
our future choices). For an auto travel analogy, suppose that the fastest
route from Los Angeles to Boston passes through Chicago. The principle
of optimality translates to the obvious fact that the Chicago to Boston
portion of the route is also the fastest route for a trip that starts from
Chicago and ends in Boston.

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially, by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.1.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.1.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.1.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There a cost for a transition between two
operations, and the numerical values of the transition costs are shown in Fig.
1.1.6 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule
is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we
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solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC
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Figure 1.1.6 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

Tail Subproblems of Length 2 : These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.1.6).

State AB : Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC : Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.1.6.
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State CA: Here the possibilities are to (a) schedule operation B and then
D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 3, as shown next to node CA in Fig. 1.1.6.

State CD : Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3 : These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.1.6.

State C : Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node A in Fig. 1.1.6.

Original Problem of Length 4 : The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.1.6.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.1.6, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problem by
translating into mathematical terms the heuristic argument underlying the
principle of optimality. The algorithm constructs functions

J*
N (xN ), J*

N−1(xN−1), . . . , J*
0 (x0),
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sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc.

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ), for all xN , (1.3)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

, for all xk.

(1.4)

Note that at stage k, the calculation in (1.4) must be done for all
states xk before proceeding to stage k − 1. The key fact about the DP
algorithm is that for every initial state x0, the number J*

0 (x0) obtained at
the last step, is equal to the optimal cost J*(x0). Indeed, a more general
fact can be shown, namely that for all k = 0, 1, . . . , N − 1, and all states
xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (1.5)

where

J(xk;uk, . . . , uN−1) = gN(xN ) +
N−1
∑

m=k

gm(xm, um), (1.6)

i.e., J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem that

starts at state xk and time k, and ends at time N .† Based on this fact, we

† We can prove this by induction. The assertion holds for k = N in view of
the initial condition J∗

N (xN) = gN(xN). To show that it holds for all k, we use
Eqs. (1.5) and (1.6) to write

J∗

k (xk) = min
um∈Um(xm)
m=k,...,N−1

[

gN(xN) +

N−1
∑

m=k

gm(xm, um)

]

= min
uk∈Uk(xk)

[

gk(xk, uk)

+ min
um∈Um(xm)

m=k+1,...,N−1

[

gN (xN) +

N−1
∑

m=k+1

gm(xm, um)

]]

= min
uk∈Uk(xk)

[

gk(xk, uk) + J∗

k+1

(

fk(xk, uk)
)

]

,
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call J∗

k (xk) the optimal cost-to-go at state xk and time k, and refer to J∗

k as
the optimal cost-to-go function or optimal cost function at time k. In max-
imization problems the DP algorithm (1.4) is written with maximization
in place of minimization, and then J∗

k is referred to as the optimal value
function at time k.

Note that the algorithm solves every tail subproblem, i.e., the mini-
mization of the cost accumulated additively starting from an intermediate
state up to the end of the horizon. Once the functions J*

0 , . . . , J
*
N have been

obtained, we can use the following forward algorithm to construct an op-
timal control sequence {u∗

0, . . . , u
∗

N−1} and corresponding state trajectory
{x∗

1, . . . , x
∗

N} for the given initial state x0.

Construction of Optimal Control Sequence {u∗
0, . . . , u

∗

N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)

]

,

and
x∗
1 = f0(x0, u∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗

k ∈ arg min
uk∈Uk(x

∗

k
)

[

gk(x∗

k, uk) + J*
k+1

(

fk(x∗

k, uk)
)

]

, (1.7)

and
x∗

k+1 = fk(x∗

k, u
∗

k).

The same algorithm can be used to find an optimal control sequence
for any tail subproblem. Figure 1.1.6 traces the calculations of the DP
algorithm for the scheduling Example 1.1.1. The numbers next to the
nodes, give the corresponding cost-to-go values, and the thick-line arcs
give the construction of the optimal control sequence using the preceding
algorithm.

1.1.3 Approximation in Value Space

The preceding forward optimal control sequence construction is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because of

where for the last equality we use the induction hypothesis. A subtle mathe-

matical point here is that, through the minimization operation, the cost-to-go

functions J∗

k may take the value −∞ for some xk. Still the preceding induction
argument is valid even if this is so.
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the number of possible xk and k can be very large. However, a similar
forward algorithmic process can be used if the optimal cost-to-go functions
J*
k are replaced by some approximations J̃k. This is the basis for approx-

imation in value space, which will be central in our future discussions. It
constructs a suboptimal solution {ũ0, . . . , ũN−1} in place of the optimal
{u∗

0, . . . , u
∗

N−1}, based on using J̃k in place of J*
k in the DP procedure

(1.7).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)

]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)

]

, (1.8)

and
x̃k+1 = fk(x̃k, ũk).

The construction of suitable approximate cost-to-go functions J̃k is
a major focal point of the RL methodology. There are several possible
methods, depending on the context, and they will be taken up starting
with the next chapter.

Q-Factors and Q-Learning

The expression

Q̃k(xk, uk) = gk(xk, uk) + J̃k+1

(

fk(xk, uk)
)

,

which appears in the right-hand side of Eq. (1.8) is known as the (ap-
proximate) Q-factor of (xk, uk).† In particular, the computation of the

† The term “Q-learning” and some of the associated algorithmic ideas were

introduced in the thesis by Watkins [Wat89] (after the symbol “Q” that he used
to represent Q-factors). The term “Q-factor” was used in the book [BeT96], and

is adopted here as well. Watkins [Wat89] used the term “action value” (at a

given state). The terms “state-action value” and “Q-value” are also common in
the literature.



14 Exact Dynamic Programming Chap. 1

approximately optimal control (1.8) can be done through the Q-factor min-
imization

ũk ∈ arg min
uk∈Uk(x̃k)

Q̃k(x̃k, uk).

This suggests the possibility of using Q-factors in place of cost func-
tions in approximation in value space schemes. Methods of this type use
as starting point an alternative (and equivalent) form of the DP algorithm,
which instead of the optimal cost-to-go functions J*

k , generates the optimal
Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (1.9)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.4). Note that this equation
implies that the optimal cost function J*

k can be recovered from the optimal
Q-factor Q*

k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk).

Moreover, using the above relation, the DP algorithm can be written in an
essentially equivalent form that involves Q-factors only

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

We will discuss later exact and approximate forms of related algorithms in
the context of a class of RL methods known as Q-learning.

1.2 STOCHASTIC DYNAMIC PROGRAMMING

The stochastic finite horizon optimal control problem differs from the de-
terministic version primarily in the nature of the discrete-time dynamic
system that governs the evolution of the state xk. This system includes a
random “disturbance” wk, which is characterized by a probability distri-
bution Pk(· | xk, uk) that may depend explicitly on xk and uk, but not on
values of prior disturbances wk−1, . . . , w0. The system has the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where as before xk is an element of some state space Sk, the control uk is an
element of some control space. The cost per stage is denoted gk(xk, uk, wk)
and also depends on the random disturbance wk; see Fig. 1.2.1. The control
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Random Transition
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Control uk

Stage k k Future Stages

Figure 1.2.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xk, the next state under control uk is generated randomly,
according to

xk+1 = fk(xk, uk, wk),

where wk is the random disturbance, and a random stage cost gk(xk , uk, wk) is
incurred.

uk is constrained to take values in a given subset Uk(xk), which depends
on the current state xk.

An important difference is that we optimize not over control sequences
{u0, . . . , uN−1}, but rather over policies (also called closed-loop control
laws , or feedback policies) that consist of a sequence of functions

π = {µ0, . . . , µN−1},

where µk maps states xk into controls uk = µk(xk), and satisfies the control
constraints, i.e., is such that µk(xk) ∈ Uk(xk) for all xk ∈ Sk. Policies
are more general objects than control sequences, and in the presence of
stochastic uncertainty, they can result in improved cost, since they allow
choices of controls uk that incorporate knowledge of the state xk. Without
this knowledge, the controller cannot adapt appropriately to unexpected
values of the state, and as a result the cost can be adversely affected. This
is a fundamental distinction between deterministic and stochastic optimal
control problems.

Another important distinction between deterministic and stochastic
problems is that in the latter, the evaluation of various quantities such
as cost function values involves forming expected values. Consequently,
several of the methods that we will discuss for stochastic problems will
involve the use of Monte Carlo simulation.

Given an initial state x0 and a policy π = {µ0, . . . , µN−1}, the fu-
ture states xk and disturbances wk are random variables with distributions
defined through the system equation

xk+1 = fk
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , N − 1.

Thus, for given functions gk, k = 0, 1, . . . , N , the expected cost of π starting
at x0 is

Jπ(x0) = E

{

gN (xN ) +
N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

,
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where the expected value operation E{·} is over all the random variables
wk and xk. An optimal policy π∗ is one that minimizes this cost; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0),

where Π is the set of all policies.
The optimal cost depends on x0 and is denoted by J*(x0); i.e.,

J*(x0) = min
π∈Π

Jπ(x0).

It is useful to view J* as a function that assigns to each initial state x0 the
optimal cost J*(x0), and call it the optimal cost function or optimal value
function.

Finite Horizon Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and xk the values J*
k (xk), which give

the optimal cost-to-go starting at stage k at state xk.

(c) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
we replace J*

k by approximations J̃k, and obtain a suboptimal policy
by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ),

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)
E
{

gk(xk, uk, wk)+J*
k+1

(

fk(xk, uk, wk)
)

}

. (1.10)

If u∗

k = µ∗

k(xk) minimizes the right side of this equation for each xk

and k, the policy π∗ = {µ∗
0, . . . , µ

∗

N−1} is optimal.

The key fact is that for every initial state x0, the optimal cost J*(x0)
is equal to the function J*

0 (x0), obtained at the last step of the above DP
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algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (see the discussion of Section 1.3 in the textbook
[Ber17]).†

Simultaneously with the off-line computation of the optimal cost-
to-go functions J*

0 , . . . , J
*
N , we can compute and store an optimal policy

π∗ = {µ∗
0, . . . , µ

∗

N−1} by minimization in Eq. (1.10). We can then use this
policy on-line to retrieve from memory and apply the control µ∗

k(xk) once
we reach state xk.

The alternative is to forego the storage of the policy π∗ and to calcu-
late the control µ∗

k(xk) by executing the minimization (1.10) on-line. This
method of on-line control calculation is called one-step lookahead minimiza-
tion. Its main use is not so much in the context of exact DP, but rather
in the context of approximate DP methods that involve approximation in
value space. There, approximations J̃k are used in place of J*

k , similar to
the deterministic case; cf. Eqs. (1.7) and (1.8).

Approximation in Value Space - Use of J̃k in Place of J*
k

At any state xk encountered at stage k, compute and apply the control

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

.

(1.11)

As in deterministic problems, the motivation for approximation in
value space is that the DP algorithm can be very time-consuming. The
one-step lookahead minimization (1.11) needs to be performed only for
the N states x0, . . . , xN−1 that are encountered during the on-line control
of the system, and not for every state within the potentially enormous
state space. Of course this simplification entails the loss of optimality, and
requires the construction of suitable approximate cost-to-go functions J̃k.
This is a major focal point of the RL methodology, and will be discussed
at length in the following chapters.

Q-Factors for Stochastic Problems

We can define optimal Q-factors for a stochastic problem, similar to the

† There are some technical/mathematical difficulties here, having to do with

the expected value operation in Eq. (1.10) being well-defined and finite. These

difficulties are of no concern in practice, and disappear completely when the
disturbance spaces wk can take only a finite number of values, in which case

all expected values consist of sums of finitely many real number terms. For a

mathematical treatment, see the relevant discussion in Chapter 1 of [Ber17] and
the book [BeS78].
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case of deterministic problems [cf. Eq. (1.9)], as the expressions that are
minimized in the right-hand side of the stochastic DP equation (1.10).
They are given by

Q*
k(xk, uk) = E

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

.

The optimal cost-to-go functions J*
k can be recovered from the optimal

Q-factors Q*
k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk),

and the DP algorithm can be written in terms of Q-factors as

Q*
k(xk, uk) =E

{

gk(xk, uk, wk)

+ min
uk+1∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), uk+1

)

}

.

1.3 EXAMPLES, VARIATIONS, AND SIMPLIFICATIONS

In this section we provide some examples to illustrate problem formulation
techniques, solution methods, and adaptations of the basic DP algorithm
to various contexts. As a guide for formulating optimal control problems in
a manner that is suitable for DP solution, the following two-stage process
is suggested:

(a) Identify the controls/decisions uk and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {u0, . . . , uN−1}, one may lump multiple controls
to be chosen together, e.g., view the pair (u0, u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states xk. The basic guideline here is that xk should en-
compass all the information that is known to the controller at time
k and can be used with advantage in choosing uk. In effect, at time
k the state xk should separate the past from the future, in the sense
that anything that has happened in the past (states, controls, and
disturbances from stages prior to stage k) is irrelevant to the choices
of future controls as long as we know xk. Sometimes this is described
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by saying that the state should have a “Markov property” to express
an analogy with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It is thus worth considering
alternative ways to choose the states; for example try to use states that
minimize the dimensionality of the state space. For a trivial example that
illustrates the point, if a quantity xk qualifies as state, then (xk−1, xk) also
qualifies as state, since (xk−1, xk) contains all the information contained
within xk that can be useful to the controller when selecting uk. However,
using (xk−1, xk) in place of xk, gains nothing in terms of optimal cost while
complicating the DP algorithm that would have to be executed over a larger
space. The concept of a sufficient statistic, which refers to a quantity
that summarizes all the essential content of the information available to
the controller, may be useful in reducing the size of the state space (see
the discussion in Section 3.1.1, and in [Ber17], Section 4.3). Section 1.3.6
provides an example, and Section 3.1.1 contains further discussion.

Generally minimizing the dimension of the state makes sense but there
are exceptions. A case in point is problems involving partial or imperfect
state information, where we collect measurements to use for control of
some quantity of interest yk that evolves over time (for example, yk may
be the position/velocity vector of a moving vehicle). If Ik is the collection
of all measurements and controls up to time k, it is correct to use Ik as
state. However, a better alternative may be to use as state the conditional
probability distribution Pk(yk | Ik), called belief state, which may subsume
all the information that is useful for the purposes of choosing a control. On
the other hand, the belief state Pk(yk | Ik) is an infinite-dimensional object,
whereas Ik may be finite dimensional, so the best choice may be problem-
dependent; see the textbooks [Ber17] and [Kri16] for further discussion of
partial state information problems.

We refer to DP textbooks for extensive additional discussions of mod-
eling and problem formulation techniques. The subsequent chapters do not
rely substantially on the material of the present section, so the reader may
selectively skip forward to the next chapter and return to this material
later as needed.

1.3.1 Deterministic Shortest Path Problems

Consider a directed graph with a special node, called the destination. Let
{1, 2, . . . , N, t} be the set of nodes of the graph, where t is the destination,
and let aij be the cost of moving from node i to node j [also referred to as
the length of the directed arc (i, j) that joins i and j]. By a path we mean
a sequence of arcs such that the end node of each arc in the sequence is
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the start node of the next arc. The length of a path from a given node to
another node is the sum of the lengths of the arcs on the path. We want
to find a shortest (i.e., minimum length) path from each node i to node t.

We make an assumption relating to cycles, i.e., paths of the form
(i, j1), (j1, j2), . . . , (jk, i) that start and end at the same node. In particular,
we exclude the possibility that a cycle has negative total length. Otherwise,
it would be possible to decrease the length of some paths to arbitrarily small
values simply by adding more and more negative-length cycles. We thus
assume that all cycles have nonnegative length. With this assumption, it
is clear that an optimal path need not take more than N moves, so we
may limit the number of moves to N . To conform to the N -stage DP
framework, we formulate the problem as one where we require exactly N
moves but allow degenerate moves from a node i to itself with cost aii = 0.
We also assume that for every node i there exists at least one path from i
to t, so that the problem has at least one solution.

We can formulate this problem as a deterministic DP problem with N
stages, where the states at any stage 0, . . . , N−1 are the nodes {1, . . . , N},
the destination t is the unique state at stageN , and the controls correspond
to the arcs (i, j), including the self arcs (i, i). Thus at each state i we select
a control (i, j) and move to state j at cost aij .

We can write the DP algorithm for our problem, with the optimal
cost-to-go functions J*

k having the meaning

J*
k (i) = optimal cost of getting from i to t in N − k moves,

for i = 1, . . . , N and k = 0, . . . , N − 1. The cost of the optimal path from
i to t is J*

0 (i). The DP algorithm takes the intuitively clear form

optimal cost from i to t in N − k moves

= min
All arcs (i,j)

[

aij + (optimal cost from j to t in N − k − 1 moves)
]

,

or
J*
k (i) = min

All arcs (i,j)

[

aij + J*
k+1(j)

]

, k = 0, 1, . . . , N − 2,

with
J*
N−1(i) = ait, i = 1, 2, . . . , N.

This algorithm is also known as the Bellman-Ford algorithm for shortest
paths. It is one of the most popular shortest path algorithms.

The optimal policy when at node i after k moves is to move to a node
j∗ that minimizes aij + J*

k+1(j) over all j such that (i, j) is an arc. If the
optimal path obtained from the algorithm contains degenerate moves from
a node to itself, this simply means that the path involves in reality less
than N moves.
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Figure 1.3.1 (a) Shortest path problem data. The destination is node 5. Arc
lengths are equal in both directions and are shown along the line segments con-
necting nodes. (b) Costs-to-go generated by the DP algorithm. The num-
ber along stage k and state i is J∗

k
(i). Arrows indicate the optimal moves

at each stage and node. The optimal paths that start from nodes 1,2,3,4 are
1 → 5, 2 → 3 → 4 → 5, 3 → 4 → 5, 4 → 5, respectively.

Note that if for some k > 0, we have

J*
k (i) = J*

k+1(i), for all i,

then subsequent DP iterations will not change the values of the cost-to-go
[J*

k−m(i) = J*
k (i) for all m > 0 and i], so the algorithm can be terminated

with J*
k (i) being the shortest distance from i to t, for all i.
To demonstrate the algorithm, consider the problem shown in Fig.

1.3.1(a) where the costs aij with i ̸= j are shown along the connecting line
segments (we assume that aij = aji). Figure 1.3.1(b) shows the optimal
cost-to-go J*

k (i) at each i and k together with the optimal paths.

1.3.2 Discrete Deterministic Optimization

Discrete optimization problems can be typically formulated as DP prob-
lems by breaking down each feasible solution into a sequence of deci-
sions/controls; see e.g., the scheduling Example 1.1.1. This formulation
will often lead to an intractable DP computation because of an exponential
explosion of the number of states. However, it brings to bear approximate
DP methods, such as rollout and others that we will discuss in future chap-
ters. We illustrate the reformulation by an example and then generalize.

Example 1.3.1 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the travel time
between each pair of cities. We wish to find a minimum time travel that visits
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Figure 1.3.2 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix at
the bottom. We form a graph whose nodes are the k-city sequences and correspond
to the states of the kth stage. The transition costs/travel times are shown next to
the arcs. The optimal costs-to-go are generated by DP starting from the terminal
state and going backwards towards the initial state, and are shown next to the
nodes. There are two optimal sequences here (ABDCA and ACDBA), and they
are marked with thick lines. Both optimal sequences can be obtained by forward
minimization [cf. Eq. (1.7)], starting from the initial state x0.

each of the cities exactly once and returns to the start city. To convert this
problem to a DP problem, we form a graph whose nodes are the sequences
of k distinct cities, where k = 1, . . . , N . The k-city sequences correspond to
the states of the kth stage. The initial state x0 consists of some city, taken
as the start (city A in the example of Fig. 1.3.2). A k-city node/state leads
to a (k+1)-city node/state by adding a new city at a cost equal to the travel
time between the last two of the k+1 cities; see Fig. 1.3.2. Each sequence of
N cities is connected to an artificial terminal node t with an arc of cost equal
to the travel time from the last city of the sequence to the starting city, thus
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Figure 1.3.3. Formulation of a discrete optimization problem as a DP problem
with N + 1 stages. There is a cost G(u) only at the terminal stage on the arc
connecting an N-solution u = (u1, . . . , uN ) to the artificial terminal state. Al-
ternative formulations may use fewer states by taking advantage of the problem’s
structure.

completing the transformation to a DP problem.
The optimal costs-to-go from each node to the terminal state can be

obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed as part of our subsequent development.

Let us now extend the ideas of the preceding example to the general
discrete optimization problem:

minimize G(u)

subject to u ∈ U,

where U is a finite set of feasible solutions and G(u) is a cost function.
We assume that each solution u has N components; i.e., it has the form
u = (u1, . . . , uN ), where N is a positive integer. We can then view the
problem as a sequential decision problem, where the components u1, . . . , uN

are selected one-at-a-time. A k-tuple (u1, . . . , uk) consisting of the first k
components of a solution is called a k-solution. We associate k-solutions
with the kth stage of the finite horizon DP problem shown in Fig. 1.3.3.
In particular, for k = 1, . . . , N , we view as the states of the kth stage all
the k-tuples (u1, . . . , uk). The initial state is an artificial state denoted s.
From this state we may move to any state (u1), with u1 belonging to the
set

U1 =
{

ũ1 | there exists a solution of the form (ũ1, ũ2, . . . , ũN) ∈ U
}

.

Thus U1 is the set of choices of u1 that are consistent with feasibility.
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More generally, from a state (u1, . . . , uk), we may move to any state
of the form (u1, . . . , uk, uk+1), with uk+1 belonging to the set

Uk+1(u1, . . . , uk) =
{

ũk+1 | there exists a solution of the form

(u1, . . . , uk, ũk+1, . . . , ũN) ∈ U
}

.

At state (u1, . . . , uk) we must choose uk+1 from the set Uk+1(u1, . . . , uk).
These are the choices of uk+1 that are consistent with the preceding choices
u1, . . . , uk, and are also consistent with feasibility. The last stage cor-
responds to the N -solutions u = (u1, . . . , uN), which in turn lead to an
artificial end state t. The cost-to-go from each u in the last stage to t is
G(u), the cost of the solution u; see Fig. 1.3.3. All other transitions in this
DP problem formulation have cost 0.

Let J*
k (u1, . . . , uk) denote the optimal cost starting from the k-solution

(u1, . . . , uk), i.e., the optimal cost of the problem over solutions whose first
k components are constrained to be equal to ui, i = 1, . . . , k, respectively.
The DP algorithm is described by the equation

J*
k (u1, . . . , uk) = min

uk+1∈Uk+1(u1,...,uk)
J*
k+1(u1, . . . , uk, uk+1), (1.12)

with the terminal condition

J*
N (u1, . . . , uN ) = G(u1, . . . , uN).

The algorithm (1.12) executes backwards in time: starting with the known
function J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing

J*
1 . An optimal solution (u∗

1, . . . , u
∗

N ) is then constructed by going forward
through the algorithm

u∗

k+1 ∈ arg min
uk+1∈Uk+1(u

∗
1,...,u

∗

k
)
J*
k+1(u

∗
1, . . . , u

∗

k, uk+1), k = 0, . . . , N − 1,

(1.13)
first compute u∗

1, then u∗
2, and so on up to u∗

N ; cf. Eq. (1.7).
Of course here the number of states typically grows exponentially with

N , but we can use the DP minimization (1.13) as a starting point for the use
of approximation methods. For example we may try to use approximation
in value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(1.13). One possibility is to use as

J̃k+1(u∗
1, . . . , u

∗

k, uk+1),

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗
1, . . . , u

∗

k, uk+1. This is called a rollout algorithm, and it is a very simple
and effective approach for approximate combinatorial optimization. It will
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be discussed later in this book, in Chapter 2 for finite horizon stochastic
problems, and in Chapter 5 for infinite horizon problems, where it will be
related to the method of policy iteration and self-learning ideas.

Finally, let us mention that shortest path and discrete optimization
problems with a sequential character can be addressed by a variety of ap-
proximate shortest path methods. These include the so called label cor-
recting, A∗, and branch and bound methods for which extensive discussions
can be found in the literature. The author’s DP textbook [Ber17] (Chapter
2) contains a substantial account, which connects with the material of this
section, as well as with a much more detailed discussion of shortest path
methods in the author’s network optimization textbook [Ber98].

1.3.3 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t
that is cost-free and absorbing in the sense that for all k,

gk(t, uk, wk) = 0, fk(t, uk, wk) = t, for all wk and uk ∈ Uk(t).

Thus the control process essentially terminates upon reaching t, even if
this happens before the end of the horizon. One may reach t by choice if a
special stopping decision is available, or by means of a random transition
from another state.

Generally, when it is known that an optimal policy will reach the
termination state within at most some given number of stages N , the DP
problem can be formulated as an N -stage horizon problem.† The reason
is that even if the termination state t is reached at a time k < N , we can
extend our stay at t for an additional N − k stages at no additional cost.
An illustration of this was given in the deterministic shortest path problem
that we discussed in Section 1.3.1.

Discrete deterministic optimization problems generally have a close
connection to shortest path problems as we have seen in Section 1.3.2. In
the problem discussed in that section, the termination state is reached after
exactly N stages (cf. Fig. 1.3.3), but in other problems it is possible that
termination can happen earlier. The following well known puzzle is an
example.

Example 1.3.2 (The Four Queens Problem)

Four queens must be placed on a 4 × 4 portion of a chessboard so that no
queen can attack another. In other words, the placement must be such that
every row, column, or diagonal of the 4×4 board contains at most one queen.

† When an upper bound on the number of stages to termination is not known,

the problem must be formulated as an infinite horizon problem, as will be dis-
cussed in a subsequent chapter.
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Equivalently, we can view the problem as a sequence of problems; first, placing
a queen in one of the first two squares in the top row, then placing another
queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first
two squares of the top row, since the other two squares lead to symmetric
positions; this is an example of a situation where we have a choice between
several possible state spaces, but we select the one that is smallest.)

We can associate positions with nodes of an acyclic graph where the
root node s corresponds to the position with no queens and the terminal
nodes correspond to the positions where no additional queens can be placed
without some queen attacking another. Let us connect each terminal position
with an artificial terminal node t by means of an arc. Let us also assign to
all arcs cost zero except for the artificial arcs connecting terminal positions
with less than four queens with the artificial node t. These latter arcs are
assigned a cost of 1 (see Fig. 1.3.4) to express the fact that they correspond
to dead-end positions that cannot lead to a solution. Then, the four queens
problem reduces to finding a minimal cost path from node s to node t, with
an optimal sequence of queen placements corresponding to cost 0.

Note that once the states/nodes of the graph are enumerated, the prob-
lem is essentially solved. In this 4 × 4 problem the states are few and can
be easily enumerated. However, we can think of similar problems with much
larger state spaces. For example consider the problem of placing N queens
on an N × N board without any queen attacking another. Even for moder-
ate values of N , the state space for this problem can be extremely large (for
N = 8 the number of possible placements with exactly one queen in each
row is 88 = 16, 777, 216). It can be shown that there exist solutions to the
N queens problem for all N ≥ 4 (for N = 2 and N = 3, clearly there is no
solution).

There are also several variants of the N queens problem. For example
finding the minimal number of queens that can be placed on an N ×N board
so that they either occupy or attack every square; this is known as the queen
domination problem. The minimal number can be found in principle by DP,
and it is known for some N (for example the minimal number is 5 for N = 8),
but not for all N (see e.g., the paper by Fernau [Fer10]).

1.3.4 Forecasts

Consider a situation where at time k the controller has access to a fore-
cast yk that results in a reassessment of the probability distribution of the
subsequent disturbance wk and, possibly, future disturbances. For exam-
ple, yk may be an exact prediction of wk or an exact prediction that the
probability distribution of wk is a specific one out of a finite collection of
distributions. Forecasts of interest in practice are, for example, probabilis-
tic predictions on the state of the weather, the interest rate for money, and
the demand for inventory.

Generally, forecasts can be handled by introducing additional state
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Figure 1.3.4 Discrete optimization formulation of the four queens problem.
Symmetric positions resulting from placing a queen in one of the rightmost
squares in the top row have been ignored. Squares containing a queen have
been darkened. All arcs have length zero except for those connecting dead-end
positions to the artificial terminal node.

variables corresponding to the information that the forecasts provide.† We

† The device of introducing additional states to modify a given problem so

that it fits the DP formalism is known as state augmentation. It finds exten-

sive use in the DP formulation of practical problems (see e.g. [Ber17]). Exam-
ples of problem reformulations that are based on state augmentation arise when
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will illustrate the process with a simple example.
Assume that at the beginning of each stage k, the controller receives

an accurate prediction that the next disturbance wk will be selected ac-
cording to a particular probability distribution out of a given collection of
distributions {P1, . . . , Pm}; i.e., if the forecast is i, then wk is selected ac-
cording to Pi. The a priori probability that the forecast will be i is denoted
by pi and is given.

The forecasting process can be represented by means of the equation

yk+1 = ξk,

where yk+1 can take the values 1, . . . ,m, corresponding to the m possible
forecasts, and ξk is a random variable taking the value i with probability
pi. The interpretation here is that when ξk takes the value i, then wk+1

will occur according to the distribution Pi.
By combining the system equation with the forecast equation yk+1 =

ξk, we obtain an augmented system given by
(

xk+1

yk+1

)

=

(

fk(xk, uk, wk)
ξk

)

.

The new state is
x̃k = (xk, yk).

The new disturbance is
w̃k = (wk, ξk),

and its probability distribution is determined by the distributions Pi and
the probabilities pi, and depends explicitly on x̃k (via yk) but not on the
prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

J*
N (xN , yN) = gN (xN ),

J*
k (xk, yk) = min

uk∈Uk(xk)
E
wk

{

gk(xk, uk, wk)

+
m
∑

i=1

piJ*
k+1

(

fk(xk, uk, wk), i
)
∣

∣ yk
}

,
(1.14)

the disturbances exhibit correlations over time. They also arise in the presence

of post-decision states, where the system function fk(xk, uk, wk) has the form
f̃k

(

hk(xk, uk), wk

)

, where f̃k is some function, and hk(xk, uk) represents an in-

termediate “state” that occurs after the control is applied. With post-decision

states, the DP algorithm may be reformulated to a simpler form (see [Ber12],
Section 6.1.5).
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Figure 1.3.5 Cost structure of the parking problem. The driver may park at
space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free, or continue to the
next space k+ 1 at no cost. At space N (the garage) the driver must park at
cost C.

where yk may take the values 1, . . . ,m, and the expectation over wk is
taken with respect to the distribution Pyk .

It should be clear that the preceding formulation admits several ex-
tensions. One example is the case where forecasts can be influenced by
the control action (e.g., pay extra for a more accurate forecast) and in-
volve several future disturbances. However, the price for these extensions
is increased complexity of the corresponding DP algorithm.

1.3.5 Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state. Before
describing how this can be done in generality, let us consider an example.

Example 1.3.3 (Parking)

A driver is looking for inexpensive parking on the way to his destination.
The parking area contains N spaces, numbered 0, . . . , N − 1, and a garage
following space N − 1. The driver starts at space 0 and traverses the parking
spaces sequentially, i.e., from space k he goes next to space k + 1, etc. Each
parking space k costs c(k) and is free with probability p(k) independently of
whether other parking spaces are free or not. If the driver reaches the last
parking space N − 1 and does not park there, he must park at the garage,
which costs C. The driver can observe whether a parking space is free only
when he reaches it, and then, if it is free, he makes a decision to park in that
space or not to park and check the next space. The problem is to find the
minimum expected cost parking policy.

We formulate the problem as a DP problem with N stages, correspond-
ing to the parking spaces, and an artificial termination state that corresponds
to having parked; see Fig. 1.3.5. At each stage k = 1, . . . , N−1, we have three
states: the artificial termination state, denoted by (k, t), and the two states
(k, F ) and (k, F ), corresponding to space k being free or taken, respectively.
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At stage 0, we have only two states, (0, F ) and (0, F ), and at the final stage
there is only one state, the termination state t. The decision/control is to
park or continue at state (k, F ) [there is no choice at states (k, F ) and states
(k, t), k = 1, . . . , N − 1]. The termination state t is reached at cost c(k) when
a parking decision is made at the states (k, F ), k = 0, . . . , N − 1, at cost C,
when the driver continues at states (N − 1, F ) or (N − 1, F ), and at no cost
at (k, t), k = 1, . . . , N − 1.

Let us now derive the form of the DP algorithm, denoting:

J∗

k (F ): The optimal cost-to-go upon arrival at a space k that is free.

J∗

k (F ): The optimal cost-to-go upon arrival at a space k that is taken.

J∗

k (t): The cost-to-go of the “parked”/termination state t.

The DP algorithm for k = 0, . . . , N − 1 takes the form

J∗

k (F ) =

{

min
[

c(k), p(k + 1)J∗

k+1(F ) +
(

1− p(k + 1)
)

J∗

k+1(F )
]

if k < N − 1,

min
[

c(N − 1), C
]

if k = N − 1,

J∗

k (F ) =

{

p(k + 1)J∗

k+1(F ) +
(

1− p(k + 1)
)

J∗

k+1(F ) if k < N − 1,
C if k = N − 1,

for the states other than the termination state t, while for t we have

J∗

k (t) = 0, k = 1, . . . , N.

While this algorithm is easily executed, it can be written in a simpler
and equivalent form, which takes advantage of the fact that the second compo-
nent (F or F ) of the state is uncontrollable. This can be done by introducing
the scalars

Ĵk = p(k)J∗

k (F ) +
(

1− p(k)
)

J∗

k (F ), k = 0, . . . , N − 1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status.

Indeed, from the preceding DP algorithm, we have

ĴN−1 = p(N − 1)min
[

c(N − 1), C
]

+
(

1− p(N − 1)
)

C,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

From this algorithm we can also obtain the optimal parking policy, which is
to park at space k = 0, . . . , N − 1 if it is free and we have c(k) ≤ Ĵk+1.

Figure 1.3.6 provides a plot for Ĵk for the case where

p(k) ≡ 0.05, c(k) = N − k, C = 100, N = 200. (1.15)

The optimal policy is to travel to space 165 and then to park at the first
available space. The reader may verify that this type of policy, characterized
by a single threshold distance, is optimal not just for the form of c(k) given
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Figure 1.3.6 Optimal cost-to-go and optimal policy for the parking problem with
the data in Eq. (1.15). The optimal policy is to travel from space 0 to space 165
and then to park at the first available space.

above, but also for any form of c(k) that is monotonically decreasing as k

increases.

We will now formalize the procedure illustrated in the preceding ex-
ample. Let the state of the system be a composite (xk, yk) of two compo-
nents xk and yk. The evolution of the main component, xk, is affected by
the control uk according to the equation

xk+1 = fk(xk, yk, uk, wk),

where the distribution Pk(wk | xk, yk, uk) is given. The evolution of the
other component, yk, is governed by a given conditional distribution Pk(yk |
xk) and cannot be affected by the control, except indirectly through xk.
One is tempted to view yk as a disturbance, but there is a difference: yk is
observed by the controller before applying uk, while wk occurs after uk is
applied, and indeed wk may probabilistically depend on uk.

It turns out that we can formulate a DP algorithm that is executed
over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” as in the preceding exam-
ple. In particular, let J*

k (xk, yk) denote the optimal cost-to-go at stage k
and state (xk, yk), and define

Ĵk(xk) = E
yk

{

J*
k (xk, yk) | xk

}

.

Then, similar to the preceding parking example, a DP algorithm that gen-
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erates Ĵk(xk) can be obtained, and has the following form:†

Ĵk(xk) = E
yk

{

min
uk∈Uk(xk,yk)

E
wk

{

gk(xk, yk, uk, wk)

+ Ĵk+1

(

fk(xk, yk, uk, wk)
)
∣

∣ xk, yk, uk

}
∣

∣

∣
xk

}

.

(1.16)
Note that the minimization in the right-hand side of the preceding

equation must still be performed for all values of the full state (xk, yk) in
order to yield an optimal control law as a function of (xk, yk). Nonetheless,
the equivalent DP algorithm (1.16) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate Ĵk(xk) than to approximate J*

k (xk, yk); see the following dis-
cussions of forecasts and of the game of tetris.

As an example, consider the augmented state resulting from the in-
corporation of forecasts, as described earlier in Section 1.3.4. Then, the
forecast yk represents an uncontrolled state component, so that the DP al-
gorithm can be simplified as in Eq. (1.16). In particular, using the notation
of Section 1.3.4, by defining

Ĵk(xk) =
m
∑

i=1

piJ*
k (xk, i), k = 0, 1, . . . , N − 1,

and
ĴN (xN ) = gN (xN ),

we have, using Eq. (1.14),

Ĵk(xk) =
m
∑

i=1

pi min
uk∈Uk(xk)

E
wk

{

gk(xk, uk, wk)

+ Ĵk+1

(

fk(xk, uk, wk)
)
∣

∣ yk = i
}

,

† This is a consequence of the calculation

Ĵk(xk) = Eyk

{

J∗

k (xk, yk) | xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk,xk+1,yk+1

{

gk(xk, yk, uk, wk)

+ J∗

k+1(xk+1, yk+1)
∣

∣ xk, yk, uk

}
∣

∣ xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk,xk+1

{

gk(xk, yk, uk, wk)

+ Eyk+1

{

J∗

k+1(xk+1, yk+1)
∣

∣ xk+1

}
∣

∣ xk, yk, uk

}

∣

∣ xk

}

.
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Figure 1.3.7 Illustration of a tetris board.

which is executed over the space of xk rather than xk and yk. Note that
this is a simpler algorithm to approximate than the one of Eq. (1.14).

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.16). Here is an example of this type.

Example 1.3.4 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.3.7). The squares fill up as blocks of different
shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
within N steps or up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a stochastic DP problem. The control, denoted by u, is the horizontal
positioning and rotation applied to the falling block. The state consists of
two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.
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(2) The shape of the current falling block, denoted by y.

There is also an additional termination state which is cost-free. Once the
state reaches the termination state, it stays there with no change in cost.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.16) is executed over the space of board
positions x and has the intuitive form

Ĵk(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵk+1

(

f(x, y, u)
)

]

, for all x,

where

g(x, y, u) is the number of points scored (rows removed),

f(x, y, u) is the next board position (or termination state),

when the state is (x, y) and control u is applied, respectively. Note, however,
that despite the simplification in the DP algorithm achieved by eliminating
the uncontrollable portion of the state, the number of states x is still enor-
mous, and the problem can only be addressed by suboptimal methods, which
will be discussed later in this book.

1.3.6 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value of
the current state xk, so a policy consists of a sequence of functions µk(xk),
k = 0, . . . , N − 1. However, in many practical settings this assumption is
unrealistic, because some components of the state may be inaccessible for
measurement, the sensors used for measuring them may be inaccurate, or
the cost of obtaining accurate measurements may be prohibitive.

Often in such situations the controller has access to only some of
the components of the current state, and the corresponding measurements
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of po-
sition and velocity components, but the measurements may consist of noise-
corrupted radar measurements of the three position components. This gives
rise to problems of partial or imperfect state information, which have re-
ceived a lot of attention in the optimization and artificial intelligence litera-
ture (see e.g., [Ber17], [RuN16]). Even though there are DP algorithms for
partial information problems, these algorithms are far more computation-
ally intensive than their perfect information counterparts. For this reason,
in the absence of an analytical solution, partial information problems are
typically solved suboptimally in practice.

On the other hand it turns out that conceptually, partial state infor-
mation problems are no different than the perfect state information prob-
lems we have been addressing so far. In fact by various reformulations, we
can reduce a partial state information problem to one with perfect state
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Figure 1.3.8 Schematic illustration of a control system with imperfect state
observations. The belief state bk is the conditional probability distribution of xk

given all the observations up to time k.

information (see [Ber17], Ch. 4). The most common approach is to replace
the state xk with a belief state, which we will often denote by bk. It is
the probability distribution of xk given all the observations that have been
obtained by the controller up to time k (see Fig. 1.3.8). This probabil-
ity distribution can in principle be computed, and it can serve as “state”
in an appropriate DP algorithm. We illustrate this process with a simple
example.

Example 1.3.5 (Treasure Hunting)

In a classical problem of search, one has to decide at each of N periods
whether to search a site that may contain a treasure. If a treasure is present,
the search reveals it with probability ξ, in which case the treasure is removed
from the site. Here the state xk has two values: either a treasure is present in
the site or it is not. The control uk takes two values: search and not search. If
the site is searched, we obtain an observation, which takes one of two values:
treasure found or not found. If the site is not searched, no information is
obtained.

Denote

bk : probability a treasure is present at the beginning of period k

given the search results so far.

This is the belief state at time k and it evolves according to the equation

bk+1 =

⎧

⎨

⎩

bk if the site is not searched at time k,
0 if the site is searched and a treasure is found,

bk(1−ξ)
bk(1−ξ)+1−bk

if the site is searched but no treasure is found.

(1.17)
The third relation above follows by application of Bayes’ rule (bk+1 is equal to
the kth period probability of a treasure being present and the search being un-
successful, divided by the probability of an unsuccessful search). The second
relation holds because the treasure is removed after a successful search.
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Let us view bk as the state of a “belief system” given by Eq. (1.17),
and write a DP algorithm, assuming that the treasure’s worth is V , that each
search costs C. Denoting by J∗

k (b) the optimal cost-to-go from belief state b

at time k, the algorithm takes the form

J∗

k (bk) = max

[

J∗

k+1(bk),

− C + bkξV + (1− bkξ)J
∗

k+1

(

bk(1− ξ)

bk(1− ξ) + 1− bk

)

]

,

(1.18)

with J∗

N (bN) = 0. The two options in the maximization of Eq. (1.18) corre-
spond to not searching (in which case bk remains unchanged), and searching
[in which case bk evolves according to Eq. (1.17)].

Thanks to the simplicity of the problem, this DP algorithm can be used
to obtain an analytical solution. In particular, it is straightforward to show by
induction (starting with k = N − 1) that the functions J∗

k satisfy J∗

k (bk) ≥ 0
for all bk ∈ [0, 1] and

J∗

k (bk) = 0 if bk ≤
C

ξV
.

From this it follows that it is optimal to search at period k if and only if

C

ξV
≤ bk.

Thus, it is optimal to search if and only if the expected reward from the next
search, bkξV , is greater or equal to the cost C of the search - a myopic policy
that focuses on just the next stage.

Of course the preceding example is extremely simple, involving a state
xk that takes just two values. As a result, the belief state bk takes values
within the interval [0, 1]. Still there are infinitely many values in this inter-
val, and if a computational solution were necessary, the belief state would
have to be discretized and the DP algorithm (1.18) would have to be accord-
ingly modified and executed over the discretized state space (discretization
methods will be discussed in Chapter 6).

In problems where the state xk can take a finite but large number
of values, say n, the belief states comprise an n-dimensional simplex, so
discretization becomes problematic. As a result, alternative suboptimal so-
lution methods are often used in partial state information problems. Some
of these methods will be described in future chapters.

The following is a simple example of a partial state information prob-
lem whose belief state has large enough size to make an exact DP solution
impossible.
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Figure 1.3.9 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free,
can move to k − 1 at cost t−

k
or can move to k + 1 at cost t+

k
. At space N (the

garage) the driver must park at cost C.

Example 1.3.6 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.3.3. As in that example, a driver is looking for inexpensive parking on the
way to his destination, along a line of N parking spaces with a garage at the
end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space i, the driver can
park at cost c(i) if i is free, can move to i−1 at a cost t−i or can move to i+1
at a cost t+i . Moreover, the driver records the free/taken status of the spaces
previously visited and may return to any of these spaces; see Fig. 1.3.9.

Let us assume that the probability p(i) of a space i being free changes
over time, i.e., a space found free (or taken) at a given visit may get taken
(or become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time period, p(i) increases by a certain
known factor with some probability ξ and decreases by another known factor
with the complementary probability 1− ξ.

Here the belief state is the vector of current probabilities
(

p(0), . . . , p(N)
)

,

and it is updated at each time based on the new observation: the free/taken
status of the space visited at that time. This belief state can be computed
exactly by the driver, given the parking status observations of the spaces
visited thus far. While it is possible to state an exact DP algorithm that is
defined over the set of belief states, and we will do so later, the algorithm
is impossible to execute in practice.† Thus the problem can only be solved
approximately, using methods that we will discuss in subsequent chapters.

† The problem as stated is an infinite horizon problem because there is noth-
ing to prevent the driver from moving forever in the parking lot without ever
parking. We can convert the problem to a similarly difficult finite horizon prob-
lem by restricting the number of moves to a given upper limit N > N , and
requiring that if the driver is at distance of k spaces from the garage at time
N − k, then driving in the direction away from the garage is not an option.
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1.3.7 Linear Quadratic Optimal Control

In a few exceptional special cases the DP algorithm yields an analytical
solution, which can be used among other purposes, as a starting point for
approximate DP schemes to solve related problems. Prominent among such
cases are various linear quadratic optimal control problems, which involve
a linear (possibly multidimensional) system, a quadratic cost function, and
no constraints on the control. Let us illustrate this with the deterministic
scalar linear quadratic Example 1.1.2. We will apply the DP algorithm for
the case of just two stages (N = 2), and illustrate the method for obtaining
a nice analytical solution.

As defined in Example 1.1.2, the terminal cost is

g2(x2) = r(x2 − T )2.

Thus the DP algorithm starts with

J*
2 (x2) = g2(x2) = r(x2 − T )2,

[cf. Eq. (1.3)].
For the next-to-last stage, we have [cf. Eq. (1.4)]

J*
1 (x1) = min

u1

[

u2
1 + J*

2 (x2)
]

= min
u1

[

u2
1 + J*

2

(

(1 − a)x1 + au1
)

]

.

Substituting the previous form of J*
2 , we obtain

J*
1 (x1) = min

u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2
]

. (1.19)

This minimization will be done by setting to zero the derivative with respect
to u1. This yields

0 = 2u1 + 2ra
(

(1− a)x1 + au1 − T
)

,

and by collecting terms and solving for u1, we obtain the optimal temper-
ature for the last oven as a function of x1:

µ∗
1(x1) =

ra
(

T − (1− a)x1
)

1 + ra2
. (1.20)

By substituting the optimal u1 in the expression (1.19) for J*
1 , we

obtain

J*
1 (x1) =

r2a2
(

(1 − a)x1 − T
)2

(1 + ra2)2
+ r

(

(1− a)x1 +
ra2
(

T − (1− a)x1
)

1 + ra2
− T

)2

=
r2a2

(

(1 − a)x1 − T
)2

(1 + ra2)2
+ r

(

ra2

1 + ra2
− 1

)2
(

(1 − a)x1 − T
)2

=
r
(

(1− a)x1 − T
)2

1 + ra2
.
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We now go back one stage. We have [cf. Eq. (1.4)]

J*
0 (x0) = min

u0

[

u2
0 + J*

1 (x1)
]

= min
u0

[

u2
0 + J*

1

(

(1 − a)x0 + au0
)

]

,

and by substituting the expression already obtained for J*
1 , we have

J*
0 (x0) = min

u0

[

u2
0 +

r
(

(1 − a)2x0 + (1 − a)au0 − T
)2

1 + ra2

]

.

We minimize with respect to u0 by setting the corresponding derivative to
zero. We obtain

0 = 2u0 +
2r(1− a)a

(

(1− a)2x0 + (1 − a)au0 − T
)

1 + ra2
.

This yields, after some calculation, the optimal temperature of the first
oven:

µ∗
0(x0) =

r(1 − a)a
(

T − (1− a)2x0
)

1 + ra2
(

1 + (1− a)2
) . (1.21)

The optimal cost is obtained by substituting this expression in the formula
for J*

0 . This leads to a straightforward but lengthy calculation, which in
the end yields the rather simple formula

J*
0 (x0) =

r
(

(1− a)2x0 − T
)2

1 + ra2
(

1 + (1− a)2
) .

This completes the solution of the problem.
Note that the algorithm has simultaneously yielded an optimal policy

{µ∗
0, µ

∗
1} via Eqs. (1.21) and (1.20): a rule that tells us the optimal oven

temperatures u0 = µ∗
0(x0) and u1 = µ∗

1(x1) for every possible value of the
states x0 and x1, respectively. Thus the DP algorithm (as expected) solves
all the tail subproblems and provides a feedback policy.

A noteworthy feature in this example is the facility with which we
obtained an analytical solution. A little thought while tracing the steps of
the algorithm will convince the reader that what simplifies the solution is
the quadratic nature of the cost and the linearity of the system equation
[see the derivation of Eq. (1.20)]. Indeed, it can be shown in generality that
when the system is linear and the cost is quadratic, the optimal policy and
cost-to-go function are given by closed-form expressions, regardless of the
number of stages N (see [Ber17], Section 3.1).
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Stochastic Linear Quadratic Problems - Certainty Equivalence

Let us now introduce a zero-mean stochastic additive disturbance in the
linear system equation. Remarkably, it turns out that the optimal policy
remains unaffected. To see this, assume that the material’s temperature
evolves according to

xk+1 = (1− a)xk + auk + wk, k = 0, 1,

where w0 and w1 are independent random variables with given distribution,
zero mean

E{w0} = E{w1} = 0,

and finite variance. Then the equation for J*
1 [cf. Eq. (1.4)] becomes

J*
1 (x1) = min

u1
E
w1

{

u2
1 + r

(

(1− a)x1 + au1 + w1 − T
)2
}

= min
u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2

+ 2rE{w1}
(

(1 − a)x1 + au1 − T
)

+ rE{w2
1}
]

.

Since E{w1} = 0, we obtain

J*
1 (x1) = min

u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2
]

+ rE{w2
1}.

Comparing this equation with Eq. (1.19), we see that the presence of w1 has
resulted in an additional inconsequential constant term, rE{w2

1}. There-
fore, the optimal policy for the last stage remains unaffected by the presence
of w1, while J*

1 (x1) is increased by rE{w2
1}. It can be seen that a similar

situation also holds for the first stage. In particular, the optimal cost is
given by the same expression as before except for an additive constant that
depends on E{w2

0} and E{w2
1}.

Generally, if the optimal policy is unaffected when the disturbances
are replaced by their means, we say that certainty equivalence holds. This
occurs in several types of problems involving a linear system and a quadratic
cost; see [Ber17], Sections 3.1 and 4.2. For other problems, certainty equiv-
alence can be used as a basis for problem approximation, e.g., assume
that certainty equivalence holds (i.e., replace stochastic quantities by some
typical values, such as their expected values) and apply exact DP to the
resulting deterministic optimal control problem (see Section 2.3.2).

1.3.8 Systems with Unknown Parameters - Adaptive Control

We have been dealing so far with systems having a known system equation.
In practice, however, there are many cases where the system parameters
are either not known exactly or change over time.
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As an example consider a car cruise control system. The car’s velocity
at time k, denoted by xk, evolves according to

xk+1 = xk + buk,

where uk is the force that propels the car forward (uk can be related to the
pressure applied on the car’s gas pedal). However, the coefficient b changes
frequently and cannot be modeled with any precision because it depends
on unpredictable time-varying conditions, such as the slope and condition
of the road, and the weight of the car (which is affected by the number of
passengers). This points to the need of controllers that yield satisfactory
performance over a potentially broad range of system parameters.

To construct a formal optimization framework for dealing with such a
situation, we may embed the problem within an imperfect state information
framework by modeling the unknown parameters as unobservable states.
Indeed, let the system equation be of the form

xk+1 = fk(xk, θ, uk, wk),

where θ is a vector of unknown parameters, which for simplicity we assume
to be fixed over time. We introduce an additional state variable yk = θ
and obtain a system equation of the form

(

xk+1

yk+1

)

=

(

fk(xk, yk, uk, wk)
yk

)

.

This equation can be written compactly as

x̃k+1 = f̃k(x̃k, uk, wk),

where x̃k = (xk, yk) is the new state, and f̃k is an appropriate function.
The initial state is

x̃0 = (x0, θ).

Unfortunately, however, since yk (i.e., θ) is unobservable, the problem
is one of partial state information even if the controller knows the state xk

exactly. This makes the exact solution by DP intractable. To address this
situation, several suboptimal solution approaches have been suggested.

An apparently reasonable form of suboptimal control is to separate
the control process into two phases, a parameter estimation (or identifica-
tion) phase and a control phase. In the first phase the unknown parameters
are identified, while the control takes no account of the interim results of
estimation. The final parameter estimates from the first phase are then
used to implement an optimal control law in the second phase. This al-
ternation of estimation and control phases may be repeated several times
during any system run in order to take into account subsequent changes of
the parameters.
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One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,
of a more fundamental nature, is that the unknown parameters must often
be estimated as the system is being controlled. Then, unfortunately, the
control process may make some of the unknown parameters invisible to the
estimation process. This is known as the problem of parameter identifiabil-
ity, which is discussed in the context of optimal control in several sources,
including [BoV79] and [Kum83]; see also [Ber17], Section 6.7. For a simple
example, consider the scalar system

xk+1 = axk + buk, k = 0, . . . , N − 1,

and the quadratic cost
N
∑

k=1

(xk)2.

Assuming perfect state information, if the parameters a and b are known,
it can be seen that the optimal control law is

µ∗

k(xk) = −
a

b
xk,

which sets all future states to 0. Assume now that the parameters a and b
are unknown, and consider the two-phase method. During the first phase
the control law

µ̃k(xk) = γxk (1.22)

is used (γ is some scalar; for example, γ = −a/b, where a and b are some
a priori estimates of a and b, respectively). At the end of the first phase,
the control law is changed to

µk(xk) = −
â

b̂
xk,

where â and b̂ are the estimates obtained from the estimation process.
However, with the control law (1.22), the closed-loop system is

xk+1 = (a+ bγ)xk,

so the estimation process can at best yield the value of (a + bγ) but not
the values of both a and b. In other words, the estimation process cannot
discriminate between pairs of values (a1, b1) and (a2, b2) such that a1 +
b1γ = a2 + b2γ. Therefore, a and b are not identifiable when feedback
control of the form (1.22) is applied.

The issues discussed above and the methods to address them are part
of a broad field known as adaptive control , which deals with the design of
controllers for systems with unknown parameters. This is a rich subject
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with many and diverse applications. We will not discuss adaptive control in
this book, and we refer to textbook treatments, such as Aström andWitten-
mark [AsW94], Goodwin and Sin [GoS84], Ioannou and Sun [IoS96], Krstic,
Kanellakopoulos, and Kokotovic [KKK95], Kumar and Varaiya [KuV86],
Sastry and Bodson [SaB11], and Slotine and Li [SlL91].

We note, however, a simple and popular methodology, PID (Proporti-
onal-Integral-Derivative) control , which can be used for problems involv-
ing an unknown or changing mathematical model; see e.g., the books by
Aström and Hagglund [AsH95], [AsH06]. In particular, PID control aims to
maintain the output of a single-input single-output dynamic system around
a set point or to follow a given trajectory, as the system parameters change
within a relatively broad range. In its simplest form, the PID controller
is parametrized by three scalar parameters, which may be determined by
a variety of methods, some of them manual/heuristic. We will later dis-
cuss briefly PID control in Section 5.7, and point out that the automatic
choice of its parameters can be considered within the context of the broader
methodology of approximation in policy space.

1.4 REINFORCEMENT LEARNING AND OPTIMAL CONTROL
- SOME TERMINOLOGY

There has been intense interest in DP-related approximations in view of
their promise to deal with the curse of dimensionality (the explosion of the
computation as the number of states increases is dealt with the use of ap-
proximate cost functions) and the curse of modeling (a simulator/computer
model may be used in place of a mathematical model of the problem). The
current state of the subject owes much to an enormously beneficial cross-
fertilization of ideas from optimal control (with its traditional emphasis on
sequential decision making and formal optimization methodologies), and
from artificial intelligence (and its traditional emphasis on learning through
observation and experience, heuristic evaluation functions in game-playing
programs, and the use of feature-based and other representations).

The boundaries between these two fields are now diminished thanks
to a deeper understanding of the foundational issues, and the associated
methods and core applications. Unfortunately, however, there have been
substantial differences in language and emphasis in RL-based discussions
(where artificial intelligence-related terminology is used) and DP-based dis-
cussions (where optimal control-related terminology is used). This includes
the typical use of maximization/value function/reward in the former field
and the use of minimization/cost function/cost per stage in the latter field,
and goes much further.

The terminology used in this book is standard in DP and optimal
control, and in an effort to forestall confusion of readers that are accus-
tomed to either the RL or the optimal control terminology, we provide a
list of terms commonly used in RL, and their optimal control counterparts.
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(a) Environment = System.

(b) Agent = Decision maker or controller.

(c) Action = Decision or control.

(d) Reward of a stage = (Opposite of) Cost of a stage.

(e) State value = (Opposite of) Cost starting from a state.

(f) Value (or reward) function = (Opposite of) Cost function.

(g) Maximizing the value function = Minimizing the cost function.

(h) Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair. (Q-value is also used often in RL.)

(i) Planning = Solving a DP problem with a known mathematical
model.

(j) Learning = Solving a DP problem without using an explicit mathe-
matical model. (This is the principal meaning of the term “learning”
in RL. Other meanings are also common.)

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using some form of policy iteration.

(l) Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.

(o) State abstraction = State aggregation.

(p) Temporal abstraction = Time aggregation.

(q) Learning a model = System identification.

(r) Episodic task or episode = Finite-step system trajectory.

(s) Continuing task = Infinite-step system trajectory.

(t) Experience replay = Reuse of samples in a simulation process.

(u) Bellman operator = DP mapping or operator.

(v) Backup = Applying the DP operator at some state.

(w) Sweep = Applying the DP operator at all states.

(x) Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J .

(y) Afterstate = Post-decision state.

(z) Ground truth = Empirical evidence or information provided by
direct observation.
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Some of the preceding terms will be introduced in future chapters. The
reader may then wish to return to this section as an aid in connecting with
the relevant RL literature.

Notation

Unfortunately the confusion arising from different terminology has been
exacerbated by the use of different notations. The present textbook roughly
follows the “standard” notation of the Bellman/Pontryagin optimal control
era; see e.g., the classical books by Athans and Falb [AtF66], Bellman
[Bel67], and Bryson and Ho [BrH75]. This notation is consistent with the
author’s other DP books.

A summary of our most prominently used symbols is as follows:

(a) x: state.

(b) u: control.

(c) J : cost function.

(d) g: cost per stage.

(e) f : system function.

(f) i: discrete state.

(g) pij(u): transition probability from state i to state j under control u.

(h) α: discount factor in discounted problems.

The x-u-J notation is standard in optimal control textbooks (e.g., the
books by Athans and Falb [AtF66], and Bryson and Ho [BrH75], as well as
the more recent book by Liberzon [Lib11]). The notations f and g are also
used most commonly in the literature of the early optimal control period as
well as later (unfortunately the more natural symbol “c” has not been used
much in place of “g” for the cost per stage). The discrete system notations i
and pij(u) are very common in the discrete-state Markov decision problem
and operations research literature, where discrete-state problems have been
treated extensively [sometimes the alternative notation p(j | i, u) is used for
the transition probabilities].

The RL literature addresses for the most part finite-state Markov
decision problems, most frequently the discounted and stochastic shortest
path infinite horizon problems that are discussed in Chapter 4. The most
commonly used notation is s for state, a for action, r(s, a, s′) for reward
per stage, p(s′ | s, a) or Ps,a(s′) for transition probability from s to s′ under
action a, and γ for discount factor (see e.g., Sutton and Barto [SuB18]).

1.5 NOTES AND SOURCES

Our discussion of exact DP in this chapter has been brief since our focus
in this book will be on approximate DP and RL. The author’s DP text-
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book [Ber17] provides an extensive discussion of finite horizon exact DP,
and its applications to discrete and continuous spaces problems, using a
notation and style that is consistent with the present book. The books by
Puterman [Put94] and by the author [Ber12] provide detailed treatments
of infinite horizon finite-state Markovian decision problems. Continuous
spaces infinite horizon problems are covered in the author’s book [Ber12],
while some of the more complex mathematical aspects of exact DP are
discussed in the monograph by Bertsekas and Shreve [BeS78] (particularly
the probabilistic/measure-theoretic issues associated with stochastic opti-
mal control).

The author’s abstract DP monograph [Ber18a] aims at a unified de-
velopment of the core theory and algorithms of total cost sequential de-
cision problems, and addresses simultaneously stochastic, minimax, game,
risk-sensitive, and other DP problems, through the use of the abstract DP
operator (or Bellman operator as it is often called in RL). The idea here
is to gain insight through abstraction. In particular, the structure of a
DP model is encoded in its abstract Bellman operator, which serves as the
“mathematical signature” of the model. Thus, characteristics of this opera-
tor (such as monotonicity and contraction) largely determine the analytical
results and computational algorithms that can be applied to that model.
It is likely that some of the approximation algorithms of the present book
are transferable to a broad variety of DP models, well beyond the ones
studied here. The design and analysis of these algorithms can then benefit
from the broad algorithmic principles that have been developed through
an abstract viewpoint.

The approximate DP and RL literature has expanded tremendously
since the connections between DP and RL became apparent in the late
80s and early 90s. We restrict ourselves to mentioning textbooks, research
monographs, and broad surveys, which supplement our discussions, express
related viewpoints, and collectively provide a guide to the literature. More-
over, inevitably our referencing reflects a cultural bias, and an overemphasis
on sources that are familiar to the author and are written in a similar style
to the present book (including the author’s own works). Thus we wish to
apologize in advance for the many omissions of important research refer-
ences that are somewhat outside our own understanding and view of the
field.

Two books were written on our subject in the 1990s, setting the
tone for subsequent developments in the field. One in 1996 by Bertsekas
and Tsitsiklis [BeT96], which reflects a decision, control, and optimization
viewpoint, and another in 1998 by Sutton and Barto, which reflects an
artificial intelligence viewpoint (a 2nd edition, [SuB18], was published in
2018). We refer to the former book and also to the author’s DP textbooks
[Ber12], [Ber17] for a broader discussion of some of the topics of the present
book, including algorithmic convergence issues and additional DP models,
such as those based on average cost optimization. For historical accounts of
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the early development of the subject, see [BeT96], Section 6.7, and [SuB18],
Section 1.7.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-
cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/limited lookahead schemes and adaptive sampling, Busoniu
et al. [BBD10], which focuses on function approximation methods for con-
tinuous space systems and includes a discussion of random search meth-
ods, Powell [Pow11], which emphasizes resource allocation and operations
research applications, Vrabie, Vamvoudakis, and Lewis [VVL13], which
discusses neural network-based methods, on-line adaptive control meth-
ods, and continuous-time optimal control applications, Kochenderfer et al.
[KAC15], which selectively discusses applications and approximations in
DP and the treatment of uncertainty, Jiang and Jiang [JiJ17], which devel-
ops adaptive control within an approximate DP framework, and Liu et al.
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control. The book by Krishnamurthy [Kri16]
focuses on partial state information problems, with discussion of both ex-
act DP, and approximate DP/RL methods. The book by Haykin [Hay08]
discusses approximate DP in the broader context of neural network-related
subjects. The book by Borkar [Bor08] is an advanced monograph that
addresses rigorously many of the convergence issues of iterative stochastic
algorithms in approximate DP, mainly using the so called ODE approach.
The book by Meyn [Mey07] is broader in its coverage, but touches upon
some of the approximate DP algorithms that we discuss.

Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be
covering in much detail in this book: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
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Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markovian decision problems from
an artificial intelligence viewpoint), Schmidhuber [Sch15], Arulkumaran et
al. [ADB17], Li [Li17], Busoniu et al. [BDT18], and Caterini and Chang
[CaC18] (which deal with reinforcement learning schemes that are based on
the use of deep neural networks), the author’s [Ber05a] (which focuses on
rollout algorithms and model predictive control), [Ber11a] (which focuses
on approximate policy iteration), and [Ber18b] (which focuses on aggre-
gation methods), and Recht [Rec18a] (which focuses on continuous spaces
optimal control).
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[NeB00] Nedić, A., and Bertsekas, D. P., 2000. “Convergence Rate of Incremental Sub-
gradient Algorithms,” in Stochastic Optimization: Algorithms and Applications, by S.
Uryasev and P. M. Pardalos, Eds., Kluwer, pp. 263-304.
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