
Reinforcement Learning

and

Optimal Control

by

Dimitri P. Bertsekas

Arizona State University
and

Massachusetts Institute of Technology

WWW site for book information and orders

http://www.athenasc.com

Athena Scientific, Belmont, Massachusetts

Athena Scientific
Post Office Box 805
Nashua, NH 03060
U.S.A.

Email: info@athenasc.com
WWW: http://www.athenasc.com

Cover photography: Dimitri Bertsekas

c⃝ 2019 Dimitri P. Bertsekas
All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.
Reinforcement Learning and Optimal Control
Includes Bibliography and Index
1. Mathematical Optimization. 2. Dynamic Programming. I. Title.
QA402.5 .B465 2019 519.703 00-91281

ISBN-10: 1-886529-39-6, ISBN-13: 978-1-886529-39-7

Ebook version (includes minor revisions)

ABOUT THE AUTHOR

Dimitri Bertsekas studied Mechanical and Electrical Engineering at the
National Technical University of Athens, Greece, and obtained his Ph.D.
in system science from the Massachusetts Institute of Technology. He has
held faculty positions with the Engineering-Economic Systems Department,
Stanford University, and the Electrical Engineering Department of the Uni-
versity of Illinois, Urbana. In 1979 he joined the Electrical Engineering and
Computer Science Department of the Massachusetts Institute of Technol-
ogy (M.I.T.), where he retired in 2016 as McAfee Professor of Engineering.
In 2019, he became Fulton Professor of Computational Decision Making in
the School of Computing, Informatics, and Decision Systems Engineering
at the Arizona State University, Tempe, AZ.

Professor Bertsekas’ teaching and research have spanned several fields,
including deterministic optimization, dynamic programming and stochastic
control, large-scale and distributed computation, and data communication
networks. He has authored or coauthored numerous research papers and
eighteen books, several of which are currently used as textbooks in MIT
and ASU classes, including “Dynamic Programming and Optimal Control,”
“Data Networks,” “Introduction to Probability,” “Convex Optimization
Algorithms,” “Nonlinear Programming,” and the present book.

Professor Bertsekas was awarded the INFORMS 1997 Prize for Re-
search Excellence in the Interface Between Operations Research and Com-
puter Science, the 2001 AACC John R. Ragazzini Education Award, the
2009 INFORMS Expository Writing Award, the 2014 AACC Richard Bell-
man Heritage Award, the 2014 INFORMS Khachiyan Prize for Life-Time
Accomplishments in Optimization, the 2015MOS/SIAMGeorge B. Dantzig
Prize, and the 2022 IEEE Control Systems Award. In 2018, he was awarded,
jointly with his coauthor John Tsitsiklis, the INFORMS John von Neumann
Theory Prize, for the contributions of the research monographs “Parallel
and Distributed Computation” and “Neuro-Dynamic Programming.” In
2001, he was elected to the United States National Academy of Engineer-
ing for “pioneering contributions to fundamental research, practice and
education of optimization/control theory, and especially its application to
data communication networks.”

iii

ATHENA SCIENTIFIC

OPTIMIZATION AND COMPUTATION SERIES

1. Rollout, Policy Iteration, and Distributed Reinforcement Learning, by
Dimitri P. Bertsekas, 2020, ISBN 978-1-886529-07-6, 480 pages

2. Reinforcement Learning and Optimal Control, by Dimitri P. Bert-
sekas, 2019, ISBN 978-1-886529-39-7, 388 pages

3. Abstract Dynamic Programming, 2nd Edition, by Dimitri P. Bert-
sekas, 2018, ISBN 978-1-886529-46-5, 360 pages

4. Dynamic Programming and Optimal Control, Two-Volume Set, by
Dimitri P. Bertsekas, 2017, ISBN 1-886529-08-6, 1270 pages

5. Nonlinear Programming, 3rd Edition, by Dimitri P. Bertsekas, 2016,
ISBN 1-886529-05-1, 880 pages

6. Convex Optimization Algorithms, by Dimitri P. Bertsekas, 2015, ISBN
978-1-886529-28-1, 576 pages

7. Convex Optimization Theory, by Dimitri P. Bertsekas, 2009, ISBN
978-1-886529-31-1, 256 pages

8. Introduction to Probability, 2nd Edition, by Dimitri P. Bertsekas and
John N. Tsitsiklis, 2008, ISBN 978-1-886529-23-6, 544 pages

9. Convex Analysis and Optimization, by Dimitri P. Bertsekas, Angelia
Nedić, and Asuman E. Ozdaglar, 2003, ISBN 1-886529-45-0, 560 pages

10. Network Optimization: Continuous and Discrete Models, by Dimitri
P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages

11. Network Flows and Monotropic Optimization, by R. Tyrrell Rockafel-
lar, 1998, ISBN 1-886529-06-X, 634 pages

12. Introduction to Linear Optimization, by Dimitris Bertsimas and John
N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages

13. Parallel and Distributed Computation: Numerical Methods, by Dim-
itri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-01-9,
718 pages

14. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John N.
Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages

15. Constrained Optimization and Lagrange Multiplier Methods, by Dim-
itri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages

16. Stochastic Optimal Control: The Discrete-Time Case, by Dimitri P.
Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5, 330 pages

iv

Contents

1. Exact Dynamic Programming

1.1. Deterministic Dynamic Programming p. 2
1.1.1. Deterministic Problems p. 2
1.1.2. The Dynamic Programming Algorithm p. 7
1.1.3. Approximation in Value Space p. 12

1.2. Stochastic Dynamic Programming p. 14
1.3. Examples, Variations, and Simplifications p. 18

1.3.1. Deterministic Shortest Path Problems p. 19
1.3.2. Discrete Deterministic Optimization p. 21
1.3.3. Problems with a Termination State p. 25
1.3.4. Forecasts . p. 26
1.3.5. Problems with Uncontrollable State Components . . . p. 29
1.3.6. Partial State Information and Belief States p. 34
1.3.7. Linear Quadratic Optimal Control p. 38
1.3.8. Systems with Unknown Parameters - Adaptive

Control . p. 40
1.4. Reinforcement Learning and Optimal Control - Some

Terminology . p. 43
1.5. Notes and Sources p. 45

2. Approximation in Value Space

2.1. Approximation Approaches in Reinforcement Learning p. 50
2.1.1. General Issues of Approximation in Value Space p. 54
2.1.2. Off-Line and On-Line Methods p. 56
2.1.3. Model-Based Simplification of the Lookahead

Minimization p. 57
2.1.4. Model-Free Q-Factor Approximation in Value Space . . p. 58
2.1.5. Approximation in Policy Space on Top of

Approximation in Value Space p. 61
2.1.6. When is Approximation in Value Space Effective? . . . p. 62

2.2. Multistep Lookahead p. 64

v

vi Contents

2.2.1. Multistep Lookahead and Rolling Horizon p. 65
2.2.2. Multistep Lookahead and Deterministic Problems . . . p. 67

2.3. Problem Approximation p. 69
2.3.1. Enforced Decomposition p. 69
2.3.2. Probabilistic Approximation - Certainty Equivalent

Control . p. 76
2.4. Rollout and the Policy Improvement Principle p. 83

2.4.1. On-Line Rollout for Deterministic Discrete
Optimization p. 84

2.4.2. Stochastic Rollout and Monte Carlo Tree Search . . . p. 95
2.4.3. Rollout with an Expert p. 104

2.5. On-Line Rollout for Deterministic Infinite-Spaces Problems - . . .
Optimization Heuristics p. 106
2.5.1. Model Predictive Control p. 108
2.5.2. Target Tubes and the Constrained Controllability

Condition p. 115
2.5.3. Variants of Model Predictive Control p. 118

2.6. Notes and Sources p. 120

3. Parametric Approximation

3.1. Approximation Architectures p. 126
3.1.1. Linear and Nonlinear Feature-Based Architectures . . p. 126
3.1.2. Training of Linear and Nonlinear Architectures . . . p. 134
3.1.3. Incremental Gradient and Newton Methods p. 135

3.2. Neural Networks p. 149
3.2.1. Training of Neural Networks p. 153
3.2.2. Multilayer and Deep Neural Networks p. 157

3.3. Sequential Dynamic Programming Approximation p. 161
3.4. Q-Factor Parametric Approximation p. 162
3.5. Parametric Approximation in Policy Space by

Classification . p. 165
3.6. Notes and Sources p. 171

4. Infinite Horizon Dynamic Programming

4.1. An Overview of Infinite Horizon Problems p. 174
4.2. Stochastic Shortest Path Problems p. 177
4.3. Discounted Problems p. 187
4.4. Semi-Markov Discounted Problems p. 192
4.5. Asynchronous Distributed Value Iteration p. 197
4.6. Policy Iteration p. 200

4.6.1. Exact Policy Iteration p. 200
4.6.2. Optimistic and Multistep Lookahead Policy

Iteration . p. 205
4.6.3. Policy Iteration for Q-factors p. 208

Contents vii

4.7. Notes and Sources p. 209
4.8. Appendix: Mathematical Analysis p. 211

4.8.1. Proofs for Stochastic Shortest Path Problems p. 212
4.8.2. Proofs for Discounted Problems p. 217
4.8.3. Convergence of Exact and Optimistic

Policy Iteration p. 218

5. Infinite Horizon Reinforcement Learning

5.1. Approximation in Value Space - Performance Bounds . . . p. 222
5.1.1. Limited Lookahead p. 224
5.1.2. Rollout . p. 227
5.1.3. Approximate Policy Iteration p. 232

5.2. Fitted Value Iteration p. 235
5.3. Simulation-Based Policy Iteration with Parametric

Approximation . p. 239
5.3.1. Self-Learning and Actor-Critic Methods p. 239
5.3.2. A Model-Based Variant p. 241
5.3.3. A Model-Free Variant p. 243
5.3.4. Implementation Issues of Parametric Policy

Iteration . p. 246
5.3.5. Convergence Issues of Parametric Policy Iteration -

Oscillations p. 249
5.4. Q-Learning . p. 253

5.4.1. Optimistic Policy Iteration with Parametric Q-Factor . . .
Approximation - SARSA and DQN p. 255

5.5. Additional Methods - Temporal Differences p. 256
5.6. Exact and Approximate Linear Programming p. 267
5.7. Approximation in Policy Space p. 270

5.7.1. Training by Cost Optimization - Policy Gradient,
Cross-Entropy, and Random Search Methods p. 276

5.7.2. Expert-Based Supervised Learning p. 286
5.7.3. Approximate Policy Iteration, Rollout, and

Approximation in Policy Space p. 288
5.8. Notes and Sources p. 293
5.9. Appendix: Mathematical Analysis p. 298

5.9.1. Performance Bounds for Multistep Lookahead p. 299
5.9.2. Performance Bounds for Rollout p. 301
5.9.3. Performance Bounds for Approximate Policy

Iteration . p. 304

6. Aggregation

6.1. Aggregation with Representative States p. 308
6.1.1. Continuous Control Space Discretization p. 314
6.1.2. Continuous State Space - POMDP Discretization . . p. 315

viii Contents

6.2. Aggregation with Representative Features p. 317
6.2.1. Hard Aggregation and Error Bounds p. 320
6.2.2. Aggregation Using Features p. 322

6.3. Methods for Solving the Aggregate Problem p. 328
6.3.1. Simulation-Based Policy Iteration p. 328
6.3.2. Simulation-Based Value Iteration and Q-Learning . . p. 331

6.4. Feature-Based Aggregation with a Neural Network p. 332
6.5. Biased Aggregation p. 334
6.6. Notes and Sources p. 337
6.7. Appendix: Mathematical Analysis p. 340

References . p. 345

Index . p. 369

Preface

Turning to the succor of modern computing machines, let us
renounce all analytic tools.

Richard Bellman [Bel57]

From a teleological point of view the particular numerical solution
of any particular set of equations is of far less importance than
the understanding of the nature of the solution.

Richard Bellman [Bel57]

In this book we consider large and challenging multistage decision problems,
which can be solved in principle by dynamic programming (DP for short),
but their exact solution is computationally intractable. We discuss solution
methods that rely on approximations to produce suboptimal policies with
adequate performance. These methods are collectively known by several
essentially equivalent names: reinforcement learning, approximate dynamic
programming , and neuro-dynamic programming. We will use primarily the
most popular name: reinforcement learning.

Our subject has benefited greatly from the interplay of ideas from
optimal control and from artificial intelligence. One of the aims of the
book is to explore the common boundary between these two fields and to
form a bridge that is accessible by workers with background in either field.
Another aim is to organize coherently the broad mosaic of methods that
have proved successful in practice while having a solid theoretical and/or
logical foundation. This may help researchers and practitioners to find
their way through the maze of competing ideas that constitute the current
state of the art.

There are two general approaches for DP-based suboptimal control.
The first is approximation in value space, where we approximate in some
way the optimal cost-to-go function with some other function. The ma-
jor alternative to approximation in value space is approximation in policy

ix

x Preface

space, whereby we select the policy by using optimization over a suitably
restricted class of policies, usually a parametric family of some form. In
some schemes these two types of approximation may be combined, aiming
to capitalize on the advantages of both. Generally, approximation in value
space is tied more closely to the central DP ideas of value and policy it-
eration than approximation in policy space, which relies on gradient-like
descent, a more broadly applicable optimization mechanism.

While we provide a substantial treatment of approximation in policy
space, most of the book is focused on approximation in value space. Here,
the control at each state is obtained by optimization of the cost over a
limited horizon, plus an approximation of the optimal future cost. The
latter cost, which we generally denote by J̃ , is a function of the state where
we may be. It may be computed by a variety of methods, possibly involving
simulation and/or some given or separately derived heuristic/suboptimal
policy. The use of simulation often allows for implementations that do not
require a mathematical model, a major idea that has allowed the use of DP
beyond its classical boundaries.

We discuss selectively four types of methods for obtaining J̃ :

(a) Problem approximation: Here J̃ is the optimal cost function of a re-
lated simpler problem, which is solved by exact DP. Certainty equiv-
alent control and enforced decomposition schemes are discussed in
some detail.

(b) Rollout and model predictive control : Here J̃ is the cost function of
some known heuristic policy. The needed cost values to implement a
rollout policy are often calculated by simulation. While this method
applies to stochastic problems, the reliance on simulation favors de-
terministic problems, including challenging combinatorial problems
for which heuristics may be readily implemented. Rollout may also
be combined with adaptive simulation and Monte Carlo tree search,
which have proved very effective in the context of games such as
backgammon, chess, Go, and others.

Model predictive control was originally developed for continuous-
space optimal control problems that involve some goal state, e.g.,
the origin in a classical control context. It can be viewed as a special-
ized rollout method that is based on a suboptimal optimization for
reaching a goal state.

(c) Parametric cost approximation: Here J̃ is chosen from within a para-
metric class of functions, including neural networks, with the param-
eters “optimized” or “trained” by using state-cost sample pairs and
some type of incremental least squares/regression algorithm. Ap-
proximate policy iteration and its variants are covered in some detail,
including several actor and critic schemes. These involve policy eval-
uation with simulation-based training methods, and policy improve-

Preface xi

ment that may rely on approximation in policy space.

(d) Aggregation: Here J̃ is the optimal cost function of some approxi-
mation to the original problem, called aggregate problem, which has
fewer states. The aggregate problem can be formulated in a variety
of ways, and may be solved by using exact DP techniques. Its opti-
mal cost function is then used as J̃ in a limited horizon optimization
scheme. Aggregation may also be used to provide local improvements
to parametric approximation schemes that involve neural networks or
linear feature-based architectures.

We have adopted a gradual expository approach, which proceeds
along four directions:

(1) From exact DP to approximate DP : We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

(2) From finite horizon to infinite horizon problems : We first discuss fi-
nite horizon exact and approximate DP methodologies, which are in-
tuitive and mathematically simple in Chapters 1-3. We then progress
to infinite horizon problems in Chapters 4-6.

(3) From deterministic to stochastic models: We often discuss separately
deterministic and stochastic problems. The reason is that determinis-
tic problems are simpler and offer special advantages for some of our
methods.

(4) From model-based to model-free implementations: Reinforcement lear-
ning methods offer a major potential benefit over classical DP ap-
proaches, which were practiced exclusively up to the early 90s: they
can be implemented by using a simulator/computer model rather than
a mathematical model. In our presentation, we first discuss model-
based implementations, and then we identify schemes that can be
appropriately modified to work with a simulator.

After the first chapter, each new class of methods is introduced as a
more sophisticated or generalized version of a simpler method introduced
earlier. Moreover, we illustrate some of the methods by means of examples,
which should be helpful in providing insight into their use, but may also
be skipped selectively and without loss of continuity.

The mathematical style of this book is somewhat different from the
one of the author’s DP books [Ber12], [Ber17], [Ber18a], and the 1996
neuro-dynamic programming (NDP) research monograph, written jointly
with John Tsitsiklis [BeT96]. While we provide a rigorous, albeit short,
mathematical account of the theory of finite and infinite horizon DP, and
some fundamental approximation methods, we rely more on intuitive ex-
planations and less on proof-based insights. Moreover, our mathematical
requirements are quite modest: calculus, a minimal use of matrix-vector al-

xii Preface

gebra, and elementary probability (mathematically complicated arguments
involving laws of large numbers and stochastic convergence are bypassed
in favor of intuitive explanations).

Still in our use of a more intuitive but less proof-oriented expository
style, we have followed a few basic principles. The most important of
these is to maintain rigor in the use of natural language. The reason is
that with fewer mathematical arguments and proofs, precise language is
essential to maintain a logically consistent exposition. In particular, we
have aimed to define terms unambiguously, and to avoid using multiple
terms with essentially identical meaning. Moreover, when circumstances
permitted, we have tried to provide enough explanation/intuition so that
a mathematician can find the development believable and even construct
the missing rigorous proofs.

We note that several of the methods that we present are often suc-
cessful in practice, but have less than solid performance properties. This
is a reflection of the state of the art in the field: there are no methods that
are guaranteed to work for all or even most problems, but there are enough
methods to try on a given problem with a reasonable chance of success in
the end.† To aid in this process, we place primary emphasis on developing
intuition into the inner workings of each type of method. Still, however, it is
important to have a foundational understanding of the analytical principles
of the field and of the mechanisms underlying the central computational
methods. To quote a statement from the preface of the NDP monograph
[BeT96]: “It is primarily through an understanding of the mathematical
structure of the NDP methodology that we will be able to identify promis-
ing or solid algorithms from the bewildering array of speculative proposals
and claims that can be found in the literature.”

Another statement from a recent NY Times article [Str18], in connec-
tion with DeepMind’s remarkable AlphaZero chess program, is also worth
quoting: “What is frustrating about machine learning, however, is that
the algorithms can’t articulate what they’re thinking. We don’t know why
they work, so we don’t know if they can be trusted. AlphaZero gives every
appearance of having discovered some important principles about chess,
but it can’t share that understanding with us. Not yet, at least. As human
beings, we want more than answers. We want insight. This is going to be

† While reinforcement learning rests on the mathematical principles of DP, it

also relies on multiple interacting approximations whose effects are hard to predict
and quantify in practice. It may be hoped that with further theoretical and

applications research, the state of the subject will improve and clarify. However,

it can be said that in its current form, reinforcement learning is an exploding
field, which is complicated, unclean, and somewhat confusing (something that

the front cover image of the book also tries to convey). Reinforcement learning is

not unique in this. One may think of other important optimization areas where
a similar state of the art has prevailed for a long time.

Preface xiii

a source of tension in our interactions with computers from now on.”† To
this we may add that human insight can only develop within some struc-
ture of human thought, and it appears that mathematical reasoning with
algorithmic models is the most suitable structure for this purpose.

I would like to express my appreciation to the many students and
colleagues that contributed directly or indirectly to the book. A special
thanks is due to my principal collaborators on the subject, over the last 25
years, particularly John Tsitsiklis, Janey (Huizhen) Yu, and Mengdi Wang.
Moreover, sharing insights with Ben Van Roy over the years has been im-
portant in shaping my thinking. Interactions with Ben Recht regarding
policy gradient methods were also very helpful. The projects that my stu-
dents worked on as part of DP courses I taught at MIT inspired many ideas
that indirectly found their way into the book. I want to express my thanks
to the many readers, who proofread parts of the book. In this respect I
would like to single out Yuchao Li who made many helpful comments, and
Thomas Stahlbuhk, who went through the entire book with great care, and
offered numerous insightful suggestions.

The book took shape while teaching a course on the subject at the
Arizona State University (ASU) during a two-month period starting in
January 2019. Videolectures and slides from this class are available from
my website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to the book.
The hospitable and stimulating environment at ASU contributed much
to my productivity during this period, and for this I am very thankful to
Stephanie Gil, as well as other colleagues from ASU, including Heni Ben
Amor, Esma Gel, Subbarao (Rao) Kambhampati, Angelia Nedic, Giulia
Pedrielli, Jennie Si, and Petr Sulc. Moreover, Stephanie together with her

† The two 1957 Bellman quotations at the beginning of this preface also

express this tension, although the first of these, while striking and widely cited,

is admittedly taken a little out of context (throughout his work on practical
applications, Bellman remained a mathematical analyst at heart). Bellman’s

fascinating autobiography [Bel84] contains a lot of information on the origins of

DP (and approximate DP as well!); selected quotations from this autobiography
have been compiled by his collaborator Dreyfus [Dre02]. Among others, Bellman

states that “In order to make any progress, it is necessary to think of approximate
techniques, and above all, of numerical algorithms. Finally, having devoted a

great deal of time and effort, mostly fruitless, to the analysis of many varieties

of simple models, I was prepared to face up to the challenge of using dynamic
programming as an effective tool for obtaining numerical answers to numerical

questions.” He goes on to attribute his motivation to work on numerical DP to

the emergence of the (then primitive) digital computer, which he calls “Sorcerer’s
Apprentice.”

xiv Preface

students, Sushmita Bhattacharya and Thomas Wheeler, collaborated with
me on research and implementation of various methods, contributed many
insights, and tested out several variations.

Dimitri P. Bertsekas

June 2019

NOTE ABOUT THE EBOOK EDITION

This 2021 ebook edition contains minor editorial changes to the 2019 orig-
inal version, which were prompted by the publication of my companion
research monograph

Rollout, Policy Iteration, and Distributed Reinforcement Learning,
Athena Scientific, 2020, ISBN 978-1-886529-07-6

This latter monograph focuses more closely on several topics related to
rollout, approximate policy iteration, multiagent problems, discrete and
Bayesian optimization, and distributed computation, which are either dis-
cussed in less detail or not covered at all in the present book. Moreover, the
monograph’s development follows somewhat more narrowly the AlphaZero
and TD-Gammon paradigms, and their off-line training/on-line play algo-
rithmic structure, which is the key to their success.

On the other hand, the present book provides a more comprehensive
coverage of reinforcement learning, and includes the development of topics
that are not covered at all in the 2020 book, such as approximation in policy
space, aggregation, and temporal difference methods. It also contains, in
Chapters 4 and 5, a proof-based development of some of the infinite horizon
exact and approximate DP theory.

My website

http://web.mit.edu/dimitrib/www/RLbook.html

contains class notes, and a series of videolectures and slides from my 2021
course, which address a selection of topics from both books. The videolec-
tures are also available at

https://www.youtube.com/playlist?list
=PLmH30BG15SIp79JRJ-MVF12uvB1qPtPzn

and at

https://space.bilibili.com/2036999141

Dimitri P. Bertsekas

July 2021

1

Exact Dynamic Programming

Contents

1.1. Deterministic Dynamic Programming p. 2
1.1.1. Deterministic Problems p. 2
1.1.2. The Dynamic Programming Algorithm p. 7
1.1.3. Approximation in Value Space p. 12

1.2. Stochastic Dynamic Programming p. 14
1.3. Examples, Variations, and Simplifications p. 18

1.3.1. Deterministic Shortest Path Problems p. 19
1.3.2. Discrete Deterministic Optimization p. 21
1.3.3. Problems with a Termination State p. 25
1.3.4. Forecasts p. 26
1.3.5. Problems with Uncontrollable State Components . p. 29
1.3.6. Partial State Information and Belief States p. 34
1.3.7. Linear Quadratic Optimal Control p. 38
1.3.8. Systems with Unknown Parameters - Adaptive

Control p. 40
1.4. Reinforcement Learning and Optimal Control - Some

Terminology . p. 43
1.5. Notes and Sources p. 45

1

2 Exact Dynamic Programming Chap. 1

In this chapter, we provide some background on exact dynamic program-
ming (DP for short), with a view towards the suboptimal solution methods
that are the main subject of this book. These methods are known by
several essentially equivalent names: reinforcement learning, approximate
dynamic programming , and neuro-dynamic programming. In this book, we
will use primarily the most popular name: reinforcement learning (RL for
short).

We first consider finite horizon problems, which involve a finite se-
quence of successive decisions, and are thus conceptually and analytically
simpler. We defer the discussion of the more intricate infinite horizon
problems to Chapters 4-6. We also discuss separately deterministic and
stochastic problems (Sections 1.1 and 1.2, respectively). The reason is that
deterministic problems are simpler and lend themselves better as an en-
try point to the optimal control methodology. Moreover, they have some
favorable characteristics, which allow the application of a broader variety
of methods. For example, simulation-based methods are greatly simplified
and sometimes better understood in the context of deterministic optimal
control.

Finally, in Section 1.3 we provide various examples of DP formula-
tions, illustrating some of the concepts of Sections 1.1 and 1.2. The reader
with substantial background in DP may wish to just scan Section 1.3 and
skip to the next chapter, where we start the development of the approxi-
mate DP methodology.

1.1 DETERMINISTIC DYNAMIC PROGRAMMING

All DP problems involve a discrete-time dynamic system that generates a
sequence of states under the influence of control. In finite horizon problems
the system evolves over a finite number N of time steps (also called stages).
The state and control at time k are denoted by xk and uk, respectively. In
deterministic systems, xk+1 is generated nonrandomly, i.e., it is determined
solely by xk and uk.

1.1.1 Deterministic Problems

A deterministic DP problem involves a discrete-time dynamic system of
the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.1)

where

k is the time index,

xk is the state of the system, an element of some space,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk) that depends on xk,

Sec. 1.1 Deterministic Dynamic Programming 3

......

Control uk

k Cost gk(xk, uk)
) xk xk+1 +1 xN

Stage k k Future Stages

) x0

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN)

Deterministic Transition

Deterministic Transition xk+1 = fk(xk, uk)

Figure 1.1.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1.

N is the horizon or number of times control is applied.

The set of all possible xk is called the state space at time k. It can be
any set and can depend on k; this generality is one of the great strengths
of the DP methodology. Similarly, the set of all possible uk is called the
control space at time k. Again it can be any set and can depend on k.

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gk(xk, uk), accumulates over
time. Formally, gk is a function of (xk, uk) that takes real number values,
and may depend on k. For a given initial state x0, the total cost of a control
sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN) +
N−1
∑

k=0

gk(xk, uk), (1.2)

where gN(xN) is a terminal cost incurred at the end of the process. The to-
tal cost is a well-defined number, since the control sequence {u0, . . . , uN−1}
together with x0 determines exactly the state sequence {x1, . . . , xN} via
the system equation (1.1). We want to minimize the cost (1.2) over all
sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby ob-
taining the optimal value†

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1),

as a function of x0. Figure 1.1.1 illustrates the main elements of the prob-
lem.

We will next illustrate deterministic problems with some examples.

† We use throughout “min” (in place of “inf”) to indicate minimal value over

a feasible set of controls, even when we are not sure that the minimum is attained
by some feasible control.

4 Exact Dynamic Programming Chap. 1

Initial State Stage 0 Stage 1 Stage 2 Stage
s t u

s t u

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Initial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 Stage N − 1 Stage1 Stage N
.

. . . .

.

. . . .

.

. . . .

.

. . . .

) Artificial Terminal

with Cost gN (xN)

Figure 1.1.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xk. Arcs correspond to state-control pairs (xk , uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively. We
view the cost gk(xk, uk) of the transition as the length of this arc. The problem
is equivalent to finding a shortest path from initial node s to terminal node t.

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state xk the
possible transitions to next states xk+1. The nodes of the graph correspond
to states xk and the arcs of the graph correspond to state-control pairs
(xk, uk). Each arc with start node xk corresponds to a choice of a single
control uk ∈ Uk(xk) and has as end node the next state fk(xk, uk). The
cost of an arc (xk, uk) is defined as gk(xk, uk); see Fig. 1.1.2. To handle the
final stage, an artificial terminal node t is added. Each state xN at stage
N is connected to the terminal node t with an arc having cost gN (xN).

Note that control sequences {u0, . . . , uN−1} correspond to paths orig-
inating at the initial state (node s at stage 0) and terminating at one of the
nodes corresponding to the final stage N . If we view the cost of an arc as
its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial
node s of the graph to the terminal node t. Here, by the length of a path
we mean the sum of the lengths of its arcs.†

Generally, combinatorial optimization problems can be formulated
as deterministic finite-state finite-horizon optimal control problem. The
following scheduling example illustrates the idea.

† It turns out also that any shortest path problem (with a possibly nona-
cyclic graph) can be reformulated as a finite-state deterministic optimal control

problem, as we will show in Section 1.3.1. See [Ber17], Section 2.1, and [Ber91],

[Ber98] for an extensive discussion of shortest path methods, which connects with
our discussion here.

Sec. 1.1 Deterministic Dynamic Programming 5

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

SA

CAB

CAC

CCA

CCD

CBC

CCB

CCD

CAB

CAB

CAD

CDA

CCD

CBD

CBD

CDB

CDB

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

SC

Figure 1.1.3 The transition graph of the deterministic scheduling problem
of Example 1.1.1. Each arc of the graph corresponds to a decision leading
from some state (the start node of the arc) to some other state (the end node
of the arc). The corresponding cost is shown next to the arc. The cost of the
last operation is shown as a terminal cost next to the terminal nodes of the
graph.

Example 1.1.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cmn for passing from any operation m to any
other operation n is given. There is also an initial startup cost SA or SC for
starting with operation A or C, respectively (cf. Fig. 1.1.3). The cost of a
sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost

SA +CAC + CCD +CDB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this

6 Exact Dynamic Programming Chap. 1

problem are shown in Fig. 1.1.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD
with certainty, and has cost CCD. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.1.3. The optimal solution
corresponds to the path that starts at the initial state and ends at some state
at the terminal time and has minimum sum of arc costs plus the terminal
cost.

Continuous-Spaces Optimal Control Problems

Many classical problems in control theory involve a continuous state space,
such as a Euclidean space, i.e., the space of n-dimensional vectors of real
variables, where n is some positive integer. The following is representative
of the class of linear-quadratic problems , where the system equation is
linear, the cost function is quadratic, and there are no control constraints.
In our example, the states and controls are one-dimensional, but there are
multidimensional extensions, which are very popular (see [Ber17], Section
3.1).

Example 1.1.2 (A Linear-Quadratic Problem)

A certain material is passed through a sequence of N ovens (see Fig. 1.1.4).
Denote

x0: initial temperature of the material,

xk, k = 1, . . . , N : temperature of the material at the exit of oven k,

uk−1, k = 1, . . . , N : heat energy applied to the material in oven k.
In practice there will be some constraints on uk, such as nonnegativity.
However, for analytical tractability one may also consider the case where
uk is unconstrained, and check later if the solution satisfies some natural
restrictions in the problem at hand.

We assume a system equation of the form

xk+1 = (1− a)xk + auk, k = 0, 1, . . . , N − 1,

where a is a known scalar from the interval (0, 1). The objective is to get
the final temperature xN close to a given target T , while expending relatively
little energy. We express this with a cost function of the form

r(xN − T)2 +

N−1
∑

k=0

u2
k,

where r > 0 is a given scalar that trades off the error in attaining the final
temperature with the expended energy.

Sec. 1.1 Deterministic Dynamic Programming 7

Initial Temperature

1 Oven 1 Oven 2 Final Temperature
Initial Temperature

u0

Oven 1 Oven 2 Final Temperature
Oven 1 Oven 2 Final Temperature

0 u1

Oven 1 Oven 2 Final Temperature
x1

Initial Temperature Initial Temperature
Initial Temperature x0 x2

Figure 1.1.4 The linear-quadratic problem of Example 1.1.2 for N = 2. The
temperature of the material evolves according to the system equation xk+1 =
(1− a)xk + auk, where a is some scalar with 0 < a < 1.

Linear-quadratic problems with no constraints on the state or the con-
trol admit a nice analytical solution, as we will see later in Section 1.3.7.
In another frequently arising optimal control problem there are linear con-
straints on the state and/or the control. In the preceding example it would
have been natural to require that ak ≤ xk ≤ bk and/or ck ≤ uk ≤ dk, where
ak, bk, ck, dk are given scalars. Then the problem would be solvable not only
by DP but also by quadratic programming methods. Generally determin-
istic optimal control problems with continuous state and control spaces
(in addition to DP) admit a solution by nonlinear programming methods,
such as gradient, conjugate gradient, and Newton’s method, which can be
suitably adapted to their special structure.

1.1.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The
algorithm rests on a simple idea, the principle of optimality , which roughly
states the following; see Fig. 1.1.5.

Principle of Optimality

Let {u∗
0, . . . , u

∗

N−1} be an optimal control sequence, which together
with x0 determines the corresponding state sequence {x∗

1, . . . , x
∗

N} via
the system equation (1.1). Consider the subproblem whereby we start
at x∗

k at time k and wish to minimize the “cost-to-go” from time k to
time N ,

gk(x∗

k, uk) +
N−1
∑

m=k+1

gm(xm, um) + gN (xN),

over {uk, . . . , uN−1} with um ∈ Um(xm), m = k, . . . , N − 1. Then the
truncated optimal control sequence {u∗

k, . . . , u
∗

N−1} is optimal for this
subproblem.

The subproblem referred to above is called the tail subproblem that
starts at x∗

k. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive

8 Exact Dynamic Programming Chap. 1

Tail subproblem TimeFuture Stages Terminal Cost k N
k N

{

Cost 0 Cost

Optimal control sequence

Optimal control sequence {u∗

0
, . . . , u∗

k
, . . . , u∗

N−1
}

Tail subproblem Time x
∗

k
Tail subproblem Time

Figure 1.1.5 Illustration of the principle of optimality. The tail {u∗

k, . . . , u
∗

N−1}
of an optimal sequence {u∗

0, . . . , u
∗

N−1} is optimal for the tail subproblem that
starts at the state x∗

k of the optimal trajectory {x∗
1, . . . , x

∗

N}.

justification is simple. If the truncated control sequence {u∗

k, . . . , u
∗

N−1}
were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach
x∗

k (since the preceding choices of controls, u∗
0, . . . , u

∗

k−1, do not restrict
our future choices). For an auto travel analogy, suppose that the fastest
route from Los Angeles to Boston passes through Chicago. The principle
of optimality translates to the obvious fact that the Chicago to Boston
portion of the route is also the fastest route for a trip that starts from
Chicago and ends in Boston.

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially, by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.1.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.1.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.1.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There a cost for a transition between two
operations, and the numerical values of the transition costs are shown in Fig.
1.1.6 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule
is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we

Sec. 1.1 Deterministic Dynamic Programming 9

solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2
3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2
10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

10 5 7 8 3 9 6 1 2

Figure 1.1.6 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

Tail Subproblems of Length 2 : These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.1.6).

State AB : Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC : Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.1.6.

10 Exact Dynamic Programming Chap. 1

State CA: Here the possibilities are to (a) schedule operation B and then
D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 3, as shown next to node CA in Fig. 1.1.6.

State CD : Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3 : These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.1.6.

State C : Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node A in Fig. 1.1.6.

Original Problem of Length 4 : The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.1.6.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.1.6, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problem by
translating into mathematical terms the heuristic argument underlying the
principle of optimality. The algorithm constructs functions

J*
N (xN), J*

N−1(xN−1), . . . , J*
0 (x0),

Sec. 1.1 Deterministic Dynamic Programming 11

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc.

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN), for all xN , (1.3)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

, for all xk.

(1.4)

Note that at stage k, the calculation in (1.4) must be done for all
states xk before proceeding to stage k − 1. The key fact about the DP
algorithm is that for every initial state x0, the number J*

0 (x0) obtained at
the last step, is equal to the optimal cost J*(x0). Indeed, a more general
fact can be shown, namely that for all k = 0, 1, . . . , N − 1, and all states
xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (1.5)

where

J(xk;uk, . . . , uN−1) = gN(xN) +
N−1
∑

m=k

gm(xm, um), (1.6)

i.e., J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem that

starts at state xk and time k, and ends at time N .† Based on this fact, we

† We can prove this by induction. The assertion holds for k = N in view of
the initial condition J∗

N (xN) = gN(xN). To show that it holds for all k, we use
Eqs. (1.5) and (1.6) to write

J∗

k (xk) = min
um∈Um(xm)
m=k,...,N−1

[

gN(xN) +

N−1
∑

m=k

gm(xm, um)

]

= min
uk∈Uk(xk)

[

gk(xk, uk)

+ min
um∈Um(xm)

m=k+1,...,N−1

[

gN (xN) +

N−1
∑

m=k+1

gm(xm, um)

]]

= min
uk∈Uk(xk)

[

gk(xk, uk) + J∗

k+1

(

fk(xk, uk)
)

]

,

12 Exact Dynamic Programming Chap. 1

call J∗

k (xk) the optimal cost-to-go at state xk and time k, and refer to J∗

k as
the optimal cost-to-go function or optimal cost function at time k. In max-
imization problems the DP algorithm (1.4) is written with maximization
in place of minimization, and then J∗

k is referred to as the optimal value
function at time k.

Note that the algorithm solves every tail subproblem, i.e., the mini-
mization of the cost accumulated additively starting from an intermediate
state up to the end of the horizon. Once the functions J*

0 , . . . , J
*
N have been

obtained, we can use the following forward algorithm to construct an op-
timal control sequence {u∗

0, . . . , u
∗

N−1} and corresponding state trajectory
{x∗

1, . . . , x
∗

N} for the given initial state x0.

Construction of Optimal Control Sequence {u∗
0, . . . , u

∗

N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)

]

,

and
x∗
1 = f0(x0, u∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗

k ∈ arg min
uk∈Uk(x

∗

k
)

[

gk(x∗

k, uk) + J*
k+1

(

fk(x∗

k, uk)
)

]

, (1.7)

and
x∗

k+1 = fk(x∗

k, u
∗

k).

The same algorithm can be used to find an optimal control sequence
for any tail subproblem. Figure 1.1.6 traces the calculations of the DP
algorithm for the scheduling Example 1.1.1. The numbers next to the
nodes, give the corresponding cost-to-go values, and the thick-line arcs
give the construction of the optimal control sequence using the preceding
algorithm.

1.1.3 Approximation in Value Space

The preceding forward optimal control sequence construction is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because of

where for the last equality we use the induction hypothesis. A subtle mathe-

matical point here is that, through the minimization operation, the cost-to-go

functions J∗

k may take the value −∞ for some xk. Still the preceding induction
argument is valid even if this is so.

Sec. 1.1 Deterministic Dynamic Programming 13

the number of possible xk and k can be very large. However, a similar
forward algorithmic process can be used if the optimal cost-to-go functions
J*
k are replaced by some approximations J̃k. This is the basis for approx-

imation in value space, which will be central in our future discussions. It
constructs a suboptimal solution {ũ0, . . . , ũN−1} in place of the optimal
{u∗

0, . . . , u
∗

N−1}, based on using J̃k in place of J*
k in the DP procedure

(1.7).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)

]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)

]

, (1.8)

and
x̃k+1 = fk(x̃k, ũk).

The construction of suitable approximate cost-to-go functions J̃k is
a major focal point of the RL methodology. There are several possible
methods, depending on the context, and they will be taken up starting
with the next chapter.

Q-Factors and Q-Learning

The expression

Q̃k(xk, uk) = gk(xk, uk) + J̃k+1

(

fk(xk, uk)
)

,

which appears in the right-hand side of Eq. (1.8) is known as the (ap-
proximate) Q-factor of (xk, uk).† In particular, the computation of the

† The term “Q-learning” and some of the associated algorithmic ideas were

introduced in the thesis by Watkins [Wat89] (after the symbol “Q” that he used
to represent Q-factors). The term “Q-factor” was used in the book [BeT96], and

is adopted here as well. Watkins [Wat89] used the term “action value” (at a

given state). The terms “state-action value” and “Q-value” are also common in
the literature.

14 Exact Dynamic Programming Chap. 1

approximately optimal control (1.8) can be done through the Q-factor min-
imization

ũk ∈ arg min
uk∈Uk(x̃k)

Q̃k(x̃k, uk).

This suggests the possibility of using Q-factors in place of cost func-
tions in approximation in value space schemes. Methods of this type use
as starting point an alternative (and equivalent) form of the DP algorithm,
which instead of the optimal cost-to-go functions J*

k , generates the optimal
Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (1.9)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.4). Note that this equation
implies that the optimal cost function J*

k can be recovered from the optimal
Q-factor Q*

k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk).

Moreover, using the above relation, the DP algorithm can be written in an
essentially equivalent form that involves Q-factors only

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

We will discuss later exact and approximate forms of related algorithms in
the context of a class of RL methods known as Q-learning.

1.2 STOCHASTIC DYNAMIC PROGRAMMING

The stochastic finite horizon optimal control problem differs from the de-
terministic version primarily in the nature of the discrete-time dynamic
system that governs the evolution of the state xk. This system includes a
random “disturbance” wk, which is characterized by a probability distri-
bution Pk(· | xk, uk) that may depend explicitly on xk and uk, but not on
values of prior disturbances wk−1, . . . , w0. The system has the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where as before xk is an element of some state space Sk, the control uk is an
element of some control space. The cost per stage is denoted gk(xk, uk, wk)
and also depends on the random disturbance wk; see Fig. 1.2.1. The control

Sec. 1.2 Stochastic Dynamic Programming 15

......) xk k xk+1 +1 xN) x0

Random Transition

Random Transition xk+1 = fk(xk, uk, wk) Random cost

) Random Cost
) Random Cost gk(xk, uk, wk)

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN)

Control uk

Stage k k Future Stages

Figure 1.2.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xk, the next state under control uk is generated randomly,
according to

xk+1 = fk(xk, uk, wk),

where wk is the random disturbance, and a random stage cost gk(xk , uk, wk) is
incurred.

uk is constrained to take values in a given subset Uk(xk), which depends
on the current state xk.

An important difference is that we optimize not over control sequences
{u0, . . . , uN−1}, but rather over policies (also called closed-loop control
laws , or feedback policies) that consist of a sequence of functions

π = {µ0, . . . , µN−1},

where µk maps states xk into controls uk = µk(xk), and satisfies the control
constraints, i.e., is such that µk(xk) ∈ Uk(xk) for all xk ∈ Sk. Policies
are more general objects than control sequences, and in the presence of
stochastic uncertainty, they can result in improved cost, since they allow
choices of controls uk that incorporate knowledge of the state xk. Without
this knowledge, the controller cannot adapt appropriately to unexpected
values of the state, and as a result the cost can be adversely affected. This
is a fundamental distinction between deterministic and stochastic optimal
control problems.

Another important distinction between deterministic and stochastic
problems is that in the latter, the evaluation of various quantities such
as cost function values involves forming expected values. Consequently,
several of the methods that we will discuss for stochastic problems will
involve the use of Monte Carlo simulation.

Given an initial state x0 and a policy π = {µ0, . . . , µN−1}, the fu-
ture states xk and disturbances wk are random variables with distributions
defined through the system equation

xk+1 = fk
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , N − 1.

Thus, for given functions gk, k = 0, 1, . . . , N , the expected cost of π starting
at x0 is

Jπ(x0) = E

{

gN (xN) +
N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

,

16 Exact Dynamic Programming Chap. 1

where the expected value operation E{·} is over all the random variables
wk and xk. An optimal policy π∗ is one that minimizes this cost; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0),

where Π is the set of all policies.
The optimal cost depends on x0 and is denoted by J*(x0); i.e.,

J*(x0) = min
π∈Π

Jπ(x0).

It is useful to view J* as a function that assigns to each initial state x0 the
optimal cost J*(x0), and call it the optimal cost function or optimal value
function.

Finite Horizon Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and xk the values J*
k (xk), which give

the optimal cost-to-go starting at stage k at state xk.

(c) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
we replace J*

k by approximations J̃k, and obtain a suboptimal policy
by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN),

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)
E
{

gk(xk, uk, wk)+J*
k+1

(

fk(xk, uk, wk)
)

}

. (1.10)

If u∗

k = µ∗

k(xk) minimizes the right side of this equation for each xk

and k, the policy π∗ = {µ∗
0, . . . , µ

∗

N−1} is optimal.

The key fact is that for every initial state x0, the optimal cost J*(x0)
is equal to the function J*

0 (x0), obtained at the last step of the above DP

Sec. 1.2 Stochastic Dynamic Programming 17

algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (see the discussion of Section 1.3 in the textbook
[Ber17]).†

Simultaneously with the off-line computation of the optimal cost-
to-go functions J*

0 , . . . , J
*
N , we can compute and store an optimal policy

π∗ = {µ∗
0, . . . , µ

∗

N−1} by minimization in Eq. (1.10). We can then use this
policy on-line to retrieve from memory and apply the control µ∗

k(xk) once
we reach state xk.

The alternative is to forego the storage of the policy π∗ and to calcu-
late the control µ∗

k(xk) by executing the minimization (1.10) on-line. This
method of on-line control calculation is called one-step lookahead minimiza-
tion. Its main use is not so much in the context of exact DP, but rather
in the context of approximate DP methods that involve approximation in
value space. There, approximations J̃k are used in place of J*

k , similar to
the deterministic case; cf. Eqs. (1.7) and (1.8).

Approximation in Value Space - Use of J̃k in Place of J*
k

At any state xk encountered at stage k, compute and apply the control

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

.

(1.11)

As in deterministic problems, the motivation for approximation in
value space is that the DP algorithm can be very time-consuming. The
one-step lookahead minimization (1.11) needs to be performed only for
the N states x0, . . . , xN−1 that are encountered during the on-line control
of the system, and not for every state within the potentially enormous
state space. Of course this simplification entails the loss of optimality, and
requires the construction of suitable approximate cost-to-go functions J̃k.
This is a major focal point of the RL methodology, and will be discussed
at length in the following chapters.

Q-Factors for Stochastic Problems

We can define optimal Q-factors for a stochastic problem, similar to the

† There are some technical/mathematical difficulties here, having to do with

the expected value operation in Eq. (1.10) being well-defined and finite. These

difficulties are of no concern in practice, and disappear completely when the
disturbance spaces wk can take only a finite number of values, in which case

all expected values consist of sums of finitely many real number terms. For a

mathematical treatment, see the relevant discussion in Chapter 1 of [Ber17] and
the book [BeS78].

18 Exact Dynamic Programming Chap. 1

case of deterministic problems [cf. Eq. (1.9)], as the expressions that are
minimized in the right-hand side of the stochastic DP equation (1.10).
They are given by

Q*
k(xk, uk) = E

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

.

The optimal cost-to-go functions J*
k can be recovered from the optimal

Q-factors Q*
k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk),

and the DP algorithm can be written in terms of Q-factors as

Q*
k(xk, uk) =E

{

gk(xk, uk, wk)

+ min
uk+1∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), uk+1

)

}

.

1.3 EXAMPLES, VARIATIONS, AND SIMPLIFICATIONS

In this section we provide some examples to illustrate problem formulation
techniques, solution methods, and adaptations of the basic DP algorithm
to various contexts. As a guide for formulating optimal control problems in
a manner that is suitable for DP solution, the following two-stage process
is suggested:

(a) Identify the controls/decisions uk and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {u0, . . . , uN−1}, one may lump multiple controls
to be chosen together, e.g., view the pair (u0, u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states xk. The basic guideline here is that xk should en-
compass all the information that is known to the controller at time
k and can be used with advantage in choosing uk. In effect, at time
k the state xk should separate the past from the future, in the sense
that anything that has happened in the past (states, controls, and
disturbances from stages prior to stage k) is irrelevant to the choices
of future controls as long as we know xk. Sometimes this is described

Sec. 1.3 Examples, Variations, and Simplifications 19

by saying that the state should have a “Markov property” to express
an analogy with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It is thus worth considering
alternative ways to choose the states; for example try to use states that
minimize the dimensionality of the state space. For a trivial example that
illustrates the point, if a quantity xk qualifies as state, then (xk−1, xk) also
qualifies as state, since (xk−1, xk) contains all the information contained
within xk that can be useful to the controller when selecting uk. However,
using (xk−1, xk) in place of xk, gains nothing in terms of optimal cost while
complicating the DP algorithm that would have to be executed over a larger
space. The concept of a sufficient statistic, which refers to a quantity
that summarizes all the essential content of the information available to
the controller, may be useful in reducing the size of the state space (see
the discussion in Section 3.1.1, and in [Ber17], Section 4.3). Section 1.3.6
provides an example, and Section 3.1.1 contains further discussion.

Generally minimizing the dimension of the state makes sense but there
are exceptions. A case in point is problems involving partial or imperfect
state information, where we collect measurements to use for control of
some quantity of interest yk that evolves over time (for example, yk may
be the position/velocity vector of a moving vehicle). If Ik is the collection
of all measurements and controls up to time k, it is correct to use Ik as
state. However, a better alternative may be to use as state the conditional
probability distribution Pk(yk | Ik), called belief state, which may subsume
all the information that is useful for the purposes of choosing a control. On
the other hand, the belief state Pk(yk | Ik) is an infinite-dimensional object,
whereas Ik may be finite dimensional, so the best choice may be problem-
dependent; see the textbooks [Ber17] and [Kri16] for further discussion of
partial state information problems.

We refer to DP textbooks for extensive additional discussions of mod-
eling and problem formulation techniques. The subsequent chapters do not
rely substantially on the material of the present section, so the reader may
selectively skip forward to the next chapter and return to this material
later as needed.

1.3.1 Deterministic Shortest Path Problems

Consider a directed graph with a special node, called the destination. Let
{1, 2, . . . , N, t} be the set of nodes of the graph, where t is the destination,
and let aij be the cost of moving from node i to node j [also referred to as
the length of the directed arc (i, j) that joins i and j]. By a path we mean
a sequence of arcs such that the end node of each arc in the sequence is

20 Exact Dynamic Programming Chap. 1

the start node of the next arc. The length of a path from a given node to
another node is the sum of the lengths of the arcs on the path. We want
to find a shortest (i.e., minimum length) path from each node i to node t.

We make an assumption relating to cycles, i.e., paths of the form
(i, j1), (j1, j2), . . . , (jk, i) that start and end at the same node. In particular,
we exclude the possibility that a cycle has negative total length. Otherwise,
it would be possible to decrease the length of some paths to arbitrarily small
values simply by adding more and more negative-length cycles. We thus
assume that all cycles have nonnegative length. With this assumption, it
is clear that an optimal path need not take more than N moves, so we
may limit the number of moves to N . To conform to the N -stage DP
framework, we formulate the problem as one where we require exactly N
moves but allow degenerate moves from a node i to itself with cost aii = 0.
We also assume that for every node i there exists at least one path from i
to t, so that the problem has at least one solution.

We can formulate this problem as a deterministic DP problem with N
stages, where the states at any stage 0, . . . , N−1 are the nodes {1, . . . , N},
the destination t is the unique state at stageN , and the controls correspond
to the arcs (i, j), including the self arcs (i, i). Thus at each state i we select
a control (i, j) and move to state j at cost aij .

We can write the DP algorithm for our problem, with the optimal
cost-to-go functions J*

k having the meaning

J*
k (i) = optimal cost of getting from i to t in N − k moves,

for i = 1, . . . , N and k = 0, . . . , N − 1. The cost of the optimal path from
i to t is J*

0 (i). The DP algorithm takes the intuitively clear form

optimal cost from i to t in N − k moves

= min
All arcs (i,j)

[

aij + (optimal cost from j to t in N − k − 1 moves)
]

,

or
J*
k (i) = min

All arcs (i,j)

[

aij + J*
k+1(j)

]

, k = 0, 1, . . . , N − 2,

with
J*
N−1(i) = ait, i = 1, 2, . . . , N.

This algorithm is also known as the Bellman-Ford algorithm for shortest
paths. It is one of the most popular shortest path algorithms.

The optimal policy when at node i after k moves is to move to a node
j∗ that minimizes aij + J*

k+1(j) over all j such that (i, j) is an arc. If the
optimal path obtained from the algorithm contains degenerate moves from
a node to itself, this simply means that the path involves in reality less
than N moves.

Sec. 1.3 Examples, Variations, and Simplifications 21

0 1 3 4 5 6 7 00 1 3 4 5 6 7 0

0 1 3 4 5 6 7 0

0 1 3 4 5 6 7 0
0 1 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 0
0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

i Stage k

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7 0.5

State i

5 4.55 4.55 5.5

Destination

Destination (a) (b) Destination (a) (b)

Figure 1.3.1 (a) Shortest path problem data. The destination is node 5. Arc
lengths are equal in both directions and are shown along the line segments con-
necting nodes. (b) Costs-to-go generated by the DP algorithm. The num-
ber along stage k and state i is J∗

k
(i). Arrows indicate the optimal moves

at each stage and node. The optimal paths that start from nodes 1,2,3,4 are
1 → 5, 2 → 3 → 4 → 5, 3 → 4 → 5, 4 → 5, respectively.

Note that if for some k > 0, we have

J*
k (i) = J*

k+1(i), for all i,

then subsequent DP iterations will not change the values of the cost-to-go
[J*

k−m(i) = J*
k (i) for all m > 0 and i], so the algorithm can be terminated

with J*
k (i) being the shortest distance from i to t, for all i.
To demonstrate the algorithm, consider the problem shown in Fig.

1.3.1(a) where the costs aij with i ̸= j are shown along the connecting line
segments (we assume that aij = aji). Figure 1.3.1(b) shows the optimal
cost-to-go J*

k (i) at each i and k together with the optimal paths.

1.3.2 Discrete Deterministic Optimization

Discrete optimization problems can be typically formulated as DP prob-
lems by breaking down each feasible solution into a sequence of deci-
sions/controls; see e.g., the scheduling Example 1.1.1. This formulation
will often lead to an intractable DP computation because of an exponential
explosion of the number of states. However, it brings to bear approximate
DP methods, such as rollout and others that we will discuss in future chap-
ters. We illustrate the reformulation by an example and then generalize.

Example 1.3.1 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the travel time
between each pair of cities. We wish to find a minimum time travel that visits

22 Exact Dynamic Programming Chap. 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

s Terminal State t

15 1 5 15 1 5 15 1 5 15 1 515 1 5 15 1 5

15 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 25

15 1 5 18 4 19 9 21 25 8 1215 1 5 18 4 19 9 21 25 8 1215 1 5 18 4 19 9 21 25 8 12

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

Figure 1.3.2 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix at
the bottom. We form a graph whose nodes are the k-city sequences and correspond
to the states of the kth stage. The transition costs/travel times are shown next to
the arcs. The optimal costs-to-go are generated by DP starting from the terminal
state and going backwards towards the initial state, and are shown next to the
nodes. There are two optimal sequences here (ABDCA and ACDBA), and they
are marked with thick lines. Both optimal sequences can be obtained by forward
minimization [cf. Eq. (1.7)], starting from the initial state x0.

each of the cities exactly once and returns to the start city. To convert this
problem to a DP problem, we form a graph whose nodes are the sequences
of k distinct cities, where k = 1, . . . , N . The k-city sequences correspond to
the states of the kth stage. The initial state x0 consists of some city, taken
as the start (city A in the example of Fig. 1.3.2). A k-city node/state leads
to a (k+1)-city node/state by adding a new city at a cost equal to the travel
time between the last two of the k+1 cities; see Fig. 1.3.2. Each sequence of
N cities is connected to an artificial terminal node t with an arc of cost equal
to the travel time from the last city of the sequence to the starting city, thus

Sec. 1.3 Examples, Variations, and Simplifications 23

Artificial Start State End State Artificial Start State End State

Artificial Start State End State
Artificial Start State End State)

...)
...)

...)
...

)
...)

...)
...)

...

. . . i

. . . i

. . . i

Set of States (
Set of States (Set of States (Set of States (Set of States (u1) Set of States (

, . . . , u)) Set of States (u1, u2) Set of States () Set of States (u1, u2, u3) Set

Cost G(u)

Set of States u = (u1, . . . , uN)

Figure 1.3.3. Formulation of a discrete optimization problem as a DP problem
with N + 1 stages. There is a cost G(u) only at the terminal stage on the arc
connecting an N-solution u = (u1, . . . , uN) to the artificial terminal state. Al-
ternative formulations may use fewer states by taking advantage of the problem’s
structure.

completing the transformation to a DP problem.
The optimal costs-to-go from each node to the terminal state can be

obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed as part of our subsequent development.

Let us now extend the ideas of the preceding example to the general
discrete optimization problem:

minimize G(u)

subject to u ∈ U,

where U is a finite set of feasible solutions and G(u) is a cost function.
We assume that each solution u has N components; i.e., it has the form
u = (u1, . . . , uN), where N is a positive integer. We can then view the
problem as a sequential decision problem, where the components u1, . . . , uN

are selected one-at-a-time. A k-tuple (u1, . . . , uk) consisting of the first k
components of a solution is called a k-solution. We associate k-solutions
with the kth stage of the finite horizon DP problem shown in Fig. 1.3.3.
In particular, for k = 1, . . . , N , we view as the states of the kth stage all
the k-tuples (u1, . . . , uk). The initial state is an artificial state denoted s.
From this state we may move to any state (u1), with u1 belonging to the
set

U1 =
{

ũ1 | there exists a solution of the form (ũ1, ũ2, . . . , ũN) ∈ U
}

.

Thus U1 is the set of choices of u1 that are consistent with feasibility.

24 Exact Dynamic Programming Chap. 1

More generally, from a state (u1, . . . , uk), we may move to any state
of the form (u1, . . . , uk, uk+1), with uk+1 belonging to the set

Uk+1(u1, . . . , uk) =
{

ũk+1 | there exists a solution of the form

(u1, . . . , uk, ũk+1, . . . , ũN) ∈ U
}

.

At state (u1, . . . , uk) we must choose uk+1 from the set Uk+1(u1, . . . , uk).
These are the choices of uk+1 that are consistent with the preceding choices
u1, . . . , uk, and are also consistent with feasibility. The last stage cor-
responds to the N -solutions u = (u1, . . . , uN), which in turn lead to an
artificial end state t. The cost-to-go from each u in the last stage to t is
G(u), the cost of the solution u; see Fig. 1.3.3. All other transitions in this
DP problem formulation have cost 0.

Let J*
k (u1, . . . , uk) denote the optimal cost starting from the k-solution

(u1, . . . , uk), i.e., the optimal cost of the problem over solutions whose first
k components are constrained to be equal to ui, i = 1, . . . , k, respectively.
The DP algorithm is described by the equation

J*
k (u1, . . . , uk) = min

uk+1∈Uk+1(u1,...,uk)
J*
k+1(u1, . . . , uk, uk+1), (1.12)

with the terminal condition

J*
N (u1, . . . , uN) = G(u1, . . . , uN).

The algorithm (1.12) executes backwards in time: starting with the known
function J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing

J*
1 . An optimal solution (u∗

1, . . . , u
∗

N) is then constructed by going forward
through the algorithm

u∗

k+1 ∈ arg min
uk+1∈Uk+1(u

∗
1,...,u

∗

k
)
J*
k+1(u

∗
1, . . . , u

∗

k, uk+1), k = 0, . . . , N − 1,

(1.13)
first compute u∗

1, then u∗
2, and so on up to u∗

N ; cf. Eq. (1.7).
Of course here the number of states typically grows exponentially with

N , but we can use the DP minimization (1.13) as a starting point for the use
of approximation methods. For example we may try to use approximation
in value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(1.13). One possibility is to use as

J̃k+1(u∗
1, . . . , u

∗

k, uk+1),

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗
1, . . . , u

∗

k, uk+1. This is called a rollout algorithm, and it is a very simple
and effective approach for approximate combinatorial optimization. It will

Sec. 1.3 Examples, Variations, and Simplifications 25

be discussed later in this book, in Chapter 2 for finite horizon stochastic
problems, and in Chapter 5 for infinite horizon problems, where it will be
related to the method of policy iteration and self-learning ideas.

Finally, let us mention that shortest path and discrete optimization
problems with a sequential character can be addressed by a variety of ap-
proximate shortest path methods. These include the so called label cor-
recting, A∗, and branch and bound methods for which extensive discussions
can be found in the literature. The author’s DP textbook [Ber17] (Chapter
2) contains a substantial account, which connects with the material of this
section, as well as with a much more detailed discussion of shortest path
methods in the author’s network optimization textbook [Ber98].

1.3.3 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t
that is cost-free and absorbing in the sense that for all k,

gk(t, uk, wk) = 0, fk(t, uk, wk) = t, for all wk and uk ∈ Uk(t).

Thus the control process essentially terminates upon reaching t, even if
this happens before the end of the horizon. One may reach t by choice if a
special stopping decision is available, or by means of a random transition
from another state.

Generally, when it is known that an optimal policy will reach the
termination state within at most some given number of stages N , the DP
problem can be formulated as an N -stage horizon problem.† The reason
is that even if the termination state t is reached at a time k < N , we can
extend our stay at t for an additional N − k stages at no additional cost.
An illustration of this was given in the deterministic shortest path problem
that we discussed in Section 1.3.1.

Discrete deterministic optimization problems generally have a close
connection to shortest path problems as we have seen in Section 1.3.2. In
the problem discussed in that section, the termination state is reached after
exactly N stages (cf. Fig. 1.3.3), but in other problems it is possible that
termination can happen earlier. The following well known puzzle is an
example.

Example 1.3.2 (The Four Queens Problem)

Four queens must be placed on a 4 × 4 portion of a chessboard so that no
queen can attack another. In other words, the placement must be such that
every row, column, or diagonal of the 4×4 board contains at most one queen.

† When an upper bound on the number of stages to termination is not known,

the problem must be formulated as an infinite horizon problem, as will be dis-
cussed in a subsequent chapter.

26 Exact Dynamic Programming Chap. 1

Equivalently, we can view the problem as a sequence of problems; first, placing
a queen in one of the first two squares in the top row, then placing another
queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first
two squares of the top row, since the other two squares lead to symmetric
positions; this is an example of a situation where we have a choice between
several possible state spaces, but we select the one that is smallest.)

We can associate positions with nodes of an acyclic graph where the
root node s corresponds to the position with no queens and the terminal
nodes correspond to the positions where no additional queens can be placed
without some queen attacking another. Let us connect each terminal position
with an artificial terminal node t by means of an arc. Let us also assign to
all arcs cost zero except for the artificial arcs connecting terminal positions
with less than four queens with the artificial node t. These latter arcs are
assigned a cost of 1 (see Fig. 1.3.4) to express the fact that they correspond
to dead-end positions that cannot lead to a solution. Then, the four queens
problem reduces to finding a minimal cost path from node s to node t, with
an optimal sequence of queen placements corresponding to cost 0.

Note that once the states/nodes of the graph are enumerated, the prob-
lem is essentially solved. In this 4 × 4 problem the states are few and can
be easily enumerated. However, we can think of similar problems with much
larger state spaces. For example consider the problem of placing N queens
on an N × N board without any queen attacking another. Even for moder-
ate values of N , the state space for this problem can be extremely large (for
N = 8 the number of possible placements with exactly one queen in each
row is 88 = 16, 777, 216). It can be shown that there exist solutions to the
N queens problem for all N ≥ 4 (for N = 2 and N = 3, clearly there is no
solution).

There are also several variants of the N queens problem. For example
finding the minimal number of queens that can be placed on an N ×N board
so that they either occupy or attack every square; this is known as the queen
domination problem. The minimal number can be found in principle by DP,
and it is known for some N (for example the minimal number is 5 for N = 8),
but not for all N (see e.g., the paper by Fernau [Fer10]).

1.3.4 Forecasts

Consider a situation where at time k the controller has access to a fore-
cast yk that results in a reassessment of the probability distribution of the
subsequent disturbance wk and, possibly, future disturbances. For exam-
ple, yk may be an exact prediction of wk or an exact prediction that the
probability distribution of wk is a specific one out of a finite collection of
distributions. Forecasts of interest in practice are, for example, probabilis-
tic predictions on the state of the weather, the interest rate for money, and
the demand for inventory.

Generally, forecasts can be handled by introducing additional state

Sec. 1.3 Examples, Variations, and Simplifications 27

Length = 0 Dead-End Position Solution Starting

Starting Position ˆ
Root Node s

Length = 0 Dead-End Position Solution

Length = 0 Dead-End Position Solution

Artificial Terminal Node

Artificial Terminal Node

Artificial Terminal Node t

t Length = 1 t Length = 1

Figure 1.3.4 Discrete optimization formulation of the four queens problem.
Symmetric positions resulting from placing a queen in one of the rightmost
squares in the top row have been ignored. Squares containing a queen have
been darkened. All arcs have length zero except for those connecting dead-end
positions to the artificial terminal node.

variables corresponding to the information that the forecasts provide.† We

† The device of introducing additional states to modify a given problem so

that it fits the DP formalism is known as state augmentation. It finds exten-

sive use in the DP formulation of practical problems (see e.g. [Ber17]). Exam-
ples of problem reformulations that are based on state augmentation arise when

28 Exact Dynamic Programming Chap. 1

will illustrate the process with a simple example.
Assume that at the beginning of each stage k, the controller receives

an accurate prediction that the next disturbance wk will be selected ac-
cording to a particular probability distribution out of a given collection of
distributions {P1, . . . , Pm}; i.e., if the forecast is i, then wk is selected ac-
cording to Pi. The a priori probability that the forecast will be i is denoted
by pi and is given.

The forecasting process can be represented by means of the equation

yk+1 = ξk,

where yk+1 can take the values 1, . . . ,m, corresponding to the m possible
forecasts, and ξk is a random variable taking the value i with probability
pi. The interpretation here is that when ξk takes the value i, then wk+1

will occur according to the distribution Pi.
By combining the system equation with the forecast equation yk+1 =

ξk, we obtain an augmented system given by
(

xk+1

yk+1

)

=

(

fk(xk, uk, wk)
ξk

)

.

The new state is
x̃k = (xk, yk).

The new disturbance is
w̃k = (wk, ξk),

and its probability distribution is determined by the distributions Pi and
the probabilities pi, and depends explicitly on x̃k (via yk) but not on the
prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

J*
N (xN , yN) = gN (xN),

J*
k (xk, yk) = min

uk∈Uk(xk)
E
wk

{

gk(xk, uk, wk)

+
m
∑

i=1

piJ*
k+1

(

fk(xk, uk, wk), i
)
∣

∣ yk
}

,
(1.14)

the disturbances exhibit correlations over time. They also arise in the presence

of post-decision states, where the system function fk(xk, uk, wk) has the form
f̃k

(

hk(xk, uk), wk

)

, where f̃k is some function, and hk(xk, uk) represents an in-

termediate “state” that occurs after the control is applied. With post-decision

states, the DP algorithm may be reformulated to a simpler form (see [Ber12],
Section 6.1.5).

Sec. 1.3 Examples, Variations, and Simplifications 29

j · · · j · · ·n 0 10 1 0 1 2

) C c

C c(1)

Garage

Stage 1 Stage 2 Stage 3 Stage N NN N − 1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0)

1) k k

(0) c(k)) c(k + 1)

+ 1) c(N − 1) Parked

1) Parking Spaces

k k + 1

Termination State

Figure 1.3.5 Cost structure of the parking problem. The driver may park at
space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free, or continue to the
next space k+ 1 at no cost. At space N (the garage) the driver must park at
cost C.

where yk may take the values 1, . . . ,m, and the expectation over wk is
taken with respect to the distribution Pyk .

It should be clear that the preceding formulation admits several ex-
tensions. One example is the case where forecasts can be influenced by
the control action (e.g., pay extra for a more accurate forecast) and in-
volve several future disturbances. However, the price for these extensions
is increased complexity of the corresponding DP algorithm.

1.3.5 Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state. Before
describing how this can be done in generality, let us consider an example.

Example 1.3.3 (Parking)

A driver is looking for inexpensive parking on the way to his destination.
The parking area contains N spaces, numbered 0, . . . , N − 1, and a garage
following space N − 1. The driver starts at space 0 and traverses the parking
spaces sequentially, i.e., from space k he goes next to space k + 1, etc. Each
parking space k costs c(k) and is free with probability p(k) independently of
whether other parking spaces are free or not. If the driver reaches the last
parking space N − 1 and does not park there, he must park at the garage,
which costs C. The driver can observe whether a parking space is free only
when he reaches it, and then, if it is free, he makes a decision to park in that
space or not to park and check the next space. The problem is to find the
minimum expected cost parking policy.

We formulate the problem as a DP problem with N stages, correspond-
ing to the parking spaces, and an artificial termination state that corresponds
to having parked; see Fig. 1.3.5. At each stage k = 1, . . . , N−1, we have three
states: the artificial termination state, denoted by (k, t), and the two states
(k, F) and (k, F), corresponding to space k being free or taken, respectively.

30 Exact Dynamic Programming Chap. 1

At stage 0, we have only two states, (0, F) and (0, F), and at the final stage
there is only one state, the termination state t. The decision/control is to
park or continue at state (k, F) [there is no choice at states (k, F) and states
(k, t), k = 1, . . . , N − 1]. The termination state t is reached at cost c(k) when
a parking decision is made at the states (k, F), k = 0, . . . , N − 1, at cost C,
when the driver continues at states (N − 1, F) or (N − 1, F), and at no cost
at (k, t), k = 1, . . . , N − 1.

Let us now derive the form of the DP algorithm, denoting:

J∗

k (F): The optimal cost-to-go upon arrival at a space k that is free.

J∗

k (F): The optimal cost-to-go upon arrival at a space k that is taken.

J∗

k (t): The cost-to-go of the “parked”/termination state t.

The DP algorithm for k = 0, . . . , N − 1 takes the form

J∗

k (F) =

{

min
[

c(k), p(k + 1)J∗

k+1(F) +
(

1− p(k + 1)
)

J∗

k+1(F)
]

if k < N − 1,

min
[

c(N − 1), C
]

if k = N − 1,

J∗

k (F) =

{

p(k + 1)J∗

k+1(F) +
(

1− p(k + 1)
)

J∗

k+1(F) if k < N − 1,
C if k = N − 1,

for the states other than the termination state t, while for t we have

J∗

k (t) = 0, k = 1, . . . , N.

While this algorithm is easily executed, it can be written in a simpler
and equivalent form, which takes advantage of the fact that the second compo-
nent (F or F) of the state is uncontrollable. This can be done by introducing
the scalars

Ĵk = p(k)J∗

k (F) +
(

1− p(k)
)

J∗

k (F), k = 0, . . . , N − 1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status.

Indeed, from the preceding DP algorithm, we have

ĴN−1 = p(N − 1)min
[

c(N − 1), C
]

+
(

1− p(N − 1)
)

C,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

From this algorithm we can also obtain the optimal parking policy, which is
to park at space k = 0, . . . , N − 1 if it is free and we have c(k) ≤ Ĵk+1.

Figure 1.3.6 provides a plot for Ĵk for the case where

p(k) ≡ 0.05, c(k) = N − k, C = 100, N = 200. (1.15)

The optimal policy is to travel to space 165 and then to park at the first
available space. The reader may verify that this type of policy, characterized
by a single threshold distance, is optimal not just for the form of c(k) given

Sec. 1.3 Examples, Variations, and Simplifications 31

! "! #!! #"! $!!

%!

&!

'!

#!!

#$!

()*+,+)-

.
/,
+0
12
34
)*
,35

6

./,+0123()2+7831-934)*,

#

$

:"

;
7,
+)
-

./,+01237)*,<,)<=)3>?-7,+)-

./,+0123;7,+)-@33333333333333333
#3A3(1BC3+>3>BDDE3$3A3F)-G,3(1BC

165 200 150 100 150 200

165 200 150 100 150 200165 200 150 100 150 200165 200 150 100 150 200165 200 150 100 50 0

165 200 150 100 50 0165 200 150 100 50 0

165 200 150 100 50 0

Figure 1.3.6 Optimal cost-to-go and optimal policy for the parking problem with
the data in Eq. (1.15). The optimal policy is to travel from space 0 to space 165
and then to park at the first available space.

above, but also for any form of c(k) that is monotonically decreasing as k

increases.

We will now formalize the procedure illustrated in the preceding ex-
ample. Let the state of the system be a composite (xk, yk) of two compo-
nents xk and yk. The evolution of the main component, xk, is affected by
the control uk according to the equation

xk+1 = fk(xk, yk, uk, wk),

where the distribution Pk(wk | xk, yk, uk) is given. The evolution of the
other component, yk, is governed by a given conditional distribution Pk(yk |
xk) and cannot be affected by the control, except indirectly through xk.
One is tempted to view yk as a disturbance, but there is a difference: yk is
observed by the controller before applying uk, while wk occurs after uk is
applied, and indeed wk may probabilistically depend on uk.

It turns out that we can formulate a DP algorithm that is executed
over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” as in the preceding exam-
ple. In particular, let J*

k (xk, yk) denote the optimal cost-to-go at stage k
and state (xk, yk), and define

Ĵk(xk) = E
yk

{

J*
k (xk, yk) | xk

}

.

Then, similar to the preceding parking example, a DP algorithm that gen-

32 Exact Dynamic Programming Chap. 1

erates Ĵk(xk) can be obtained, and has the following form:†

Ĵk(xk) = E
yk

{

min
uk∈Uk(xk,yk)

E
wk

{

gk(xk, yk, uk, wk)

+ Ĵk+1

(

fk(xk, yk, uk, wk)
)
∣

∣ xk, yk, uk

}
∣

∣

∣
xk

}

.

(1.16)
Note that the minimization in the right-hand side of the preceding

equation must still be performed for all values of the full state (xk, yk) in
order to yield an optimal control law as a function of (xk, yk). Nonetheless,
the equivalent DP algorithm (1.16) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate Ĵk(xk) than to approximate J*

k (xk, yk); see the following dis-
cussions of forecasts and of the game of tetris.

As an example, consider the augmented state resulting from the in-
corporation of forecasts, as described earlier in Section 1.3.4. Then, the
forecast yk represents an uncontrolled state component, so that the DP al-
gorithm can be simplified as in Eq. (1.16). In particular, using the notation
of Section 1.3.4, by defining

Ĵk(xk) =
m
∑

i=1

piJ*
k (xk, i), k = 0, 1, . . . , N − 1,

and
ĴN (xN) = gN (xN),

we have, using Eq. (1.14),

Ĵk(xk) =
m
∑

i=1

pi min
uk∈Uk(xk)

E
wk

{

gk(xk, uk, wk)

+ Ĵk+1

(

fk(xk, uk, wk)
)
∣

∣ yk = i
}

,

† This is a consequence of the calculation

Ĵk(xk) = Eyk

{

J∗

k (xk, yk) | xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk,xk+1,yk+1

{

gk(xk, yk, uk, wk)

+ J∗

k+1(xk+1, yk+1)
∣

∣ xk, yk, uk

}
∣

∣ xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk,xk+1

{

gk(xk, yk, uk, wk)

+ Eyk+1

{

J∗

k+1(xk+1, yk+1)
∣

∣ xk+1

}
∣

∣ xk, yk, uk

}

∣

∣ xk

}

.

Sec. 1.3 Examples, Variations, and Simplifications 33

Figure 1.3.7 Illustration of a tetris board.

which is executed over the space of xk rather than xk and yk. Note that
this is a simpler algorithm to approximate than the one of Eq. (1.14).

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.16). Here is an example of this type.

Example 1.3.4 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.3.7). The squares fill up as blocks of different
shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
within N steps or up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a stochastic DP problem. The control, denoted by u, is the horizontal
positioning and rotation applied to the falling block. The state consists of
two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.

34 Exact Dynamic Programming Chap. 1

(2) The shape of the current falling block, denoted by y.

There is also an additional termination state which is cost-free. Once the
state reaches the termination state, it stays there with no change in cost.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.16) is executed over the space of board
positions x and has the intuitive form

Ĵk(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵk+1

(

f(x, y, u)
)

]

, for all x,

where

g(x, y, u) is the number of points scored (rows removed),

f(x, y, u) is the next board position (or termination state),

when the state is (x, y) and control u is applied, respectively. Note, however,
that despite the simplification in the DP algorithm achieved by eliminating
the uncontrollable portion of the state, the number of states x is still enor-
mous, and the problem can only be addressed by suboptimal methods, which
will be discussed later in this book.

1.3.6 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value of
the current state xk, so a policy consists of a sequence of functions µk(xk),
k = 0, . . . , N − 1. However, in many practical settings this assumption is
unrealistic, because some components of the state may be inaccessible for
measurement, the sensors used for measuring them may be inaccurate, or
the cost of obtaining accurate measurements may be prohibitive.

Often in such situations the controller has access to only some of
the components of the current state, and the corresponding measurements
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of po-
sition and velocity components, but the measurements may consist of noise-
corrupted radar measurements of the three position components. This gives
rise to problems of partial or imperfect state information, which have re-
ceived a lot of attention in the optimization and artificial intelligence litera-
ture (see e.g., [Ber17], [RuN16]). Even though there are DP algorithms for
partial information problems, these algorithms are far more computation-
ally intensive than their perfect information counterparts. For this reason,
in the absence of an analytical solution, partial information problems are
typically solved suboptimally in practice.

On the other hand it turns out that conceptually, partial state infor-
mation problems are no different than the perfect state information prob-
lems we have been addressing so far. In fact by various reformulations, we
can reduce a partial state information problem to one with perfect state

Sec. 1.3 Examples, Variations, and Simplifications 35

Belief State

k Controller

Controller µk

) xk

k Observations
“Future” System x

xk+1 = fk(xk, uk, wk)

∗

y bk

k Control uk = µk(bk)

Figure 1.3.8 Schematic illustration of a control system with imperfect state
observations. The belief state bk is the conditional probability distribution of xk

given all the observations up to time k.

information (see [Ber17], Ch. 4). The most common approach is to replace
the state xk with a belief state, which we will often denote by bk. It is
the probability distribution of xk given all the observations that have been
obtained by the controller up to time k (see Fig. 1.3.8). This probabil-
ity distribution can in principle be computed, and it can serve as “state”
in an appropriate DP algorithm. We illustrate this process with a simple
example.

Example 1.3.5 (Treasure Hunting)

In a classical problem of search, one has to decide at each of N periods
whether to search a site that may contain a treasure. If a treasure is present,
the search reveals it with probability ξ, in which case the treasure is removed
from the site. Here the state xk has two values: either a treasure is present in
the site or it is not. The control uk takes two values: search and not search. If
the site is searched, we obtain an observation, which takes one of two values:
treasure found or not found. If the site is not searched, no information is
obtained.

Denote

bk : probability a treasure is present at the beginning of period k

given the search results so far.

This is the belief state at time k and it evolves according to the equation

bk+1 =

⎧

⎨

⎩

bk if the site is not searched at time k,
0 if the site is searched and a treasure is found,

bk(1−ξ)
bk(1−ξ)+1−bk

if the site is searched but no treasure is found.

(1.17)
The third relation above follows by application of Bayes’ rule (bk+1 is equal to
the kth period probability of a treasure being present and the search being un-
successful, divided by the probability of an unsuccessful search). The second
relation holds because the treasure is removed after a successful search.

36 Exact Dynamic Programming Chap. 1

Let us view bk as the state of a “belief system” given by Eq. (1.17),
and write a DP algorithm, assuming that the treasure’s worth is V , that each
search costs C. Denoting by J∗

k (b) the optimal cost-to-go from belief state b

at time k, the algorithm takes the form

J∗

k (bk) = max

[

J∗

k+1(bk),

− C + bkξV + (1− bkξ)J
∗

k+1

(

bk(1− ξ)

bk(1− ξ) + 1− bk

)

]

,

(1.18)

with J∗

N (bN) = 0. The two options in the maximization of Eq. (1.18) corre-
spond to not searching (in which case bk remains unchanged), and searching
[in which case bk evolves according to Eq. (1.17)].

Thanks to the simplicity of the problem, this DP algorithm can be used
to obtain an analytical solution. In particular, it is straightforward to show by
induction (starting with k = N − 1) that the functions J∗

k satisfy J∗

k (bk) ≥ 0
for all bk ∈ [0, 1] and

J∗

k (bk) = 0 if bk ≤
C

ξV
.

From this it follows that it is optimal to search at period k if and only if

C

ξV
≤ bk.

Thus, it is optimal to search if and only if the expected reward from the next
search, bkξV , is greater or equal to the cost C of the search - a myopic policy
that focuses on just the next stage.

Of course the preceding example is extremely simple, involving a state
xk that takes just two values. As a result, the belief state bk takes values
within the interval [0, 1]. Still there are infinitely many values in this inter-
val, and if a computational solution were necessary, the belief state would
have to be discretized and the DP algorithm (1.18) would have to be accord-
ingly modified and executed over the discretized state space (discretization
methods will be discussed in Chapter 6).

In problems where the state xk can take a finite but large number
of values, say n, the belief states comprise an n-dimensional simplex, so
discretization becomes problematic. As a result, alternative suboptimal so-
lution methods are often used in partial state information problems. Some
of these methods will be described in future chapters.

The following is a simple example of a partial state information prob-
lem whose belief state has large enough size to make an exact DP solution
impossible.

Sec. 1.3 Examples, Variations, and Simplifications 37

j · · · j · · ·n 0 10 1 0 1 2

) C c
C c(1)

Garage

Stage 1 Stage 2 Stage 3 Stage N NN N − 1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0)

1) k k

(0) c(k)) c(k + 1)

+ 1) c(N − 1) Parked

1) Parking Spaces

k k + 1

Termination State

Enlarged State Space t
+

k
t
−

k

Figure 1.3.9 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free,
can move to k − 1 at cost t−

k
or can move to k + 1 at cost t+

k
. At space N (the

garage) the driver must park at cost C.

Example 1.3.6 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.3.3. As in that example, a driver is looking for inexpensive parking on the
way to his destination, along a line of N parking spaces with a garage at the
end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space i, the driver can
park at cost c(i) if i is free, can move to i−1 at a cost t−i or can move to i+1
at a cost t+i . Moreover, the driver records the free/taken status of the spaces
previously visited and may return to any of these spaces; see Fig. 1.3.9.

Let us assume that the probability p(i) of a space i being free changes
over time, i.e., a space found free (or taken) at a given visit may get taken
(or become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time period, p(i) increases by a certain
known factor with some probability ξ and decreases by another known factor
with the complementary probability 1− ξ.

Here the belief state is the vector of current probabilities
(

p(0), . . . , p(N)
)

,

and it is updated at each time based on the new observation: the free/taken
status of the space visited at that time. This belief state can be computed
exactly by the driver, given the parking status observations of the spaces
visited thus far. While it is possible to state an exact DP algorithm that is
defined over the set of belief states, and we will do so later, the algorithm
is impossible to execute in practice.† Thus the problem can only be solved
approximately, using methods that we will discuss in subsequent chapters.

† The problem as stated is an infinite horizon problem because there is noth-
ing to prevent the driver from moving forever in the parking lot without ever
parking. We can convert the problem to a similarly difficult finite horizon prob-
lem by restricting the number of moves to a given upper limit N > N , and
requiring that if the driver is at distance of k spaces from the garage at time
N − k, then driving in the direction away from the garage is not an option.

38 Exact Dynamic Programming Chap. 1

1.3.7 Linear Quadratic Optimal Control

In a few exceptional special cases the DP algorithm yields an analytical
solution, which can be used among other purposes, as a starting point for
approximate DP schemes to solve related problems. Prominent among such
cases are various linear quadratic optimal control problems, which involve
a linear (possibly multidimensional) system, a quadratic cost function, and
no constraints on the control. Let us illustrate this with the deterministic
scalar linear quadratic Example 1.1.2. We will apply the DP algorithm for
the case of just two stages (N = 2), and illustrate the method for obtaining
a nice analytical solution.

As defined in Example 1.1.2, the terminal cost is

g2(x2) = r(x2 − T)2.

Thus the DP algorithm starts with

J*
2 (x2) = g2(x2) = r(x2 − T)2,

[cf. Eq. (1.3)].
For the next-to-last stage, we have [cf. Eq. (1.4)]

J*
1 (x1) = min

u1

[

u2
1 + J*

2 (x2)
]

= min
u1

[

u2
1 + J*

2

(

(1 − a)x1 + au1
)

]

.

Substituting the previous form of J*
2 , we obtain

J*
1 (x1) = min

u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2
]

. (1.19)

This minimization will be done by setting to zero the derivative with respect
to u1. This yields

0 = 2u1 + 2ra
(

(1− a)x1 + au1 − T
)

,

and by collecting terms and solving for u1, we obtain the optimal temper-
ature for the last oven as a function of x1:

µ∗
1(x1) =

ra
(

T − (1− a)x1
)

1 + ra2
. (1.20)

By substituting the optimal u1 in the expression (1.19) for J*
1 , we

obtain

J*
1 (x1) =

r2a2
(

(1 − a)x1 − T
)2

(1 + ra2)2
+ r

(

(1− a)x1 +
ra2
(

T − (1− a)x1
)

1 + ra2
− T

)2

=
r2a2

(

(1 − a)x1 − T
)2

(1 + ra2)2
+ r

(

ra2

1 + ra2
− 1

)2
(

(1 − a)x1 − T
)2

=
r
(

(1− a)x1 − T
)2

1 + ra2
.

Sec. 1.3 Examples, Variations, and Simplifications 39

We now go back one stage. We have [cf. Eq. (1.4)]

J*
0 (x0) = min

u0

[

u2
0 + J*

1 (x1)
]

= min
u0

[

u2
0 + J*

1

(

(1 − a)x0 + au0
)

]

,

and by substituting the expression already obtained for J*
1 , we have

J*
0 (x0) = min

u0

[

u2
0 +

r
(

(1 − a)2x0 + (1 − a)au0 − T
)2

1 + ra2

]

.

We minimize with respect to u0 by setting the corresponding derivative to
zero. We obtain

0 = 2u0 +
2r(1− a)a

(

(1− a)2x0 + (1 − a)au0 − T
)

1 + ra2
.

This yields, after some calculation, the optimal temperature of the first
oven:

µ∗
0(x0) =

r(1 − a)a
(

T − (1− a)2x0
)

1 + ra2
(

1 + (1− a)2
) . (1.21)

The optimal cost is obtained by substituting this expression in the formula
for J*

0 . This leads to a straightforward but lengthy calculation, which in
the end yields the rather simple formula

J*
0 (x0) =

r
(

(1− a)2x0 − T
)2

1 + ra2
(

1 + (1− a)2
) .

This completes the solution of the problem.
Note that the algorithm has simultaneously yielded an optimal policy

{µ∗
0, µ

∗
1} via Eqs. (1.21) and (1.20): a rule that tells us the optimal oven

temperatures u0 = µ∗
0(x0) and u1 = µ∗

1(x1) for every possible value of the
states x0 and x1, respectively. Thus the DP algorithm (as expected) solves
all the tail subproblems and provides a feedback policy.

A noteworthy feature in this example is the facility with which we
obtained an analytical solution. A little thought while tracing the steps of
the algorithm will convince the reader that what simplifies the solution is
the quadratic nature of the cost and the linearity of the system equation
[see the derivation of Eq. (1.20)]. Indeed, it can be shown in generality that
when the system is linear and the cost is quadratic, the optimal policy and
cost-to-go function are given by closed-form expressions, regardless of the
number of stages N (see [Ber17], Section 3.1).

40 Exact Dynamic Programming Chap. 1

Stochastic Linear Quadratic Problems - Certainty Equivalence

Let us now introduce a zero-mean stochastic additive disturbance in the
linear system equation. Remarkably, it turns out that the optimal policy
remains unaffected. To see this, assume that the material’s temperature
evolves according to

xk+1 = (1− a)xk + auk + wk, k = 0, 1,

where w0 and w1 are independent random variables with given distribution,
zero mean

E{w0} = E{w1} = 0,

and finite variance. Then the equation for J*
1 [cf. Eq. (1.4)] becomes

J*
1 (x1) = min

u1
E
w1

{

u2
1 + r

(

(1− a)x1 + au1 + w1 − T
)2
}

= min
u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2

+ 2rE{w1}
(

(1 − a)x1 + au1 − T
)

+ rE{w2
1}
]

.

Since E{w1} = 0, we obtain

J*
1 (x1) = min

u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2
]

+ rE{w2
1}.

Comparing this equation with Eq. (1.19), we see that the presence of w1 has
resulted in an additional inconsequential constant term, rE{w2

1}. There-
fore, the optimal policy for the last stage remains unaffected by the presence
of w1, while J*

1 (x1) is increased by rE{w2
1}. It can be seen that a similar

situation also holds for the first stage. In particular, the optimal cost is
given by the same expression as before except for an additive constant that
depends on E{w2

0} and E{w2
1}.

Generally, if the optimal policy is unaffected when the disturbances
are replaced by their means, we say that certainty equivalence holds. This
occurs in several types of problems involving a linear system and a quadratic
cost; see [Ber17], Sections 3.1 and 4.2. For other problems, certainty equiv-
alence can be used as a basis for problem approximation, e.g., assume
that certainty equivalence holds (i.e., replace stochastic quantities by some
typical values, such as their expected values) and apply exact DP to the
resulting deterministic optimal control problem (see Section 2.3.2).

1.3.8 Systems with Unknown Parameters - Adaptive Control

We have been dealing so far with systems having a known system equation.
In practice, however, there are many cases where the system parameters
are either not known exactly or change over time.

Sec. 1.3 Examples, Variations, and Simplifications 41

As an example consider a car cruise control system. The car’s velocity
at time k, denoted by xk, evolves according to

xk+1 = xk + buk,

where uk is the force that propels the car forward (uk can be related to the
pressure applied on the car’s gas pedal). However, the coefficient b changes
frequently and cannot be modeled with any precision because it depends
on unpredictable time-varying conditions, such as the slope and condition
of the road, and the weight of the car (which is affected by the number of
passengers). This points to the need of controllers that yield satisfactory
performance over a potentially broad range of system parameters.

To construct a formal optimization framework for dealing with such a
situation, we may embed the problem within an imperfect state information
framework by modeling the unknown parameters as unobservable states.
Indeed, let the system equation be of the form

xk+1 = fk(xk, θ, uk, wk),

where θ is a vector of unknown parameters, which for simplicity we assume
to be fixed over time. We introduce an additional state variable yk = θ
and obtain a system equation of the form

(

xk+1

yk+1

)

=

(

fk(xk, yk, uk, wk)
yk

)

.

This equation can be written compactly as

x̃k+1 = f̃k(x̃k, uk, wk),

where x̃k = (xk, yk) is the new state, and f̃k is an appropriate function.
The initial state is

x̃0 = (x0, θ).

Unfortunately, however, since yk (i.e., θ) is unobservable, the problem
is one of partial state information even if the controller knows the state xk

exactly. This makes the exact solution by DP intractable. To address this
situation, several suboptimal solution approaches have been suggested.

An apparently reasonable form of suboptimal control is to separate
the control process into two phases, a parameter estimation (or identifica-
tion) phase and a control phase. In the first phase the unknown parameters
are identified, while the control takes no account of the interim results of
estimation. The final parameter estimates from the first phase are then
used to implement an optimal control law in the second phase. This al-
ternation of estimation and control phases may be repeated several times
during any system run in order to take into account subsequent changes of
the parameters.

42 Exact Dynamic Programming Chap. 1

One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,
of a more fundamental nature, is that the unknown parameters must often
be estimated as the system is being controlled. Then, unfortunately, the
control process may make some of the unknown parameters invisible to the
estimation process. This is known as the problem of parameter identifiabil-
ity, which is discussed in the context of optimal control in several sources,
including [BoV79] and [Kum83]; see also [Ber17], Section 6.7. For a simple
example, consider the scalar system

xk+1 = axk + buk, k = 0, . . . , N − 1,

and the quadratic cost
N
∑

k=1

(xk)2.

Assuming perfect state information, if the parameters a and b are known,
it can be seen that the optimal control law is

µ∗

k(xk) = −
a

b
xk,

which sets all future states to 0. Assume now that the parameters a and b
are unknown, and consider the two-phase method. During the first phase
the control law

µ̃k(xk) = γxk (1.22)

is used (γ is some scalar; for example, γ = −a/b, where a and b are some
a priori estimates of a and b, respectively). At the end of the first phase,
the control law is changed to

µk(xk) = −
â

b̂
xk,

where â and b̂ are the estimates obtained from the estimation process.
However, with the control law (1.22), the closed-loop system is

xk+1 = (a+ bγ)xk,

so the estimation process can at best yield the value of (a + bγ) but not
the values of both a and b. In other words, the estimation process cannot
discriminate between pairs of values (a1, b1) and (a2, b2) such that a1 +
b1γ = a2 + b2γ. Therefore, a and b are not identifiable when feedback
control of the form (1.22) is applied.

The issues discussed above and the methods to address them are part
of a broad field known as adaptive control , which deals with the design of
controllers for systems with unknown parameters. This is a rich subject

Sec. 1.4 Reinforcement Learning and Optimal Control 43

with many and diverse applications. We will not discuss adaptive control in
this book, and we refer to textbook treatments, such as Aström andWitten-
mark [AsW94], Goodwin and Sin [GoS84], Ioannou and Sun [IoS96], Krstic,
Kanellakopoulos, and Kokotovic [KKK95], Kumar and Varaiya [KuV86],
Sastry and Bodson [SaB11], and Slotine and Li [SlL91].

We note, however, a simple and popular methodology, PID (Proporti-
onal-Integral-Derivative) control , which can be used for problems involv-
ing an unknown or changing mathematical model; see e.g., the books by
Aström and Hagglund [AsH95], [AsH06]. In particular, PID control aims to
maintain the output of a single-input single-output dynamic system around
a set point or to follow a given trajectory, as the system parameters change
within a relatively broad range. In its simplest form, the PID controller
is parametrized by three scalar parameters, which may be determined by
a variety of methods, some of them manual/heuristic. We will later dis-
cuss briefly PID control in Section 5.7, and point out that the automatic
choice of its parameters can be considered within the context of the broader
methodology of approximation in policy space.

1.4 REINFORCEMENT LEARNING AND OPTIMAL CONTROL
- SOME TERMINOLOGY

There has been intense interest in DP-related approximations in view of
their promise to deal with the curse of dimensionality (the explosion of the
computation as the number of states increases is dealt with the use of ap-
proximate cost functions) and the curse of modeling (a simulator/computer
model may be used in place of a mathematical model of the problem). The
current state of the subject owes much to an enormously beneficial cross-
fertilization of ideas from optimal control (with its traditional emphasis on
sequential decision making and formal optimization methodologies), and
from artificial intelligence (and its traditional emphasis on learning through
observation and experience, heuristic evaluation functions in game-playing
programs, and the use of feature-based and other representations).

The boundaries between these two fields are now diminished thanks
to a deeper understanding of the foundational issues, and the associated
methods and core applications. Unfortunately, however, there have been
substantial differences in language and emphasis in RL-based discussions
(where artificial intelligence-related terminology is used) and DP-based dis-
cussions (where optimal control-related terminology is used). This includes
the typical use of maximization/value function/reward in the former field
and the use of minimization/cost function/cost per stage in the latter field,
and goes much further.

The terminology used in this book is standard in DP and optimal
control, and in an effort to forestall confusion of readers that are accus-
tomed to either the RL or the optimal control terminology, we provide a
list of terms commonly used in RL, and their optimal control counterparts.

44 Exact Dynamic Programming Chap. 1

(a) Environment = System.

(b) Agent = Decision maker or controller.

(c) Action = Decision or control.

(d) Reward of a stage = (Opposite of) Cost of a stage.

(e) State value = (Opposite of) Cost starting from a state.

(f) Value (or reward) function = (Opposite of) Cost function.

(g) Maximizing the value function = Minimizing the cost function.

(h) Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair. (Q-value is also used often in RL.)

(i) Planning = Solving a DP problem with a known mathematical
model.

(j) Learning = Solving a DP problem without using an explicit mathe-
matical model. (This is the principal meaning of the term “learning”
in RL. Other meanings are also common.)

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using some form of policy iteration.

(l) Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.

(o) State abstraction = State aggregation.

(p) Temporal abstraction = Time aggregation.

(q) Learning a model = System identification.

(r) Episodic task or episode = Finite-step system trajectory.

(s) Continuing task = Infinite-step system trajectory.

(t) Experience replay = Reuse of samples in a simulation process.

(u) Bellman operator = DP mapping or operator.

(v) Backup = Applying the DP operator at some state.

(w) Sweep = Applying the DP operator at all states.

(x) Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J .

(y) Afterstate = Post-decision state.

(z) Ground truth = Empirical evidence or information provided by
direct observation.

Sec. 1.5 Notes and Sources 45

Some of the preceding terms will be introduced in future chapters. The
reader may then wish to return to this section as an aid in connecting with
the relevant RL literature.

Notation

Unfortunately the confusion arising from different terminology has been
exacerbated by the use of different notations. The present textbook roughly
follows the “standard” notation of the Bellman/Pontryagin optimal control
era; see e.g., the classical books by Athans and Falb [AtF66], Bellman
[Bel67], and Bryson and Ho [BrH75]. This notation is consistent with the
author’s other DP books.

A summary of our most prominently used symbols is as follows:

(a) x: state.

(b) u: control.

(c) J : cost function.

(d) g: cost per stage.

(e) f : system function.

(f) i: discrete state.

(g) pij(u): transition probability from state i to state j under control u.

(h) α: discount factor in discounted problems.

The x-u-J notation is standard in optimal control textbooks (e.g., the
books by Athans and Falb [AtF66], and Bryson and Ho [BrH75], as well as
the more recent book by Liberzon [Lib11]). The notations f and g are also
used most commonly in the literature of the early optimal control period as
well as later (unfortunately the more natural symbol “c” has not been used
much in place of “g” for the cost per stage). The discrete system notations i
and pij(u) are very common in the discrete-state Markov decision problem
and operations research literature, where discrete-state problems have been
treated extensively [sometimes the alternative notation p(j | i, u) is used for
the transition probabilities].

The RL literature addresses for the most part finite-state Markov
decision problems, most frequently the discounted and stochastic shortest
path infinite horizon problems that are discussed in Chapter 4. The most
commonly used notation is s for state, a for action, r(s, a, s′) for reward
per stage, p(s′ | s, a) or Ps,a(s′) for transition probability from s to s′ under
action a, and γ for discount factor (see e.g., Sutton and Barto [SuB18]).

1.5 NOTES AND SOURCES

Our discussion of exact DP in this chapter has been brief since our focus
in this book will be on approximate DP and RL. The author’s DP text-

46 Exact Dynamic Programming Chap. 1

book [Ber17] provides an extensive discussion of finite horizon exact DP,
and its applications to discrete and continuous spaces problems, using a
notation and style that is consistent with the present book. The books by
Puterman [Put94] and by the author [Ber12] provide detailed treatments
of infinite horizon finite-state Markovian decision problems. Continuous
spaces infinite horizon problems are covered in the author’s book [Ber12],
while some of the more complex mathematical aspects of exact DP are
discussed in the monograph by Bertsekas and Shreve [BeS78] (particularly
the probabilistic/measure-theoretic issues associated with stochastic opti-
mal control).

The author’s abstract DP monograph [Ber18a] aims at a unified de-
velopment of the core theory and algorithms of total cost sequential de-
cision problems, and addresses simultaneously stochastic, minimax, game,
risk-sensitive, and other DP problems, through the use of the abstract DP
operator (or Bellman operator as it is often called in RL). The idea here
is to gain insight through abstraction. In particular, the structure of a
DP model is encoded in its abstract Bellman operator, which serves as the
“mathematical signature” of the model. Thus, characteristics of this opera-
tor (such as monotonicity and contraction) largely determine the analytical
results and computational algorithms that can be applied to that model.
It is likely that some of the approximation algorithms of the present book
are transferable to a broad variety of DP models, well beyond the ones
studied here. The design and analysis of these algorithms can then benefit
from the broad algorithmic principles that have been developed through
an abstract viewpoint.

The approximate DP and RL literature has expanded tremendously
since the connections between DP and RL became apparent in the late
80s and early 90s. We restrict ourselves to mentioning textbooks, research
monographs, and broad surveys, which supplement our discussions, express
related viewpoints, and collectively provide a guide to the literature. More-
over, inevitably our referencing reflects a cultural bias, and an overemphasis
on sources that are familiar to the author and are written in a similar style
to the present book (including the author’s own works). Thus we wish to
apologize in advance for the many omissions of important research refer-
ences that are somewhat outside our own understanding and view of the
field.

Two books were written on our subject in the 1990s, setting the
tone for subsequent developments in the field. One in 1996 by Bertsekas
and Tsitsiklis [BeT96], which reflects a decision, control, and optimization
viewpoint, and another in 1998 by Sutton and Barto, which reflects an
artificial intelligence viewpoint (a 2nd edition, [SuB18], was published in
2018). We refer to the former book and also to the author’s DP textbooks
[Ber12], [Ber17] for a broader discussion of some of the topics of the present
book, including algorithmic convergence issues and additional DP models,
such as those based on average cost optimization. For historical accounts of

Sec. 1.5 Notes and Sources 47

the early development of the subject, see [BeT96], Section 6.7, and [SuB18],
Section 1.7.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-
cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/limited lookahead schemes and adaptive sampling, Busoniu
et al. [BBD10], which focuses on function approximation methods for con-
tinuous space systems and includes a discussion of random search meth-
ods, Powell [Pow11], which emphasizes resource allocation and operations
research applications, Vrabie, Vamvoudakis, and Lewis [VVL13], which
discusses neural network-based methods, on-line adaptive control meth-
ods, and continuous-time optimal control applications, Kochenderfer et al.
[KAC15], which selectively discusses applications and approximations in
DP and the treatment of uncertainty, Jiang and Jiang [JiJ17], which devel-
ops adaptive control within an approximate DP framework, and Liu et al.
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control. The book by Krishnamurthy [Kri16]
focuses on partial state information problems, with discussion of both ex-
act DP, and approximate DP/RL methods. The book by Haykin [Hay08]
discusses approximate DP in the broader context of neural network-related
subjects. The book by Borkar [Bor08] is an advanced monograph that
addresses rigorously many of the convergence issues of iterative stochastic
algorithms in approximate DP, mainly using the so called ODE approach.
The book by Meyn [Mey07] is broader in its coverage, but touches upon
some of the approximate DP algorithms that we discuss.

Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be
covering in much detail in this book: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte

48 Exact Dynamic Programming Chap. 1

Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markovian decision problems from
an artificial intelligence viewpoint), Schmidhuber [Sch15], Arulkumaran et
al. [ADB17], Li [Li17], Busoniu et al. [BDT18], and Caterini and Chang
[CaC18] (which deal with reinforcement learning schemes that are based on
the use of deep neural networks), the author’s [Ber05a] (which focuses on
rollout algorithms and model predictive control), [Ber11a] (which focuses
on approximate policy iteration), and [Ber18b] (which focuses on aggre-
gation methods), and Recht [Rec18a] (which focuses on continuous spaces
optimal control).

References

[ACF02] Auer, P., Cesa-Bianchi, N., and Fischer, P., 2002. “Finite Time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, Vol. 47, pp. 235-256.

[ACV09] Argall, B. D., Chernova, S., Veloso, M., and Browning, B., 2009. “A Survey of
Robot Learning from Demonstration,” Robotics and Autonomous Systems, Vol. 57, pp.
469-483.

[ADB17] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A., 2017.
“A Brief Survey of Deep Reinforcement Learning,” arXiv preprint arXiv:1708.05866.

[ALZ08] Asmuth, J., Littman, M. L., and Zinkov, R., 2008. “Potential-Based Shaping
in Model-Based Reinforcement Learning,” Proc. of 23rd AAAI Conference, pp. 604-609.

[AMS07] Antos, A., Munos, R., and Szepesvari, C., 2007. “Fitted Q-Iteration in Con-
tinuous Action-Space MDPs,” Proc. of NIPS, pp. 9-16.

[AMS09] Audibert, J.Y., Munos, R., and Szepesvari, C., 2009. “Exploration-Exploitation
Tradeoff Using Variance Estimates in Multi-Armed Bandits,” Theoretical Computer
Science, Vol. 410, pp. 1876-1902.

[ASS68] Aleksandrov, V. M., Sysoyev, V. I, and Shemeneva, V. V., 1968. “Stochastic
Optimization of Systems,” Engineering Cybernetics, Vol. 5, pp.11-16.

[AbN04] Abbeel, P., and Ng, A. Y., 2004. “Apprenticeship Learning via Inverse Rein-
forcement Learning,” in Proceedings of the 21st ICML.

[Abr90] Abramson, B., 1990. “Expected-Outcome: A General Model of Static Evalua-
tion,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 182-193.

[Agr95] Agrawal, R., 1995. “Sample Mean Based Index Policies with O(logn) Regret for
the Multiarmed Bandit Problem,” Advances in Applied Probability, Vol. 27, pp. 1054-
1078.

[AnH14] Antunes, D., and Heemels, W.P.M.H., 2014. “Rollout Event-Triggered Control:
Beyond Periodic Control Performance,” IEEE Transactions on Automatic Control, Vol.
59, pp. 3296-3311.

[AnM79] Anderson, B. D. O., and Moore, J. B., 1979. Optimal Filtering, Prentice-Hall,
Englewood Cliffs, N. J.

[ArK03] Ariyur, K. B., and Krstic, M., 2003. Real-Time Optimization by Extremum-
Seeking Control, John Wiley and Sons, N. Y.

[AsG10] Asmussen, S., and Glynn, P. W., 2010. Stochastic Simulation: Algorithms and
Analysis, Springer, N. Y.

345

346 References

[AsH95] Aström, K. J., and Hagglund, T., 1995. PID Controllers: Theory, Design, and
Tuning, Instrument Society of America, Research Triangle Park, N. C.

[AsH06] Aström, K. J., and Hagglund, T., 2006. Advanced PID Control, Instrument
Society of America, Research Triangle Park, N. C.

[AsW94] Aström, K. J., and Wittenmark, B., 1994. Adaptive Control, 2nd Edition,
Prentice-Hall, Englewood Cliffs, N. J.

[AtF66] Athans, M., and Falb, P., 1966. Optimal Control, McGraw-Hill, N. Y.

[BBD10] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., 2010. Reinforcement
Learning and Dynamic Programming Using Function Approximators, CRC Press, N. Y.

[BBG13] Bertazzi, L., Bosco, A., Guerriero, F., and Lagana, D., 2013. “A Stochastic
Inventory Routing Problem with Stock-Out,” Transportation Research, Part C, Vol. 27,
pp. 89-107.

[BBM17] Borelli, F., Bemporad, A., and Morari, M., 2017. Predictive Control for Linear
and Hybrid Systems, Cambridge Univ. Press, Cambridge, UK.

[BBN04] Bertsekas, D. P., Borkar, V., and Nedić, A., 2004. “Improved Temporal Dif-
ference Methods with Linear Function Approximation,” in Learning and Approximate
Dynamic Programming, by J. Si, A. Barto, W. Powell, and D. Wunsch, (Eds.), IEEE
Press, N. Y.

[BBP13] Bhatnagar, S., Borkar, V. S., and Prashanth, L. A., 2013. “Adaptive Feature
Pursuit: Online Adaptation of Features in Reinforcement Learning,” in Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control , by F. Lewis
and D. Liu (eds.), IEEE Press, Piscataway, N. J., pp. 517-534.

[BBS87] Bean, J. C., Birge, J. R., and Smith, R. L., 1987. “Aggregation in Dynamic
Programming,” Operations Research, Vol. 35, pp. 215-220.

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. “Real-Time Learning and
Control Using Asynchronous Dynamic Programming,” Artificial Intelligence, Vol. 72,
pp. 81-138.

[BCN18] Bottou, L., Curtis, F. E., and Nocedal, J., 2018. “Optimization Methods for
Large-Scale Machine Learning,” SIAM Review, Vol. 60, pp. 223-311.

[BDT18] Busoniu, L., de Bruin, T., Tolic, D., Kober, J., and Palunko, I., 2018. “Re-
inforcement Learning for Control: Performance, Stability, and Deep Approximators,”
Annual Reviews in Control, Vol. 46, pp. 8-28.

[BGM95] Bertsekas, D. P., Guerriero, F., and Musmanno, R., 1995. “Parallel Short-
est Path Methods for Globally Optimal Trajectories,” High Performance Computing:
Technology, Methods, and Applications, (J. Dongarra et al., Eds.), Elsevier.

[BKM05] de Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. 2005. “A
Tutorial on the Cross-Entropy Method,” Annals of Operations Research, Vol. 134, pp.
19-67.

[BLL19] Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A., 2019. “Benign Over-
fitting in Linear Regression,” arXiv preprint arXiv:1906.11300.

[BMM18] Belkin, M., Ma, S., and Mandal, S., 2018. “To Understand Deep Learning we
Need to Understand Kernel Learning,” arXiv preprint arXiv:1802.01396.

[BNO03] Bertsekas, D. P., Nedić, A., and Ozdaglar, A. E., 2003. Convex Analysis and
Optimization, Athena Scientific, Belmont, MA.

[BPP13] Bhatnagar, S., Prasad, H., and Prashanth, L. A., 2013. Stochastic Recursive Al-

References 347

gorithms for Optimization, Lecture Notes in Control and Information Sciences, Springer,
N. Y.

[BPW12] Browne, C., Powley, E., Whitehouse, D., Lucas, L., Cowling, P. I., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S., 2012. “A Survey of
Monte Carlo Tree Search Methods,” IEEE Trans. on Computational Intelligence and AI
in Games, Vol. 4, pp. 1-43.

[BRT18] Belkin, M., Rakhlin, A., and Tsybakov, A. B., 2018. “Does Data Interpolation
Contradict Statistical Optimality?,” arXiv preprint arXiv:1806.09471.

[BSA83] Barto, A. G., Sutton, R. S., and Anderson, C. W., 1983. “Neuronlike Elements
that Can Solve Difficult Learning Control Problems,” IEEE Trans. on Systems, Man,
and Cybernetics, Vol. 13, pp. 835-846.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algorithms for
Combinatorial Optimization,” Heuristics, Vol. 3, pp. 245-262.

[BVE13] Ben Amor, H, Vogt, D., Ewerton, M., Berger, E., Jung, B., and Peters, J., 2013.
“Learning Responsive Robot Behavior by Imitation,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3257-3264.

[BWL19] Beuchat, P.N., Warrington, J., and Lygeros, J., 2019. “Accelerated Point-
Wise Maximum Approach to Approximate Dynamic Programming,” arXiv preprint
arXiv:1901.03619.

[BYB94] Bradtke, S. J., Ydstie, B. E., and Barto, A. G., 1994. “Adaptive Linear
Quadratic Control Using Policy Iteration,” Proc. IEEE American Control Conference,
Vol. 3, pp. 3475-3479.

[BaB01] Baxter, J., and Bartlett, P. L., 2001. “Infinite-Horizon Policy-Gradient Estima-
tion,” Journal of Artificial Intelligence Research, Vol. 15, pp. 319-350.

[Bac96] Back, T., 1996. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press.

[Bai93] Baird, L. C., 1993. “Advantage Updating,” Report WL-TR-93-1146, Wright
Patterson AFB, OH.

[Bai94] Baird, L. C., 1994. “Reinforcement Learning in Continuous Time: Advantage
Updating,” International Conf. on Neural Networks, Orlando, Fla.

[BeC89] Bertsekas, D. P., and Castanon, D. A., 1989. “Adaptive Aggregation Methods
for Infinite Horizon Dynamic Programming,” IEEE Trans. on Aut. Control, Vol. AC-34,
pp. 589-598.

[BeC99] Bertsekas, D. P., and Castanon, D. A., 1999. “Rollout Algorithms for Stochastic
Scheduling Problems,” Heuristics, Vol. 5, pp. 89-108.

[BeC08] Besse, C., and Chaib-draa, B., 2008. “Parallel Rollout for Online Solution of
DEC-POMDPs,” Proc. of 21st International FLAIRS Conference, pp. 619-624.

[BeL14] Beyme, S., and Leung, C., 2014. “Rollout Algorithm for Target Search in a
Wireless Sensor Network,” 80th Vehicular Technology Conference (VTC2014), IEEE,
pp. 1-5.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iter-
ation and Applications in Neuro-Dynamic Programming,” Lab. for Info. and Decision
Systems Report LIDS-P-2349, Massachusetts Institute of Technology.

[BeP03] Bertsimas, D., and Popescu, I., 2003. “Revenue Management in a Dynamic
Network Environment,” Transportation Science, Vol. 37, pp. 257-277.

348 References

[BeR71] Bertsekas, D. P., and Rhodes, I. B., 1971. “On the Minimax Reachability of
Target Sets and Target Tubes,” Automatica, Vol. 7, pp. 233-247.

[BeR73] Bertsekas, D. P., and Rhodes, I. B., 1973. “Sufficiently Informative Functions
and the Minimax Feedback Control of Uncertain Dynamic Systems,” IEEE Trans. Au-
tomatic Control, Vol. AC-18, pp. 117-124.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control: The
Discrete Time Case, Academic Press, N. Y.; republished by Athena Scientific, Belmont,
MA, 1996 (can be downloaded from the author’s website).

[BeS18] Bertazzi, L., and Secomandi, N., 2018. “Faster Rollout Search for the Vehicle
Routing Problem with Stochastic Demands and Restocking,” European J. of Operational
Research, Vol. 270, pp.487-497.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computa-
tion: Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J.; republished by Athena
Scientific, Belmont, MA, 1997 (can be downloaded from the author’s website).

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N., 1991. “An Analysis of Stochastic Shortest
Path Problems,” Math. Operations Res., Vol. 16, pp. 580-595.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming,
Athena Scientific, Belmont, MA.

[BeT97] Bertsimas, D., and Tsitsiklis, J. N., 1997. Introduction to Linear Optimization,
Athena Scientific, Belmont, MA.

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence of Gradient
Methods with Errors,” SIAM J. on Optimization, Vol. 36, pp. 627-642.

[BeT08] Bertsekas, D. P., and Tsitsiklis, J. N., 2008. Introduction to Probability, 2nd
Edition, Athena Scientific, Belmont, MA.

[BeY09] Bertsekas, D. P., and Yu, H., 2009. “Projected Equation Methods for Approxi-
mate Solution of Large Linear Systems,” J. of Computational and Applied Mathematics,
Vol. 227, pp. 27-50.

[BeY10] Bertsekas, D. P., and Yu, H., 2010. “Asynchronous Distributed Policy Iteration
in Dynamic Programming,” Proc. of Allerton Conf. on Communication, Control and
Computing, Allerton Park, Ill, pp. 1368-1374.

[BeY12] Bertsekas, D. P., and Yu, H., 2012. “Q-Learning and Enhanced Policy Iteration
in Discounted Dynamic Programming,” Math. of Operations Research, Vol. 37, pp. 66-
94.

[BeY16] Bertsekas, D. P., and Yu, H., 2016. “Stochastic Shortest Path Problems Under
Weak Conditions,” Lab. for Information and Decision Systems Report LIDS-2909, MIT.

[Bel57] Bellman, R., 1957. Dynamic Programming, Princeton University Press, Prince-
ton, N. J.

[Bel67] Bellman, R., 1967. Introduction to the Mathematical Theory of Control Pro-
cesses, Academic Press, Vols. I and II, New York, N. Y.

[Bel84] Bellman, R., 1984. Eye of the Hurricane, World Scientific Publishing, Singapore.

[Ben09] Bengio, Y., 2009. “Learning Deep Architectures for AI,” Foundations and Trends
in Machine Learning, Vol. 2, pp. 1-127.

[Ber71] Bertsekas, D. P., 1971. “Control of Uncertain Systems With a Set-Member-
ship Description of the Uncertainty,” Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA (can be downloaded from the author’s website).

References 349

[Ber72] Bertsekas, D. P., 1972. “Infinite Time Reachability of State Space Regions by
Using Feedback Control,” IEEE Trans. Automatic Control, Vol. AC-17, pp. 604-613.

[Ber73] Bertsekas, D. P., 1973. “Stochastic Optimization Problems with Nondifferen-
tiable Cost Functionals,” J. of Optimization Theory and Applications, Vol. 12, pp. 218-
231.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans. Au-
tomatic Control, Vol. AC-27, pp. 610-616.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of Fixed Points,”
Math. Programming, Vol. 27, pp. 107-120.

[Ber91] Bertsekas, D. P., 1991. Linear Network Optimization: Algorithms and Codes,
M.I.T. Press, Cambridge, MA (can be downloaded from the author’s website).

[Ber95] Bertsekas, D. P., 1995. “A Counterexample to Temporal Differences Learning,”
Neural Computation, Vol. 7, pp. 270-279.

[Ber96a] Bertsekas, D. P., 1996. “Incremental Least Squares Methods and the Extended
Kalman Filter,” SIAM J. on Optimization, Vol. 6, pp. 807-822.

[Ber96b] Bertsekas, D. P., 1996. Lecture at NSF Workshop on Reinforcement Learning,
Hilltop House, Harper’s Ferry, N. Y.

[Ber97a] Bertsekas, D. P., 1997. “A New Class of Incremental Gradient Methods for
Least Squares Problems,” SIAM J. on Optimization, Vol. 7, pp. 913-926.

[Ber97b] Bertsekas, D. P., 1997. “Differential Training of Rollout Policies,” Proc. of the
35th Allerton Conference on Communication, Control, and Computing, Allerton Park,
Ill.

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and Discrete Models,
Athena Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber05a] Bertsekas, D. P., 2005. “Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC,” European J. of Control, Vol. 11, pp. 310-334.

[Ber05b] Bertsekas, D. P., 2005. “Rollout Algorithms for Constrained Dynamic Pro-
gramming,” LIDS Report 2646, MIT.

[Ber07] Bertsekas, D. P., 2007. “Separable Dynamic Programming and Approximate
Decomposition Methods,” IEEE Trans. on Aut. Control, Vol. 52, pp. 911-916.

[Ber10] Bertsekas, D. P., 2010. “Incremental Gradient, Subgradient, and Proximal Meth-
ods for Convex Optimization: A Survey,” Lab. for Information and Decision Systems
Report LIDS-P-2848, MIT; a condensed version with the same title appears in Opti-
mization for Machine Learning, by S. Sra, S. Nowozin, and S. J. Wright, (eds.), MIT
Press, Cambridge, MA, 2012, pp. 85-119.

[Ber11a] Bertsekas, D. P., 2011. “Approximate Policy Iteration: A Survey and Some
New Methods,” J. of Control Theory and Applications, Vol. 9, pp. 310-335.

[Ber11b] Bertsekas, D. P., 2011. “Temporal Difference Methods for General Projected
Equations,” IEEE Trans. on Aut. Control, Vol. 56, pp. 2128-2139.

[Ber11c] Bertsekas, D. P., 2011. “Incremental Proximal Methods for Large Scale Convex
Optimization,” Math. Programming, Vol. 129, pp. 163-195.

[Ber12] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control, Vol. II,
4th Edition, Athena Scientific, Belmont, MA.

350 References

[Ber13a] Bertsekas, D. P., 2013. “Rollout Algorithms for Discrete Optimization: A Sur-
vey,” Handbook of Combinatorial Optimization, Springer.

[Ber13b] Bertsekas, D. P., 2013. “λ-Policy Iteration: A Review and a New Implementa-
tion,” in Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, by F. Lewis and D. Liu (eds.), IEEE Press, Piscataway, N. J., pp. 381-409.

[Ber15a] Bertsekas, D. P., 2015. Convex Optimization Algorithms, Athena Scientific,
Belmont, MA.

[Ber15b] Bertsekas, D. P., 2015. “Incremental Aggregated Proximal and Augmented
Lagrangian Algorithms,” Lab. for Information and Decision Systems Report LIDS-P-
3176, MIT; arXiv preprint arXiv:1507.1365936.

[Ber16a] Bertsekas, D. P., 2016. Nonlinear Programming, 3rd Edition, Athena Scientific,
Belmont, MA.

[Ber16b] Bertsekas, D. P., 2016. “Affine Monotonic and Risk-Sensitive Models in Dy-
namic Programming,” arXiv preprint arXiv:1608.01393; IEEE Trans. on Automatic Con-
trol, Vol. 64, 2019, pp. 3117-3128.

[Ber16c] Bertsekas, D. P., 2016. “Proximal Algorithms and Temporal Differences for
Large Linear Systems: Extrapolation, Approximation, and Simulation,” arXiv preprint
arXiv:1610.05427; Computational Optimization and Applications J., Vol. 70, 2018, pp.
709-736.

[Ber17] Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control, Vol. I, 4th
Edition, Athena Scientific, Belmont, MA.

[Ber18a] Bertsekas, D. P., 2018. Abstract Dynamic Programming, 2nd Edition, Athena
Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber18b] Bertsekas, D. P., 2018. “Feature-Based Aggregation and Deep Reinforcement
Learning: A Survey and Some New Implementations,” Lab. for Information and De-
cision Systems Report, MIT; arXiv preprint arXiv:1804.04577; IEEE/CAA Journal of
Automatica Sinica, Vol. 6, 2019, pp. 1-31.

[Ber18c] Bertsekas, D. P., 2018. “Biased Aggregation, Rollout, and Enhanced Policy
Improvement for Reinforcement Learning,” Lab. for Information and Decision Systems
Report, MIT; arXiv preprint arXiv:1910.02426.

[Ber18d] Bertsekas, D. P., 2018. “Proximal Algorithms and Temporal Difference Methods
for Solving Fixed Point Problems,” Computational Optim. Appl., Vol. 70, pp. 709-736.

[Ber18e] Bertsekas, D.P., 2018. “Proper Policies in Infinite-State Stochastic Shortest
Path Problems,” IEEE Trans. on Automatic Control, Vol. 63, pp. 3787-3792.

[Ber19a] Bertsekas, D. P., 2019. Lecture Slides and Videolectures on Reinforcement
Learning and Optimal Control, ASU, at http://web.mit.edu/dimitrib/www/RLbook.html.

[Ber19b] Bertsekas, D. P., 2019. “Robust Shortest Path Planning and Semicontractive
Dynamic Programming,” Naval Research Logistics, Vol. 66, pp. 15-37.

[Ber19c] Bertsekas, D. P., 2019. “Multiagent Rollout Algorithms and Reinforcement
Learning,” arXiv preprint arXiv:1910.00120.

[Bet10] Bethke, B. M., 2010. Kernel-Based Approximate Dynamic Programming Using
Bellman Residual Elimination, Ph.D. Thesis, MIT.

[Bia16] Bianchi, P., 2016. “Ergodic Convergence of a Stochastic Proximal Point Algo-
rithm,” SIAM J. on Optimization, Vol. 26, pp. 2235-2260.

References 351

[Bis95] Bishop, C. M, 1995. Neural Networks for Pattern Recognition, Oxford University
Press, N. Y.

[Bis06] Bishop, C. M, 2006. Pattern Recognition and Machine Learning, Springer, N. Y.

[Bla99] Blanchini, F., 1999. “Set Invariance in Control – A Survey,” Automatica, Vol.
35, pp. 1747-1768.

[BoV79] Borkar, V., and Varaiya, P. P., 1979. “Adaptive Control of Markov Chains, I:
Finite Parameter Set,” IEEE Trans. Automatic Control, Vol. AC-24, pp. 953-958.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems View-
point, Cambridge Univ. Press.

[Bor09] Borkar, V. S., 2009. “Reinforcement Learning: A Bridge Between Numerical
Methods and Monte Carlo,” in World Scientific Review, Vol. 9, Ch. 4.

[Boy02] Boyan, J. A., 2002. “Technical Update: Least-Squares Temporal Difference
Learning,” Machine Learning, Vol. 49, pp. 1-15.

[BrB96] Bradtke, S. J., and Barto, A. G., 1996. “Linear Least-Squares Algorithms for
Temporal Difference Learning,” Machine Learning, Vol. 22, pp. 33-57.

[BrH75] Bryson, A., and Ho, Y. C., 1975. Applied Optimal Control: Optimization,
Estimation, and Control, (revised edition), Taylor and Francis, Levittown, Penn.

[BuK97] Burnetas, A. N., and Katehakis, M. N., 1997. “Optimal Adaptive Policies for
Markov Decision Processes,” Math. of Operations Research, Vol. 22, pp. 222-255.

[CFH05] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2005. “An Adaptive
Sampling Algorithm for Solving Markov Decision Processes,” Operations Research, Vol.
53, pp. 126-139.

[CFH13] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2013. Simulation-Based
Algorithms for Markov Decision Processes, 2nd Edition, Springer, N. Y.

[CFH16] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2016. “Google DeepMind’s
AlphaGo,” ORMS Today, INFORMS, Vol. 43.

[CGC04] Chang, H. S., Givan, R. L., and Chong, E. K. P., 2004. “Parallel Rollout
for Online Solution of Partially Observable Markov Decision Processes,” Discrete Event
Dynamic Systems, Vol. 14, pp. 309-341.

[CLT19] Chapman, M. P., Lacotte, J., Tamar, A., Lee, D., Smith, K. M., Cheng, V.,
Fisac, J. F., Jha, S., Pavone, M., and Tomlin, C. J., 2019. “A Risk-Sensitive Finite-
Time Reachability Approach for Safety of Stochastic Dynamic Systems,” arXiv preprint
arXiv:1902.11277.

[CRV06] Cogill, R., Rotkowitz, M., Van Roy, B., and Lall, S., 2006. “An Approximate
Dynamic Programming Approach to Decentralized Control of Stochastic Systems,” in
Control of Uncertain Systems: Modelling, Approximation, and Design, Springer, Berlin,
pp. 243-256.

[CXL19] Chu, Z., Xu, Z., and Li, H., 2019. “New Heuristics for the RCPSP with Multiple
Overlapping Modes,” Computers and Industrial Engineering, Vol. 131, pp. 146-156.

[CaB04] Camacho, E. F., and Bordons, C., 2004. Model Predictive Control, 2nd Edition,
Springer, New York, N. Y.

[CaC97] Cao, X. R., and Chen, H. F., 1997. “Perturbation Realization Potentials and
Sensitivity Analysis of Markov Processes,” IEEE Trans. on Aut. Control, Vol. 32, pp.
1382-1393.

352 References

[CaC18] Caterini, A. L., and Chang, D. E., 2018. Deep Neural Networks in a Mathe-
matical Framework, Springer, Oxford, UK.

[CaW98] Cao, X. R., and Wan, Y. W., 1998. “Algorithms for Sensitivity Analysis of
Markov Systems Through Potentials and Perturbation Realization,” IEEE Trans. Con-
trol Systems Technology, Vol. 6, pp. 482-494.

[Can16] Candy, J. V., 2016. Bayesian Signal Processing: Classical, Modern, and Particle
Filtering Methods, Wiley-IEEE Press.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based
Approach, Springer, N. Y.

[ChC17] Chui, C. K., and Chen, G., 2017. Kalman Filtering, Springer International
Publishing.

[ChM82] Chatelin, F., and Miranker, W. L., 1982. “Acceleration by Aggregation of
Successive Approximation Methods,” Linear Algebra and its Applications, Vol. 43, pp.
17-47.

[ChS00] Christianini, N., and Shawe-Taylor, J., 2000. Support Vector Machines and
Other Kernel-Based Learning Methods, Cambridge Univ. Press.

[ChT91] Chow, C.-S., and Tsitsiklis, J. N., 1991. “An Optimal One–Way Multigrid
Algorithm for Discrete–Time Stochastic Control,” IEEE Trans. on Aut. Control, Vol.
AC-36, pp. 898-914.

[ChV12] Chacon, A., and Vladimirsky, A., 2012. “Fast Two-Scale Methods for Eikonal
Equations,” SIAM J. on Scientific Computing, Vol. 34, pp. A547-A578.

[ChV13] Chacon, A., and Vladimirsky, A., 2013. “A Parallel Heap-Cell Method for
Eikonal Equations,” arXiv preprint arXiv:1306.4743.

[ChV15] Chacon, A., and Vladimirsky, A., 2015. “A Parallel Two-Scale Method for
Eikonal Equations,” SIAM J. on Scientific Computing, Vol. 37, pp. A156-A180.

[CiS15] Ciosek, K., and Silver, D., 2015. “Value Iteration with Options and State Aggre-
gation,” Report, Centre for Computational Statistics and Machine Learning University
College London.

[Cla17] Clawson, Z., 2017. Shortest path problems: Domain restriction, anytime plan-
ning, and multi-objective optimization. Ph.D. Thesis, Cornell University.

[Cou06] Coulom, R., 2006. “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” International Conference on Computers and Games, Springer, pp. 72-83.

[CrS00] Cristianini, N., and Shawe-Taylor, J., 2000. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge Univ. Press.

[Cyb89] Cybenko, 1989. “Approximation by Superpositions of a Sigmoidal Function,”
Math. of Control, Signals, and Systems, Vol. 2, pp. 303-314.

[DDF19] Daubechies, I., DeVore, R., Foucart, S., Hanin, B., and Petrova, G., 2019.
“Nonlinear Approximation and (Deep) ReLU Networks,” arXiv preprint arXiv:1905.02199.

[D’Ep60] D’Epenoux, F., 1960. “Sur un Probleme de Production et de Stockage Dans
l’Aleatoire,” Rev. Francaise Aut. Infor. Recherche Operationnelle, Vol. 14, (English
Transl.: Management Sci., Vol. 10, 1963, pp. 98-108).

[DFM12] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2012. “Aproximate Dynamic
Programming via a Smoothed Approximate Linear Program,” Operations Research, Vol.
60, pp. 655-674.

References 353

[DFM13] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2013. “Bounds for Markov
Decision Processes,” in Reinforcement Learning and Approximate Dynamic Program-
ming for Feedback Control, by F. Lewis and D. Liu (eds.), IEEE Press, Piscataway, N.
J., pp. 452-473.

[DFV03] de Farias, D. P., and Van Roy, B., 2003. “The Linear Programming Approach
to Approximate Dynamic Programming,” Operations Research, Vol. 51, pp. 850-865.

[DFV04] de Farias, D. P., and Van Roy, B., 2004. “On Constraint Sampling in the
Linear Programming Approach to Approximate Dynamic Programming,” Mathematics
of Operations Research, Vol. 29, pp. 462-478.

[DHS12] Duda, R. O., Hart, P. E., and Stork, D. G., 2012. Pattern Classification, J.
Wiley, N. Y.

[DJW12] Duchi, J., Jordan, M. I., Wainwright, M. J., and Wibisono, A., 2012. “Finite
Sample Convergence Rate of Zero-Order Stochastic Optimization Methods,” NIPS, pp.
1448-1456.

[DJW15] Duchi, J., Jordan, M. I., Wainwright, M. J., and Wibisono, A., 2015. “Optimal
Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations,”
IEEE Trans. on Information Theory, Vol. 61, pp. 2788-2806.

[DNP11] Deisenroth, M. P., Neumann, G., and Peters, J., 2011. “A Survey on Policy
Search for Robotics,” Foundations and Trends in Robotics, Vol. 2, pp. 1-142.

[DNW16] David, O. E., Netanyahu, N. S., and Wolf, L., 2016. “Deepchess: End-to-End
Deep Neural Network for Automatic Learning in Chess,” in International Conference on
Artificial Neural Networks, pp. 88-96.

[DeF04] De Farias, D. P., 2004. “The Linear Programming Approach to Approximate
Dynamic Programming,” in Learning and Approximate Dynamic Programming, by J.
Si, A. Barto, W. Powell, and D. Wunsch, (Eds.), IEEE Press, N. Y.

[DeJ06] De Jong, K. A., 2006. Evolutionary Computation: A Unified Approach, MIT
Press, Cambridge, MA.

[DeK11] Devlin, S., and Kudenko, D., 2011. “Theoretical Considerations of Potential-
Based Reward Shaping for Multi-Agent Systems,” in Proceedings of AAMAS.

[DeR79] Denardo, E. V., and Rothblum, U. G., 1979. “Optimal Stopping, Exponential
Utility, and Linear Programming,” Math. Programming, Vol. 16, pp. 228-244.

[DiL08] Dimitrakakis, C., and Lagoudakis, M. G., 2008. “Rollout Sampling Approximate
Policy Iteration,” Machine Learning, Vol. 72, pp. 157-171.

[DiM10] Di Castro, D., and Mannor, S., 2010. “Adaptive Bases for Reinforcement Learn-
ing,” Machine Learning and Knowledge Discovery in Databases, Vol. 6321, pp. 312-327.

[DiW02] Dietterich, T. G., and Wang, X., 2002. “Batch Value Function Approximation
via Support Vectors,” in Advances in Neural Information Processing Systems, pp. 1491-
1498.

[Die00] Dietterich, T., 2000. “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition,” J. of Artificial Intelligence Research, Vol. 13, pp. 227-
303.

[DoD93] Douglas, C. C., and Douglas, J., 1993. “A Unified Convergence Theory for
Abstract Multigrid or Multilevel Algorithms, Serial and Parallel,” SIAM J. Num. Anal.,
Vol. 30, pp. 136-158.

[DoJ09] Doucet, A., and Johansen, A. M., 2009. “A Tutorial on Particle Filtering and

354 References

Smoothing: Fifteen Years Later,” Handbook of Nonlinear Filtering, Oxford University
Press, Vol. 12, p. 3.

[Dre02] Dreyfus, S. D., 2002. “Richard Bellman on the Birth of Dynamic Programming,”
Operations Research, Vol. 50, pp. 48-51.

[EGW06] Ernst, D., Geurts, P., and Wehenkel, L., 2006. “Tree-Based Batch Mode Re-
inforcement Learning,” J. of Machine Learning Research, Vol. 6, pp. 503-556.

[ELP12] Estanjini, R. M., Li, K., and Paschalidis, I. C., 2012. “A Least Squares Temporal
Difference Actor-Critic Algorithm with Applications to Warehouse Management,” Naval
Research Logistics, Vol. 59, pp. 197-211.

[EMM05] Engel, Y., Mannor, S., and Meir, R., 2005. “Reinforcement Learning with
Gaussian Processes,” in Proc. of the 22nd ICML, pp. 201-208.

[FHS14] Feinberg, E. A., Huang, J., and Scherrer, B., 2014. “Modified Policy Itera-
tion Algorithms are not Strongly Polynomial for Discounted Dynamic Programming,”
Operations Research Letters, Vol. 42, pp. 429-431.

[FKB13] Frihauf, P., Krstic, M., and Basar, T., 2013. “Finite-Horizon LQ Control for
Unknown Discrete-Time Linear Systems via Extremum Seeking,” European Journal of
Control, Vol. 19, pp. 399-407.

[FPB15] Farahmand, A. M., Precup, D., Barreto, A. M., and Ghavamzadeh, M., 2015.
“Classification-Based Approximate Policy Iteration,” IEEE Trans. on Automatic Con-
trol, Vol. 60, pp. 2989-2993.

[FYG06] Fern, A., Yoon, S., and Givan, R., 2006. “Approximate Policy Iteration with
a Policy Language Bias: Solving Relational Markov Decision Processes,” J. of Artificial
Intelligence Research, Vol. 25, pp. 75-118.

[Fal87] Falcone, M., 1987. “A Numerical Approach to the Infinite Horizon Problem of
Deterministic Control Theory,” Appl. Math. Opt., Vol. 15, pp. 1-13.

[FeS04] Ferrari, S., and Stengel, R. F., 2004. “Model-Based Adaptive Critic Designs,” in
Learning and Approximate Dynamic Programming, by J. Si, A. Barto, W. Powell, and
D. Wunsch, (Eds.), IEEE Press, N. Y.

[FeV02] Ferris, M. C., and Voelker, M. M., 2002. “Neuro-Dynamic Programming for
Radiation Treatment Planning,” Numerical Analysis Group Research Report NA-02/06,
Oxford University Computing Laboratory, Oxford University.

[FeV04] Ferris, M. C., and Voelker, M. M., 2004. “Fractionation in Radiation Treatment
Planning,” Mathematical Programming B, Vol. 102, pp. 387-413.

[Fer10] Fernau, H., 2010. “Minimum Dominating Set of Queens: A Trivial Programming
Exercise?” Discrete Applied Mathematics, Vol. 158, pp. 308-318.

[Fu17] Fu, M. C., 2017. “Markov Decision Processes, AlphaGo, and Monte Carlo Tree
Search: Back to the Future,” Leading Developments from INFORMS Communities,
INFORMS, pp. 68-88.

[FuH94] Fu, M. C., and Hu, J.-Q., 1994. “Smoothed Perturbation Analysis Derivative
Estimation for Markov Chains,” Oper. Res. Letters, Vol. 41, pp. 241-251.

[Fun89] Funahashi, K., 1989. “On the Approximate Realization of Continuous Mappings
by Neural Networks,” Neural Networks, Vol. 2, pp. 183-192.

[GBB04] Greensmith, E., Bartlett, P. L., and Baxter, J., 2004. “Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning,” Journal of Machine
Learning Research, Vol. 5, pp. 1471-1530.

References 355

[GBC16] Goodfellow, I., Bengio, J., and Courville, A., Deep Learning, MIT Press, Cam-
bridge, MA.

[GBL12] Grondman, I., Busoniu, L., Lopes, G. A. D., and Babuska, R., 2012. “A Survey
of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients,” IEEE
Trans. on Systems, Man, and Cybernetics, Part C, Vol. 42, pp. 1291-1307.

[GDP18] Guerriero, F., Di Puglia Pugliese, L., and Macrina, G., 2018. “A Rollout Algo-
rithm for the Resource Constrained Elementary Shortest Path Problem,” Optimization
Methods and Software, pp. 1-19.

[GGS13] Gabillon, V., Ghavamzadeh, M., and Scherrer, B., 2013. “Approximate Dy-
namic Programming Finally Performs Well in the Game of Tetris,” in NIPS, pp. 1754-
1762.

[GLG11] Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer, B., 2011. “Classi-
fication-Based Policy Iteration with a Critic,” in Proc. of ICML.

[GTO15] Goodson, J. C., Thomas, B. W., and Ohlmann, J. W., 2015. “Restocking-
Based Rollout Policies for the Vehicle Routing Problem with Stochastic Demand and
Duration Limits,” Transportation Science, Vol. 50, pp. 591-607.

[Gla13] Glasserman, P., 2013. Monte Carlo Methods in Financial Engineering, Springer,
N. Y.

[Gly87] Glynn, P. W., 1987. “Likelihood Ratio Gradient Estimation: An Overview,”
Proc. of the 1987 Winter Simulation Conference, pp. 366-375.

[Gly90] Glynn, P. W., 1990. “Likelihood Ratio Gradient Estimation for Stochastic Sys-
tems,” Communications of the ACM, Vol. 33, pp. 75-84.

[GoR85] Gonzalez, R., and Rofman, E., 1985. “On Deterministic Control Problems: An
Approximation Procedure for the Optimal Cost, Parts I, II,” SIAM J. Control Opti-
mization, Vol. 23, pp. 242-285.

[GoS84] Goodwin, G. C., and Sin, K. S. S., 1984. Adaptive Filtering, Prediction, and
Control, Prentice-Hall, Englewood Cliffs, N. J.

[Gor95] Gordon, G. J., 1995. “Stable Function Approximation in Dynamic Program-
ming,” in Machine Learning: Proceedings of the Twelfth International Conference, Mor-
gan Kaufmann, San Francisco, CA.

[Gos15] Gosavi, A., 2015. Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning, 2nd Edition, Springer, N. Y.

[Gre05] Greensmith, E., 2005. Policy Gradient Methods: Variance Reduction and Stochas-
tic Convergence, Ph.D. Thesis, The Australian National University.

[Grz17] Grzes, M., 2017. “Reward Shaping in Episodic Reinforcement Learning,” in Proc.
of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 565-573.

[GuM03] Guerriero, F., and Mancini, M., 2003. “A Cooperative Parallel Rollout Algo-
rithm for the Sequential Ordering Problem,” Parallel Computing, Vol. 29, pp. 663-677.

[GuS18] Guillot, M., and Stauffer, G., 2018. The Stochastic Shortest Path Problem: A
Polyhedral Combinatorics Perspective, European J. of Operational Research.

[HJG16] Huang, Q., Jia, Q. S., and Guan, X., 2016. “Robust Scheduling of EV Charging
Load with Uncertain Wind Power Integration,” IEEE Trans. on Smart Grid, Vol. 9, pp.
1043-1054.

[HLZ18] Hanawal, M. K., Liu, H., Zhu, H., and Paschalidis, I. C., 2018. “Learning
Policies for Markov Decision Processes from Data,” IEEE Trans. on Automatic Control.

356 References

[HMR19] Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J., 2019. “Surprises
in High-Dimensional Ridgeless Least Squares Interpolation,” arXiv preprint arXiv:1903-
.08560.

[HPC96] Helmsen, J., Puckett, E. G., Colella, P., and Dorr, M., 1996. “Two New Meth-
ods for Simulating Photolithography Development,” SPIE’s 1996 International Sympo-
sium on Microlithography, pp. 253-261.

[HSS08] Hofmann, T., Scholkopf, B., and Smola, A. J., 2008. “Kernel Methods in
Machine Learning,” The Annals of Statistics, Vol. 36, pp. 1171-1220.

[HSW89] Hornick, K., Stinchcombe, M., and White, H., 1989. “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, Vol. 2, pp. 359-159.

[Han98] Hansen, E. A., 1998. “Solving POMDPs by Searching in Policy Space,” in Proc.
of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 211-219.

[Hay08] Haykin, S., 2008. Neural Networks and Learning Machines, 3rd Edition, Prentice-
Hall, Englewood-Cliffs, N. J.

[IJT18] Iusem, Jofre, A., and Thompson, P., 2018. “Incremental Constraint Projec-
tion Methods for Monotone Stochastic Variational Inequalities,” Math. of Operations
Research, Vol. 44, pp. 236-263.

[IoS96] Ioannou, P. A., and Sun, J., 1996. Robust Adaptive Control, Prentice-Hall,
Englewood Cliffs, N. J.

[Iva68] Ivakhnenko, A. G., 1968. “The Group Method of Data Handling: A Rival of the
Method of Stochastic Approximation,” Soviet Automatic Control, Vol. 13, pp. 43-55.

[Iva71] Ivakhnenko, A. G., 1971. “Polynomial Theory of Complex Systems,” IEEE Trans.
on Systems, Man and Cybernetics, Vol. 4, pp. 364-378.

[JSJ95] Jaakkola, T., Singh, S. P., and Jordan, M. I., 1995. “Reinforcement Learning
Algorithm for Partially Observable Markov Decision Problems,” NIPS, Vol. 7, pp. 345-
352.

[JiJ17] Jiang, Y., and Jiang, Z. P., 2017. Robust Adaptive Dynamic Programming, J.
Wiley, N. Y.

[JoB16] Joseph, A. G., and Bhatnagar, S., 2016. “Revisiting the Cross Entropy Method
with Applications in Stochastic Global Optimization and Reinforcement Learning,” in
Proc. of the 22nd European Conference on Artificial Intelligence, pp. 1026-1034.

[JoB18] Joseph, A. G., and Bhatnagar, S., 2018. “A Cross Entropy Based Optimization
Algorithm with Global Convergence Guarantees,” arXiv preprint arXiv:1801.10291.

[Jon90] Jones, L. K., 1990. “Constructive Approximations for Neural Networks by Sig-
moidal Functions,” Proceedings of the IEEE, Vol. 78, pp. 1586-1589.

[JuP07] Jung, T., and Polani, D., 2007. “Kernelizing LSPE(λ),” Proc. 2007 IEEE Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning, Honolulu,
Ha., pp. 338-345.

[KAC15] Kochenderfer, M. J., with Amato, C., Chowdhary, G., How, J. P., Davison
Reynolds, H. J., Thornton, J. R., Torres-Carrasquillo, P. A., Ore, N. K., Vian, J., 2015.
Decision Making under Uncertainty: Theory and Application, MIT Press, Cambridge,
MA.

[KAH15] Khashooei, B. A., Antunes, D. J. and Heemels, W.P.M.H., 2015. “Rollout
Strategies for Output-Based Event-Triggered Control,” in Proc. 2015 European Control
Conference, pp. 2168-2173.

References 357

[KGB82] Kimemia, J., Gershwin, S. B., and Bertsekas, D. P., 1982. “Computation of
Production Control Policies by a Dynamic Programming Technique,” in Analysis and
Optimization of Systems, A. Bensoussan and J. L. Lions (eds.), Springer, N. Y., pp.
243-269.

[KKK95] Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive
Control Design, J. Wiley, N. Y.

[KLC98] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R., 1998. “Planning and
Acting in Partially Observable Stochastic Domains,” Artificial Intelligence, Vol. 101, pp.
99-134.

[KLM96] Kaelbling, L. P., Littman, M. L., and Moore, A. W., 1996. “Reinforcement
Learning: A Survey,” J. of Artificial Intelligence Res., Vol. 4, pp. 237-285.

[KMP06] Keller, P. W., Mannor, S., and Precup, D., 2006. “Automatic Basis Function
Construction for Approximate Dynamic Programming and Reinforcement Learning,”
Proc. of the 23rd ICML, Pittsburgh, Penn.

[KRC13] Kroese, D. P., Rubinstein, R. Y., Cohen, I., Porotsky, S., and Taimre, T., 2013.
“Cross-Entropy Method,” in Encyclopedia of Operations Research and Management
Science, Springer, Boston, MA, pp. 326-333.

[Kak02] Kakade, S. A., 2002. “Natural Policy Gradient,” NIPS, Vol. 14, pp. 1531-1538.

[KeG88] Keerthi, S. S., and Gilbert, E. G., 1988. “Optimal, Infinite Horizon Feedback
Laws for a General Class of Constrained Discrete Time Systems: Stability and Moving-
Horizon Approximations,” J. Optimization Theory Appl., Vo. 57, pp. 265-293.

[KiK06] Killingsworth, N. J., and Krstic, M., 2006. “PID Tuning Using Extremum Seek-
ing,” IEEE Control Systems Magazine, pp. 70-79.

[Kim82] Kimemia, J., 1982. “Hierarchical Control of Production in Flexible Manufac-
turing Systems,” Ph.D. Thesis, Dep. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

[KoC15] Kouvaritakis, B., and Cannon, M., 2015. Model Predictive Control: Classical,
Robust and Stochastic, Springer, N. Y.

[KoS06] Kocsis, L., and Szepesvari, C., 2006. “Bandit Based Monte-Carlo Planning,”
Proc. of 17th European Conference on Machine Learning, Berlin, pp. 282-293.

[KoT99] Konda, V. R., and Tsitsiklis, J. N., 1999. “Actor-Critic Algorithms,” NIPS,
Denver, Colorado, pp. 1008-1014.

[KoT03] Konda, V. R., and Tsitsiklis, J. N., 2003. “Actor-Critic Algorithms,” SIAM J.
on Control and Optimization, Vol. 42, pp. 1143-1166.

[Kor90] Korf, R. E., 1990. “Real-Time Heuristic Search,” Artificial Intelligence, Vol. 42,
pp. 189-211.

[Kre19] Krener, A. J., 2019. “Adaptive Horizon Model Predictive Control and Al’brekht’s
Method,” arXiv preprint arXiv:1904.00053.

[Kri16] Krishnamurthy, V., 2016. Partially Observed Markov Decision Processes, Cam-
bridge Univ. Press.

[KuD92] Kushner, H. J., and Dupuis, P. G., 1992. Numerical Methods for Stochastic
Control Problems in Continuous Time, Springer, N. Y.

[KuV86] Kumar, P. R., and Varaiya, P. P., 1986. Stochastic Systems: Estimation, Iden-
tification, and Adaptive Control, Prentice-Hall, Englewood Cliffs, N. J.

358 References

[KuY03] Kushner, H. J., and Yin, G., 2003. Stochastic Approximation and Recursive
Algorithms and Applications, (2nd Ed.), Springer-Verlag, New York.

[Kum83] Kumar, P. R., 1983. “Optimal Adaptive Control of Linear-Quadratic-Gaussian
Systems,” SIAM J. on Control and Optimization, Vol. 21, pp. 163-178.

[Kun14] Kung, S. Y., 2014. Kernel Methods and Machine Learning, Cambridge Univ.
Press.

[L’Ec91] L’Ecuyer, P., 1991. “An Overview of Derivative Estimation,” Proceedings of
the 1991 Winter Simulation Conference, pp. 207-217.

[LGM03] Lequin, O., Gevers, M., Mossberg, M., Bosmans, E., and Triest, L., 2003. “It-
erative Feedback Tuning of PID Parameters: Comparison with Classical Tuning Rules,”
Control Engineering Practice, Vol. 11, pp. 1023-1033.

[LGM10] Lazaric, A., Ghavamzadeh, M., and Munos, R., 2010. “Analysis of a Classifica-
tion-Based Policy Iteration Algorithm,” INRIA Report.

[LGW16] Lan, Y., Guan, X., and Wu, J., 2016. “Rollout Strategies for Real-Time Multi-
Energy Scheduling in Microgrid with Storage System,” IET Generation, Transmission
and Distribution, Vol. 10, pp. 688-696.

[LLL08] Lewis, F. L., Liu, D., and Lendaris, G. G., 2008. Special Issue on Adaptive
Dynamic Programming and Reinforcement Learning in Feedback Control, IEEE Trans.
on Systems, Man, and Cybernetics, Part B, Vol. 38, No. 4.

[LLP93] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S., 1993. “Multilayer Feed-
forward Networks with a Nonpolynomial Activation Function can Approximate any
Function,” Neural Networks, Vol. 6, pp. 861-867.

[LWW17] Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H., 2017. Adaptive Dynamic
Programming with Applications in Optimal Control, Springer, Berlin.

[LaP03] Lagoudakis, M. G., and Parr, R., 2003. “Reinforcement Learning as Classifica-
tion: Leveraging Modern Classifiers,” in Proc. of ICML, pp. 424-431.

[LaR85] Lai, T., and Robbins, H., 1985. “Asymptotically Efficient Adaptive Allocation
Rules,” Advances in Applied Mathematics, Vol. 6, pp. 4-22.

[LeL13] Lewis, F. L., and Liu, D., (Eds), 2013. Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control, Wiley, Hoboken, N. J.

[LeV09] Lewis, F. L., and Vrabie, D., 2009. “Reinforcement Learning and Adaptive
Dynamic Programming for Feedback Control,” IEEE Circuits and Systems Magazine,
3rd Q. Issue.

[Lee17] Lee, J., 2017. “A Survey of Robot Learning from Demonstrations for Human-
Robot Collaboration,” arXiv preprint arXiv:1710.08789.

[LiW14] Liu, D., and Wei, Q., 2014. “Policy Iteration Adaptive Dynamic Programming
Algorithm for Discrete-Time Nonlinear Systems,” IEEE Trans. on Neural Networks and
Learning Systems, Vol. 25, pp. 621-634.

[Li17] Li, Y., 2017. “Deep Reinforcement Learning: An Overview,” arXiv preprint ArXiv:
1701.07274v5.

[LiR06] Lincoln, B., and Rantzer, A., 2006. “Relaxing Dynamic Programming,” IEEE
Trans. Automatic Control, Vol. 51, pp. 1249-1260.

[LiS16] Liang, S., and Srikant, R., 2016. “Why Deep Neural Networks for Function
Approximation?” arXiv preprint arXiv:1610.04161.

References 359

[LiW15] Li, H., and Womer, N. K., 2015. “Solving Stochastic Resource-Constrained
Project Scheduling Problems by Closed-Loop Approximate Dynamic Programming,”
European J. of Operational Research, Vol. 246, pp. 20-33.

[Lib11] Liberzon, D., 2011. Calculus of Variations and Optimal Control Theory: A
Concise Introduction, Princeton Univ. Press.

[Liu01] Liu, J. S., 2001. Monte Carlo Strategies in Scientific Computing, Springer, N. Y.

[LoS01] Longstaff, F. A., and Schwartz, E. S., 2001. “Valuing American Options by
Simulation: A Simple Least-Squares Approach,” Review of Financial Studies, Vol. 14,
pp. 113-147.

[MBT05] Mitchell, I. M., Bayen, A. M., and Tomlin, C. J., 2005. “A Time-Dependent
Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dynamic Games,” IEEE
Trans. on Automatic Control, Vol. 50, pp. 947-957.

[MKS15] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.
G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Petersen, S., 2015.
“Human-Level Control Through Deep Reinforcement Learning,” Nature, Vol. 518, p.
529.

[MMB02] McGovern, A., Moss, E., and Barto, A., 2002. “Building a Basic Building
Block Scheduler Using Reinforcement Learning and Rollouts,” Machine Learning, Vol.
49, pp. 141-160.

[MMS05] Menache, I., Mannor, S., and Shimkin, N., 2005. “Basis Function Adaptation
in Temporal Difference Reinforcement Learning,” Ann. Oper. Res., Vol. 134, pp. 215-
238.

[MPK99] Meuleau, N., Peshkin, L., Kim, K. E., and Kaelbling, L. P., 1999. “Learning
Finite-State Controllers for Partially Observable Environments,” in Proc. of the 15th
Conference on Uncertainty in Artificial Intelligence, pp. 427-436.

[MPP04] Meloni, C., Pacciarelli, D., and Pranzo, M., 2004. “A Rollout Metaheuristic for
Job Shop Scheduling Problems,” Annals of Operations Research, Vol. 131, pp. 215-235.

[MRG03] Mannor, S., Rubinstein, R. Y., and Gat, Y., 2003. “The Cross Entropy Method
for Fast Policy Search,” in Proc. of the 20th International Conference on Machine Learn-
ing (ICML-03), pp. 512-519.

[MVS19] Muthukumar, V., Vodrahalli, K., and Sahai, A., 2019. “Harmless Interpolation
of Noisy Data in Regression,” arXiv preprint arXiv:1903.09139.

[MYF03] Moriyama, H., Yamashita, N., and Fukushima, M., 2003. “The Incremental
Gauss-Newton Algorithm with Adaptive Stepsize Rule,” Computational Optimization
and Applications, Vol. 26, pp. 107-141.

[MaJ15] Mastin, A., and Jaillet, P., 2015. “Average-Case Performance of Rollout Algo-
rithms for Knapsack Problems,” J. of Optimization Theory and Applications, Vol. 165,
pp. 964-984.

[MaK12] Mausam, and Kolobov, A., 2012. “Planning with Markov Decision Processes:
An AI Perspective,” Synthesis Lectures on Artificial Intelligence and Machine Learning,
Vol. 6, pp. 1-210.

[MaT01] Marbach, P., and Tsitsiklis, J. N., 2001. “Simulation-Based Optimization of
Markov Reward Processes,” IEEE Trans. on Aut. Control, Vol. 46, pp. 191-209.

[MaT03] Marbach, P., and Tsitsiklis, J. N., 2003. “Approximate Gradient Methods in
Policy-Space Optimization of Markov Reward Processes,” J. Discrete Event Dynamic
Systems, Vol. 13, pp. 111-148.

360 References

[Mac02] Maciejowski, J. M., 2002. Predictive Control with Constraints, Addison-Wesley,
Reading, MA.

[Mat65] J. Matyas, J., 1965. “Random Optimization,” Automation and Remote Control,
Vol. 26, pp. 246-253.

[May14] Mayne, D. Q., 2014. “Model Predictive Control: Recent Developments and
Future Promise,” Automatica, Vol. 50, pp. 2967-2986.

[MeB99] Meuleau, N., and Bourgine, P., 1999. “Exploration of Multi-State Environ-
ments: Local Measures and Back-Propagation of Uncertainty,” Machine Learning, Vol.
35, pp. 117-154.

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge Univ.
Press, N. Y.

[MoL99] Morari, M., and Lee, J. H., 1999. “Model Predictive Control: Past, Present,
and Future,” Computers and Chemical Engineering, Vol. 23, pp. 667-682.

[MuS08] Munos, R., and Szepesvari, C, 2008. “Finite-Time Bounds for Fitted Value
Iteration,” J. of Machine Learning Research, Vol. 1, pp. 815-857.

[Mun14] Munos, R., 2014. “From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning,” Foundations and Trends in Machine
Learning, Vol. 7, pp. 1-129.

[NHR99] Ng, A. Y., Harada, D., and Russell, S. J., 1999. “Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping,” in Proc. of the
16th International Conference on Machine Learning, pp. 278-287.

[NeB00] Nedić, A., and Bertsekas, D. P., 2000. “Convergence Rate of Incremental Sub-
gradient Algorithms,” in Stochastic Optimization: Algorithms and Applications, by S.
Uryasev and P. M. Pardalos, Eds., Kluwer, pp. 263-304.

[NeB01] Nedić, A., and Bertsekas, D. P., 2001. “Incremental Subgradient Methods for
Nondifferentiable Optimization,” SIAM J. on Optimization, Vol. 12, pp. 109-138.

[NeB03] Nedić, A., and Bertsekas, D. P., 2003. “Least-Squares Policy Evaluation Algo-
rithms with Linear Function Approximation,” J. of Discrete Event Systems, Vol. 13, pp.
79-110.

[NeS12] Neu, G., and Szepesvari, C., 2012. “Apprenticeship Learning Using Inverse
Reinforcement Learning and Gradient Methods,” arXiv preprint arXiv:1206.5264.

[NeS17] Nesterov, Y., and Spokoiny, V., 2017. “Random Gradient-Free Minimization of
Convex Functions,” Foundations of Computational Mathematics, Vol. 17, pp. 527-566.

[Ned11] Nedić, A., 2011. “Random Algorithms for Convex Minimization Problems,”
Math. Programming, Ser. B, Vol. 129, pp. 225-253.

[OVR19] Osband, I., Van Roy, B., Russo, D. J., and Wen, Z., 2019. “Deep Exploration
via Randomized Value Functions,” arXiv preprint arXiv: 1703.07608v4.

[OrS02] Ormoneit, D., and Sen, S., 2002. “Kernel-Based Reinforcement Learning,” Ma-
chine Learning, Vol. 49, pp. 161-178.

[PBT98] Polymenakos, L. C., Bertsekas, D. P., and Tsitsiklis, J. N., 1998. “Efficient
Algorithms for Continuous-Space Shortest Path Problems,” IEEE Trans. on Automatic
Control, Vol. 43, pp. 278-283.

[PDC14] Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., and Ljung, L., 2014.
“Kernel Methods in System Identification, Machine Learning and Function Estimation:
A Survey,” Automatica, Vol. 50, pp. 657-682.

References 361

[PSS98] Precup, D., Sutton, R. S., and Singh, S., 1998. “Theoretical Results on Rein-
forcement Learning with Temporally Abstract Options,” in European Conf. on Machine
Learning, Springer, Berlin, pp. 382-393.

[PaT00] Paschalidis, I. C., and Tsitsiklis, J. N., 2000. “Congestion-Dependent Pricing
of Network Services,” IEEE/ACM Trans. on Networking, Vol. 8, pp. 171-184.

[Pat01] Patek, S. D., 2001. “On Terminating Markov Decision Processes with a Risk
Averse Objective Function,” Automatica, Vol. 37, pp. 1379-1386.

[Pat07] Patek, S. D., 2007. “Partially Observed Stochastic Shortest Path Problems
with Approximate Solution by Neuro-Dynamic Programming,” IEEE Trans. on Sys-
tems, Man, and Cybernetics Part A, Vol. 37, pp. 710-720.

[PeG04] Peret, L., and Garcia, F., 2004. “On-Line Search for Solving Markov Decision
Processes via Heuristic Sampling,” in Proc. of the 16th European Conference on Artificial
Intelligence, pp. 530-534.

[PeS08] Peters, J., and Schaal, S., 2008. “Reinforcement Learning of Motor Skills with
Policy Gradients,” Neural Networks, Vol. 4, pp. 682-697.

[PeW96] Peng, J., and Williams, R., 1996. “Incremental Multi-Step Q-Learning,” Ma-
chine Learning, Vol. 22, pp. 283-290.

[PoB04] Poupart, P., and Boutilier, C., 2004. “Bounded Finite State Controllers,” in
Advances in Neural Information Processing Systems, pp. 823-830.

[PoV04] Powell, W. B., and Van Roy, B., 2004. “Approximate Dynamic Programming
for High-Dimensional Resource Allocation Problems,” in Learning and Approximate
Dynamic Programming, by J. Si, A. Barto, W. Powell, and D. Wunsch, (Eds.), IEEE
Press, N. Y.

[Pow11] Powell, W. B., 2011. Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd Edition, J. Wiley and Sons, Hoboken, N. J.

[Pre95] Prekopa, A., 1995. Stochastic Programming, Kluwer, Boston.

[PuS78] Puterman, M. L., and Shin, M. C., 1978. “Modified Policy Iteration Algorithms
for Discounted Markov Decision Problems,” Management Sci., Vol. 24, pp. 1127-1137.

[PuS82] Puterman, M. L., and Shin, M. C., 1982. “Action Elimination Procedures for
Modified Policy Iteration Algorithms,” Operations Research, Vol. 30, pp. 301-318.

[Put94] Puterman, M. L., 1994. Markovian Decision Problems, J. Wiley, N. Y.

[RPW91] Rogers, D. F., Plante, R. D., Wong, R. T., and Evans, J. R., 1991. “Aggre-
gation and Disaggregation Techniques and Methodology in Optimization,” Operations
Research, Vol. 39, pp. 553-582.

[RSM08] Reisinger, J., Stone, P., and Miikkulainen, R., 2008. “Online Kernel Selection
for Bayesian Reinforcement Learning,” in Proc. of the 25th International Conference on
Machine Learning, pp. 816-823.

[RVK18] Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., and Wen, Z., 2018. A
Tutorial on Thompson Sampling, Foundations and Trends in Machine Learning.

[RaK18] Radenkovic, S., and Krstic, M., 2018. “Extremum Seeking-Based Perfect Adap-
tive Tracking of Non-PE References Despite Nonvanishing Variance of Perturbations,”
Automatica, Vol. 93, pp. 189-196.

[Ras63] Rastrigin, R. A., 1963. “About Convergence of Random Search Method in Ex-
tremal Control of Multi-Parameter Systems,” Avtomat. i Telemekh., Vol. 24, pp. 1467-
1473.

362 References

[Rec18a] Recht, B., 2018. “A Tour of Reinforcement Learning: The View from Contin-
uous Control,” Annual Review of Control, Robotics, and Autonomous Systems.

[Rec18b] Recht, B., 2018. “An Outsider’s Tour of Reinforcement Learning,” at
http://www.argmin.net/2018/06/25/outsider-rl/

[RoC10] Robert, C. P., and Casella, G., 2010. Monte Carlo Statistical Methods, Springer,
N. Y.

[Ros70] Ross, S. M., 1970. Applied Probability Models with Optimization Applications,
Holden-Day, San Francisco, CA.

[Ros12] Ross, S. M., 2012. Simulation, 5th Edition, Academic Press, Orlando, Fla.

[RuK04] Rubinstein, R. Y., and Kroese, D. P., 2004. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Springer, N. Y.

[RuK13] Rubinstein, R. Y., and Kroese, D. P., 2013. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine
Learning, Springer Science and Business Media.

[RuK16] Rubinstein, R. Y., and Kroese, D. P., 2016. Simulation and the Monte Carlo
Method, 3rd Edition, J. Wiley, N. Y.

[RuN94] Rummery, G. A., and Niranjan, M., 1994. “On-Line Q-Learning Using Con-
nectionist Systems,” University of Cambridge, England, Department of Engineering,
TR-166.

[RuN16] Russell, S. J., and Norvig, P., 2016. Artificial Intelligence: A Modern Approach,
Pearson Education Limited, Malaysia.

[RuV16] Russo, D., and Van Roy, B., 2016. “An Information-Theoretic Analysis of
Thompson Sampling,” The Journal of Machine Learning Research, Vol. 17, pp. 2442-
2471.

[Rub69] Rubinstein, R. Y., 1969. Some Problems in Monte Carlo Optimization, Ph.D.
Thesis.

[SBP04] Si, J., Barto, A., Powell, W., and Wunsch, D., (Eds.) 2004. Learning and
Approximate Dynamic Programming, IEEE Press, N. Y.

[SGC02] Savagaonkar, U., Givan, R., and Chong, E. K. P., 2002. “Sampling Techniques
for Zero-Sum, Discounted Markov Games,” in Proc. 40th Allerton Conference on Com-
munication, Control and Computing, Monticello, Ill.

[SGG15] Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and Geist, M., 2015.
“Approximate Modified Policy Iteration and its Application to the Game of Tetris,” J.
of Machine Learning Research, Vol. 16, pp. 1629-1676.

[SHB15] Simroth, A., Holfeld, D., and Brunsch, R., 2015. “Job Shop Production Plan-
ning under Uncertainty: A Monte Carlo Rollout Approach,” Proc. of the International
Scientific and Practical Conference, Vol. 3, pp. 175-179.

[SHC17] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I., 2017. “Evolu-
tion Strategies as a Scalable Alternative to Reinforcement Learning,” arXiv preprint
arXiv:1703.03864.

[SHM16] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and Dieleman,
S., 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search,”
Nature, Vol. 529, pp. 484-489.

[SHS17] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

References 363

Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and Lillicrap, T., 2017. “Mastering
Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” arXiv
preprint arXiv:1712.01815.

[SJJ95] Singh, S. P., Jaakkola, T., and Jordan, M. I., 1995. “Reinforcement Learning
with Soft State Aggregation,” in Advances in Neural Information Processing Systems 7,
MIT Press, Cambridge, MA.

[SJL18] Soltanolkotabi, M., Javanmard, A., and Lee, J. D., 2018. “Theoretical Insights
into the Optimization Landscape of Over-Parameterized Shallow Neural Networks,”
IEEE Trans. on Information Theory, Vol. 65, pp. 742-769.

[SLJ13] Sun, B., Luh, P. B., Jia, Q. S., Jiang, Z., Wang, F., and Song, C., 2013. “Build-
ing Energy Management: Integrated Control of Active and Passive Heating, Cooling,
Lighting, Shading, and Ventilation Systems,” IEEE Trans. on Automation Science and
Engineering, Vol. 10, pp. 588-602.

[SMS99] Sutton, R. S., McAllester, D., Singh, S. P., and Mansour, Y., 1999. “Policy
Gradient Methods for Reinforcement Learning with Function Approximation,” NIPS,
Denver, Colorado.

[SSP18] Serban, I. V., Sankar, C., Pieper, M., Pineau, J., Bengio, J., 2018. “The Bot-
tleneck Simulator: A Model-Based Deep Reinforcement Learning Approach,” arXiv
preprint arXiv:1807.04723.v1.

[SYL04] Si, J., Yang, L., and Liu, D., 2004. “Direct Neural Dynamic Programming,” in
Learning and Approximate Dynamic Programming, by J. Si, A. Barto, W. Powell, and
D. Wunsch, (Eds.), IEEE Press, N. Y.

[SYL17] Saldi, N., Yuksel, S., and Linder, T., 2017. “Finite Model Approximations for
Partially Observed Markov Decision Processes with Discounted Cost,” arXiv preprint
arXiv:1710.07009.

[SZL08] Sun, T., Zhao, Q., Lun, P., and Tomastik, R., 2008. “Optimization of Joint
Replacement Policies for Multipart Systems by a Rollout Framework,” IEEE Trans. on
Automation Science and Engineering, Vol. 5, pp. 609-619.

[SaB11] Sastry, S., and Bodson, M., 2011. Adaptive Control: Stability, Convergence and
Robustness, Courier Corporation.

[Sam59] Samuel, A. L., 1959. “Some Studies in Machine Learning Using the Game of
Checkers,” IBM J. of Research and Development, pp. 210-229.

[Sam67] Samuel, A. L., 1967. “Some Studies in Machine Learning Using the Game of
Checkers. II – Recent Progress,” IBM J. of Research and Development, pp. 601-617.

[ScS85] Schweitzer, P. J., and Seidman, A., 1985. “Generalized Polynomial Approxi-
mations in Markovian Decision Problems,” J. Math. Anal. and Appl., Vol. 110, pp.
568-582.

[ScS02] Scholkopf, B., and Smola, A. J., 2002. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA.

[Sch99] Schaal, S., 1999. “Is Imitation Learning the Route to Humanoid Robots?” Trends
in Cognitive Sciences, Vol. 3, pp. 233-242.

[Sch13] Scherrer, B., 2013. “Performance Bounds for Lambda Policy Iteration and Appli-
cation to the Game of Tetris,” J. of Machine Learning Research, Vol. 14, pp. 1181-1227.

[Sch15] Schmidhuber, J., 2015. “Deep Learning in Neural Networks: An Overview,”
Neural Networks, pp. 85-117.

364 References

[Sec00] Secomandi, N., 2000. “Comparing Neuro-Dynamic Programming Algorithms for
the Vehicle Routing Problem with Stochastic Demands,” Computers and Operations
Research, Vol. 27, pp. 1201-1225.

[Sec01] Secomandi, N., 2001. “A Rollout Policy for the Vehicle Routing Problem with
Stochastic Demands,” Operations Research, Vol. 49, pp. 796-802.

[Sec03] Secomandi, N., 2003. “Analysis of a Rollout Approach to Sequencing Problems
with Stochastic Routing Applications,” J. of Heuristics, Vol. 9, pp. 321-352.

[Set99a] Sethian, J. A., 1999. Level Set Methods and Fast Marching Methods Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Mate-
rials Science, Cambridge University Press, N. Y.

[Set99b] Sethian, J. A., 1999. “Fast Marching Methods,” SIAM Review, Vol. 41, pp.
199-235.

[ShC04] Shawe-Taylor, J., and Cristianini, N., 2004. Kernel Methods for Pattern Anal-
ysis, Cambridge Univ. Press.

[Sha50] Shannon, C., 1950. “Programming a Digital Computer for Playing Chess,” Phil.
Mag., Vol. 41, pp. 356-375.

[SlL91] Slotine, J.-J. E., and Li, W., Applied Nonlinear Control, Prentice-Hall, Engle-
wood Cliffs, N. J.

[SpV05] Spaan, M. T., and Vlassis, N., 2005. “Perseus: Randomized Point-Based Value
Iteration for POMDPs,” J. of Artificial Intelligence Research, Vol. 24, pp. 195-220.

[Spa92] Spall, J. C., “Multivariate Stochastic Approximation Using a Simultaneous Per-
turbation Gradient Approximation,” IEEE Trans. on Automatic Control, Vol. pp. 332-
341.

[Spa03] Spall, J. C., 2003. Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control, J. Wiley, Hoboken, N. J.

[Str18] Strogatz, S., 2018. “One Giant Step for a Chess-Playing Machine,” NY Times
article on Dec. 26, 2018.

[SuB18] Sutton, R., and Barto, A. G., 2018. Reinforcement Learning, 2nd Edition, MIT
Press, Cambridge, MA.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the Methods of Temporal Differ-
ences,” Machine Learning, Vol. 3, pp. 9-44.

[SzL06] Szita, I., and Lorinz, A., 2006. “Learning Tetris Using the Noisy Cross-Entropy
Method,” Neural Computation, Vol. 18, pp. 2936-2941.

[Sze10] Szepesvari, C., 2010. Algorithms for Reinforcement Learning, Morgan and Clay-
pool Publishers, San Franscisco, CA.

[TCW19] Tseng, W. J., Chen, J. C., Wu, I. C., and Wei, T. H., 2019. “Comparison
Training for Computer Chinese Chess,” IEEE Trans. on Games.

[TGL13] Tesauro, G., Gondek, D. C., Lenchner, J., Fan, J., and Prager, J. M., 2013.
“Analysis of Watson’s Strategies for Playing Jeopardy!,” J. of Artificial Intelligence
Research, Vol. 47, pp. 205-251.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using
Monte Carlo Search,” NIPS, Denver, CO.

[Tes89a] Tesauro, G. J., 1989. “Neurogammon Wins Computer Olympiad,” Neural Com-
putation, Vol. 1, pp. 321-323.

References 365

[Tes89b] Tesauro, G. J., 1989. “Connectionist Learning of Expert Preferences by Com-
parison Training,” in Advances in Neural Information Processing Systems, pp. 99-106.

[Tes92] Tesauro, G. J., 1992. “Practical Issues in Temporal Difference Learning,” Ma-
chine Learning, Vol. 8, pp. 257-277.

[Tes94] Tesauro, G. J., 1994. “TD-Gammon, a Self-Teaching Backgammon Program,
Achieves Master-Level Play,” Neural Computation, Vol. 6, pp. 215-219.

[Tes95] Tesauro, G. J., 1995. “Temporal Difference Learning and TD-Gammon,” Com-
munications of the ACM, Vol. 38, pp. 58-68.

[Tes01] Tesauro, G. J., 2001. “Comparison Training of Chess Evaluation Functions,” in
Machines that Learn to Play Games, Nova Science Publishers, pp. 117-130.

[Tes02] Tesauro, G. J., 2002. “Programming Backgammon Using Self-Teaching Neural
Nets,” Artificial Intelligence, Vol. 134, pp. 181-199.

[ThS09] Thiery, C., and Scherrer, B., 2009. “Improvements on Learning Tetris with
Cross-Entropy,” International Computer Games Association J., Vol. 32, pp. 23-33.

[ThS10] Thiery, C., and Scherrer, B., 2010. “Performane Bound for Approximate Opti-
mistic Policy Iteration,” Technical Report, INRIA, France.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-Scale
Dynamic Programming,” Machine Learning, Vol. 22, pp. 59-94.

[TsV97] Tsitsiklis, J. N., and Van Roy, B., 1997. “An Analysis of Temporal-Difference
Learning with Function Approximation,” IEEE Trans. on Aut. Control, Vol. 42, pp.
674-690.

[TsV99a] Tsitsiklis, J. N., and Van Roy, B., 1999. “Average Cost Temporal-Difference
Learning,” Automatica, Vol. 35, pp. 1799-1808.

[TsV99b] Tsitsiklis, J. N., and Van Roy, B., 1999. “Optimal Stopping of Markov Pro-
cesses: Hilbert Space Theory, Approximation Algorithms, and an Application to Pricing
Financial Derivatives”, IEEE Trans. on Aut. Control, Vol. 44, pp. 1840-1851.

[Tse98] Tseng, P., 1998. “Incremental Gradient(-Projection) Method with Momentum
Term and Adaptive Stepsize Rule,” SIAM J. on Optimization, Vol. 8, pp. 506-531.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and Q-Learning,”
Machine Learning, Vol. 16, pp. 185-202.

[Tsi95] Tsitsiklis, J. N., 1995. “Efficient Algorithms for Globally Optimal Trajectories,”
IEEE Trans. Automatic Control, Vol. AC-40, pp. 1528-1538.

[TuP03] Tu, F., and Pattipati, K. R., 2003. “Rollout Strategies for Sequential Fault
Diagnosis,” IEEE Trans. on Systems, Man and Cybernetics, Part A, pp. 86-99.

[UGM18] Ulmer, M.W., Goodson, J. C., Mattfeld, D. C., and Hennig, M., 2018. “Offline-
Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochas-
tic Requests,” Transportation Science, Vol. 53, pp. 185-202.

[Ulm17] Ulmer, M. W., 2017. Approximate Dynamic Programming for Dynamic Vehicle
Routing, Springer, Berlin.

[VVL13] Vrabie, D., Vamvoudakis, K. G., and Lewis, F. L., 2013. Optimal Adaptive
Control and Differential Games by Reinforcement Learning Principles, The Institution
of Engineering and Technology, London.

[Vla08] Vladimirsky, A., 2008. “Label-Setting Methods for Multimode Stochastic Short-
est Path Problems on Graphs,” Math. of Operations Research, Vol. 33, pp. 821-838.

366 References

[WCG03] Wu, G., Chong, E. K. P., and Givan, R. L., 2003. “Congestion Control Using
Policy Rollout,” Proc. 2nd IEEE CDC, Maui, Hawaii, pp. 4825-4830.

[WOB15] Wang, Y., O’Donoghue, B., and Boyd, S., 2015. “Approximate Dynamic Pro-
gramming via Iterated Bellman Inequalities,” International J. of Robust and Nonlinear
Control, Vol. 25, pp. 1472-1496.

[WaB13a] Wang, M., and Bertsekas, D. P., 2013. “Stabilization of Stochastic Iterative
Methods for Singular and Nearly Singular Linear Systems,” Mathematics of Operations
Research, Vol. 39, pp. 1-30.

[WaB13b] Wang, M., and Bertsekas, D. P., 2013. “Convergence of Iterative Simulation-
Based Methods for Singular Linear Systems,” Stochastic Systems, Vol. 3, pp. 39-96.

[WaB14] Wang, M., and Bertsekas, D. P., 2014. “Incremental Constraint Projection
Methods for Variational Inequalities,” Mathematical Programming, pp. 1-43.

[WaB16] Wang, M., and Bertsekas, D. P., 2016. “Stochastic First-Order Methods with
Random Constraint Projection,” SIAM Journal on Optimization, Vol. 26, pp. 681-717.

[WaP17] Wang, J., and Paschalidis, I. C., 2017. “An Actor-Critic Algorithm with Second-
Order Actor and Critic,” IEEE Trans. on Automatic Control, Vol. 62, pp. 2689-2703.

[Van76] Van Nunen, J. A., 1976. Contracting Markov Decision Processes, Mathematical
Centre Report, Amsterdam.

[Wat89] Watkins, C. J. C. H., Learning from Delayed Rewards, Ph.D. Thesis, Cambridge
Univ., England.

[WeB99] Weaver, L., and Baxter, J., 1999. “Reinforcement Learning From State and
Temporal Differences,” Tech. Report, Department of Computer Science, Australian Na-
tional University.

[WhS92] White, D., and Sofge, D., (Eds.), 1992. Handbook of Intelligent Control, Van
Nostrand, N. Y.

[WhS94] White, C. C., and Scherer, W. T., 1994. “Finite-Memory Suboptimal Design
for Partially Observed Markov Decision Processes,” Operations Research, Vol. 42, pp.
439-455.

[Whi88] Whittle, P., 1988. “Restless Bandits: Activity Allocation in a Changing World,”
J. of Applied Probability, pp. 287-298.

[Whi91] White, C. C., 1991. “A Survey of Solution Techniques for the Partially Observed
Markov Decision Process,” Annals of Operations Research, Vol. 32, pp. 215-230.

[WiB93] Williams, R. J., and Baird, L. C., 1993. “Analysis of Some Incremental Variants
of Policy Iteration: First Steps Toward Understanding Actor-Critic Learning Systems,”
Report NU-CCS-93-11, College of Computer Science, Northeastern University, Boston,
MA.

[WiS98] Wiering, M., and Schmidhuber, J., 1998. “Fast Online Q(λ),” Machine Learning,
Vol. 33, pp. 105-115.

[Wie03] Wiewiora, E., 2003. Potential-Based Shaping and Q-Value Initialization are
Equivalent,” J. of Artificial Intelligence Research, Vol. 19, pp. 205-208.

[Wil92] Williams, R. J., 1992. “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, Vol. 8, pp. 229-256.

[YDR04] Yan, X., Diaconis, P., Rusmevichientong, P., and Van Roy, B., 2004. “Solitaire:
Man Versus Machine,” Advances in Neural Information Processing Systems, Vol. 17, pp.
1553-1560.

References 367

[Yar17] Yarotsky, D., 2017. “Error Bounds for Approximations with Deep ReLU Net-
works,” Neural Networks, Vol. 94, pp. 103-114.

[YuB04] Yu, H., and Bertsekas, D. P., 2004. “Discretized Approximations for POMDP
with Average Cost,” Proc. of the 20th Conference on Uncertainty in Artificial Intelli-
gence, Banff, Canada.

[YuB06] Yu, H., and Bertsekas, D. P., 2006. “On Near-Optimality of the Set of Finite-
State Controllers for Average Cost POMDP,” Lab. for Information and Decision Systems
Report LIDS-P-2689, MIT; Mathematics of Operations Research, Vol. 33, 2008, pp. 1-11.

[YuB07] Yu, H., and Bertsekas, D. P., 2007. “A Least Squares Q-Learning Algorithm for
Optimal Stopping Problems,” Proc. European Control Conference 2007, Kos, Greece,
pp. 2368-2375; an extended version appears in Lab. for Information and Decision Systems
Report LIDS-P-2731, MIT.

[YuB09a] Yu, H., and Bertsekas, D. P., 2009. “Convergence Results for Some Temporal
Difference Methods Based on Least Squares,” IEEE Trans. on Aut. Control, Vol. 54, pp.
1515-1531.

[YuB09b] Yu, H., and Bertsekas, D. P., 2009. “Basis Function Adaptation Methods for
Cost Approximation in MDP,” Proceedings of 2009 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2009), Nashville, Tenn.

[YuB10] Yu, H., and Bertsekas, D. P., 2010. “Error Bounds for Approximations from
Projected Linear Equations,” Mathematics of Operations Research, Vol. 35, pp. 306-329.

[YuB12] Yu, H., and Bertsekas, D. P., 2012. “Weighted Bellman Equations and their
Applications in Dynamic Programming,” Lab. for Information and Decision Systems
Report LIDS-P-2876, MIT.

[YuB13a] Yu, H., and Bertsekas, D. P., 2013. “Q-Learning and Policy Iteration Algo-
rithms for Stochastic Shortest Path Problems,” Annals of Operations Research, Vol.
208, pp. 95-132.

[YuB13b] Yu, H., and Bertsekas, D. P., 2013. “On Boundedness of Q-Learning Iterates
for Stochastic Shortest Path Problems,” Math. of OR, Vol. 38, pp. 209-227.

[YuB15] Yu, H., and Bertsekas, D. P., 2015. “A Mixed Value and Policy Iteration Method
for Stochastic Control with Universally Measurable Policies,” Math. of OR, Vol. 40, pp.
926-968.

[Yu05] Yu, H., 2005. “A Function Approximation Approach to Estimation of Policy Gra-
dient for POMDP with Structured Policies,” Proc. of the 21st Conference on Uncertainty
in Artificial Intelligence, Edinburgh, Scotland.

[Yu12] Yu, H., 2012. “Least Squares Temporal Difference Methods: An Analysis Under
General Conditions,” SIAM J. on Control and Optimization, Vol. 50, pp. 3310-3343.

[Yu15] Yu, H., 2015. “On Convergence of Value Iteration for a Class of Total Cost Markov
Decision Processes,” SIAM J. on Control and Optimization, Vol. 53, pp. 1982-2016.

[ZBH16] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2016. “Un-
derstanding Deep Learning Requires Rethinking Generalization,” arXiv preprint arXiv:
1611.03530.

[ZhO11] Zhang, C., and Ordonez, R., 2011. Extremum-Seeking Control and Applica-
tions: A Numerical Optimization-Based Approach, Springer Science and Business Me-
dia.

[ZhT11] Zhong, M., and Todorov, E., 2011. “Aggregation Methods for Linearly-Solvable
Markov Decision Process,” IFAC Proc., Vol. 44, pp. 11220-11225.

	Reinforcement Learning and Optimal Control
	About the Author
	Contents
	Preface
	Chapter 1: Exact Dynamic Programming
	Chapter 2: Approximation in Value Space
	Chapter 3: Parametric Approximation
	Chapter 4: Infinite Horizon Dynamic Programming
	Chapter 5: Infinite Horizon Reinforcement Learning
	Chapter 6: Aggregation
	References, p. 345
	INDEX, p. 369

