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Classical Total Cost Stochastic Optimal Control (SOC)

System: xk+1 = f (xk ,uk ,wk )

xk : State at time k , from some space X

uk : Control at time k , from some space U

wk : Random “disturbance" at time k , from a countable space W , with
p(wk | xk , uk ) given

Policies: π = {µ0, µ1, . . .}
Each µk maps states xk to controls uk = µk (xk ) ∈ U(xk ) (a constraint set)

Cost of π starting at x0, with discount factor α ∈ (0, 1]:

Jπ(x0) = lim supN→∞ E
{∑N

k=0 α
k g(xk , µk (xk ),wk

)}
Optimal cost starting at x0: J∗(x0) = infπ Jπ(x0)

Optimal policy π∗: Satisfies Jπ∗(x) = J∗(x) for all x ∈ X

Bellman’s (Optimality) Equation:

J∗(x) = inf
u∈U(x)

E
{

g(x , u,w) + αJ∗
(
f (x , u,w)

)}
, ∀ x ∈ X
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Three Main Classes of Total Cost SOC Problems

Discounted:
α < 1 and bounded g

Dates to 50s (Bellman, Shapley)

Nicest results; key fact is contraction property in Bellman’s equation

Undiscounted (g ≤ 0 or g ≥ 0):
N-step horizon costs are going ↓ or ↑ with N

Dates to 60s (Blackwell, Strauch); positive and negative DP

Not nearly as powerful results compared with the discounted case

Stochastic Shortest Path (SSP):
Dates to 60s (Eaton-Zadeh, Derman, Pallu de la Barriere)

Also known as first passage or transient programming

Aim is to reach a special termination state at min expected cost

Under favorable assumptions (including finite state space), results are almost as
strong as for the discounted case (some contraction properties)

In general, very complex behavior is possible
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Complexities of Noncontractive Problems with g ≥ 0 or g ≤ 0

A deterministic shortest path problem
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LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.
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Bellman’s equation: J(1) = min
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}

, J(0) = J(0)
Solutions with J(0) = 0: All J(1) ≤ b

Value iteration (VI) starting from any J0 with J0(0) = 0

VI for the terminating policy: Jµ, k (1) = b (works)

VI for the nonterminating policy: Jµ′, k+1(1) = Jµ′, k (1) (fails)

VI for the entire problem: Jk+1(1) = min
{

b, Jk (1)
}

If b < 0: Jk (1)→ J∗(1) starting with J0(1) ≥ b (works depending on J0)

If b > 0: Jk (1)→ J∗(1) only if J0(1) = 0; starting from J0(1) ≥ b, Jk (1)→ Jµ(1)

Policy iteration (PI) starting from µ

If b < 0: Oscillates between µ and µ′. If b > 0: Converges to suboptimal µ
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Complexities When g Takes Both ≥ 0 and ≤ 0 Values

A stochastic shortest path problem (from Bertsekas and Yu, 2015)
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νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.
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J(1) = min
{
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For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
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J(1) = min
{
c, a + J(2)

}
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J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0
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Improper policy µ

Proper policy µ

1
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1

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

For p = 0: Jp(1) = Jp(5) = 1

Jp = 0, Jp(2) = Jp(5) = 1

1

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

The Bellman Eq. is violated at 1 for p = 1/2: Jp(1) 6= pJp(2) + (1− p)Jp(5)

Mathematically, the difficulty is that lim sup E{·} 6= E{lim sup {·}}

Consider the deterministic problem that chooses either p = 1 or p = 0

Belman’s equation J∗(1) = min
{

J∗(2), J∗(5)
}

is satisfied
Introducing randomization

I Lowers the optimal cost and invalidates Bellman’s equation
I VI fails to converge to J∗ from any initial condition
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What is the Root of the Anomalies?

A (partial) answer
The presence of policies that are not well-behaved in terms of VI (e.g., involve zero
length cycles)

We call these policies “irregular" and we investigate
What problems can they cause?

Under what assumptions are they “harmless"?
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Regularity: A Summary of Ideas

S-Regular stationary policy µ (S is a set of “value" functions on X )
µ is S-regular if it behaves well with respect to VI when started from S, i.e., if VI using µ
converges to Jµ starting from all J ∈ S

Extension: S-Regular set of policy-state pairs
A set C of policy-state pairs (π, x) is S-regular if for all (π, x) ∈ C, VI using π and
starting from x converges to Jπ(x) starting from all J ∈ S

Key idea: Exclude the irregular pairs (i.e., optimize over the S-regular set)
The (restricted) optimal cost function,

J∗C(x) = inf
(π,x)∈C

Jπ(x),

may be the unique solution of Bellman’s equation within S, while J∗ may not be!

This is an interesting and (possibly) better-behaved problem

Also J∗C may be obtained by VI starting from within S
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Regular Collections of Policy-State Pairs

Definition: For a set of functions S ⊂ E(X ) (the set of extended real-valued functions
on X ), we say that a collection C of policy-state pairs (π, x0) is S-regular if

Jπ(x0) = lim sup
N→∞

E

{
αNJ(xN) +

N−1∑
k=0

αk g
(
xk , µk (xk ),wk

)}
, ∀ (π, x0) ∈ C, J ∈ S

Notes:
Interpretation: Addition of a terminal cost function J ∈ S does not matter in the
definition of Jπ(x0)

Example: α = 1 and J ∈ S are s.t. J(xk )→ 0 for generated {xk} under π

Example: α < 1 and J ∈ S are s.t. {J(xk )}: bounded for generated {xk} under π

For (µ, x) ∈ C with µ stationary: Jµ(x) is obtained by VI starting with any J ∈ S

A set C of policy-state pairs (π, x) may be S-regular for many different sets S

Optimal cost function over regular collections

J∗C(x) = inf
{π | (π,x)∈C}

Jπ(x), x ∈ X
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Abstract Notation - Connection with Abstract DP

Mapping of a stationary policy µ: For any control function µ, with µ(x) ∈ U(x) for
all x , and J ∈ E(X ) define the mapping Tµ : E(X ) 7→ E(X ) by

(TµJ)(x) = E
{

g(x , µ(x),w) + αJ
(
f (x , µ(x),w)

)}
, x ∈ X

Value Iteration mapping: For any J ∈ E(X ) define the mapping T : E(X ) 7→ E(X )

(TJ)(x) = inf
u∈U(x)

E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
, x ∈ X

Note that Bellman’s equation is J = TJ and VI starting from J is T k J, k = 0, 1, . . .

Abstract notation relating to regularity
We have

(Tµ0 · · ·TµN−1 J)(x0) = E

{
αNJ(xN) +

N−1∑
k=0

αk g
(
xk , µk (xk ),wk

)}

C is S-regular if

Jπ(x) = lim sup
N→∞

(Tµ0 · · ·TµN J)(x), ∀ (π, x) ∈ C, J ∈ S
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Upper Bounding the Fixed Points of T

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1
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Fixed Point of T VI: T kJ Optimal Cost over C E(X)

1

Let C be an S-Regular Collection

For all fixed points J ′ of T , and all J ∈ E(X ) such that J ′ ≤ J ≤ Ĵ for some Ĵ ∈ S,

J ′ ≤ lim inf
k→∞

T k J ≤ lim sup
k→∞

T k J ≤ J∗C

If in addition J∗C is a fixed point of T (a common case), then J∗C is the largest fixed
point
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Characterizing VI Convergence

J ′ J∗
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Fixed Point of T VI: T kJ Optimal Cost over C E(X)

1

VI-Related Properties
If J∗C is a fixed point of T , then VI converges to J∗C starting from any J ∈ E(X ) such
that J∗C ≤ J ≤ Ĵ for some Ĵ ∈ S

J∗ does not enter the picture! It is possible that VI converges to J∗C and not to J∗

(which may not even be a fixed point of T )

When J∗ is a fixed point of T , a useful analytical strategy is to choose C such that
J∗C = J∗. Then a VI convergence result is obtained
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Nonnegative Cost Optimal Control

Cost nonnegativity, g ≥ 0, provides a favorable structure (Strauch 1966)

J∗ is the smallest fixed point of T within E+(X )

VI converges to J∗ starting from 0 under some mild compactness conditions

Regularity-based analytical approach
Define a collection C such that J∗C = J∗

Define a set S ⊂ E+(X ) such that C is S-regular

Use the main result in conjunction with the fixed point property of J∗ to show that
J∗ is the unique fixed point of T within S

Use the main result to show that the VI algorithm converges to J∗ starting from J
within the set {J ∈ S | J ≥ J∗}
Enlarge the set of functions starting from which VI converges to J∗ using a
compactness condition

We use this approach in three major applications
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Application to Nonnegative Cost Deterministic Optimal Control

Classic problem of regulation to a terminal set

System: xk+1 = f (xk , uk ). Cost per stage: g(xk , uk ) ≥ 0

Cost-free and absorbing terminal set of states Xs that we aim to reach or approach
asymptotically at minimum cost

Assumptions
J∗(x) > 0 for all x /∈ Xs

Controllability: For all x with J∗(x) <∞ and ε > 0, there exists a policy π that
reaches (in a finite number of steps) Xs starting from x with cost Jπ(x) ≤ J∗(x) + ε

Define

C =
{

(π, x) | J∗(x) <∞, π reaches Xs starting from x
}

S =
{

J ∈ E+(X ) | J(x) = 0, ∀ x ∈ Xs
}

Results
J∗ is the unique solution of Bellman’s equation within S

VI converges to J∗ starting from any J0 ∈ S with J0 ≥ J∗ (and for any J0 ∈ S under
a compactness condition)
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Application to Nonnegative Cost Stochastic Optimal Control

Problem
System: xk+1 = f (xk , uk ,wk )

Cost per stage: g(xk , uk ,wk ) ≥ 0

Define

C =
{

(π, x) | Jπ(x) <∞
}

; so J∗C = J∗

S =
{

J ∈ E+(X ) | Eπ
x0

{
J(xk )

}
→ 0, ∀ (π, x0) ∈ C

}
Results

J∗ is the unique solution of Bellman’s equation within S

VI converges to J∗ starting from any J0 ∈ S with J0 ≥ J∗ (and for any J0 ∈ S under
a compactness condition)

An interesting consequence (Yu and Bertsekas, 2013)

If a function J ∈ E+(X ) satisfies J∗ ≤ J ≤ cJ∗ for some c ≥ 1, VI converges to J∗

starting from J
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Application to Discounted Nonnegative Cost Stochastic Optimal Control

The problem with discount factor α < 1

Terminology and definitions

Xf =
{

x ∈ X | J∗(x) <∞
}

π is stable from x0 ∈ Xf if there is bounded subset of Xf s.t. the sequence {xk}
generated starting from x0 and using π lies with probability 1 within that subset

C =
{

(π, x) | x ∈ Xf , π is stable from x
}

J ∈ E+(X ) is bounded on bounded subsets of Xf if for every bounded subset
X̃ ⊂ Xf there is a scalar b such that J(x) ≤ b for all x ∈ X̃

S =
{

J ∈ E+(X ) | J is bounded on bounded subsets of Xf
}

Assumption
C is nonempty, J∗ ∈ S, and for every x ∈ Xf and ε > 0, there exists a policy π that is
stable from x and satisfies Jπ(x) ≤ J∗(x) + ε

Results
J∗ is the unique solution of Bellman’s equation within S

VI converges to J∗ starting from any J0 ∈ S with J0 ≥ J∗ (and for any J0 ∈ S under
a compactness condition)
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S-Regular Collections Involving Stationary Policies

Definitions: For a nonempty set of functions S ⊂ E(X )

We say that a stationary policy µ is S-regular if T k
µJ → Jµ for all J ∈ S

Equivalently, µ is S-regular if the set C =
{

(µ, x) | x ∈ X
}

is S-regular

LetMS be the set of policies that are S-regular, and define

J∗S (x) = inf
µ∈MS

Jµ(x), ∀ x ∈ X

Equivalently, J∗S = J∗C when C =MS × X

VI Convergence Result
Given a set S ⊂ E(X ), assume that

There exists at least one S-regular policy

J∗S is a fixed point of T

Then T k J → J∗S for every J ∈ E(X ) such that J∗S ≤ J ≤ Ĵ for some Ĵ ∈ S.
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Policy Iteration

Definitions:
Standard PI: Tµk+1 Jµk = TJµk

Optimistic PI: Tµk Jk = TJk , Jk+1 = T mk
µk Jk (evaluation of the current policy is

approximate, using mk iterations of VI)

Convergence of standard PI, assuming J∗ ≥ 0

The sequence {µk} satisfies Jµk ↓ J∞, where J∞ is a fixed point of T with J∞ ≥ J∗

If for a set S ⊂ E(X ), the policies µk generated are S-regular and we have
Jµk ∈ S for all k , then Jµk ↓ J∗S and J∗S is a fixed point of T

Convergence of optimistic PI
The sequence {Jk} satisfies satisfies Jk ↓ J∞, where J∞ is a fixed point of T

If for a set S ⊂ E(X ), the policies µk generated are S-regular and we have
Jµk ∈ S for all k , then Jk ↓ J∗S and J∗S is a fixed point of T

With more analysis and conditions, we can show that J∞ = J∗. This is true for the
deterministic and stochastic nonnegative cost problems.
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Stochastic Shortest Path Problems

Problem Formulation
Finite state space X = {0, 1, . . . , n} with 0 being a cost-free and absorbing state

Transition probabilities pxy (u)

U(x) is finite for all x ∈ X

No discounting (α = 1)

Proper policies
µ is proper if the terminal state t is reached w.p.1 under µ (is improper otherwise)

Let S = <n. Then µ is S-regular if and only if it is proper. (The idea of an S-regular
policy evolved as a generalization of a proper policy.)

Contraction properties
The mapping Tµ of a policy µ is a weighted sup-norm contraction iff µ proper

If all stationary policies are proper, then T is a sup-norm contraction, and the
problem behaves like a discounted problem

SSP is a prime example of a semicontractive model (some policies correspond to
contractions while others do not)
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Stochastic Shortest Path Problems Results

Case where improper policies have infinite cost
If there exists a proper policy and for every improper µ, Jµ(x) =∞ for some x , then:

J∗ is the unique fixed point of T in <n

VI converges to J∗ starting from every J ∈ <n

PI converges to an optimal proper policy, if started with a proper policy

Case where improper policies have finite cost (due to zero length “cycles")

Let Ĵ be the optimal cost function over proper stationary policies only, and assume that
Ĵ and J∗ are real-valued. Then:

Ĵ is the unique fixed point of T in the set {J ∈ <n | J ≥ Ĵ}
VI converges to Ĵ starting from any J ≥ Ĵ

PI need not converge to an optimal policy even if started with a proper policy

A “perturbed" version of PI (add a δk > 0 to g, with δk ↓ 0) converges to an optimal
policy within the class of proper policies, if started with a proper policy

An improper policy may be (overall) optimal, while J∗ need not be a fixed point of T
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Abstract DP

Main Objective
Unification of the core theory and algorithms of total cost DP

Simultaneous treatment of a variety of problems: MDP, sequential games,
sequential minimax, multiplicative cost, risk-sensitive, etc

Main Idea
Define a DP problem by its “mathematical signature": an abstract monotone
mapping H : X × U × E(X ) 7→ [−∞,∞]

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X ) is the set of functions J : X 7→ [−∞,∞]

Stochastic optimal control example: H(x , u, J) = E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
Minimax example: H(x , u, J) = supw∈W

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
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Abstract DP Mappings

State and control spaces: X ,U

Control constraint: u ∈ U(x)

Stationary policies: µ : X 7→ U, with µ(x) ∈ U(x) for all x

Monotone Mappings

Abstract monotone mapping H : X × U × E(X ) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X ) is the set of functions J : X 7→ [−∞,∞]

For a stationary policy µ

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ E(X )

and for VI
(TJ)(x) = inf

u∈U(x)
H(x , u, J), ∀ x ∈ X , J ∈ E(X )

Bertsekas (M.I.T.) Regular Policies in Stochastic Optimal Control and Abstract Dynamic Programming 28 / 33



Abstract Problem Formulation

Abstract Optimization Problem

Given an initial function J̄ ∈ E(X ) and policy π = {µ0, µ1, . . .}, define

Jπ(x) = lim sup
N→∞

(Tµ0 · · ·TµN J̄)(x), x ∈ X

Find J∗(x) = infπ Jπ(x) and an optimal π attaining the infimum

Notes
Theory revolves around fixed point properties of mappings Tµ and T :

Jµ = TµJµ, J∗ = TJ∗

These are generalized forms of Bellman’s equation

Algorithms are special cases of fixed point algorithms
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Principal Abstract Models

Contractive:
Patterned after discounted

The DP mappings Tµ are weighted sup-norm contractions (Denardo 1967)

Monotone Increasing/Decreasing:
Patterned after positive and negative DP

No reliance on contraction properties, just monotonicity of Tµ (Bertsekas 1977,
Bertsekas and Shreve 1978)

Semicontractive:
Patterned after stochastic shortest path

Some policies µ are “regular" (Tµ is contractive-like); others are not, but focus is
on optimization over “regular" policies
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Verbatim Extension of the Notion of S-Regularity

Let C be a collection of policy-state pairs (π, x) that is S-regular. For all fixed points J ′

of T , and all J ∈ E(X ) such that J ′ ≤ J ≤ Ĵ for some Ĵ ∈ S, we have

J ′ ≤ lim inf
k→∞

T k J ≤ lim sup
k→∞

T k J ≤ J∗C

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

J J ′ J∗
C Ĵ ∈ S Limit Region Valid Start Region

For p = 1: Jp(1) = Jp(2) = 1 For p = 0: Jp(1) = Jp(5) = 2

For p = 1/2 (which is optimal): Jp(1) = 0, Jp(2) = 1, Jp(5) = 2

Jµ(1) = b, Jµ′(1) = 0

Optimal cost J∗(1) = min{b, 0} a 0 1 2 t b c u′, Cost 0 u, Cost b

Prob. p Prob. 1 − p Stationary policy costs Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Fixed Point of T VI Optimal Cost over C

1

Fixed Point of T VI Optimal Cost over C

1

Fixed Point of T VI Optimal Cost over C E(X)

1

Fixed Point of T VI: T kJ Optimal Cost over C E(X)

1

If J∗C is a fixed point of T , then VI converges to J∗C starting from any J ∈ E(X ) such
that J∗C ≤ J ≤ Ĵ for some Ĵ ∈ S

When J∗ is a fixed point of T , a useful analytical strategy is to choose C such that
J∗C = J∗. Then a VI convergence result is obtained
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Diverse Applications to Various Types of DP Problems

Bellman equation, VI, and PI analysis
To minimax problems (also zero sum games); e.g.,

H(x , u, J) = sup
w∈W

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
, J̄(x) ≡ 0

To robust shortest path planning (minimax with a termination state)

To multiplicative and risk-sensitive cost functions

H(x , u, J) = E
{

g(x , u,w)J
(
f (x , u,w)

)}
, J̄(x) ≡ 1

or
H(x , u, J) = E

{
eg(x,u,w)J

(
f (x , u,w)

)}
, J̄(x) ≡ 1

More ... see the references
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Thank you!
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