
Robust Shortest Path Planning and Semicontractive Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems, M.I.T.,
Cambridge, Massachusetts 02139

Received 3 February 2015; revised 16 June 2016; accepted 11 July 2016
DOI 10.1002/nav.21697

Published online in Wiley Online Library (wileyonlinelibrary.com).

Abstract: In this article, we consider shortest path problems in a directed graph where the transitions between nodes are subject
to uncertainty. We use a minimax formulation, where the objective is to guarantee that a special destination state is reached with
a minimum cost path under the worst possible instance of the uncertainty. Problems of this type arise, among others, in planning
and pursuit-evasion contexts, and in model predictive control. Our analysis makes use of the recently developed theory of abstract
semicontractive dynamic programming models. We investigate questions of existence and uniqueness of solution of the optimality
equation, existence of optimal paths, and the validity of various algorithms patterned after the classical methods of value and policy
iteration, as well as a Dijkstra-like algorithm for problems with nonnegative arc lengths. © 2016 Wiley Periodicals, Inc. Naval Research
Logistics 00: 000–000, 2016
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1. INTRODUCTION

In this article, we discuss shortest path problems that
embody a worst-case view of uncertainty. These problems
relate to several other types of problems arising in stochas-
tic and minimax control, model predictive control, Markov-
ian decision processes, planning, sequential games, robust
and combinatorial optimization, and solution of discretized
large-scale differential equations. Consequently, our analy-
sis and algorithms relate to a large body of existing theory.
However, in this article, we rely on a recently developed
abstract dynamic programming (DP) theory of semicontrac-
tive problems, and capitalize on general results developed in
the context of this theory [31]. We first discuss informally
these connections and we survey the related literature.

1.1. Relations with Other Problems and Literature
Review

The closest connection to our work is the classical shortest
path problem where the objective is to reach a destination
node with a minimum length path from every other node in
a directed graph. This is a fundamental problem that has an
enormous range of applications and has been studied exten-
sively (see e.g., the surveys [43, 48], and many textbooks,
including [2, 28, 29, 74]). The assumption is that at any node
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x, we may determine a successor node y from a given set of
possible successors, defined by the arcs (x, y) of the graph
that are outgoing from x.

In some problems, however, following the decision at a
given node, there is inherent uncertainty about the successor
node. In a stochastic formulation, the uncertainty is mod-
eled by a probability distribution over the set of successors,
and our decision is then to choose at each node one dis-
tribution out of a given set of distributions. The resulting
problem, known as stochastic shortest path problem (also
known as transient programming problem), is a total cost
infinite horizon Markovian decision problem, with a sub-
stantial analytical and algorithmic methodology, which finds
extensive applications in problems of motion planning, robot-
ics, and other problems where the aim is to reach a goal
state with probability 1 under stochastic uncertainty (see
Refs. 18, 19, 23, 30, 35, 36, 42, 51, 53, 54, 58, 67, 70, 72, 82,
85). Another important area of application is large-scale
computation for discretized versions of differential equa-
tions (such as the Hamilton-Jacobi-Bellman equation, and the
eikonal equation); see [3, 4, 8, 39, 45, 49, 56, 62, 65, 75, 76
79, 81].

In this article, we introduce a sequential minimax formu-
lation of the shortest path problem, whereby the uncertainty
is modeled by set membership: at a given node, we may
choose one subset out of a given collection of subsets of
nodes, and the successor node on the path is chosen from this
subset by an antagonistic opponent. Our principal method
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of analysis is dynamic programming (DP for short). Related
problems have been studied for a long time, in the context
of control of uncertain discrete-time dynamic systems with a
set membership description of the uncertainty (starting with
the theses [24, 84], and followed up by many other works;
see e.g., the monographs [11, 33, 57], the survey [34], and
the references given there). These problems are relevant for
example in the context of model predictive control under
uncertainty, a subject of great importance in the current prac-
tice of control theory (see e.g., the surveys [60, 64], and the
books [37, 61, 73]; model predictive control with set mem-
bership disturbances is discussed in the thesis [55] and the
text [29], Section 6.5.2).

Sequential minimax problems have also been studied
in the context of sequential games (see, e.g., the books
[11, 46], and the references given there). Sequential games
that involve shortest paths are particularly relevant; see the
works [12, 50, 66, 88]. An important difference with some
of the works on sequential games is that in our minimax for-
mulation, we assume that the antagonistic opponent knows
the decision and corresponding subset of successor nodes
chosen at each node. Thus in our problem, it would make
a difference if the decisions at each node were made with
advance knowledge of the opponent’s choice (“min-max”
is typically not equal to “max-min” in our context). Gen-
erally shortest path games admit a simpler analysis when the
arc lengths are assumed nonnegative (as is done for exam-
ple in the recent works [12, 50]), when the problem inherits
the structure of negative DP (see [77], or the texts [30, 72])
or abstract monotone increasing abstract DP models (see
[16, 25, 31]). However, our formulation and line of analysis
is based on the recently introduced abstract semicontractive
DP model of [31], and allows negative as well as nonneg-
ative arc lengths. Problems with negative arc lengths arise
in applications when we want to find the longest path in a
network with nonnegative arc lengths, such as critical path
analysis. Problems with both positive and negative arc lengths
include searching a network for objects of value with posi-
tive search costs (cf. Example 4.3), and financial problems of
maximization of total reward when there are transaction and
other costs.

An important application of our shortest path problems is
in pursuit-evasion (or search and rescue) contexts, whereby
a team of “pursuers” are aiming to reach one or more
“evaders” that move unpredictably. Problems of this kind
have been studied extensively from different points of view
(see e.g., Refs. 1, 6, 7, 10, 12, 13, 47, 52, 58, 59, 68, 80). For
our shortest path formulation to be applicable to such a prob-
lem, the pursuers and the evaders must have perfect informa-
tion about each others’ positions, and the Cartesian product
of their positions (the state of the system) must be restricted to
the finite set of nodes of a given graph, with known transition
costs (i.e., a “terrain map” that is known a priori).

We may deal with pursuit-evasion problems with imper-
fect state information and set-membership uncertainty by
means of a reduction to perfect state information, which is
based on set membership estimators and the notion of a suf-
ficiently informative function, introduced in the thesis [24]
and in the subsequent paper [15]. In this context, the orig-
inal imperfect state information problem is reformulated as
a problem of perfect state information, where the states cor-
respond to subsets of nodes of the original graph (the set
of states that are consistent with the observation history of
the system, in the terminology of set membership estimation
[14, 24, 57]). Thus, since X has a finite number of nodes,
the reformulated problem still involves a finite (but much
larger) number of states, and may be dealt with using the
methodology of this article. Note that the problem reformu-
lation just described is also applicable to general minimax
control problems with imperfect state information, not just
to pursuit-evasion problems.

Our work is also related to the subject of robust opti-
mization (see e.g., the book [9] and the recent survey [5]),
which includes minimax formulations of general optimiza-
tion problems with set membership uncertainty. However,
our emphasis here is placed on the presence of the desti-
nation node and the requirement for termination, which is
the salient feature and the essential structure of shortest path
problems. Moreover, a difference with other works on robust
shortest path (RSP) selection (see e.g., [17, 63, 87]) is that in
our work the uncertainty about transitions or arc cost data at a
given node is decoupled from the corresponding uncertainty
at other nodes. This allows a DP formulation of our problem.

Because our context differs in essential respects from the
preceding works, the results of the present paper are new to
a great extent. The line of analysis is also new, and is based
on the connection with the theory of abstract semicontractive
DP mentioned earlier. In addition to simpler proofs, a major
benefit of this abstract line of treatment is deeper insight
into the structure of our problem, and the nature of our ana-
lytical and computational results. Several related problems,
involving for example an additional stochastic type of uncer-
tainty, admit a similar treatment. Some of these problems are
described in the last section, and their analysis and associated
algorithms are subjects for further research.

1.2. Robust Shortest Path Problem Formulation

To formally describe our problem, we consider a graph
with a finite set of nodes X∪{t} and a finite set of directed arcs
A ⊂ {(x, y)|x, y ∈ X ∪ {t}}, where t is a special node called
the destination. At each node x ∈ X we may choose a control
or action u from a nonempty set U(x), which is a subset of a
finite set U. Then a successor node y is selected by an antago-
nistic opponent from a nonempty set Y (x, u) ⊂ X∪ {t}, such
that (x, y) ∈ A for all y ∈ Y (x, u), and a cost g(x, u, y) is
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incurred. The destination node t is absorbing and cost-free,
in the sense that the only outgoing arc from t is (t, t) and we
have g(t , u, t) = 0 for all u ∈ U(t).

A policy is defined to be a function µ that assigns to each
node x ∈ X a control µ(x) ∈ U(x). We denote the finite
set of all policies by M. A possible path under a policy µ

starting at node x0 ∈ X is an arc sequence of the form

p = {(x0, x1), (x1, x2), . . . } ,

such that xk+1 ∈ Y (xk , µ(xk)) for all k ≥ 0. The set of all
possible paths under µ starting at x0 is denoted by P(x0, µ);
it is the set of paths that the antagonistic opponent may gen-
erate starting from x, once policy µ has been chosen. The
length of a path p ∈ P(x0, µ) is defined by

Lµ(p) =
∞∑

k=0

g(xk , µ(xk), xk+1),

if the series above is convergent, and more generally by

Lµ(p) = lim sup
m→∞

m∑

k=0

g(xk , µ(xk), xk+1),

if it is not. For completeness, we also define the length of a
portion

{(xi , xi+1), (xi+1, xi+2), . . . , (xm, xm+1)}

of a path p ∈ P(x0, µ), consisting of a finite number of
consecutive arcs, by

m∑

k=i

g(xk , µ(xk), xk+1).

When confusion cannot arise we will also refer to such a
finite-arc portion as a path. Of special interest are cycles, that
is, paths of the form {(xi , xi+1), (xi+1, xi+2), . . . , (xi+m, xi)}.
Paths that do not contain any cycle other than the self-cycle
(t, t) are called simple.

For a given policy µ and x0 ̸= t , a path p ∈ P(x0, µ) is
said to be terminating if it has the form

p = {(x0, x1), (x1, x2), . . . , (xm, t), (t , t), . . . } , (1.1)

where m is a positive integer, and x0, . . . , xm are distinct non-
destination nodes. Since g(t , u, t) = 0 for all u ∈ U(t), the
length of a terminating path p of the form (1.1), corresponding
to µ, is given by

Lµ(p) = g(xm, µ(xm), t) +
m−1∑

k=0

g(xk , µ(xk), xk+1),

Figure 1. A RSP problem with X = {1, 2}, two controls at node
1, and one control at node 2. There are two policies, µ and µ,
corresponding to the two controls at node 1. The figure shows the
subgraphs of arcs Aµ and Aµ. The policy µ is improper because
Aµ contains the cycle (1, 2, 1) and the (self-)cycle (1, 1). [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

and is equal to the finite length of its initial portion that
consists of the first m + 1 arcs.

An important characterization of a policy µ is provided by
the subset of arcs

Aµ = ∪x∈X {(x, y)|y ∈ Y (x, µ(x))} .

Thus Aµ, together with the self arc (t, t), consists of the set
of paths ∪x∈XP (x, µ), in the sense that it contains this set
of paths and no other paths. We say that Aµ is destination-
connected if for each x ∈ X there exists a terminating path in
P(x, µ). We say that µ is proper if the subgraph of arcs Aµ

is acyclic (i.e., contains no cycles). Thus µ is proper if and
only if all the paths in ∪x∈XP (x, µ) are simple and hence
terminating (equivalently µ is proper if and only if Aµ is
destination-connected and has no cycles). The term “proper”
is consistent with a similar term in stochastic shortest path
problems, where it indicates a policy under which the des-
tination is reached with probability 1, see e.g., [18, 19, 67].
If µ is not proper, it is called improper, in which case the
subgraph of arcs Aµ must contain a cycle; see the examples
of Fig. 1.

For a proper µ, we associate with every x ∈ X the worst-
case path length over the finite set of possible paths starting
from x, which is denoted by

Jµ(x) = max
p∈P(x,µ)

Lµ(p), x ∈ X. (1.2)

Thus Jµ(x) is the length of the longest path from x to t in
the acyclic subgraph of arcs Aµ. Since there are finitely many
paths in this acyclic graph, Jµ(x) may be found either by enu-
meration and comparison of these paths (in simple cases), or
by solving the shortest path problem obtained when the signs
of the arc lengths g(x, µ(x), y), (x, y) ∈ Aµ, are reversed.
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Our problem is to find an optimal proper policy, i.e., one
that minimizes Jµ(x) over all proper µ, simultaneously for
all x ∈ X, under assumptions that parallel those for the clas-
sical shortest path problem. We refer to this as the problem of
robust shortest path (RSP for short) selection. Note that in our
problem, reaching the destination starting from every node is
a requirement, regardless of the choices of the hypothetical
antagonistic opponent. In other words the minimization in
RSP is over the proper policies only.

Of course for the problem to have a feasible solution and
thus be meaningful, there must exist at least one proper pol-
icy, and this may be restrictive for a given problem. One may
deal with cases where feasibility is not known to hold by
introducing for every x an artificial “termination action” ū

into U(x) [i.e., a ū with Y (x, ū) = {t}], associated with very
large length [i.e., g(x, ū, t) = ḡ >> 1]. Then the policy µ

that selects the termination action at each x is proper and has
cost function Jµ(x) ≡ ḡ. In the problem thus reformulated
the optimal cost over proper policies will be unaffected for
all nodes x for which there exists a proper policy µ with
Jµ(x) < ḡ. Since for a proper µ, the cost Jµ(x) is bounded
above by the number of nodes in X times the largest arc length,
a suitable value of ḡ is readily available.

In Section 2, we will formulate RSP in a way that the semi-
contractive DP framework can be applied. In Section 3, we
will describe briefly this framework and we will quote the
results that will be useful to us. In Section 4, we will develop
our main analytical results for RSP. In Section 5, we will dis-
cuss algorithms of the value and policy iteration (PI) type,
by specializing corresponding algorithms of semicontractive
DP, and by adapting available algorithms for stochastic short-
est path problems. Among others, we will give a Dijkstra-like
algorithm for problems with nonnegative arc lengths, which
terminates in a number of iterations equal to the number of
nodes in the graph, and has low order polynomial complex-
ity. Related Dijkstra-like algorithms were proposed recently,
in the context of dynamic games and with an abbreviated
convergence analysis, by [12, 50].

2. MINIMAX FORMULATION

In this section, we will reformulate RSP into a minimax
problem, whereby given a policy µ, an antagonistic opponent
selects a successor node y ∈ Y (x, µ(x)) for each x ∈ X, with
the aim of maximizing the lengths of the resulting paths. The
essential difference between RSP and the associated min-
imax problem is that in RSP only the proper policies are
admissible, while in the minimax problem all policies will be
admissible. Our analysis will be based in part on assumptions
under which improper policies cannot be optimal for the min-
imax problem, implying that optimal policies for the minimax
problem will be optimal for the original RSP problem. One
such assumption is the following.

ASSUMPTION 2.1:

a. There exists at least one proper policy.
b. For every improper policy µ, all cycles in the

subgraph of arcs Aµ have positive length.

The preceding assumption parallels and generalizes the
typical assumptions in the classical deterministic shortest
path problem, i.e., the case where Y (x, µ) consists of a single
node. Then condition (a) is equivalent to assuming that each
node is connected to the destination with a path, while con-
dition (b) is equivalent to assuming that all directed cycles in
the graph have positive length.1 Later in Section 4, in addition
to Assumption 2.1, we will consider another weaker assump-
tion, whereby “positive length” is replaced with “nonnegative
length” in condition (b) above. This assumption will hold in
the common case where all arc lengths g(x, u, y) are nonneg-
ative, but there may exist a zero length cycle. As a first step,
we extend the definition of the function Jµ to the case of an
improper policy. Recall that for a proper policy µ, Jµ(x) has
been defined by Eq. (1.2), as the length of the longest path
p ∈ P(x, µ),

Jµ(x) = max
p∈P(x,µ)

Lµ(p), x ∈ X. (2.1)

We extend this definition to any policy µ, proper or improper,
by defining Jµ(x) as

Jµ(x) = lim sup
k→∞

sup
p∈P(x,µ)

Lk
p(µ), (2.2)

where Lk
p(µ) is the sum of lengths of the first k arcs in the

path p. When µ is proper, this definition coincides with the
one given earlier [cf. Eq. (2.1)]. Thus for a proper µ, Jµ is
real-valued, and it is the unique solution of the optimality
equation (or Bellman equation) for the longest path problem
associated with the proper policy µ and the acyclic subgraph
of arcs Aµ:

Jµ(x) = max
y∈Y (x,µ(x))

[g(x, µ(x), y) + J̃µ(y)] x ∈ X, (2.3)

1 To verify the existence of a proper policy [condition (a)] one may
apply a reachability algorithm, which constructs the sequence {Nk}
of sets

Nk+1

= Nk ∪ {x ∈ X ∪ {t} |there existsu ∈ U(x) with Y(x, u) ⊂ Nk} ,

starting with N0 = {t} (see [24]). A proper policy exists if and only
if this algorithm stops with a final set ∪kNk equal to X∪ {t}. If there
is no proper policy, this algorithm will stop with ∪kNk equal to a
strict subset of X ∪ {t} of nodes starting from which there exists a
terminating path under some policy. The problem may then be refor-
mulated over the reduced graph consisting of the node set ∪kNk , so
there will exist a proper policy in this reduced problem.
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where we denote by J̃µ the function given by

J̃µ(y) =
{

Jµ(y) if y ∈ X,
0 if y = t .

(2.4)

Any shortest path algorithm may be used to solve this
longest path problem for a proper µ. However, when µ is
improper, we may have Jµ(x) = ∞, and the solution of the
corresponding longest path problem may be problematic.

We will consider the problem of finding

J ∗(x) = min
µ∈M

Jµ(x), x ∈ X, (2.5)

and a policy attaining the minimum above, simultaneously
for all x ∈ X. Note that the minimization is over all policies,
in contrast with the RSP problem, where the minimization is
over just the proper policies.

2.1. Embedding Within an Abstract DP Model

We will now reformulate the minimax problem of Eq. (2.5)
more abstractly, by expressing it in terms of the mapping that
appears in Bellman’s equation (2.3)-(2.4), thereby bringing
to bear the theory of abstract DP. We denote by E(X) the set
of functions J : X $→ [−∞, ∞], and by R(X) the set of
functions J : X $→ (−∞, ∞). Note that since X is finite,
R(X) can be viewed as a finite-dimensional Euclidean space.
We introduce the mapping H : X ×U ×E(X) $→ [−∞, ∞]
given by

H(x, u, J ) = max
y∈Y (x,u)

[g(x, u, y) + J̃ (y)], (2.6)

where for any J ∈ E(X) we denote by J̃ the function given
by

J̃ (y) =
{

J (y) if y ∈ X,
0 if y = t .

(2.7)

We consider for each policy µ, the mapping Tµ : E(X) $→
E(X), defined by

(TµJ )(x) = H(x, µ(x), J ), x ∈ X, (2.8)

and we note that the fixed point equation Jµ = TµJµ is
identical to the Bellman equation (2.3). We also consider the
mapping T : E(X) $→ E(X) defined by

(T J )(x) = min
u∈U(x)

H(x, u, J ), x ∈ X, (2.9)

also equivalently written as

(T J )(x) = min
µ∈M

(TµJ )(x), x ∈ X. (2.10)

We denote by T k and T k
µ the k-fold compositions of the

mappings T and Tµ with themselves, respectively.
Let us consider the zero function, which we denote by J̄ :

J̄ (x) ≡ 0, x ∈ X.

Using Eqs. (2.6)–(2.8), we see that for any µ ∈ M and
x ∈ X, (T k

µ J̄ )(x) is the result of the k-stage DP algorithm
that computes supp∈P(x,µ)L

k
p(µ), the length of the longest

path under µ that starts at x and consists of k arcs, so that

(T k
µ J̄ )(x) = sup

p∈P(x,µ)

Lk
p(µ), x ∈ X.

Thus the definition (2.2) of Jµ can be written in the alternative
and equivalent form

Jµ(x) = lim sup
k→∞

(T k
µ J̄ )(x), x ∈ X. (2.11)

We are focusing on optimization over stationary policies
because under the assumptions of this article (both Assump-
tion 2.1 and the alternative assumptions of Section 4) the
optimal cost function would not be improved by allowing
nonstationary policies, as shown in [31], Chapter 3.2

The results that we will show under Assumption 2.1 gener-
alize the main analytical results for the classical deterministic
shortest path problem, and stated in abstract form, are the
following:

a. J ∗ is the unique fixed point of T within R(X), and we
have T kJ → J ∗ for all J ∈ R(X).

b. Only proper policies can be optimal, and there exists
an optimal proper policy.3

c. A policy µ is optimal if and only if it attains the
minimum in Eq. (2.10) for all x ∈ X when J = J ∗.

Proofs of these results from first principles are quite complex.
However, fairly easy proofs can be obtained by embedding

2 In the more general framework of [31], nonstationary Markov poli-
cies of the form π = {µ0, µ1, . . . }, with µk ∈ M, k = 0, 1, . . . , are
allowed, and their cost function is defined by

Jπ (x) = lim sup
k→∞

(Tµ0 · · · Tµk−1 J̄ )(x), x ∈ X,

where Tµ0 · · · Tµk−1 is the composition of the mappings
Tµ0 , . . . , Tµk−1 . Moreover, J ∗(x) is defined as the infimum of Jπ (x)
over all such π . However, under the assumptions of the present
paper, this infimum is attained by a stationary policy (in fact one
that is proper). Hence, attention may be restricted to stationary poli-
cies without loss of optimality and without affecting the results from
[31] that will be used.
3 Since the set of policies is finite, there exists a policy minimizing
Jµ(x) over the set of proper policies µ, for each x ∈ X. However,
the assertion here is stronger, namely that there exists a proper µ∗

minimizing Jµ(x) over all µ ∈ M and simultaneously for all x ∈ X,
i.e., a proper µ∗ with Jµ∗ = J ∗
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the problem of minimizing the function Jµ of Eq. (2.11) over
µ ∈ M, within the abstract semicontractive DP framework
introduced in [31]. In particular, we will use general results
for this framework, which we will summarize in the next
section.

3. SEMICONTRACTIVE DP ANALYSIS

We will now view the problem of minimizing over µ ∈ M
the cost function Jµ, given in the abstract form (2.11), as a
special case of a semicontractive DP model. We first provide
a brief review of this model, with a notation that corresponds
to the one used in the preceding section.

The starting point is a set of states X, a set of controls U,
and a control constraint set U(x) ⊂ U for each x ∈ X. For
the general framework of this section, X and U are arbitrary
sets; we continue to use some of the notation of the preced-
ing section to indicate the relevant associations. A policy is
a mapping µ : X #→ U with µ(x) ∈ U(x) for all x ∈ X, and
the set of all policies is denoted by M. For each policy µ, we
are given a mapping Tµ : E(X) #→ E(X) that is monotone
in the sense that for any two J , J ′ ∈ E(X),

J ≤ J ′ ⇒ TµJ ≤ TµJ ′.

We define the mapping T : E(X) #→ E(X) by

(T J )(x) = inf
µ∈M

(TµJ )(x), x ∈ X.

The cost function of µ is defined as

Jµ(x) = lim sup
m→∞

(T k
µ J̄ )(x), x ∈ X,

where J̄ is some given function in E(X). The objective is to
find

J ∗(x) = inf
µ∈M

Jµ(x)

for each x ∈ X, and a policy µ such that Jµ = J ∗, if one
exists. Based on the correspondences with Eqs. (2.6)–(2.11),
it can be seen that the minimax problem of the preceding
section is the special case of the problem of this section,
where X and U are finite sets, Tµ is defined by Eq. (2.8), and
J̄ is the zero function.

In contractive models, the mappings Tµ are assumed to be
contractions, with respect to a common weighted sup-norm
and with a common contraction modulus, in the subspace
of functions in E(X) that are bounded with respect to the
weighted sup-norm. These models have a strong analytical
and algorithmic theory, which dates to [41]; see also [16],
Ch. 3, and recent extensive treatments given in Chapters 1–3
of [30], and Ch. 2 of [31]. In semicontractive models, only

some policies have a contraction-like property. This property
is captured by the notion of S-regularity of a policy introduced
in [31] and defined as follows.

DEFINITION 3.1: Given a set of functions S ⊂ E(X),
we say that a policy µ is S-regular if:

(a) Jµ ∈ S and Jµ = TµJµ.
(b) limk→∞T k

µJ = Jµ for all J ∈ S.

A policy that is not S-regular is called S-irregular.

Roughly, µ is S-regular if Jµ is an asymptotically stable
equilibrium point of Tµ within S. An important case of an
S-regular µ is when S is a complete subset of a metric space
and Tµ maps S to S and, when restricted to S, is a contraction
with respect to the metric of that space.

There are several different choices of S, which may be
useful depending on the context, such as for example R(X),
E(X),

{
J ∈ R(X)|J ≥ J̄

}
,
{
J ∈ E(X)|J ≥ J̄

}
, and others.

There are also several sets of assumptions and corresponding
results, which are given in [31] and will be used to prove our
analytical results for the RSP problem. In this article, we will
use S = R(X), but for ease of reference, we will quote results
from [31] with S being an arbitrary subset of R(X).

We give below an assumption relating to semicontractive
models, which is Assumption 3.2.1 of [31]. A key part of this
assumption is part (c), which implies that S-irregular policies
have infinite cost for at least one state x, so they cannot be
optimal. This part will provide a connection to Assumption
2.1(b).

ASSUMPTION 3.1: In the semicontractive model of this
section with a set S ⊂ R(X) the following hold:

a. S contains J̄ , and has the property that if J1, J2 are
two functions in S, then S contains all functions J
with J1 ≤ J ≤ J2.

b. The function Ĵ given by

Ĵ (x) = inf
µ: S-regular

Jµ(x), x ∈ X,

belongs to S.
c. For each S-irregular policy µ and each J ∈ S, there

is at least one state x ∈ X such that

lim sup
k→∞

(T k
µJ )(x) = ∞.

d. The control set U is a metric space, and the set
{
µ(x)|(TµJ )(x) ≤ λ

}

is compact for every J ∈ S, x ∈ X, and λ ∈ ℜ.
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e. For each sequence {Jm} ⊂ S with Jm ↑ J for some
J ∈ S we have

lim
m→∞

(TµJm)(x) = (TµJ )(x), ∀ x ∈ X, µ ∈ M.

f. For each function J ∈ S, there exists a function
J ′ ∈ S such that J ′ ≤ J and J ′ ≤ T J ′.

The following two propositions are given in [31] as Prop.
3.2.1 and Lemma 3.2.4, respectively.4 Our analysis will be
based on these two propositions.

PROPOSITION 3.1: Let Assumption 3.1 hold. Then:

a. The optimal cost function J ∗ is the unique fixed point
of T within the set S.

b. A policy µ∗ is optimal if and only if Tµ∗J ∗ = T J ∗.
Moreover, there exists an optimal S-regular policy.

c. We have T kJ → J ∗ for all J ∈ S.
d. For any J ∈ S, if J ≤ T J we have J ≤ J ∗, and if

J ≥ T J we have J ≥ J ∗.

PROPOSITION 3.2: Let Assumption 3.1(b),(c),(d) hold.
Then:

a. The function Ĵ of Assumption 3.1(b) is the unique
fixed point of T within S.

b. Every policy µ satisfying TµĴ = T Ĵ is optimal
within the set of S-regular policies, i.e., µ is S-regular
and Jµ = Ĵ . Moreover, there exists at least one such
policy.

The second proposition is useful for situations where only
some of the conditions of Assumption 3.1 are satisfied, and
will be useful in the proof of an important part of Prop. 4.3
in the next section.

4. SEMICONTRACTIVE MODELS AND
SHORTEST PATH PROBLEMS

We will now apply the preceding two propositions to the
minimax formulation of the RSP problem: minimizing over
all µ ∈ M the shortest path cost Jµ(x) as given by Eq. 3.2
for both proper and improper policies. We will first derive
some preliminary results. The following proposition clarifies
the properties of Jµ when µ is improper.

4 As noted in the preceding section, a more general problem is
defined in [31], whereby nonstationary Markov policies are allowed,
and J ∗ is defined as the infimum over these policies. However, under
our assumptions, attention may be restricted to stationary policies
without loss of optimality and without affecting the validity of the
two propositions.

PROPOSITION 4.1: Let µ be an improper policy and let
Jµ be its cost function as given by Eq. (2.2).

a. If all cycles in the subgraph of arcs Aµ have
nonpositive length, Jµ(x) < ∞ for all x ∈ X.

b. If all cycles in the subgraph of arcs Aµ have
nonnegative length, Jµ(x) > −∞ for all x ∈ X.

c. If all cycles in the subgraph of arcs Aµ have zero
length, Jµ is real-valued.

d. If there is a positive length cycle in the subgraph of
arcs Aµ, we have Jµ(x) = ∞ for at least one node
x ∈ X. More generally, for each J ∈ R(X), we have
lim supk→∞(T k

µJ )(x) = ∞ for at least one x ∈ X.

PROOF: Any path with a finite number of arcs, can be
decomposed into a simple path, and a finite number of cycles
(see e.g., the path decomposition theorem of [28], Prop. 1.1,
and Exercise 1.4). Since there is only a finite number of sim-
ple paths under µ, their length is bounded above and below.
Thus in part (a) the length of all paths with a finite number
of arcs is bounded above, and in part (b) it is bounded below,
implying that Jµ(x) < ∞ for all x ∈ X or Jµ(x) > −∞ for
all x ∈ X, respectively. Part (c) follows by combining parts
(a) and (b).

To show part (d), consider a path p, which consists of an
infinite repetition of the positive length cycle that is assumed
to exist. Let Ck

µ(p) be the length of the path that consists of the
first k cycles in p. Then Ck

µ(p) → ∞ and Ck
µ(p) ≤ Jµ(x) for

all k [cf. Eq. (2.2)], where x is the first node in the cycle, thus
implying that Jµ(x) = ∞. Moreover for every J ∈ R(X)

and all k, (T k
µJ )(x) is the maximum over the lengths of the

k-arc paths that start at x, plus a terminal cost that is equal to
either J(y) (if the terminal node of the k-arc path is y ∈ X),
or 0 (if the terminal node of the k-arc path is the destination).
Thus we have,

(T k
µ J̄ )(x) + min

{
0, min

x∈X

J (x)

}
≤ (T k

µJ )(x).

Since lim supk→∞(T k
µ J̄ )(x) = Jµ(x) = ∞ as shown

earlier, it follows that lim supk→∞(T k
µJ )(x) = ∞ for all

J ∈ R(X). !

Note that if there is a negative length cycle in the subgraph
of arcs Aµ, it is not necessarily true that for some x ∈ X

we have Jµ(x) = −∞. Even for x on the negative length
cycle, the value of Jµ(x) is determined by the longest path in
P(x, µ), which may be simple in which case Jµ(x) is a real
number, or contain an infinite repetition of a positive length
cycle in which case Jµ(x) = ∞.

A key fact in our analysis is the following characteriza-
tion of the notion of R(X)-regularity and its connection to
the notion of properness. It shows that proper policies are
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R(X)-regular, but the set of R(X)-regular policies may con-
tain some improper policies, which are characterized in terms
of the sign of the lengths of their associated cycles.

PROPOSITION 4.2: Consider the minimax formulation
of the RSP problem, viewed as a special case of the abstract
semicontractive DP model of Section 3.1 with Tµ given by
Eqs. (2.6)–(2.8), and J̄ being the zero function. The following
are equivalent for a policy µ:

1. µ is R(X)-regular.
2. The subgraph of arcs Aµ is destination-connected

and all its cycles have negative length.
3. µ is either proper or else, if it is improper, all the

cycles of the subgraph of arcs Aµ have negative
length, and Jµ ∈ R(X).

PROOF: To show that (1) implies (2), let µ be R(X)-regular
and to arrive at a contradiction, assume that Aµ contains a
nonnegative length cycle. Let x be a node on the cycle, con-
sider the path p that starts at x and consists of an infinite
repetition of this cycle, and let Lk

µ(p) be the length of the
first k arcs of that path. Let also J be a nonzero constant
function, J (x) ≡ r , where r is a scalar. Then we have

Lk
µ(p) + r ≤ (T k

µJ )(x),

since from the definition of Tµ, we have that (T k
µJ )(x) is the

maximum over the lengths of all k-arc paths under µ starting
at x, plus r, if the last node in the path is not the destination.
Since µ is R(X)-regular, we have lim supk→∞(T k

µJ )(x) =
Jµ(x) < ∞, so that for all scalars r,

lim sup
k→∞

(Lk
µ(p) + r) ≤ Jµ(x) < ∞.

Taking infimum over r ∈ ℜ, we have lim supk→∞Lk
µ(p) =

−∞, which contradicts the nonnegativity of the cycle of p.
Thus all cycles of Aµ have negative length. To show that Aµ is
destination-connected, assume the contrary. Then there exists
some node x ∈ X such that all paths in P(x, µ) contain an
infinite number of cycles. Since the length of all cycles is
negative, as just shown, it follows that Jµ(x) = −∞, which
contradicts the R(X)-regularity of µ.

To show that (2) implies (3), we assume that µ is improper
and show that Jµ ∈ R(X). By (2) Aµ is destination-
connected, so the set P(x, µ) contains a simple path for all
x ∈ X. Moreover, since by (2) the cycles of Aµ have nega-
tive length, each path in P(x, µ) that is not simple has smaller
length than some simple path in P(x, µ). This implies that
Jµ(x) is equal to the largest path length among simple paths
in P(x, µ), so Jµ(x) is a real number for all x ∈ X.

To show that (3) implies (1), we note that if µ is proper, it
is R(X)-regular, so we focus on the case where µ is improper.

Then by (3), Jµ ∈ R(X), so to show R(X)-regularity of µ,
we must show that (T k

µJ )(x) → Jµ(x) for all x ∈ X and
J ∈ R(X), and that Jµ = TµJµ. Indeed, from the definition
of Tµ, we have

(T k
µJ )(x) = sup

p∈P(x,µ)

[Lk
µ(p) + J (xk

p)], (4.1)

where xk
p is the node reached after k arcs along the path p,

and J(t) is defined to be equal to 0. Thus as k → ∞, for every
path p that contains an infinite number of cycles (each neces-
sarily having negative length), the sequence Lk

p(µ) + J (xk
p)

approaches −∞. It follows that for sufficiently large k, the
supremum in Eq. (4.1) is attained by one of the simple paths
in P(x, µ), so xk

p = t and J (xk
p) = 0. Thus the limit of

(T k
µJ )(x) does not depend on J, and is equal to the limit of

(T k
µ J̄ )(x), i.e., Jµ(x). To show that Jµ = TµJµ, we note that

by the preceding argument, Jµ(x) is the length of the longest
path among paths that start at x and terminate at t. Moreover,
we have

(TµJµ)(x) = maxy∈Y (x,µ(x))[g(x, µ(x), y) + Jµ(y)],

where we denoteJµ(t) = 0. Thus (TµJµ)(x) is also the length
of the longest path among paths that start at x and terminate
at t, and hence it is equal to Jµ(x). !

We illustrate the preceding proposition with a two-node
example involving an improper policy with a cycle that may
have positive, zero, or negative length.

EXAMPLE 4.1: Let X = {1}, and consider the policy µ

where at state 1, the antagonistic opponent may force either
staying at 1 or terminating, i.e., Y (1, µ(1)) = {1, t}. Then µ is
improper since its subgraph of arcs Aµ contains the self-cycle
(1, 1); cf. Fig. 2. Let

g(1, µ(1), 1) = a, g(1, µ(1), t) = 0.

Then,

(TµJµ)(1) = max [0, a + Jµ(1)],

and

Jµ(1) =
{

∞ if a > 0,
0 if a ≤ 0.

Consistently with Prop. 4.2, the following hold:

a. For a > 0, the cycle (1, 1) has positive length, and µ

is R(X)-irregular because Jµ(1) = ∞.
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Figure 2. The subgraph of arcs Aµ corresponding to an improper
policy µ, for the case of a single node 1 and a destination node t. The
arcs lengths are shown in the figure. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

b. For a= 0, the cycle (1, 1) has zero length, and µ is
R(X)-irregular because for a function J ∈ R(X) with
J (1) > 0,

lim sup
k→∞

(T k
µJ )(x) = J (1) > 0 = Jµ(1).

c. For a < 0, the cycle (1, 1) has negative length, and µ

is R(X)-regular becauseJµ(1) = 0, and we haveJµ ∈
R(X), Jµ(1) = max [0, a + Jµ(1)] = (TµJµ)(1),
and for all J ∈ R(X),

lim sup
k→∞

(T k
µJ )(1) = 0 = Jµ(1).

We now show one of our main results.

PROPOSITION 4.3: Let Assumption 2.1 hold. Then:

a. The optimal cost function J ∗ of RSP is the unique
fixed point of T within R(X).

b. A policy µ∗ is optimal for RSP if and only if Tµ∗J ∗ =
T J ∗. Moreover, there exists an optimal proper policy.

c. We have T kJ → J ∗ for all J ∈ R(X).
d. For any J ∈ R(X), if J ≤ T J we have J ≤ J ∗, and

if J ≥ T J we have J ≥ J ∗.

PROOF: We verify the parts (a)-(f) of Assumption 3.1 with
S = R(X). The result then will be proved using Prop. 3.1.
To this end we argue as follows:

1. Part (a) is satisfied since S = R(X).
2. Part (b) is satisfied since by Assumption 2.1(a), there

exists at least one proper policy, which by Prop. 4.2 is
R(X)-regular. Moreover, for each R(X)-regular pol-
icy µ, we have Jµ ∈ R(X). Since the number of all
policies is finite, it follows that Ĵ ∈ R(X).

3. To show that part (c) is satisfied, note that since
by Prop. 4.2 every R(X)-irregular policy µ must be
improper, it follows from Assumption 2.1(b) that the
subgraph of arcs Aµ contains a cycle of positive

length. By Prop. 4.1(d), this implies that for each
J ∈ R(X), we have lim supk→∞(T k

µJ )(x) = ∞ for
at least one x ∈ X.

4. Part (d) is satisfied since U(x) is a finite set.
5. Part (e) is satisfied since X is finite and Tµ is a contin-

uous function mapping the finite-dimensional space
R(X) into itself.

6. To show that part (f) is satisfied, we note that by
applying Prop. 3.2 with S = R(X), we have that Ĵ

is the unique fixed point of T within R(X). It follows
that for each J ∈ R(X), there exists a sufficiently
large scalar r > 0 such that the function J ′ given by

J ′ = Ĵ − re, ∀ x ∈ X, (4.2)

where e is the unit function, e(x) ≡ 1, satisfies
J ′ ≤ J as well as

J ′ = Ĵ − re = T Ĵ − re ≤ T (Ĵ − re) = T J ′,
(4.3)

where the inequality holds in view of Eqs. (2.6) and
(2.9), and the fact r > 0.

Thus all parts of Assumption 3.1 with S = R(X) are sat-
isfied, and Prop. 3.1 applies with S = R(X). Since under
Assumption 2.1, improper policies are R(X)-irregular [cf.
Prop. 4.1(d)] and so cannot be optimal, the minimax formu-
lation of Section 2 is equivalent to RSP, and the conclusions
of Prop. 3.1 are precisely the results we want to prove. !

The following variant of the two-node Example 4.1 illus-
trates what may happen in the absence of Assumption
2.1(b), when there may exist improper policies that involve
a nonpositive length cycle.

EXAMPLE 4.2: Let X = {1}, and consider the improper
policy µ with Y (1, µ(1)) = {1, t} and the proper policy µ

with Y (1, µ(1)) = {t} (cf. Fig. 3). Let

g(1, µ(1), 1) = a ≤ 0, g(1, µ(1), t) = 0,

g(1, µ(1), t) = 1.

Then it can be seen that under both policies, the longest path
from 1 to t consists of the arc (1, t). Thus,

Jµ(1) = 0, Jµ(1) = 1,

so the improper policy µ is optimal for the minimax problem
(2.5), and strictly dominates the proper policy µ (which is
optimal for the RSP version of the problem). To explain what
is happening here, we consider two different cases:

1. a= 0: In this case, the optimal policy µ is both
improper and R(X)-irregular, but with Jµ(1) < ∞.
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Figure 3. A counterexample involving a single node 1 in addition
to the destination t. There are two policies, µ and µ, with corre-
sponding subgraphs of arcs Aµ and Aµ, and arc lengths shown
in the figure. The improper policy µ is optimal when a ≤ 0. It
is R(X)-irregular if a = 0, and it is R(X)-regular if a < 0. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Thus the conditions of both Props. 3.1 and 4.3 do not
hold because Assumptions 3.1(c) and Assumption
2.1(b) are violated.

2. a < 0: In this case, µ is improper but R(X)-regular,
so there are no R(X)-irregular policies. Then all the
conditions of Assumption 3.1 are satisfied, and Prop.
3.1 applies. Consistent with this proposition, there
exists an optimal R(X)-regular policy (i.e., optimal
over both proper and improper policies), which how-
ever is improper and hence not an optimal solution
for RSP.

We will next discuss modifications of Prop. 4.3, which
address the difficulties illustrated in the two cases of the
preceding example.

4.1. The Case of Improper Policies with Negative
Length Cycles

We note that by Prop. 4.2, the set of R(X)-regular poli-
cies includes not just proper policies, but also some improper
ones (those µ for which Aµ is destination-connected and all
its cycles have negative length). As a result we can weaken
Assumption 2.1 as long as it still implies Assumption 3.1 so
we can use Prop. 3.1 to obtain corresponding versions of our
main result of Prop. 4.3. Here are two such weaker versions
of Assumption 2.1.

ASSUMPTION 4.1: Every policyµ is either proper or else
it is improper and its subgraph of arcs Aµ is destination-
connected with all cycles having negative length.

From Prop. 4.2, it follows that the preceding assumption
is equivalent to all policies being R(X)-regular. The next
assumption is weaker in that it allows policies µ that are
R(X)-irregular, as long as some cycle of Aµ has positive
length.

ASSUMPTION 4.2:

a. There exists at least one R(X)-regular policy.
b. For every R(X)-irregular policy µ, some cycle in the

subgraph of arcs Aµ has positive length.

Now by essentially repeating the proof of Prop. 4.3, we see
that Assumption 4.2 implies Assumption 3.1, so that Prop.
3.1 applies. Then we obtain the following variant of Prop. 4.3.

PROPOSITION 4.4: Let either Assumption 4.1 or (more
generally) Assumption 4.2 hold. Then:

a. The function J ∗ of Eq. (2.11) is the unique fixed point
of T within R(X).

b. A policy µ∗ satisfies Jµ∗ = J ∗, where J ∗ is the mini-
mum of Jµ over all µ ∈ M [cf. Eq. (2.5)], if and only
if Tµ∗J ∗ = T J ∗. Moreover, there exists an optimal
R(X)-regular policy.

c. We have T kJ → J ∗ for all J ∈ R(X).
d. For any J ∈ R(X), if J ≤ T J we have J ≤ J ∗, and

if J ≥ T J we have J ≥ J ∗.

It is important to note that the optimal R(X)-regular pol-
icy µ∗ of part (b) above may not be proper, and hence needs
to be checked to ensure that it solves the RSP problem (cf.
Example 4.2 with a < 0). Thus one would have to additionally
prove that at least one of the optimal R(X)-regular policies is
proper for the proposition to fully apply to RSP.

4.2. The Case of Improper Policies with Zero Length
Cycles

In some problems, it may be easier to guarantee nonneg-
ativity rather than positivity of the lengths of cycles corre-
sponding to improper policies, which is required by Assump-
tion 2.1(b). This is true for example in the important case
where all arc lengths are nonnegative, i.e., g(x, u, y) ≥ 0
for all x ∈ X, u ∈ U(x), and y ∈ Y (x, u), as in case (1)
of Example 4.2. Let us consider the following relaxation of
Assumption 2.1.

ASSUMPTION 4.3:

a. There exists at least one proper policy.
b. For every improper policy µ, all cycles in the

subgraph of arcs Aµ have nonnegative length.

Note that similar to the case of Assumption 2.1, we may
guarantee that part (a) of the preceding assumption is satisfied
by introducing a high cost termination action at each node.
Then the policy that terminates at each state is proper.

For an analysis under the preceding assumption, we will
use a perturbation approach that was introduced in Section
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3.2.2 of [31]. The idea is to consider a scalar δ > 0 and a
δ-perturbed problem, whereby each arc length g(x, u, y) with
x ∈ X is replaced by g(x, u, y) + δ. As a result, a nonnega-
tive cycle length corresponding to an improper policy as per
Assumption 4.3(b) becomes strictly positive, so Assumption
2.1 is satisfied for the δ-perturbed problem, and Prop. 4.3
applies. We thus see that J ∗

δ , the optimal cost function of the
δ-perturbed problem, is the unique fixed point of the mapping
Tδ given by

(TδJ )(x) = min
u∈U(x)

Hδ(x, u, J ), x ∈ X,

where Hδ(x, u, J ) is given by

Hδ(x, u, J ) = H(x, u, J ) + δ.

Moreover there exists an optimal proper policy µδ for the
δ-perturbed problem, which by Prop. 4.3(b), satisfies the
optimality equation

Tµδ ,δJ
∗
δ = TδJ

∗
δ ,

where Tµ,δ is the mapping that corresponds to a policy µ in
the δ-perturbed problem:

(Tµ,δJ )(x) = Hδ(x, µ(x), J ), x ∈ X.

We have the following proposition.

PROPOSITION 4.5: Let Assumption 4.3 hold, and let Ĵ

be the optimal cost function over the proper policies only,

Ĵ (x) = min
µ: proper

Jµ(x), x ∈ X.

Then:

a. Ĵ = limδ↓0J
∗
δ .

b. Ĵ is the unique fixed point of T within the set{
J ∈ R(X)|J ≥ Ĵ

}
.

c. We have T kJ → Ĵ for every J ∈ R(X) with J ≥ Ĵ .
d. Let µ be a proper policy. Then µ is optimal within

the class of proper policies (i.e., Jµ = Ĵ ) if and only
if TµĴ = T Ĵ .

e. There exists δ > 0 such that for all δ ∈ (0, δ], an opti-
mal policy for the δ-perturbed problem is an optimal
proper policy for the original RSP.

PROOF:

a. For all δ > 0, consider an optimal proper policy
µδ of the δ-perturbed problem, i.e., one with cost
Jµδ ,δ = J ∗

δ . We have

Ĵ ≤ Jµδ
≤ Jµδ ,δ = J ∗

δ ≤ Jµ′,δ ≤ Jµ′ + Nδ,

∀ µ′ : proper,

where N is the number of nodes of X (since an extra
δ cost is incurred in the δ-perturbed problem every
time a path goes through a node x ̸= t , and any path
under a proper µ′ contains at most N nodes x ̸= t).
By taking the limit as δ ↓ 0 and then the minimum
over all µ′ that are proper, it follows that

Ĵ ≤ lim
δ↓0

J ∗
δ ≤ Ĵ ,

so limδ↓0J
∗
δ = Ĵ .

b. For all proper µ, we have Jµ = TµJµ ≥ TµĴ ≥ T Ĵ .
Taking minimum over proper µ, we obtain Ĵ ≥ T Ĵ .
Conversely, for all δ > 0 and µ ∈ M, we have

J ∗
δ = T J ∗

δ + δe ≤ TµJ ∗
δ + δe.

Taking limit as δ ↓ 0, and using part (a), we obtain
Ĵ ≤ TµĴ for all µ ∈ M. Taking minimum over
µ ∈ M, it follows that Ĵ ≤ T Ĵ . Thus Ĵ is a fixed
point of T. The uniqueness of Ĵ will follow once we
prove part (c).

c. For all J ∈ R(X) with J ≥ Ĵ and proper policies
µ, we have using the relation Ĵ = T Ĵ just shown in
part (b),

Ĵ = lim
k→∞

T kĴ ≤ lim
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ.

Taking the minimum over all proper µ, we obtain

Ĵ ≤ lim
k→∞

T kJ ≤ Ĵ , ∀ J ≥ Ĵ .

d. If µ is a proper policy with Jµ = Ĵ , we have
Ĵ = Jµ = TµJµ = TµĴ , so, using also the rela-
tion Ĵ = T Ĵ [cf. part (a)], we obtain TµĴ = T Ĵ .
Conversely, if µ satisfies TµĴ = T Ĵ , then from part
(a), we have TµĴ = Ĵ and hence limk→∞T k

µ Ĵ = Ĵ .
Since µ is proper, we have Jµ = limk→∞T k

µ Ĵ , so
Jµ = Ĵ .

e. For every proper policy µ we have limδ↓0Jµ,δ = Jµ.
Hence if a proper µ is not optimal for RSP, it is
also nonoptimal for the δ-perturbed problem for all
δ ∈ [0, δµ], where δµ is some positive scalar. Let δ

be the minimum δµ over the nonoptimal proper poli-
cies µ. Then for δ ∈ (0, δ], an optimal policy for
the δ-perturbed problem cannot be nonoptimal for
RSP. !

Note that we may have J ∗(x) < Ĵ (x) for some x, but in
RSP only proper policies are admissible, so by letting δ ↓ 0
we approach the optimal solution of interest. This happens
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for instance in Example 4.2 when a = 0. For the same exam-
ple Ĵ (not J ∗) can be obtained as the limit of T kJ, starting
from J ≥ Ĵ [cf. part (c)]. The following example describes
an interesting problem, where Prop. 4.5 applies.

EXAMPLE 4.3 (Minimax Search Problems) Consider
searching a graph with node set X ∪ {t}, looking for an opti-
mal node x ∈ X at which to stop. At each x ∈ X we have two
options: (1) stopping at a cost s(x), which will stop the search
by moving to t, or (2) continuing the search by choosing a
control u ∈ U(x), in which case we will move to a node y,
chosen from within a given set of nodes Y (x, u) by an antag-
onistic opponent, at a cost g(x, u, y) ≥ 0. Then Assumption
4.3 holds, since there exists a proper policy (the one that stops
at every x).

An interesting special case is when the stopping costs
s(x) are all nonnegative, while searching is cost-free [i.e.,
g(x, u, y) ≡ 0], but may lead in the future to nodes where a
higher stopping cost will become inevitable. Then a policy
that never stops is optimal but improper, but if we introduce a
small perturbation δ > 0 to the costs g(x, u, y), we will make
the lengths of all cycles positive, and Prop. 4.5 may be used
to find an optimal policy within the class of proper policies.
Note that this is an example where we are really interested in
solving the RSP problem (where only the proper policies are
admissible), and not its minimax version (where all policies
are admissible).

5. COMPUTATIONAL METHODS

We will now discuss computational methods that are pat-
terned after the classical DP algorithms of value iteration and
policy iteration (VI and PI for short, respectively). In partic-
ular, the methods of this section are motivated by specialized
stochastic shortest path algorithms.

5.1. Value Iteration Algorithms

We have already shown as part of Prop. 4.3 that under
Assumption 2.1, the VI algorithm, which sequentially gener-
ates T kJ for k ≥ 0, converges to the optimal cost function J ∗

for any starting function J ∈ R(X). We have also shown as
part of Prop. 4.5 that under Assumption 4.3, the VI sequence
T kJ for k ≥ 0, converges to Ĵ , the optimal cost function over
the proper policies only, for any starting function J ≥ Ĵ .
We can extend these convergence properties to asynchronous
versions of VI based on the monotonicity and fixed point
properties of the mapping T. This has been known since the
paper [26] (see also [18, 27]), and we refer to the discus-
sions in Sections 2.6.1 and 3.3.1 of [31], which apply in their
entirety when specialized to the RSP problem of this article.

It turns out that for our problem, under Assumption 2.1
or Assumption 4.3, the VI algorithm also terminates finitely

when initialized with J (x) = ∞ for all x ∈ X [it can be
seen that in view of the form (2.9) of the mapping T, the VI
algorithm is well-defined with this initialization]. In fact the
number of iterations for termination is no more than N, where
N is the number of nodes in X, leading to polynomial com-
plexity. This is consistent with a similar result for stochastic
shortest path problems ([30], Section 3.4.1), which relies on
the assumption of acyclicity of the graph of possible tran-
sitions under an optimal policy. Because this assumption is
restrictive, finite termination of the VI algorithm is an excep-
tional property in stochastic shortest path problems. However,
in the minimax case of this article, an optimal policy µ∗ exists
and is proper [cf. Prop. 4.3(b) or Prop. 4.5(e)], so the graph
of possible transitions under µ∗ is acyclic, and it turns out
that finite termination of VI is guaranteed to occur. Note
that in deterministic shortest path problems the initialization
J (x) = ∞ for all x ∈ X, leads to polynomial complexity,
and generally works better in practice that other initializa-
tions (such as J < J ∗, for which the complexity is only
pseudopolynomial, cf. [18], Section 4.1, Prop. 1.2).

To show the finite termination property just described, let
µ∗ be an optimal proper policy, consider the sets of nodes
X0, X1, . . . , defined by

X0 = {t} ,

Xk+1 =
{
x /∈ ∪k

m=0Xm|y ∈ ∪k
m=0Xm for all y ∈ Y (x, µ*(x))

}
,

k = 0, 1, . . . , (5.1)

and let Xk̄ be the last of these sets that is nonempty. Then in
view of the acyclicity of the subgraph of arcs Aµ∗ , we have

∪k̄
m=0Xm = X ∪ {t} .

We will now show by induction that starting from J (x) ≡ ∞
for all x ∈ X, the iterates T kJ of VI satisfy

(T kJ )(x) = J ∗(x), ∀ x ∈ ∪k
m=1Xm, k = 1, . . . , k̄.

(5.2)

Indeed, it can be seen that this is so for k = 1. Assume that
(T kJ )(x) = J ∗(x) if x ∈ ∪k

m=1Xm. Then, since T J ≤ J and
T is monotone, (T kJ )(x) is monotonically nonincreasing, so
that

J ∗(x) ≤ (T k+1J )(x), ∀ x ∈ X. (5.3)

Moreover, by the induction hypothesis, the definition of the
sets Xk , and the optimality of µ∗, we have

(T k+1J )(x) ≤ H(x, µ∗(x), T kJ ) = H(x, µ∗(x), J ∗)

= J ∗(x), ∀ x ∈ ∪k+1
m=1Xm, (5.4)

where the first equality follows from the form (2.6) of H and
the fact that for all x ∈ ∪k+1

m=1Xm, we have y ∈ ∪k
m=1Xm for
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all y ∈ Y (x, µ∗(x)) by the definition (5.1) of Xk+1. The two
relations (5.3) and (5.4) complete the induction proof.

Thus under Assumption 2.1, the VI method when started
with J (x) = ∞ for all x ∈ X, will find the optimal costs
of all the nodes in the set ∪k

m=1Xm after k iterations; cf. Eq.
(5.2). The same is true under Assumption 4.3, except that the
method will find the corresponding optimal costs over the
proper policies. In particular, all optimal costs will be found
after k̄ ≤ N iterations, where N is the number of nodes in X.
This indicates that the behavior of the VI algorithm, when ini-
tialized with J (x) = ∞ for all x ∈ X, is similar to the one of
the Bellman-Ford algorithm for deterministic shortest path
problems. Still each iteration of the VI algorithm requires
as many as N applications of the mapping T at every node.
Thus it is likely that the performance of the VI algorithm
can be improved with a suitable choice of the initial func-
tion J, and with an asynchronous implementation that uses a
favorable order of selecting nodes for iteration, “one-node-at-
a-time” similar to the Gauss-Seidel method. This is consistent
with the deterministic shortest path case, where there are VI-
type algorithms, within the class of label-correcting methods,
which are faster than the Bellman-Ford algorithm and even
faster than efficient implementations of the Dijkstra algorithm
for some types of problems; see e.g., [28]. For the RSP prob-
lem, it can be seen that the best node selection order is based
on the sets Xk defined by Eq. (5.1), i.e., iterate on the nodes
in the set X1, then on the nodes in X2, and so on. In this case,
only one iteration per node will be needed. While the sets
Xk are not known, an algorithm that tries to approximate the
optimal order could be much more efficient that the standard
“all-nodes-at-once” VI method that computes the sequence
T kJ , for k ≥ 0 (for an example of an algorithm of this type
for stochastic shortest path problems, see [65]. The develop-
ment of such more efficient VI algorithms is an interesting
subject for further research, which, however, is beyond the
scope of the present paper.

EXAMPLE 5.1: Let us illustrate the VI method for the
problem of Fig. 4. The optimal policy is shown in this figure,
and it is proper; this is consistent with the fact that Assump-
tion 4.3 is satisfied. The table gives the iteration sequence of
two VI methods, starting with J0 = (∞, ∞, ∞, ∞). The
first method is the all-nodes-at-once method Jk = T kJ0,
which finds J ∗ in four iterations. In this example, we have
X0 = {t} , X1 = {1} , X2 = {4} , X3 = {3} , X4 = {2}, and
the assertion of Eq. (5.2) may be verified. The second method
is the asynchronous VI method, which iterates one-node-at-
a-time in the (most favorable) order 1, 4, 3, 2. The second
method also finds J ∗ in four iterations and with four times
less computation.

We finally note that in the absence of Assumption 2.1 or
Assumption 4.1, it is possible that the VI sequence

{
T kJ

}

will not converge to J ∗ starting from any J with J ̸= J ∗.
This can be seen with a simple deterministic shortest path
problem involving a zero length cycle, a simpler version of
Example 4.2. Here there is a single node 1, aside from the
destination t, and two choices at 1: stay at 1 at cost 0, and
move to t at cost 1. Then we have J ∗ = 0, while T is given
by

T J = min {J , 1} .

It can be seen that the set of fixed points of T is (−∞, 1],
and contains J ∗ in its interior. Starting with J ≥ 1, the VI
sequence converges to 1 in a single step, while starting at
J ≤ 1 it stays at J. This is consistent with Prop. 4.5(c), since
in this example Assumption 4.3 holds, and we have Ĵ = 1. In
the case of Example 4.2 with a= 0, the situation is somewhat
different but qualitatively similar. There it can be verified that
J ∗ = 1, the set of fixed points is [0, 1],

{
T kJ

}
will converge

to 1 starting from J ≥ 1, will converge to 0 starting from
J ≤ 0, and will stay at J starting from J ∈ [0, 1].

5.2. Policy Iteration Algorithms

The development of PI algorithms for the RSP problem
is straightforward given the connection with semicontractive
models. Briefly, under Assumption 2.1, based on the analysis
of Section 3.3.2 of [31], there are two types of PI algorithms.
The first is a natural form of PI that generates proper policies
exclusively. Let µ0 be an initial proper policy (there exists one
by assumption). At the typical iteration k, we have a proper
policy µk , and first compute Jµk

by solving a longest path
problem over the corresponding acyclic subgraph of arcs Aµk

.
We then compute a policy µk+1 such that Tµk+1Jµk

= T Jµk
,

by minimizing over u ∈ U(x) the expression H(x, u, Jµk
) of

Eq. (2.6), for all x ∈ X. We have

Jµk
= Tµk

Jµk
≥ T Jµk

= Tµk+1Jµk
≥ lim

m→∞
T m

µk+1
Jµk

= Jµk+1 , (5.5)

where the second inequality follows from the monotonicity
of Tµk+1 . Given that µk is proper and hence Jµk

∈ R(X), the
next policy µk+1 cannot be improper [in view of Assump-
tion 2.1(b) and Prop. 4.1(d)], so µk+1 must be proper and
has improved cost over µk . Therefore the sequence of poli-
cies {µk} is well-defined and proper, and the corresponding
sequence

{
Jµk

}
is nonincreasing. It then follows that Jµk

con-
verges to J ∗ in a finite number of iterations. The reason is
that from Eq. (5.5), we have that at the kth iteration, either
strict improvement

Jµk
(x) > (T Jµk

)(x) ≥ Jµk+1(x)

is obtained for at least one node x ∈ X, or else Jµk
= T Jµk

,
which implies that Jµk

= J ∗ [since J ∗ is the unique fixed
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Figure 4. An example RSP problem and its optimal policy. At each X = {1, 2, 3, 4} there are two controls: one (shown by a solid line)
where Y (x, u) consists of a single element, and another (shown by a broken line) where Y (x, u) has two elements. Arc lengths are shown next
to the arcs. Both the all-nodes-at-once and the one-node-at-a-time versions of VI terminate in four iterations, but the latter version requires
four times less computation per iteration. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

point of T within R(X), by Prop. 4.3(a)] and µk is an optimal
proper policy.

Unfortunately, when there are improper policies, the pre-
ceding PI algorithm is somewhat limited, because an initial
proper policy may not be known, and also because when
asynchronous versions of the algorithm are implemented, it
is difficult to guarantee that all the generated policies are
proper. There is another algorithm, combining value and pol-
icy iterations, which has been developed in [21, 22, 85, 86]
for a variety of DP models, including discounted, stochastic
shortest path, and abstract, and is described in Sections 2.6.3
and 3.3.2 of [31]. This algorithm updates a cost function J
and a policy µ, but it also maintains an additional function V,
which acts as a threshold to keep J bounded and the algorithm
convergent. The algorithm not only can tolerate the presence
of improper policies, but can also be operated in asynchro-
nous mode, whereby the value iterations, policy evaluation
operations, and policy improvement iterations are performed

one-node-at-a-time without any regularity. The algorithm is
valid even in a distributed asynchronous environment, and in
the presence of communication delays between processors.
The specialization of this algorithm to RSP under Assump-
tion 2.1 is straightforward, and will be presented briefly in
its asynchronous form, but without communication delays
between processors.

We consider a distributed computing system with m
processors, denoted 1, . . . , m, a partition of the node set X
into sets X1, . . . , Xm, and an assignment of each subset Xℓ

to a processor ℓ ∈ {1, . . . , m}. The processors collectively
maintain two functions Jk(x) and Vk(x), x ∈ X, and a pol-
icy µk ∈ M, k = 0, 1, . . . . We denote by min[Vk , Jk]the
function in E(X) that takes values min[Vk(x), Jk(x)]for
x ∈ X. The initial conditions J0(x), V0(x), µ0(x), x ∈ X,
are arbitrary. For each processor ℓ, there are two infinite
disjoint subsets of times Kℓ, Kℓ ⊂ {0, 1, . . . }, correspond-
ing to local (within the subset Xℓ) policy improvement and
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policy evaluation iterations by that processor, respectively.
More specifically, at each time k and for each processor ℓ,
we have one of the following three possibilities:

a. Local policy improvement: If k ∈ Kℓ, processor ℓ

sets for all x ∈ Xℓ,

Jk+1(x) = Vk+1(x) = min
u∈U(x)

H(x, u, min[Vk , Jk]),
(5.6)

and sets µk+1(x) to a u that attains the above
minimum.

b. Local policy evaluation - Value iteration: If k ∈ Kℓ,
processor ℓ sets for all x ∈ Xℓ,

Jk+1(x) = H(x, µk(x), min[Vk , Jk]), (5.7)

and leaves V and µ unchanged, i.e., for all x ∈
Xℓ, Vk+1(x) = Vk(x), µk+1(x) = µk(x).

c. No local change: If k /∈ Kℓ ∪ Kℓ, processor ℓ leaves
J, V, and µ unchanged, i.e., for all x ∈ Xℓ,

Jk+1(x) = Jk(x), Vk+1(x) = Vk(x),

µk+1(x) = µk(x).

In view of the form (2.6) of the mapping H, the local
policy improvement iteration (5.6) involves the solution of
a static minimax problem, where the minimizing player
chooses u ∈ U(x) and the maximizing player chooses
y ∈ Y (x, u). The local policy evaluation iteration (5.7)
involves a maximization over y ∈ Y (x, µk(x)).

The function V k in Eqs. (5.6–5.7) is reminiscent of a stop-
ping cost in optimal stopping problems. The use of V k is
essential for the asymptotic convergence of the algorithm
to optimality, i.e., Jk → J ∗, Vk → J ∗, and for finite con-
vergence of {µk} to an optimal proper policy. Without V k

the algorithm may potentially oscillate (there is an important
counterexample that documents this type of phenomenon,
given in [83]; see also the discussion in [21, 22, 30]).

Note that the preceding algorithm includes as a special case
a one-node-at-a-time asynchronous PI algorithm, whereby
each node is viewed as a processor by itself, and at each
iteration a single node is selected and a local policy improve-
ment or local policy evaluation of the form (5.6) or (5.7),
respectively, is performed just at that node (see the discus-
sion of Section 2.6 of [30] or Section 2.6 of [31]). This
Gauss-Seidel type of algorithm is often considerably faster
than all-nodes-at-once versions. The comparative evalua-
tion of PI algorithms that use different initial conditions
J0(x), V0(x), µ0(x), x ∈ X, and different orders of local pol-
icy improvement and policy evaluation iterations remains a
subject for further research and experimentation.

5.3. A Dijkstra-Like Algorithm for Nonnegative Arc
Lengths

One of the most important computational approaches for
the classical deterministic shortest path problem with non-
negative arc lengths is based on Dijkstra’s algorithm, whereby
the shortest distances of the nodes to the destination are deter-
mined one-at-a-time in nondecreasing order. When prop-
erly implemented, this approach yields shortest path meth-
ods with excellent computational complexity and practical
performance (see e.g., [2, 28]).

Dijkstra’s algorithm has been extended to continuous-
space shortest path problems in [79], and finds extensive
application in large-scale computational problems involv-
ing the eikonal and other equations; see [75, 76]. For recent
work in this area, see [4, 36, 39], which give many other
references. Dijkstra’s algorithm has also been extended to
finite-state stochastic shortest path problems, through the
notion of a “consistently improving optimal policy” (intro-
duced in the 2001 2nd edition of the author’s DP book, and
also described in its 4th edition, [30], Section 3.4.1). Roughly,
with such a policy, from any node we may only go to a
node of no greater optimal cost. While existence of a con-
sistently improving optimal policy is a restrictive condition,
the associated Dijkstra-like algorithm has found application
in some special contexts, including large-scale continuous-
space shortest path problems, where it is naturally satisfied;
see [81]. Our Dijkstra-like algorithm is patterned after the
Dijkstra-like stochastic shortest path algorithm, but requires
less restrictive conditions because an optimal proper policy
has the essential character of a consistently improving pol-
icy when the arc lengths are nonnegative. As noted earlier,
related Dijkstra-like algorithms were proposed by [50] (with-
out the type of convergence analysis that we give here), and
by [12] (under the assumption that all arc lengths are strictly
positive, and with an abbreviated convergence argument). We
will assume the following:

ASSUMPTION 5.1:

a. There exists at least one proper policy.
b. For every improper policy µ, all cycles in the

subgraph of arcs Aµ have positive length.
c. All arc lengths are nonnegative.

Parts (a) and (b) of the preceding assumption are just
Assumption 2.1, under which the favorable results of Prop.
4.3 apply to RSP with both nonnegative and negative arc
lengths. The arc length nonnnegativity assumption of part (c)
provides additional structure, which provides the basis for
the algorithm of this section.

Our Dijkstra-like algorithm maintains and updates a subset
of nodes denoted V, and a number J(x) for each x ∈ X ∪ {t},
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called the label of x. Initially,

V = {t} , J (x) =
{

0 if x = t ,
∞ if x ∈ X.

At any given point in the algorithm, let W be the set

W = {x|J (x) < ∞, x /∈ V } . (5.8)

The algorithm terminates when V is empty. The typical
iteration, assuming V is nonempty, is as follows.

Typical Iteration of the Dijkstra-Like Algorithm:
We remove from V a node y∗ such that

J (y∗) = min
y∈V

J (y),

and place it in W, i.e., replace W with W ∪ {y∗}. For every
x /∈ W , we let

Û (x) =
{
u ∈ U(x)|Y (x, u) ⊂ W and y∗ ∈ Y (x, u)

}
,

(5.9)

and we update J(x) and V according to the following two
cases:

1. If Û (x) is nonempty andJ (x) > minu∈Û (x)maxy∈Y (x,u)

[g(x, u, y) + J (y)], we set

J (x) = min
u∈Û (x)

max
y∈Y (x,u)

[g(x, u, y) + J (y)], (5.10)

and we place x in V if it is not already there.
2. Otherwise, we leave J(x) and V unchanged.

Note that at each iteration of the preceding algorithm, the
single node y∗ exits V, and enters the set W of Eq. (5.8). Thus
W is the set of nodes that have entered V at some previous
iteration but are not currently in V. Moreover, from the def-
inition of the algorithm, once a node enters W it stays in W
and never returns to V. Also, on entrance of a node into V, its
label changes from ∞ to some nonnegative number. In the
terminology of Dijkstra-like algorithms, W is the set of nodes
that are “permanently labeled,” and V is the set of nodes that
are “candidates” for permanent labeling. We will show that
all the nodes x will enter W in order of nondecreasing J(x),
and at the time of entrance, J (x) = J ∗(x).

PROPOSITION 5.1: Let Assumption 5.1 hold. Then at the
end of an iteration of the Dijkstra-like algorithm, we have
J (x ′) ≥ J (x) for all x ′ /∈ W and x ∈ W .

PROOF: We use induction on the iteration count. Clearly
the assertion holds at the end of the initial iteration since then

W = {t}, J(t) = 0, and according to the formula (5.10) for
changing labels and the nonnegativity of the arc lengths, we
have J (x) ≥ 0 for all x ∈ X. Assume that the assertion holds
for iteration k – 1. Let J(x) and J̃ (x) denote the node labels
at the start and the end of iteration k, respectively. Then by
the minimum label rule for selection of y∗, we have

J (x ′) ≥ J (y∗) ≥ J (x) = J̃ (x),

∀ x ′ /∈ W ∪
{
y∗} , x ∈ W ∪

{
y∗} , (5.11)

where the equality holds because the labels of allx ∈ W∪{y∗}
will not change in iteration k. During iteration k the labels of
nodes x ′ /∈ W ∪ {y∗} will change, if Û (x ′) ̸= ∅, according
to Eq. (5.10), so that

J̃ (x ′) = min
[
J (x ′), min

u∈Û (x′)
max

y∈Y (x′ ,u)

[g(x ′, u, y) + J (y)]
]

≥ min[J (x ′), J (y∗)]
≥ J (x)

= J̃ (x), ∀ x ′ /∈ W ∪
{
y∗} , x ∈ W ∪

{
y∗} ,

where the first inequality holds because g(x ′, u, y∗) ≥ 0, and
y∗ ∈ Y (x ′, u) for all u ∈ Û (x ′), and the second inequality
and second equality hold because of Eq. (5.11). The induction
proof is complete. !

Since no node will enter V twice, while exactly one node
exits V at each iteration, the algorithm will terminate after no
more than N + 1 iterations, where N is the number of nodes in
X. The next proposition shows that V will become empty after
exactly N + 1 iterations, at which time W must necessarily be
equal to X ∪ {t}.

PROPOSITION 5.2: Let Assumption 5.1 hold. The
Dijkstra-like algorithm will terminate after exactly N + 1
iterations with V = ∅ and W = X ∪ {t}.

PROOF: Assume the contrary, i.e., that the algorithm will
terminate after a number of iterations k < N + 1. Then on
termination, W will have k nodes, V will be empty, and the
set

V̄ = {x ∈ X|x /∈ W }

will have N + 1 − k nodes and thus be nonempty. Let µ be
the proper policy, which is assumed to exist by Assumption
5.1(a). For each x ∈ V̄ we cannot have Y (x, µ(x)) ⊂ W ,
since then x would have entered V prior to termination,
according to the rules of the algorithm. Thus for each x ∈ V̄ ,
there exists a node y ∈ Y (x, µ(x)) with y ∈ V̄ . This implies
that the subgraph of arcs Aµ contains a cycle of nodes in V̄ ,
thus contradicting the properness of µ. !
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There still remains the question of whether the final node
labels J(x), obtained on termination of the algorithm, are
equal to the optimal costs J ∗(x). This is shown in the
following proposition.

PROPOSITION 5.3: Let Assumption 5.1 hold. On termi-
nation of the Dijkstra-like algorithm, we have J (x) = J ∗(x)

for all x ∈ X.

PROOF: For k = 0, 1, . . . , let V k , W k , Jk(x) denote the
sets V, W, and the labels J(x) at the start of iteration k, respec-
tively, and let y∗

k denote the minimum label node to enter W
during iteration k. Thus, we have Wk+1 = Wk ∪

{
y∗

k

}
,

Jk+1(x) = Jk(x), ∀ x ∈ Wk+1,

and

Jk+1(x) =

⎧
⎪⎨

⎪⎩

min
[
Jk(x), minu∈Ûk(x)maxy∈Y (x,u)

[g(x, u, y) + Jk(y)]
]

if x ∈ Vk+1,
∞ if x /∈ Wk+1 ∪ Vk+1,

(5.12)

where

Ûk(x) =
{
u ∈ U(x)|Y (x, u) ⊂ Wk and y∗ ∈ Y (x, u)

}
.

For each k consider the sets of policies

Mk(x) = {µ : proper|the nodes of all paths

p ∈ P(x, µ) lie in Wk ∪ {x}}.

Note that Mk+1(x) ⊃ Mk(x) since Wk+1 ⊃ Wk , and that
from the rule for a node to enter V, we have

Mk(x) = ∅ if and only if x /∈ Wk ∪ Vk , (5.13)

[the reason why Mk(x) ̸= ∅ for all x ∈ Wk ∪ Vk is that for
entrance of x in V at some iteration there must exist u ∈ U(x)

such that Y (x, u ) is a subset of W ∪ {y∗} at that iteration].
We will prove by induction that for all x ∈ X ∪ {t}, we

have

Jk(x) =
{

minµ∈Mk(x)maxp∈P(x,µ)Lp(µ) if x ∈ Wk ∪ Vk ,
∞ if x /∈ Wk ∪ Vk .

(5.14)

[In words, we will show that at the start of iteration k, Jk(x)

is the shortest “minimax” distance from x to t, using proper
policies, which generate paths that start at x and go exclu-
sively through W k . The idea is that since nodes in W k have
smaller labels than nodes not in W k and the arc lengths are
nonnegative, it would not be optimal to use a path that moves

in and out of W k .] Equation (5.14) will imply that on termina-
tion, when MN+1(x) is equal to the set of all proper policies,
we have

JN+1(x) = min
µ:proper

max
p∈P(x,µ)

Lp(µ), ∀ x ∈ X,

which will prove the proposition. As can be expected, the
proof is based on generalizations of proof ideas relating to
the ordinary Dijkstra algorithm for the classical deterministic
shortest path problem. We will often use the fact that for all
x ∈ Wk+1 ∪ Vk+1 and µ ∈ Mk+1(x) we have

max
p∈P(x,µ)

Lp(x) = max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + max

p′∈P(y,µ)

Lp′(µ)

]
.

(5.15)

This is just the optimality equation for the longest path
problem associated with µ and the subgraph of arcs Aµ.

Initially, for k = 0, we have W0 = ∅, V0 = {t} , J0(t) =
0, J0(x) = ∞ for x ̸= t , so Eq. (5.14) holds. Assume that
Eq. (5.14) holds for some k. We will show that it holds for
k + 1.

For x /∈ Wk+1 ∪ Vk+1, we have Jk+1(x) = ∞, since such
x have never entered V so far, and therefore their label was
never reduced from the initial value ∞. This proves Eq. (5.14)
with k replaced by k + 1 and x /∈ Wk+1 ∪ Vk+1.

For x = y∗
k , from the definition (5.13), the set of poli-

cies Mk+1(y
∗
k ) is equal to Mk(y

∗
k ), so using also the induction

hypothesis and the fact Jk+1(y
∗
k ) = Jk(y

∗
k ), it follows that

Jk+1(y
∗
k ) = Jk(y

∗
k ) = min

µ∈Mk(y∗
k

)

max
p∈P(y∗

k
,µ)

Lp(µ)

= min
µ∈Mk+1(y∗

k
)

max
p∈P(y∗

k
,µ)

Lp(µ).

This proves Eq. (5.14) with k replaced by k + 1 and x = y∗
k .

For x ∈ Wk ∪ Vk+1, we write

min
µ∈Mk+1(x)

max
p∈P(x,µ)

Lp(µ) = min[E1, E2],

where

E1 = min
µ∈Mk(x)

max
p∈P(x,µ)

Lp(µ),

which is equal to Jk(x) by the induction hypothesis, and

E2 = min
µ∈Mk+1(x)/Mk(x)

max
p∈P(x,µ)

Lp(µ).

[The set Mk+1(x)/Mk(x) may be empty, so here and later we
use the convention that the minimum over the empty set is
equal to ∞.] Thus for x ∈ Wk ∪ Vk+1, we have

min
µ∈Mk+1(x)

max
p∈P(x,µ)

Lp(µ) = min
[
Jk(x), min

µ∈Mk+1(x)/Mk(x)

max
p∈P(x,µ)

Lp(µ)

]
,

(5.16)
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and we need to show that the right-hand side above is equal
to Jk+1(x). To estimate the second term of the right-hand
side, we consider the two separate cases where x ∈ Wk and
x ∈ Vk+1.

Assume first that x ∈ Wk . Then for each µ ∈ Mk+1(x)/

Mk(x), the subgraph of arcs Aµ must contain y∗
k , so

max
p∈P(x,µ)

Lp(µ) ≥ max
p′∈P(y∗

k
,µ)

Lp′(y∗
k ) ≥ Jk(y

∗
k ) ≥ Jk(x),

where the first inequality follows in view of the nonnegativity
of the arc lengths, the second inequality follows because paths
in P(y∗

k , µ) go exclusively through W k and thus can also be
generated by some policy in Mk(y

∗
k ), and the last inequal-

ity follows since nodes enter W in order of nondecreasing
label (cf. Prop. 5.1). Thus the expression (5.16) is equal to
Jk(x), and hence is also equal to Jk+1(x) (since x ∈ Wk).
This proves Eq. (5.14) with k replaced by k + 1 and x ∈ Wk .

Assume next that x ∈ Vk+1. Then to estimate the term
minµ∈Mk+1(x)/Mk(x)maxp∈P(x,µ)Lp(µ) in Eq. (5.16), we write

Mk+1(x)/Mk(x) = M̃k+1(x) ∪ M̂k+1(x),

where

M̃k+1(x) =
{
µ ∈ Mk+1(x)/Mk(x)|y∗

k /∈ Y (x, µ(x))
}

,

is the set of policies for which there exists a path p ∈ P(x, µ)

that passes through y∗
k after more than one transition, and

M̂k+1(x) =
{
µ ∈ Mk+1(x)/Mk(x)|y∗

k ∈ Y (x, µ(x))
}

,

is the set of policies for which there exists a path p ∈ P(x, µ)

that moves to y∗
k at the first transition.

For all µ ∈ M̃k+1(x), we have using Eq. (5.15),

max
p∈P(x,µ)

Lp(µ)

= max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + max

p′∈P(y,µ)

Lp′(µ)

]

≥ max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + min

µ′∈Mk+1(y)

max
p′∈P(y,µ′)

Lp′(µ′)

]

= max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + Jk+1(y)

]

= max
y∈Y (x,µ(x))

[g(x, µ(x), y) + Jk(y)] ,

where the last equality holds because we have shown that
Jk+1(y) = Jk(y) for all y ∈ Wk . Therefore, since for all µ ∈
M̃k+1(x) there exists a µ′ ∈ Mk(x) such that µ(x) = µ′(x),
we have by taking the minimum over µ ∈ M̃k+1(x) in the
preceding relation,

min
µ∈M̃k+1(x)

max
p∈P(x,µ)

Lp(µ) ≥ min
µ′∈Mk(x)

max
y∈Y (x,µ′(x))

[g(x, µ′(x), y) + Jk(y)]

= min
µ′∈Mk(x)

max
p∈P(x,µ′)

Lp(µ′) = Jk(x). (5.17)

For all µ ∈ M̂k+1(x), we have

max
p∈P(x,µ)

Lp(x) = max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + max

p′∈P(y,µ)

Lp′(µ)

]
;

cf. Eq. (5.15). Moreover, for all µ ∈ M̂k+1(x), we have
µ(x) ∈ Ûk(x) by the definitions of M̂k+1(x) and Ûk(x). It
follows that

min
µ∈M̂k+1(x)

max
p∈P(x,µ)

Lp(µ)

= min
µ∈M̂k+1(x)

max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + max

p′∈P(y,µ)

Lp′(µ)

]

= min
u∈Ûk (x)

max
y∈Y (x,u)

[

g(x, u, y) + min
µ∈M̂k+1(x)

max
p′∈P(y,µ)

Lp′(µ)

]

= min
u∈Ûk (x)

max
y∈Y (x,u)

[
g(x, u, y) + min

µ∈Mk+1(y)

max
p′∈P(y,µ)

Lp′(µ)

]

= min
u∈Ûk (x)

max
y∈Y (x,u)

[g(x, u, y) + Jk+1(y)]

= min
u∈Ûk (x)

max
y∈Y (x,u)

[g(x, u, y) + Jk(y)], (5.18)

where the third equality holds because for y ∈ Y (x, µ(x)),
the collections of paths P(y, µ) under policies µ in M̂k+1(x)

andMk+1(y), are identical, and the last equality holds because
we have already shown that Jk+1(y) = Jk(y) for all y ∈
Wk ∪

{
y∗

k

}
. Thus from Eqs. (5.16–5.18) we obtain

min
µ∈Mk+1(x)

max
p∈P(x,µ)

Lp(µ)

= min

[

Jk(x), min
u∈Ûk (x)

max
y∈Y (x,u)

[g(x, u, y) + Jk(y)]
]

.

Combining this equation with the update formula (5.10) for
the node labels, we have

min
µ∈Mk+1(x)

max
p∈P(x,µ)

Lp(µ) = Jk+1(x),

thus proving Eq. (5.14) with k replaced by k + 1 and x ∈
Vk+1. This completes the induction proof of Eq. (5.14) and
concludes the proof. !

Since the algorithm terminates in N + 1 iterations, and
each iteration requires at most O(AL) operations, where A
is the number of arcs and L is the number of elements of
U, the complexity of the algorithm is bounded by O(NAL).
This complexity estimate may potentially be improved with
the use of efficient data structures of the type used in effi-
cient implementations of Dijkstra’s algorithm in determin-
istic shortest path problems to expedite the selection of the
minimum label node [i.e., y∗ ∈ argminy∈V J (y)]. However,
we have not investigated this issue. It is also unclear how
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Figure 5. The iterations of the Dijkstra-like algorithm for the RSP problem of Example 5.1. The nodes exit V and enter W in the order 1, 4
3, 2. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the Dijkstra-like algorithm compares with the finitely ter-
minating VI algorithm and other asynchronous VI and PI
algorithms discussed in Sections 5.1 and 5.2.

EXAMPLE 5.2: We illustrate the Dijkstra-like algorithm
with the RSP problem shown in Fig. 5. The table gives the
iterations of the algorithm, and the results are consistent with
Props. 5.1-5.3, as the reader may verify.

5.4. Approximate Solution by Rollout

Finally let us consider algorithms with approximations.
While we have assumed a finite number of nodes, there are
many problems of practical interest where the number of
nodes is extremely large, and the preceding algorithms are
very time-consuming. This is particularly so in minimax con-
trol problems with imperfect state information, which are
reformulated as problems of perfect state information using
the sufficiently informative function approach of [15, 24]. In
such cases one may consider minimax analogs of approxi-
mate DP or reinforcement learning approaches (see e.g., the
books [20, 30, 71, 78]). The development of such methods is
an interesting subject for further research. In what follows,
we discuss the possibility for approximate solution using
a rollout algorithm, which parallels related algorithms for

finite horizon and stochastic shortest path problems (see e.g.,
[29, 30]).

The starting point of the rollout algorithm is a special
proper policy µ, called the base policy. We define the rollout
policy, denoted µ, as follows: for each u ∈ U(x) and each
y ∈ Y (x, u), we compute Jµ(y), and we set

µ(x) ∈ argmin
u∈U(x)

max
y∈Y (x,u)

{
g(x, u, y) + J̃µ(y)

}
, x ∈ X,

(5.19)

where J̃µ(y) is equal to Jµ(y) for y ∈ X and J̃µ(t) = 0 [cf.
Eq. (2.4)]. The computation of µ(x) can be done on-line, only
for the nodes x that are encountered in the process of control.
Moreover, assuming that J̃µ(y) is precomputed for all y, and
that the sets U(x) and Y (x, u) have a relatively small number
of elements, the computation in Eq. (5.19) can be performed
quite fast. The same is true if for any u ∈ U(x), J̃µ(y) can
be efficiently computed on-line for all y ∈ Y (x, u).

It can be seen that the rollout policy µ is just the policy
obtained from the base policy µ using a single PI. In partic-
ular, under Assumption 2.1, the rollout policy improves on
the base policy in the sense that
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Jµ(x) ≤ Jµ(x), ∀ x ∈ X.

This is a well-known property of rollout algorithms for finite
horizon and stochastic shortest path problems, and can be
verified by writing for all x ∈ X

(TµJµ)(x) = (T Jµ)(x)

= min
u∈U(x)

max
y∈Y (x,u)

{
g(x, u, y) + J̃µ(y)

}

≤ max
y∈Y (x,µ(x))

{
g(x, µ(x), y) + J̃µ(y)

}

= (TµJµ)(x)

= Jµ(x).

Applying Tµ repeatedly to both sides of the inequality
TµJµ ≤ Jµ, we obtain [cf. Eq. (5.5)] that Jµ ≤ Jµ and
that µ is proper.

As an example of rollout algorithm, consider a pursuit-
evasion problem with state x = (z1, z2), where z1 is the
location of the minimizer/pursuer and z2 is the location of
the maximizer/evader, in a two- or three-dimensional space.
Then a suitable base policy µ is for the pursuer is to follow
a shortest path from z1 to z2 under the assumption that the
evader will stay at his current location z2 at all future times.
To do this for all (z1, z2) requires the solution of an all-pairs
shortest path problem, which is possible in O(N3) time using
the Floyd-Warshall algorithm [2, 28], where N is the number
of possible values of z1 and z2. Suppose that we have pre-
computed µ(x) for all x = (z1, z2) with this shortest path
computation. Then the maximization

max
y∈Y (x,u)

{
g(x, u, y) + J̃µ(y)

}

that is needed for the on-line computation of the rollout con-
trol µ(x) in Eq. (5.19) requires the calculation of Jµ(y) for
each y ∈ Y (x, u) with y ̸= t . Knowing µ, each of these cal-
culations is a tractable longest path computation in an acyclic
graph of N nodes. Note that the preceding algorithm can be
adapted for the imperfect information case where the pursuer
knows z2 imperfectly. This is possible by using a form of
assumed certainty equivalence: the pursuer’s base policy and
the evader’s maximization can be computed by using an esti-
mate of the current location z2 instead of the unknown true
location.

In the preceding pursuit-evasion example, the choice of
the base policy was facilitated by the special structure of the
problem. Generally, however, finding a suitable base policy
whose cost function Jµ can be conveniently computed is an
important problem-dependent issue. We leave this issue as a
subject for further research in the context of more specialized
problems. Finally, let us note that a rollout algorithm may be
well-suited for on-line suboptimal solution in cases where

data may be changing or be revealed during the process of
path construction.

6. CONCLUDING REMARKS AND FURTHER
RESEARCH

We have considered shortest path problems with set mem-
bership uncertainty, and we have shown that they can be
fruitfully analyzed in the context of abstract semicontractive
models. We have thus proved the existence and uniqueness
of the solution of Bellman’s equation, and obtained condi-
tions for optimality of a proper policy. Moreover, we have
discussed the properties of algorithms of the value and PI
type, and we have proposed a finitely terminating Dijkstra-
like algorithm for problems with nonnegative arc lengths.
The comparative evaluation and the efficient implementation
of these algorithms for specific types of applications, such as
for example minimax search problems and pursuit-evasion,
as well as modifications to take advantage of special problem
structures, is an interesting subject for further investigation.

In this article, we have covered the important case of non-
negative arc lengths and improper policies with zero length
cycles via the perturbation analysis of Section 4. However,
there is an alternative line of analysis, which is based on
the fact that when the arc lengths are nonnegative we have
T J̄ ≥ J̄ , bringing to bear the theory of monotone increas-
ing DP models given in Chapter 4 of [31], which embody
the essential structure of negative DP (see [77], or the texts
[30, 72]). This theory is somewhat different in character from
the analysis of this article.

Let us mention some interesting stochastic extensions of
our RSP problem that involve an additional random variable
at each stage.5 In one extension of this type, when at node
x, we choose control u ∈ U(x), then a value of a random
variable z is selected from the finite set {1, . . . , n} with prob-
abilities pxz(u), and then the successor node is chosen by an
antagonistic opponent from a set Yz(x, u) ⊂ X ∪ {t}. To ana-
lyze this problem using a semicontractive model, the mapping
H of Eq. (2.6) should be replaced by

H(x, u, J ) =
n∑

z=1

pxz(u) max
y∈Yz(x,u)

[g(x, u, y) + J̃ (y)], (6.1)

5 This type of stochastic problem arises among others in a context
of discretization of the state space of a continuous-space minimax
control problem, where randomization in the discretized problem’s
dynamics is introduced to reduce the error between the optimal cost
function of the original continuous-space problem and the optimal
cost function of its discretized version (see [10, 79, 65, 75, 76]).
There are also other stochastic shortest path-type formulations
that involve at least in part a worst case viewpoint, through a
risk-sensitive utility or constraints; see [32, 38, 40, 44, 69].
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where

J̃ (y) =
{

J (y) if y ∈ X,
0 if y = t .

A formulation as an abstract DP problem is then possi-
ble with an appropriately modified mapping Tµ, similar to
Section 2, and the semicontractive theory may be applied
similar to Section 4. This analysis and the associated algo-
rithms are, however, beyond our scope. Note that when n= 1,
from Eq. (6.1) we obtain the mapping (2.6) of the RSP
problem of Sections 1 and 2, while when Yz(x, u) consists
of a single node, we obtain the mapping associated with
a standard finite-state stochastic shortest path problem (see
e.g., [19, 23, 30, 67]). Thus the semicontractive model that is
based on the mapping (6.1) generalizes both of these short-
est path problems. In the case where g(x, u, y) ≥ 0 for all
x ∈ X, u ∈ U(x), z ∈ {1, . . . , n}, and y ∈ Yz(x, u), we have
T J̄ ≥ J̄ , and the theory of monotone increasing models of
Sections 4.3 and 4.4 of [31] can be used to provide a first
layer of analysis without any further assumptions.

In another extension of RSP, which involves randomiza-
tion, when at node x, we choose control u ∈ U(x), then
a variable w is chosen by an antagonistic opponent from a
set W (x, u), and then a successor node y ∈ X ∪ {t} is cho-
sen according to probabilities pwy . Here, to apply the line
of analysis of the present paper, the mapping H of Eq. (2.6)
should be replaced by

H(x, u, J ) = max
w∈W(x,u)

⎡

⎣g(x, u, w) +
∑

y∈X∪{t}
pwyJ̃ (y)

⎤

⎦ ,

where

J̃ (y) =
{

J (y) if y ∈ X,
0 if y = t .

(6.2)

A somewhat more complex variation is given by

H(x, u, J ) =
n∑

z=1

p′
xz max

w∈Wz(x,u)

⎡

⎣g(z, u, w) +
∑

y∈X∪{t}
pwyJ̃ (y)

⎤

⎦,

(6.3)

where, for each x ∈ X, z is a random variable taking values
in {1, . . . , n} with probabilities p′

xz [the two models based
on Eqs. (6.2) and (6.3) coincide if z takes values in X and
p′

xx = 1 for all x ∈ X]. The resulting models again com-
bine elements of RSP and a standard finite-state stochastic
shortest path problem. They may also be viewed as instances
of a generalized aggregation model of the type introduced

in Section 7.3.7 of [30].6 Again the semicontractive theory
may be applied, but the corresponding analysis is a subject
for further research.
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