

Rollout, Policy Iteration,

and

Distributed Reinforcement Learning

by

Dimitri P. Bertsekas

Arizona State University
and

Massachusetts Institute of Technology

WWW site for book information and orders

http://www.athenasc.com

Athena Scientific, Belmont, Massachusetts

Athena Scientific
Post Office Box 805
Nashua, NH 03060
U.S.A.

Email: info@athenasc.com
WWW: http://www.athenasc.com

Cover photography by Dimitri Bertsekas.
Stars over the Stata Center at MIT (built on the location of the old Building
20 where Claude Shannon had his first office as a professor in 1956).

c© 2020 Dimitri P. Bertsekas
All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.
Rollout, Policy Iteration, and Distributed Reinforcement Learning
Includes Bibliography and Index
1. Mathematical Optimization. 2. Dynamic Programming. I. Title.
QA402.5 .B465 2020 519.703 00-91281

ISBN-10: 1-886529-07-8, ISBN-13: 978-1-886529-07-6

2nd Printing (includes revisions and updates)

ABOUT THE AUTHOR

Dimitri Bertsekas studied Mechanical and Electrical Engineering at the
National Technical University of Athens, Greece, and obtained his Ph.D.
in system science from the Massachusetts Institute of Technology. He has
held faculty positions with the Engineering-Economic Systems Department,
Stanford University, and the Electrical Engineering Department of the Uni-
versity of Illinois, Urbana. Since 1979 he has been teaching at the Electrical
Engineering and Computer Science Department of the Massachusetts Insti-
tute of Technology (M.I.T.), where he is McAfee Professor of Engineering.
In 2019, he joined the School of Computing, Informatics, and Decision Sys-
tems Engineering at the Arizona State University, Tempe, AZ, as Fulton
Professor of Computational Decision Making.

Professor Bertsekas’ teaching and research have spanned several fields,
including deterministic optimization, dynamic programming and stochastic
control, large-scale and distributed computation, artificial intelligence, and
data communication networks. He has authored or coauthored numerous
research papers and eighteen books, several of which are currently used as
textbooks in MIT classes, including “Dynamic Programming and Optimal
Control,” “Data Networks,” “Introduction to Probability,” and “Nonlinear
Programming.”

Professor Bertsekas was awarded the INFORMS 1997 Prize for Re-
search Excellence in the Interface Between Operations Research and Com-
puter Science for his book “Neuro-Dynamic Programming” (co-authored
with John Tsitsiklis), the 2001 AACC John R. Ragazzini Education Award,
the 2009 INFORMS Expository Writing Award, the 2014 AACC Richard
Bellman Heritage Award, the 2014 INFORMS Khachiyan Prize for Life-
Time Accomplishments in Optimization, the 2015 MOS/SIAM George B.
Dantzig Prize, and the 2022 IEEE Control Systems Award. In 2018 he
shared with his coauthor, John Tsitsiklis, the 2018 INFORMS John von
Neumann Theory Prize for the contributions of the research monographs
“Parallel and Distributed Computation” and “Neuro-Dynamic Program-
ming.” Professor Bertsekas was elected in 2001 to the United States Na-
tional Academy of Engineering for “pioneering contributions to fundamen-
tal research, practice and education of optimization/control theory, and
especially its application to data communication networks.”

iii

ATHENA SCIENTIFIC

OPTIMIZATION AND COMPUTATION SERIES

1. Rollout, Policy Iteration, and Distributed Reinforcement Learning, by
Dimitri P. Bertsekas, 2020, ISBN 978-1-886529-07-6, 480 pages

2. Reinforcement Learning and Optimal Control, by Dimitri P. Bert-
sekas, 2019, ISBN 978-1-886529-39-7, 388 pages

3. Abstract Dynamic Programming, 2nd Edition, by Dimitri P. Bert-
sekas, 2018, ISBN 978-1-886529-46-5, 360 pages

4. Dynamic Programming and Optimal Control, Two-Volume Set, by

Dimitri P. Bertsekas, 2017, ISBN 1-886529-08-6, 1270 pages

5. Nonlinear Programming, 3rd Edition, by Dimitri P. Bertsekas, 2016,

ISBN 1-886529-05-1, 880 pages

6. Convex Optimization Algorithms, by Dimitri P. Bertsekas, 2015, ISBN
978-1-886529-28-1, 576 pages

7. Convex Optimization Theory, by Dimitri P. Bertsekas, 2009, ISBN
978-1-886529-31-1, 256 pages

8. Introduction to Probability, 2nd Edition, by Dimitri P. Bertsekas and
John N. Tsitsiklis, 2008, ISBN 978-1-886529-23-6, 544 pages

9. Convex Analysis and Optimization, by Dimitri P. Bertsekas, Angelia
Nedić, and Asuman E. Ozdaglar, 2003, ISBN 1-886529-45-0, 560 pages

10. Network Optimization: Continuous and Discrete Models, by Dimitri

P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages

11. Network Flows and Monotropic Optimization, by R. Tyrrell Rockafel-

lar, 1998, ISBN 1-886529-06-X, 634 pages

12. Introduction to Linear Optimization, by Dimitris Bertsimas and John
N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages

13. Parallel and Distributed Computation: Numerical Methods, by Dim-
itri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-01-9,
718 pages

14. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John N.

Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages

15. Constrained Optimization and Lagrange Multiplier Methods, by Dim-

itri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages

16. Stochastic Optimal Control: The Discrete-Time Case, by Dimitri P.
Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5, 330 pages

iv

Contents

1. Exact and Approximate Dynamic Programming Principles

1.1. AlphaZero, Off-Line Training, and On-Line Play p. 2
1.2. Deterministic Dynamic Programming p. 7

1.2.1. Finite Horizon Problem Formulation p. 7
1.2.2. The Dynamic Programming Algorithm p. 11
1.2.3. Approximation in Value Space p. 21

1.3. Stochastic Dynamic Programming p. 26
1.3.1. Finite Horizon Problems p. 27
1.3.2. Approximation in Value Space for Stochastic DP . . . p. 37
1.3.3. Infinite Horizon Problems - An Overview p. 41
1.3.4. Infinite Horizon - Approximation in Value Space . . . p. 49
1.3.5. Infinite Horizon - Policy Iteration, Rollout, and

Newton’s Method p. 52
1.4. Examples, Variations, and Simplifications p. 58

1.4.1. A Few Words About Modeling p. 58
1.4.2. Problems with a Termination State p. 60
1.4.3. State Augmentation, Time Delays, Forecasts, and

Uncontrollable State Components p. 63
1.4.4. Partial State Information and Belief States p. 69
1.4.5. Multiagent Problems and Multiagent Rollout p. 72
1.4.6. Problems with Unknown Parameters - Adaptive

Control . p. 77
1.4.7. Adaptive Control by Rollout and On-Line

Replanning . p. 82
1.5. Reinforcement Learning and Optimal Control - Some

Terminology . p. 89
1.6. Notes and Sources p. 91

2. General Principles of Approximation in Value Space

2.1. Approximation in Value and Policy Space p. 105
2.1.1. Approximation in Value Space - One-Step and

Multistep Lookahead p. 106
2.1.2. Approximation in Policy Space p. 109

v

vi Contents

2.1.3. Combined Approximation in Value and
Policy Space p. 111

2.2. Approaches for Value Space Approximation p. 116
2.2.1. Off-Line and On-Line Implementations p. 116
2.2.2. Model-Based and Model-Free Implementations . . . p. 118
2.2.3. Methods for Cost-to-Go Approximation p. 119
2.2.4. Methods for Expediting the Lookahead

Minimization p. 121
2.3. Deterministic Rollout and the Policy Improvement Principle p. 126

2.3.1. On-Line Rollout for Deterministic Discrete
Optimization p. 128

2.3.2. Using Multiple Base Heuristics - Parallel Rollout . . p. 138
2.3.3. The Simplified Rollout Algorithm p. 140
2.3.4. The Fortified Rollout Algorithm p. 141
2.3.5. Rollout with Multistep Lookahead p. 144
2.3.6. Rollout with an Expert p. 147
2.3.7. Rollout with Small Stage Costs and Long Horizon -

Continuous-Time Rollout p. 152
2.4. Stochastic Rollout and Monte Carlo Tree Search p. 162

2.4.1. Simulation-Based Implementation of the Rollout
Algorithm p. 167

2.4.2. Monte Carlo Tree Search p. 171
2.4.3. Randomized Policy Improvement by Monte Carlo

Tree Search p. 174
2.4.4. The Effect of Errors in Rollout - Variance

Reduction p. 175
2.4.5. Rollout Parallelization p. 178

2.5. Rollout for Infinite-Spaces Problems - Optimization
Heuristics . p. 179
2.5.1. Rollout for Infinite-Spaces Deterministic Problems . . p. 179
2.5.2. Rollout Based on Stochastic Programming p. 183

2.6. Notes and Sources p. 187

3. Specialized Rollout Algorithms

3.1. Model Predictive Control p. 196
3.1.1. Target Tubes and Constrained Controllability . . . p. 204
3.1.2. Model Predictive Control with Terminal Cost p. 207
3.1.3. Variants of Model Predictive Control p. 209
3.1.4. Target Tubes and State-Constrained Rollout p. 212

3.2. Multiagent Rollout p. 217
3.2.1. Asynchronous and Autonomous Multiagent Rollout . p. 227
3.2.2. Multiagent Coupling Through Constraints p. 231
3.2.3. Multiagent Model Predictive Control p. 233
3.2.4. Separable and Multiarmed Bandit Problems p. 234

Contents vii

3.3. Constrained Rollout - Deterministic Optimal Control . . . p. 237
3.3.1. Sequential Consistency, Sequential Improvement, and the .

Cost Improvement Property p. 244
3.3.2. The Fortified Rollout Algorithm and Other Variations p. 248

3.4. Constrained Rollout - Discrete Optimization p. 251
3.4.1. General Discrete Optimization Problems p. 251
3.4.2. Multidimensional Assignment p. 257

3.5. Rollout for Surrogate Dynamic Programming and Bayesian . . .
Optimization . p. 264

3.6. Rollout for Minimax Control p. 271
3.7. Notes and Sources p. 276

4. Learning Values and Policies

4.1. Parametric Approximation Architectures p. 286
4.1.1. Cost Function Approximation p. 288
4.1.2. Feature-Based Architectures p. 288
4.1.3. Training of Linear and Nonlinear Architectures . . . p. 299

4.2. Neural Networks p. 303
4.2.1. Training of Neural Networks p. 307
4.2.2. Multilayer and Deep Neural Networks p. 308

4.3. Training of Cost Functions in Approximate DP p. 310
4.3.1. Fitted Value Iteration p. 310
4.3.2. Q-Factor Parametric Approximation p. 312
4.3.3. Advantage Updating - Approximating Q-Factor

Differences p. 314
4.3.4. Differential Training of Cost Differences for Rollout . p. 317

4.4. Training of Policies in Approximate DP p. 319
4.4.1. The Use of Classifiers for Approximation in Policy

Space . p. 320
4.4.2. Perpetual Rollout with Value and Policy Networks - . . .

Multiprocessor Parallelization p. 324
4.5. Notes and Sources p. 325

5. Infinite Horizon Problems

5.1. Infinite Horizon Stochastic Problems p. 333
5.1.1. Stochastic Shortest Path Problems p. 333
5.1.2. Discounted Problems p. 338
5.1.3. Q-Factors and Q-Learning p. 341
5.1.4. Bellman Operators and Contraction Properties . . . p. 345

5.2. Exact and Approximate Policy Iteration p. 349
5.2.1. Policy Iteration and Rollout p. 349
5.2.2. Policy Iteration for Q-Factors p. 354

5.3. Variants of Rollout, Policy Iteration, and Q-Learning . . . p. 355
5.3.1. Optimistic Policy Iteration and Truncated Rollout . . p. 356

viii Contents

5.3.2. Multistep Policy Iteration p. 357
5.3.3. Multiagent Rollout and Policy Iteration p. 359
5.3.4. Autonomous Multiagent Rollout - Signaling Policies . p. 368
5.3.5. Policy Iteration-Based Approximations in Value Space p. 371
5.3.6. Implementation Issues of Parametric Policy Iteration p. 378
5.3.7. Optimistic Policy Iteration with Parametric Q-Factor . . .

Approximation - SARSA and DQN p. 381
5.4. Performance Bounds p. 383
5.5. Abstract View of Infinite Horizon Problems p. 395
5.6. Multiagent Value and Policy Iteration p. 405

5.6.1. Convergence to an Agent-by-Agent Optimal Policy . p. 408
5.6.2. Optimistic Multiagent Policy Iteration Algorithms . . p. 414

5.7. Asynchronous Distributed Value Iteration p. 417
5.7.1. State Space Partitioning p. 418
5.7.2. Asynchronous Convergence Theorem p. 419

5.8. Asynchronous Distributed Policy Iteration p. 422
5.8.1. Randomized Asynchronous Optimistic Policy Iteration p. 426
5.8.2. Asynchronous Optimistic Policy Iteration with a

Uniform Fixed Point p. 428
5.9. Notes and Sources p. 435

References . p. 451

Index . p. 477

Preface

We know the past but cannot control it. We control the future
but cannot know it.

Claude Shannon

In this research monograph we discuss the solution of large and challenging
multistage decision problems using methods of reinforcement learning (RL
for short), also referred to by other names such as approximate dynamic
programming and neuro-dynamic programming. We will focus on a subset
of methods which are based on the idea of policy iteration, i.e., starting
from some policy and generating one or more improved policies.

If just one improved policy is generated, this is called rollout , which,
based on broad and consistent computational experience, appears to be
one of the simplest and most reliable of all RL methods. Rollout is also
well-suited for on-line model-free implementation and on-line replanning.
Approximate policy iteration can be viewed as repeated application of roll-
out. This is one of the most prominent types of RL methods. It can be
implemented using data generated by the system itself, a process known as
self-learning, and value and policy approximation architectures, including
neural networks. Both rollout and policy iteration are related to the clas-
sical Newton’s method for iterative optimization, which in turn explains
their associated large cost improvements and fast convergence.

Approximate policy iteration is more ambitious than rollout, but it
is a strictly off-line method, and it is generally far more computationally
intensive (of course rollout may also require a lot of on-line computation).
This motivates the use of parallel and distributed computation. One of
the purposes of the monograph is to discuss distributed (possibly asyn-
chronous) methods that relate to rollout and policy iteration, both in the
context of an exact and an approximate implementation involving neural
networks or other approximation architectures.

One of the contributions of the monograph is to develop variants
of rollout and policy iteration for problems with a multiagent structure,
where the control consists of multiple components, each associated with a
separate agent. In particular, we introduce a new approach to lookahead
simplification through the use of multiagent rollout , which allows the dra-

ix

x Preface

matic reduction of the computational requirements for one-step lookahead
when the control consists of multiple components, and connects with the
theme of distributed asynchronous implementation.

Multiagent rollout also has a strong connection with a well-developed
body of research with a long history: the theory of teams and the notion of
person-by-person optimality. In particular, we develop an infinite horizon
dynamic programming methodology, which includes value and policy iter-
ation methods that converge to a person-by-person optimal policy. While
our multiagent schemes are based on fully shared agent information, they
are also well suited as a starting point for approximations, in the context of
on-line autonomous decision making by multiple agents each coordinating
in varying degrees with the other agents. In this context, agent informa-
tion that is not shared by other agents, is appropriately estimated, with
the estimates being treated as if they were exact.

Several of the ideas that we develop in some depth in this mono-
graph have been central in the implementation of recent high profile suc-
cesses, such as the AlphaZero program for playing chess, Go, and other
games. In addition to the fundamental process of successive policy itera-
tion/improvement, this program includes the use of deep neural networks
for representation of both value functions and policies, the extensive use
of large scale parallelization, and the simplification of lookahead minimiza-
tion, through methods involving Monte Carlo tree search and pruning of
the lookahead tree. In this monograph, we also focus on policy iteration,
value and policy neural network representations, parallel and distributed
computation, and lookahead simplification. Thus while there are significant
differences, the principal design ideas that form the core of this monograph
are shared by the AlphaZero architecture, except that we develop these
ideas in a broader and less application-specific framework.

Another subject that we deal with in some detail is model predic-
tive control (MPC for short), one of the most prominent control system
design methods at present. One of the reasons is that classical forms of
MPC are closely related to (and indeed can be viewed as) rollout algo-
rithms, thereby providing a connection with reinforcement learning, which
is beneficial in two ways. On one hand the MPC context provides rich
crossfertilization opportunities with the analytical and algorithmic ideas
of rollout and RL; for example the notion of sequential improvement in
rollout is intimately connected to Lyapunov stability analysis in MPC, and
the target tube ideas that are central in MPC may prove useful in the
context of constrained rollout and policy iteration. On the other hand the
dynamic programming and RL methodologies point the way to extensions
of MPC based on self-learning, approximate policy iteration, simulation,
the treatment of stochastic and set membership uncertainty, and the use
of distributed computation.

In our development of several of the topics of this book we rely on
methodology that is covered in greater depth in the 1996 neuro-dynamic

Preface xi

programming book [BeT96] (jointly written with J. Tsitsiklis) as well as
the author’s recent RL book [Ber19a]. However, we aim to develop rollout
and approximate policy iteration beyond the books [BeT96] and [Ber19a].
In particular, we present new research, relating to rollout variants, dis-
tributed asynchronous computation, partitioned architectures, and multia-
gent systems. We also indicate how our methods are well-suited for several
types of challenging large scale optimization problems, such as combina-
torial/discrete optimization, as well as partially observed Markov decision
problems (POMDP).

This monograph took shape in the fall of 2019 and was largely based
on two separate but related lines of research for distributed large-scale
computation:

(a) My work on multiagent rollout, policy iteration, and value itera-
tion, which was published in the papers [Ber19c], [Ber19d], [Ber20],
[Ber21a]. It was based on my earlier work on rollout, which started in
the mid 90s, in the context of the neuro-dynamic programming book,
and continued for several years afterwards.

(b) My work on distributed policy iteration algorithms with state space-
partitioned architectures. These ideas were extended, implemented,
and applied to some large-scale POMDP problems in collaboration
with my Arizona State University (ASU) colleagues Sushmita Bhat-
tacharya, Sahil Badyal, ThomasWheeler, and Stephanie Gil [BBW20].
This work is also connected with my joint research on asynchronous
distributed state space-partitioned policy iteration with Huizhen Yu
[BeY10], [BeY12], [YuB13], which is presented in Section 5.8 of this
monograph.

Most of the book was written while teaching a research-oriented course at
ASU, starting in January 2020. The hospitable and stimulating environ-
ment at ASU contributed much to my productivity during this period, and
for this I am very thankful to several colleagues and students, including
Stephanie Gil, Giulia Pedrielli, and Petr Sulc, and my teaching assistant,
Sushmita Bhattacharya. I have also appreciated fruitful interactions with
colleagues and students outside ASU, particularly Yuchao Li, who also
provided valuable proofreading support.

Finally, I would like to dedicate this monograph to the creative genius
of Claude Shannon, the father of information theory, but also the father
of computer chess. His approximate dynamic programming ideas, which
predated the work of Bellman, live on inside the AlphaZero program, the
most impressive success story of reinforcement learning up to now.

Dimitri P. Bertsekas

July 2020

xii Preface

NOTE ABOUT THIS UPDATED PRINTING

This 2nd printing was prompted by the publication of the book in China,
and by the use of the book for an on-line course at ASU in the Spring of
2021. See my website:

http://web.mit.edu/dimitrib/www/RLbook.html

Simultaneously with its publication in China, this 2nd printing will replace
the 1st printing outside of China.

In addition to editorial corrections, I took the opportunity to make
some more substantive revisions. One type of revision aimed to enrich the
material on multiagent control systems, and to introduce enhancements in
the form of signaling policies (see Section 5.3.4). Another type of revision
aimed to highlight the connections of AlphaZero and related programs with
approximations in value space and the on-line play idea that lies at the
heart of rollout.

The significance of on-line policy improvement by multistep lookahead
and rollout came into focus with the success of AlphaZero and the earlier,
but just as impressive TD-Gammon program. Both of these programs
involve an off-line training algorithm, and an on-line play algorithm that
relies on the results of the off-line training. These two algorithms are
different, but a key fact is that the on-line player performs much better
than the extensively trained off-line player ; see Section 1.1.

In practical problems of decision and control, a lot of analysis and/or
off-line computation is often directed towards obtaining a policy, which is
inevitably suboptimal, because of model imperfections, changing problem
parameters, and overwhelming computational bottlenecks. The AlphaZero
and TD-Gammon experience reinforces an important conclusion: despite
the off-line effort that may have gone into the design of a policy, its perfor-
mance may be greatly improved by on-line approximation in value space,
with long lookahead (involving minimization or rollout with this policy),
and terminal cost approximation.

This performance enhancement by on-line play goes well beyond the
conventional control wisdom that “feedback corrects for noise, uncertainty,
and modeling errors.” It is embodied to some extent by the model predic-
tive control methodology, but it also suggests a more broadly applicable
paradigm, whose significance has yet to be fully recognized by the decision
and control community.

In this revised printing I have also aimed to illustrate the ideas of
on-line play, rollout, and policy iteration with intuitive figures that draw
upon the use of abstract forms of the Bellman equation operators. In this
way a direct line, couched on insightful visualization, can be drawn from
AlphaZero to optimal, model predictive, and adaptive control.

Preface xiii

To improve the didactic value of the book, I have also added some
material on infinite horizon problems to Chapter 1. Furthermore, I have
added exercises for the reader at the end of each chapter. Moreover, dur-
ing the preceding year I supplemented the book with quite a few on-line
extensions, including research papers, and lecture slides and videos. In par-
ticular, I posted a series of videolectures and slides from my 2021 course
on reinforcement learning at ASU. This material is freely accessible from
my website. The videolectures are also available at

https://www.youtube.com/playlist?list
=PLmH30BG15SIp79JRJ-MVF12uvB1qPtPzn

and at

https://space.bilibili.com/2036999141

Finally, I wish to thank students and colleagues for many helpful com-
ments relating to the 1st printing and the ASU course. I am particularly
thankful to Yuchao Li for proofreading support and numerous valuable
suggestions.

Dimitri P. Bertsekas

July 2021

1

Exact and Approximate

Dynamic Programming Principles

Contents

1.1. AlphaZero, Off-Line Training, and On-Line Play p. 2
1.2. Deterministic Dynamic Programming p. 7

1.2.1. Finite Horizon Problem Formulation p. 7
1.2.2. The Dynamic Programming Algorithm p. 11
1.2.3. Approximation in Value Space p. 21

1.3. Stochastic Dynamic Programming p. 26
1.3.1. Finite Horizon Problems p. 27
1.3.2. Approximation in Value Space for Stochastic DP . p. 37
1.3.3. Infinite Horizon Problems - An Overview p. 41
1.3.4. Infinite Horizon - Approximation in Value Space . p. 49
1.3.5. Infinite Horizon - Policy Iteration, Rollout, and

Newton’s Method p. 52
1.4. Examples, Variations, and Simplifications p. 58

1.4.1. A Few Words About Modeling p. 58
1.4.2. Problems with a Termination State p. 60
1.4.3. State Augmentation, Time Delays, Forecasts, and . . .

Uncontrollable State Components p. 63
1.4.4. Partial State Information and Belief States p. 69
1.4.5. Multiagent Problems and Multiagent Rollout . . . p. 72
1.4.6. Problems with Unknown Parameters - Adaptive . . .

Control p. 77
1.4.7. Adaptive Control by Rollout and On-Line

Replanning p. 82
1.5. Reinforcement Learning and Optimal Control - Some

Terminology . p. 89
1.6. Notes and Sources p. 91

1

2 Exact and Approximate Dynamic Programming Principles Chap. 1

In this chapter, we provide some background on exact dynamic program-
ming (DP), with a view towards the suboptimal solution methods, which
are based on approximation in value space and are the main subject of this
book. We first discuss finite horizon problems, which involve a finite se-
quence of successive decisions, and are thus conceptually and analytically
simpler. We then consider somewhat briefly the more intricate infinite
horizon problems, but defer a more detailed treatment for Chapter 5.

We will discuss separately deterministic and stochastic problems (Sec-
tions 1.2 and 1.3, respectively). The reason is that deterministic problems
are simpler and have some favorable characteristics, which allow the ap-
plication of a broader variety of methods. Significantly they include chal-
lenging discrete and combinatorial optimization problems, which can be
fruitfully addressed with some of the rollout and approximate policy iter-
ation methods that are the main focus of this book.

In subsequent chapters, we will discuss selectively some major algo-
rithmic topics in approximate DP and reinforcement learning (RL), in-
cluding rollout and policy iteration, multiagent problems, and distributed
algorithms. A broader discussion of DP/RL may be found in the author’s
RL textbook [Ber19a], and the DP textbooks [Ber12], [Ber17a], [Ber18a],
the neuro-dynamic programming monograph [BeT96], as well as the liter-
ature cited in the last section of this chapter.

The DP/RL methods that are the principal subjects of this book,
rollout and policy iteration, have a strong connection with the famous
AlphaZero, AlphaGo, and other related programs. As an introduction to
our technical development, we take a look at this connection in the next
section.

1.1 ALPHAZERO, OFF-LINE TRAINING, AND ON-LINE PLAY

One of the most exciting recent success stories in RL is the development
of the AlphaGo and AlphaZero programs by DeepMind Inc; see [SHM16],
[SHS17], [SSS17]. AlphaZero plays Chess, Go, and other games, and is
an improvement in terms of performance and generality over AlphaGo,
which plays the game of Go only. Both programs play better than all
competitor computer programs available in 2020, and much better than
all humans. These programs are remarkable in several other ways. In
particular, they have learned how to play without human instruction, just
data generated by playing against themselves. Moreover, they learned how
to play very quickly. In fact, AlphaZero learned how to play chess better
than all humans and computer programs within hours (with the help of
awesome parallel computation power, it must be said).

Perhaps the most impressive aspect of AlphaZero/chess is that its
play is not just better, but it is also very different than human play in
terms of long term strategic vision. Remarkably, AlphaZero has discovered

Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 3

new ways to play chess, a game that has been studied intensively by humans
for hundreds of years.

Still, for all of its impressive success and brilliant implementation, Al-
phaZero is couched on well established methodology, which is the subject of
the present book, and is portable to far broader realms of engineering, eco-
nomics, and other fields. This is the methodology of DP, policy iteration,
limited lookahead, rollout, and approximation in value space.†

To understand the overall structure of AlphaZero and related pro-
grams, and their connections to our DP/RL methodology, it is useful to
divide their design into two parts:

(a) Off-line training, which is an algorithm that learns how to evaluate
chess positions, and how to steer itself towards good positions with a
default/base chess player.

(b) On-line play, which is an algorithm that generates good moves in
real time against a human or computer opponent, using the training
it went through off-line.

We will next briefly describe these algorithms, and relate them to DP
concepts and principles.

Off-Line Training and Policy Iteration

An off-line training algorithm like the one used in AlphaZero is the part
of the program that learns how to play through self-training that takes
place before real-time play against any opponent. It is illustrated in Fig.
1.1.1, and it generates a sequence of chess players and position evaluators .
A chess player assigns “probabilities” to all possible moves at any given
chess position (these are the probabilities with which the player selects
the possible moves at the given position). A position evaluator assigns
a numerical score to any given chess position (akin to a “probability” of
winning the game from that position), and thus predicts quantitatively the
performance of a player starting from any position. The chess player and
the position evaluator are represented by two neural networks, a policy

† It is also worth noting that the principles of the AlphaZero design have

much in common with the work of Tesauro [Tes94], [Tes95], [TeG96] on computer
backgammon. Tesauro’s programs stimulated much interest in RL in the middle

1990s, and exhibit similarly different and better play than human backgammon
players. A related impressive program for the (one-player) game of Tetris, also

based on the method of policy iteration, is described by Scherrer et al. [SGG15],

together with several antecedents. Also the AlphaZero ideas have been replicated
by the publicly available program Leela Chess Zero, with similar success. For a

better understanding of the connections of AlphaZero, Tesauro’s programs (TD-

Gammon [Tes94], and its rollout version [TeG96]), and the concepts developed
here, the reader may consult the “Methods” section of the paper [SSS17].

4 Exact and Approximate Dynamic Programming Principles Chap. 1

network and a value network , which accept a chess position and generate
a set of move probabilities and a position evaluation, respectively.†

In the more conventional DP-oriented terms of this book, a position
is the state of the game, a position evaluator is a cost function that gives
the cost-to-go at a given state, and the chess player is a randomized policy
for selecting actions/controls at a given state.‡

The overall training algorithm is a form of policy iteration, a DP
algorithm that will be of primary interest to us in this book. Starting from
a given player, it repeatedly generates (approximately) improved players,
and settles on a final player that is judged empirically to be “best” out of
all the players generated.†† Policy iteration may be separated conceptually
into two stages (see Fig. 1.1.1).

(a) Policy evaluation: Given the current player and a chess position, the
outcome of a game played out from the position provides a single data
point. Many data points are thus collected, and are used to train a
value network, whose output serves as the position evaluator for that
player.

† Here the neural networks play the role of function approximators. By view-

ing a player as a function that assigns move probabilities to a position, and a
position evaluator as a function that assigns a numerical score to a position, the

policy and value networks provide approximations to these functions based on
training with data (training algorithms for neural networks and other approxi-

mation architectures will be discussed in Chapter 4). Actually, AlphaZero uses

the same neural network for training both value and policy. Thus there are two
outputs of the neural net: value and policy. This is pretty much equivalent

to having two separate neural nets and for the purpose of the book, we prefer

to explain the structure as two separate networks. AlphaGo uses two separate
value and policy networks. Tesauro’s backgammon programs use a single value

network, and generate moves when needed by one-step or two-step lookahead
minimization, using the value network as terminal position evaluator.

‡ One more complication is that chess and Go are two-player games, while

most of our development will involve single-player optimization. However, DP
theory and algorithms extend to two-player games, although we will not discuss

these extensions, except briefly in Chapters 3 and 5 (see Sections 3.6 and 5.5).

†† Quoting from the paper [SSS17]: “The AlphaGo Zero selfplay algorithm
can similarly be understood as an approximate policy iteration scheme in which

MCTS is used for both policy improvement and policy evaluation. Policy im-
provement starts with a neural network policy, executes an MCTS based on that

policy’s recommendations, and then projects the (much stronger) search policy

back into the function space of the neural network. Policy evaluation is applied
to the (much stronger) search policy: the outcomes of selfplay games are also

projected back into the function space of the neural network. These projection

steps are achieved by training the neural network parameters to match the search
probabilities and selfplay game outcome respectively.”

Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 5

Policy Improvement
Policy Improvement

erent! Approximate Value Function Player Features Mappinerent! Approximate Value Function Player Features Mappin

Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training! Current “ImprovLearned from scratch ... with 4 hours of training! Current “Improved”
Policy Improvement

Policy Evaluation Improvement of Current Policy

Neural Network Neural Network

Value Policy Value Policy

Figure 1.1.1 Illustration of the AlphaZero off-line training algorithm. It gener-
ates a sequence of position evaluators and chess players. The position evaluator
and the chess player are represented by two neural networks, a value network and
a policy network, which accept a chess position and generate a position evaluation
and a set of move probabilities, respectively.

(b) Policy improvement : Given the current player and its position evalua-
tor, trial move sequences are selected and evaluated for the remainder
of the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results. In Alp-
haZero this is done with a complicated algorithm called Monte Carlo
Tree Search, which will be described in Chapter 2. However, policy
improvement can be done more simply. For example one could try
all possible move sequences from a given position, extending forward
to a given number of moves, and then evaluate the terminal position
with the player’s position evaluator. The move evaluations obtained
in this way are used to nudge the move probabilities of the current
player towards more successful moves, thereby obtaining data that is
used to train a policy network that represents the new player.

On-Line Play and Approximation in Value Space - Rollout

Consider now the “final” player obtained through the AlphaZero off-line
training process. It can play against any opponent by generating move
probabilities at any position using its off-line trained policy network, and
then simply play the move of highest probability. This player would play
very fast on-line, but it would not play good enough chess to beat strong
human opponents. The extraordinary strength of AlphaZero is attained
only after the player obtained from off-line training is embedded into an-
other algorithm, which we refer to as the “on-line player.”† In other words
AlphaZero plays on-line much better than the best player it has produced

† Quoting from the paper [SSS17]: “The MCTS search outputs probabilities

of playing each move. These search probabilities usually select much stronger
moves than the raw move probabilities of the neural network.”

6 Exact and Approximate Dynamic Programming Principles Chap. 1

Selective Depth Lookahead Tree

States xk+1

proximation

States xk+2

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

Current State xk.x0

Rollout with Base Off-Line Obtained Policy

Terminal Position Evaluation

Terminal Position Evaluation

Terminal Position Evaluation

Current Position

Current Position

Player Corrected

using an Corresponds to One-Step Lookahead Policy ˜

Figure 1.1.2 Illustration of an on-line player such as the one used in AlphaGo,
AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position, it
generates a lookahead tree of multiple moves up to a given depth, then runs the
off-line obtained player for some more moves, and then evaluates the effect of the
remaining moves by using the position evaluator of the off-line obtained player.

with sophisticated off-line training. This phenomenon, policy improvement
through on-line play, is centrally important for our purposes in this book.

Given the policy network/player obtained off-line and its value net-
work/position evaluator, the on-line algorithm plays roughly as follows (see
Fig. 1.1.2). At a given position, it generates a lookahead tree of all possible
multiple move and countermove sequences, up to a given depth. It then
runs the off-line obtained player for some more moves, and then evaluates
the effect of the remaining moves by using the position evaluator of the
value network. The middle portion, called “truncated rollout,” may be
viewed as an economical substitute for longer lookahead . Actually trun-
cated rollout is not used in the published version of AlphaZero [SHS17];
the first portion (multistep lookahead) is quite long and implemented effi-
ciently, so that the rollout portion is not essential. However, rollout is used
in AlphaGo [SHM16]. Moreover, chess and Go programs (including Alp-
haZero) typically use a limited form of rollout, called “quiescence search,”
which aims to resolve imminent threats and highly dynamic positions be-
fore invoking the position evaluator. Rollout is instrumental in achieving
high performance in Tesauro’s 1996 backgammon program [TeG96]. The
reason is that backgammon involves stochastic uncertainty, so long looka-
head is not possible because of rapid expansion of the lookahead tree with
every move.†

† Tesauro’s rollout-based backgammon program [TeG96] uses only a value

Sec. 1.2 Deterministic Dynamic Programming 7

We should note that the preceding description of AlphaZero and re-
lated games is oversimplified. We will be adding refinements and details
as the book progresses. However, DP ideas with cost function approxima-
tions, similar to the on-line player illustrated in Fig. 1.1.2, will be central
for our purposes. They will be generically referred to as approximation in
value space. Moreover, the conceptual division between off-line training
and on-line policy implementation will be important for our purposes.

Note also that these two processes may be decoupled and may be
designed independently. For example the off-line training portion may be
very simple, such as using a known heuristic policy for rollout without
truncation, or without terminal cost approximation. Conversely, a sophis-
ticated process may be used for off-line training of a terminal cost function
approximation, which is used immediately following one-step or multistep
lookahead in a value space approximation scheme.

1.2 DETERMINISTIC DYNAMIC PROGRAMMING

In all DP problems, the central object is a discrete-time dynamic system
that generates a sequence of states under the influence of control. The
system may evolve deterministically or randomly (under the additional
influence of a random disturbance).

1.2.1 Finite Horizon Problem Formulation

In finite horizon problems the system evolves over a finite number N of time
steps (also called stages). The state and control at time k of the system will
be generally denoted by xk and uk, respectively. In deterministic systems,
xk+1 is generated nonrandomly, i.e., it is determined solely by xk and uk.
Thus, a deterministic DP problem involves a system of the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.1)

where k is the time index, and

xk is the state of the system, an element of some space,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk) that depends on xk,

iteration scheme developed several years earlier [Tes94]. TD-Gammon is used to
generate moves for the truncated rollout via a one-step or two-step lookahead

minimization. Thus the value network also serves as a substitute for the policy

network during the rollout operation. The terminal position evaluation used at
the end of the truncated rollout is also provided by the value network. The middle

portion of Tesauro’s scheme (truncated rollout) is important for achieving a very

high quality of play, as it effectively extends the length of lookahead from the
current position.

8 Exact and Approximate Dynamic Programming Principles Chap. 1

......

Control uk

k Cost gk(xk, uk)
) xk k xk+1 +1 xN

Stage k k Future Stages

) x0

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN)

Deterministic Transition

Deterministic Transition xk+1 = fk(xk, uk)

Figure 1.2.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1,

N is the horizon, i.e., the number of times control is applied.

The set of all possible xk is called the state space at time k. It can be
any set and may depend on k. Similarly, the set of all possible uk is called
the control space at time k. Again it can be any set and may depend on k.
Similarly the system function fk can be arbitrary and may depend on k.†

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gk(xk, uk), accumulates over
time. Formally, gk is a function of (xk, uk) that takes real number values,
and may depend on k. For a given initial state x0, the total cost of a control
sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN) +
N−1
∑

k=0

gk(xk, uk), (1.2)

† This generality is one of the great strengths of the DP methodology and
guides the exposition style of this book, and the author’s other DP works. By
allowing arbitrary state and control spaces (discrete, continuous, or mixtures
thereof), and a k-dependent choice of these spaces, we can focus attention on
the truly essential algorithmic aspects of the DP approach, exclude extraneous
assumptions and constraints from our model, and avoid duplication of analysis.

The generality of our DP model is also partly responsible for our choice

of notation. In the artificial intelligence and operations research communities,
finite state models, often referred to as Markovian Decision Problems (MDP),

are common and use a transition probability notation (see Chapter 5). Unfor-

tunately, this notation is not well suited for deterministic models, and also for
continuous spaces models, both of which are important for the purposes of this

book. For the latter models, it involves transition probability distributions over

continuous spaces, and leads to mathematics that are far more complex as well
as less intuitive than those based on the use of the system function (1.1).

Sec. 1.2 Deterministic Dynamic Programming 9

s t u

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Initial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 Stage N − 1 Stage1 Stage N
.

. . . .

.

. . . .

.

. . . .

.

. . . .

) Artificial Terminal

with Cost gN (xN)

State Space Partition Initial States

Figure 1.2.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xk. Arcs correspond to state-control pairs (xk , uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively. The
transition cost gk(xk, uk) is viewed as the length of this arc. The problem is
equivalent to finding a shortest path from initial nodes of stage 0 to an artificial
terminal node t.

where gN(xN) is a terminal cost incurred at the end of the process. This is
a well-defined number, since the control sequence {u0, . . . , uN−1} together
with x0 determines exactly the state sequence {x1, . . . , xN} via the system
equation (1.1); see Figure 1.2.1. We want to minimize the cost (1.2) over
all sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby
obtaining the optimal value as a function of x0:†

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1).

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state xk the
possible transitions to next states xk+1. The nodes of the graph correspond
to states xk and the arcs of the graph correspond to state-control pairs
(xk, uk). Each arc with start node xk corresponds to a choice of a single
control uk ∈ Uk(xk) and has as end node the next state fk(xk, uk). The
cost of an arc (xk, uk) is defined as gk(xk, uk); see Fig. 1.2.2. To handle the
final stage, an artificial terminal node t is added. Each state xN at stage
N is connected to the terminal node t with an arc having cost gN (xN).

Note that control sequences {u0, . . . , uN−1} correspond to paths orig-
inating at the initial state (a node at stage 0) and terminating at one of the
nodes corresponding to the final stage N . If we view the cost of an arc as

† Here and later we write “min” (rather than “inf”) even if we are not sure

that the minimum is attained. Similarly we write “max” (rather than “sup”)
even if we are not sure that the maximum is attained.

10 Exact and Approximate Dynamic Programming Principles Chap. 1

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

SA

CAB

CAC

CCA

CCD

CBC

CCB

CCD

CAB

CAB

CAD

CDA

CCD

CBD

CBD

CDB

CDB

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

SC

Figure 1.2.3 The transition graph of the deterministic scheduling problem of
Example 1.2.1. Each arc of the graph corresponds to a decision leading from
some state (the start node of the arc) to some other state (the end node of the
arc). The corresponding cost is shown next to the arc. The cost of the last
operation is shown as a terminal cost next to the terminal nodes of the graph.

its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimum-length (or shortest) path from the initial
nodes of the graph (stage 0) to the terminal node t. Here, by the length of
a path we mean the sum of the lengths of its arcs.†

Generally, combinatorial optimization problems can be formulated as
deterministic finite-state finite-horizon optimal control problem, as we will
discuss in greater detail in Chapters 2 and 3. The idea is to break down
the solution into components, which can be computed sequentially. The
following is an illustrative example.

Example 1.2.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has been
performed. (Thus the sequence CDAB is allowable but the sequence CDBA

† It turns out also that any shortest path problem (with a possibly nona-

cyclic graph) can be reformulated as a finite-state deterministic optimal control

problem. See [Ber17a], Section 2.1, and [Ber91], [Ber98] for extensive accounts
of shortest path methods, which connect with our discussion here.

Sec. 1.2 Deterministic Dynamic Programming 11

is not.) The setup cost Cmn for passing from any operation m to any other
operation n is given (cf. Fig. 1.2.3). There is also an initial startup cost SA or
SC for starting with operation A or C, respectively. The cost of a sequence
is the sum of the setup costs associated with it; for example, the operation
sequence ACDB has cost SA + CAC + CCD + CDB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.2.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD
with certainty, and has cost CCD. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.2.3. The optimal solution
corresponds to the path that starts at the initial state and ends at some state
at the terminal time and has minimum sum of arc costs plus the terminal
cost.

1.2.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The
algorithm rests on a simple idea, the principle of optimality , which roughly
states the following; see Fig. 1.2.4.

Principle of Optimality

Let {u∗
0, . . . , u

∗

N−1} be an optimal control sequence, which together
with x0 determines the corresponding state sequence {x∗

1, . . . , x
∗

N} via
the system equation (1.1). Consider the subproblem whereby we start
at x∗

k at time k and wish to minimize the “cost-to-go” from time k to
time N ,

gk(x∗

k, uk) +
N−1
∑

m=k+1

gm(xm, um) + gN (xN),

over {uk, . . . , uN−1} with um ∈ Um(xm), m = k, . . . , N − 1. Then the
truncated optimal control sequence {u∗

k, . . . , u
∗

N−1} is optimal for this
subproblem.

The subproblem referred to above is called the tail subproblem that
starts at x∗

k. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive
justification is simple. If the truncated control sequence {u∗

k, . . . , u
∗

N−1}
were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach x∗

k

12 Exact and Approximate Dynamic Programming Principles Chap. 1

Tail subproblem TimeFuture Stages Terminal Cost k N
k N

{

Cost 0 Cost

Optimal control sequence

Optimal control sequence {u∗

0
, . . . , u∗

k
, . . . , u∗

N−1
}

Tail subproblem Time x
∗

k
Tail subproblem Time

Figure 1.2.4 Schematic illustration of the principle of optimality. The tail
{u∗

k, . . . , u
∗
N−1} of an optimal sequence {u∗

0 , . . . , u
∗
N−1} is optimal for the tail

subproblem that starts at the state x∗
k of the optimal state trajectory.

(since the preceding choices of controls, u∗
0, . . . , u

∗

k−1, do not restrict our
future choices).

For an auto travel analogy, suppose that the fastest route from Phoenix
to Boston passes through St Louis. The principle of optimality translates
to the obvious fact that the St Louis to Boston portion of the route is also
the fastest route for a trip that starts from St Louis and ends in Boston.†

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially, by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.2.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.2.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.2.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There is a cost for a transition between
two operations, and the numerical values of the transition costs are shown in
Fig. 1.2.5 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule

† In the words of Bellman [Bel57]: “An optimal trajectory has the prop-

erty that at an intermediate point, no matter how it was reached, the rest of

the trajectory must coincide with an optimal trajectory as computed from this
intermediate point as the starting point.”

Sec. 1.2 Deterministic Dynamic Programming 13

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2
3 5 2 4 6 2

3 5 2 4 6 2

3 5 2 4 6 2

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10
6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

6 1 3 2 9 5 8 7 10

Figure 1.2.5 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we
solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

Tail Subproblems of Length 2 : These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.2.5).

State AB : Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC : Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.2.5.

State CA: Here the possibilities are to (a) schedule operation B and then

14 Exact and Approximate Dynamic Programming Principles Chap. 1

D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 3, as shown next to node CA in Fig. 1.2.5.

State CD : Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3 : These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.2.5.

State C : Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node C in Fig. 1.2.5.

Original Problem of Length 4 : The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.2.5.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.2.5, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problems
by translating into mathematical terms the heuristic argument underlying
the principle of optimality. The algorithm constructs functions

J*
N (xN), J*

N−1(xN−1), . . . , J*
0 (x0),

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc. The value J*
k (xk) represents the optimal cost of the tail subproblem

that starts at state xk at time k.

Sec. 1.2 Deterministic Dynamic Programming 15

{

Cost 0 Cost

Tail subproblem Time

Tail subproblem Time

Tail subproblem Time
Future Stages Terminal Cost k N

k N

k N

k N

{

Cost 0 Cost

Future Stages Terminal Cost k N
k N

Tail subproblem Time

Optimal Cost J∗

k
(xk)) xk

xk

xk+1

+1 x

′

k+1

x

′′

k+1

uk

u

′

k

u

′′

k

Opt. Cost J∗

k+1
(xk+1) Opt. Cost

) Opt. Cost J∗

k+1
(x

′

k+1
) Opt. Cost

) Opt. Cost J∗

k+1
(x

′′

k+1
)

Figure 1.2.6 Illustration of the DP algorithm. The tail subproblem that starts
at xk at time k minimizes over {uk, . . . , uN−1} the “cost-to-go” from k to N ,

gk(xk , uk) +

N−1
∑

m=k+1

gm(xm, um) + gN (xN).

To solve it, we choose uk to minimize the (1st stage cost + Optimal tail problem
cost) or

J∗
k(xk) = min

uk∈Uk(xk)

[

gk(xk , uk) + J∗
k+1

(

fk(xk, uk)
)

]

.

DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN), for all xN , (1.3)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

, for all xk.

(1.4)

The DP algorithm together with the construction of the optimal cost-
to-go functions J*

k (xk) are illustrated in Fig. 1.2.6. Note that at stage k, the
calculation in Eq. (1.4) must be done for all states xk before proceeding
to stage k − 1. The key fact about the DP algorithm is that for every
initial state x0, the number J*

0 (x0) obtained at the last step, is equal to
the optimal cost J*(x0). Indeed, a more general fact can be shown, namely
that for all k = 0, 1, . . . , N − 1, and all states xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (1.5)

16 Exact and Approximate Dynamic Programming Principles Chap. 1

where J(xk;uk, . . . , uN−1) is the cost generated by starting at xk and using
subsequent controls uk, . . . , uN−1:

J(xk;uk, . . . , uN−1) = gN(xN) +
N−1
∑

t=k

gt(xt, ut). (1.6)

Thus, J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem

that starts at state xk and time k, and ends at time N .† Based on the
interpretation (1.5) of J∗

k (xk), we call it the optimal cost-to-go from state
xk at stage k, and refer to J∗

k as the optimal cost-to-go function or optimal
cost function at time k. In maximization problems the DP algorithm (1.4)
is written with maximization in place of minimization, and then J∗

k is
referred to as the optimal value function at time k.

Once the functions J*
0 , . . . , J

*
N have been obtained, we can use a for-

ward algorithm to construct an optimal control sequence {u∗
0, . . . , u

∗

N−1}
and state trajectory {x∗

1, . . . , x
∗

N} for the given initial state x0.

Construction of Optimal Control Sequence {u∗
0, . . . , u

∗

N−1}

Set
u∗
0 ∈ arg min

u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)

]

,

and
x∗
1 = f0(x0, u∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

† We can prove this by induction. The assertion holds for k = N in view of
the initial condition J∗

N (xN) = gN(xN). To show that it holds for all k, we use
Eqs. (1.5) and (1.6) to write

J∗
k (xk) = min

ut∈Ut(xt)
t=k,...,N−1

[

gN (xN) +

N−1
∑

t=k

gt(xt, ut)

]

= min
uk∈Uk(xk)

[

gk(xk, uk) + min
ut∈Ut(xt)

t=k+1,...,N−1

[

gN(xN) +

N−1
∑

t=k+1

gt(xt, ut)

]]

= min
uk∈Uk(xk)

[

gk(xk, uk) + J∗
k+1

(

fk(xk, uk)
)

]

,

where for the last equality we use the induction hypothesis. A subtle mathemati-
cal point here is that, through the minimization operation, the functions J∗

k may

take the value −∞ for some xk. Still the preceding induction argument is valid

even if this is so. The books [BeT96] and [Ber18a] address DP algorithms that
allow infinite values in various operations such as minimization.

Sec. 1.2 Deterministic Dynamic Programming 17

u∗

k ∈ arg min
uk∈Uk(x

∗
k
)

[

gk(x∗

k, uk) + J*
k+1

(

fk(x∗

k, uk)
)

]

, (1.7)

and
x∗

k+1 = fk(x∗

k, u
∗

k).

Note an interesting conceptual division of the optimal control se-
quence construction: there is “off-line training” to obtain J*

k by precompu-
tation [cf. Eqs. (1.3)-(1.4)], which is followed by real-time “on-line play” to
obtain u∗

k [cf. Eq. (1.7)]. This is analogous to the two algorithmic processes
described in Section 1.1 in connection with chess and backgammon.

Figure 1.2.5 traces the calculations of the DP algorithm for the schedul-
ing Example 1.2.1. The numbers next to the nodes, give the corresponding
cost-to-go values, and the thick-line arcs give the construction of the opti-
mal control sequence using the preceding algorithm.

DP Algorithm for General Discrete Optimization Problems

We have noted earlier that discrete deterministic optimization problems,
including challenging combinatorial problems, can be typically formulated
as DP problems by breaking down each feasible solution into a sequence of
decisions/controls, as illustrated with the scheduling Example 1.2.1. This
formulation often leads to an intractable DP computation because of an
exponential explosion of the number of states as time progresses. However,
a DP formulation brings to bear approximate DP methods, such as rollout
and others, to be discussed shortly, which can deal with the exponentially
increasing size of the state space. We illustrate the reformulation by an
example and then generalize.

Example 1.2.2 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the travel time
between each pair of cities. We wish to find a minimum time travel that visits
each of the cities exactly once and returns to the start city. To convert this
problem to a DP problem, we form a graph whose nodes are the sequences
of k distinct cities, where k = 1, . . . , N . The k-city sequences correspond to
the states of the kth stage. The initial state x0 consists of some city, taken
as the start (city A in the example of Fig. 1.2.7). A k-city node/state leads
to a (k+1)-city node/state by adding a new city at a cost equal to the travel
time between the last two of the k+1 cities; see Fig. 1.2.7. Each sequence of
N cities is connected to an artificial terminal node t with an arc of cost equal
to the travel time from the last city of the sequence to the starting city, thus
completing the transformation to a DP problem.

18 Exact and Approximate Dynamic Programming Principles Chap. 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

A AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADCA AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCBABCD ABDC ACBD ACDB ADBC ADCB

s Terminal State t

15 1 5 15 1 5 15 1 515 1 5 15 1 5

15 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 2515 1 5 18 4 19 9 21 25

15 1 5 18 4 19 9 21 25 8 1215 1 5 18 4 19 9 21 25 8 12

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

Matrix of Intercity Travel Costs

Matrix of Intercity Travel Costs
(

6 13 14 24 27

6 13 14 24 27

A

B

C

D
Four Cities

Figure 1.2.7 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix
at the bottom. We form a graph whose nodes are the k-city sequences and
correspond to the states of the kth stage, assuming that A is the starting city.
The transition costs/travel times are shown next to the arcs. The optimal
costs-to-go are generated by DP starting from the terminal state and going
backwards towards the initial state, and are shown next to the nodes. There is
a unique optimal sequence here (ABDCA), and it is marked with thick lines.
The optimal sequence can be obtained by forward minimization [cf. Eq. (1.7)],
starting from the initial state x0.

The optimal costs-to-go from each node to the terminal state can be
obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed in future chapters.

Let us now extend the ideas of the preceding example to the general

Sec. 1.2 Deterministic Dynamic Programming 19

Artificial Start State End State

)
...

)
...

)
...

)
...

)
...)

...

. . . i

. . . i

. . . i

. . . i

Set of States (
Set of States (Set of States (Set of States (

Cost G(u)

s t u

Stage 1 Stage 2 Stage 3 Stage
Stage 1 Stage 2 Stage 3 Stage
Stage 1 Stage 2 Stage 3 StageStage 1 Stage 2 Stage 3 Stage N

Initial State 15 1 5 18 4 19 9 21 25 8 12 13

(u0) (
) (u0, u1) () (u0, u1, u2)) u = (u0, . . . , uN−1)

u0

u1

u2

uN−1

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

)
A
p
p
roxim

ate
..

Figure 1.2.8 Formulation of a discrete optimization problem as a DP problem
with N stages. There is a cost G(u) only at the terminal stage on the arc con-
necting an N-solution u = (u0, . . . , uN−1) upon reaching the terminal state. Note
that there is only one incoming arc at each node.

discrete optimization problem:

minimize G(u)

subject to u ∈ U,

where U is a finite set of feasible solutions and G(u) is a cost function. We
assume that each solution u has N components; i.e., it has the form u =
(u0, . . . , uN−1), where N is a positive integer. We can then view the prob-
lem as a sequential decision problem, where the components u0, . . . , uN−1

are selected one-at-a-time. A k-tuple (u0, . . . , uk−1) consisting of the first
k components of a solution is called a k-solution. We associate k-solutions
with the kth stage of the finite horizon DP problem shown in Fig. 1.2.8.
In particular, for k = 1, . . . , N , we view as the states of the kth stage all
the k-tuples (u0, . . . , uk−1). For stage k = 0, . . . , N − 1, we view uk as the
control. The initial state is an artificial state denoted s. From this state,
by applying u0, we may move to any “state” (u0), with u0 belonging to the
set

U0 =
{

ũ0 | there exists a solution of the form (ũ0, ũ1, . . . , ũN−1) ∈ U
}

.

Thus U0 is the set of choices of u0 that are consistent with feasibility.
More generally, from a state (u0, . . . , uk−1), we may move to any state

of the form (u0, . . . , uk−1, uk), upon choosing a control uk that belongs to
the set

Uk(u0, . . . , uk−1) =
{

uk | for some uk+1, . . . , uN−1 we have

(u0, . . . , uk−1, uk, uk+1, . . . , uN−1) ∈ U
}

.

20 Exact and Approximate Dynamic Programming Principles Chap. 1

These are the choices of uk that are consistent with the preceding choices
u0, . . . , uk−1, and are also consistent with feasibility. The last stage cor-
responds to the N -solutions u = (u0, . . . , uN−1), and the terminal cost is
G(u); see Fig. 1.2.8. All other transitions in this DP problem formulation
have cost 0.

Let
J*
k (u0, . . . , uk−1)

denote the optimal cost starting from the k-solution (u0, . . . , uk−1), i.e.,
the optimal cost of the problem over solutions whose first k components
are constrained to be equal to u0, . . . , uk−1. The DP algorithm is described
by the equation

J*
k (u0, . . . , uk−1) = min

uk∈Uk(u0,...,uk−1)
J*
k+1(u0, . . . , uk−1, uk),

with the terminal condition

J*
N (u0, . . . , uN−1) = G(u0, . . . , uN−1).

This algorithm executes backwards in time: starting with the known func-
tion J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing J*
0 .

An optimal solution (u∗
0, . . . , u

∗

N−1) is then constructed by going forward
through the algorithm

u∗

k ∈ arg min
uk∈Uk(u

∗
0 ,...,u

∗
k−1

)
J*
k+1(u

∗
0, . . . , u

∗

k−1, uk), k = 0, . . . , N−1, (1.8)

first compute u∗
0, then u∗

1, and so on up to u∗

N−1; cf. Eq. (1.7).
Of course here the number of states typically grows exponentially with

N , but we can use the DP minimization (1.8) as a starting point for the use
of approximation methods. For example we may try to use approximation
in value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(1.8). One possibility is to use as

J̃k+1(u∗
0, . . . , u

∗

k−1, uk),

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗
0, . . . , u

∗

k−1, uk. This is the rollout algorithm, which is a very simple and
effective approach for approximate combinatorial optimization. It will be
discussed in the next section, and in Chapters 2 and 3. It will be related
to the method of policy iteration and self-learning ideas in Chapter 5.

Let us finally note that while we have used a general cost function
G and constraint set C in our discrete optimization model of this section,
in many problems G and/or C may have a special structure, which is con-
sistent with a sequential decision making process. The traveling salesman
Example 1.2.2 is a case in point, where G consists of N components (the
intercity travel costs), one per stage.

Sec. 1.2 Deterministic Dynamic Programming 21

1.2.3 Approximation in Value Space

The forward optimal control sequence construction of Eq. (1.7) is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because the
number of possible xk and k can be very large. However, a similar forward
algorithmic process can be used if the optimal cost-to-go functions J*

k are
replaced by some approximations J̃k. This is the basis for an idea that is
central in RL: approximation in value space.† It constructs a suboptimal
solution {ũ0, . . . , ũN−1} in place of the optimal {u∗

0, . . . , u
∗

N−1}, based on

using J̃k in place of J*
k in the DP procedure (1.7).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)

]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)

]

, (1.9)

and
x̃k+1 = fk(x̃k, ũk).

Thus in approximation in value space the calculation of the subopti-
mal sequence {ũ0, . . . , ũN−1} is done by going forward (no backward calcu-
lation is needed once the approximate cost-to-go functions J̃k are available).
This is similar to the calculation of the optimal sequence {u∗

0, . . . , u
∗

N−1}

[cf. Eq. (1.7)], and is independent of how the functions J̃k are computed.

Multistep Lookahead

The algorithm (1.9) is said to involve a one-step lookahead minimization,
since it solves a one-stage DP problem for each k. In the next chapter we

† Approximation in value space is a simple idea that has been used quite

extensively for deterministic problems, well before the development of the mod-

ern RL methodology. For example it underlies the widely used A∗ method for
computing approximate solutions to large scale shortest path problems.

22 Exact and Approximate Dynamic Programming Principles Chap. 1

will also discuss the possibility of multistep lookahead , which involves the
solution of an !-step DP problem, where ! is an integer, 1 < ! < N−k, with
a terminal cost function approximation J̃k+!. Multistep lookahead typically
(but not always) provides better performance over one-step lookahead in
RL approximation schemes, and will be discussed in Chapter 2. For exam-
ple in Alphazero chess, long multistep lookahead is critical for good on-line
performance. The intuitive reason is that with ! stages being treated “ex-
actly” (by optimization), the effect of the approximation error

J̃k+! − J*
k+!

tends to become less significant as ! increases. However, the solution of the
multistep lookahead optimization problem, instead of the one-step looka-
head counterpart of Eq. (1.9), becomes more time consuming.

Rollout, Cost Improvement, and On-Line Replanning

A major issue in value space approximation is the construction of suitable
approximate cost-to-go functions J̃k. This can be done in many different
ways, giving rise to some of the principal RL methods. For example, J̃k may
be constructed with a sophisticated off-line training method, as discussed
in Section 1.1, in connection with chess and backgammon. Alternatively,
J̃k may be obtained on-line with rollout , which will be discussed in detail
in this book, starting with the next chapter. In rollout, the approximate
values J̃k(xk) are obtained when needed by running a heuristic control
scheme, called base heuristic or base policy, for a suitably large number of
steps, starting from the state xk.

The major theoretical property of rollout is cost improvement : the
cost obtained by rollout using some base heuristic is less or equal to the
corresponding cost of the base heuristic. This is true for any starting state,
provided the base heuristic satisfies some simple conditions, which will be
discussed in Chapter 2.†

There are also several variants of rollout, including versions involving
multiple heuristics, combinations with other forms of approximation in
value space methods, and multistep lookahead, which will be discussed in
subsequent chapters. An important methodology that is closely related to

† For an intuitive justification of the cost improvement mechanism, note that
the rollout control ũk is calculated from Eq. (1.9) to attain the minimum over

uk over the sum of two terms: the first stage cost gk(x̃k, uk) plus the cost of

the remaining stages (k + 1 to N) using the heuristic controls. Thus rollout in-
volves a first stage optimization (rather than just using the base heuristic), which

accounts for the cost improvement. This reasoning also helps to explain why mul-

tistep lookahead tends to provide better performance than one-step lookahead in
approximation in value space and rollout schemes.

Sec. 1.2 Deterministic Dynamic Programming 23

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 Vehicle 1 Vehicle 2

1 2 3 4 5 6 7 8 9 Vehicle 1 Vehicle 2

10 11

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 910 11

10 11 12
Capacity=1 Optimal Solution

Capacity=1 Optimal Solution

Figure 1.2.9 An instance of the vehicle routing problem of Example 1.2.3.
The two vehicles aim to collectively perform the two tasks, at nodes 7 and 9,
as fast as possible, by each moving to a neighboring node at each step. The
optimal routes are shown and require a total of 5 vehicle moves.

deterministic rollout is model predictive control , which is used widely in
control system design, and will be discussed in some detail in this book,
starting with Section 3.1; see also Section 1.4.7. The following example is
typical of the combinatorial applications that we will discuss in Chapter 3
in connection with rollout.

Example 1.2.3 (Multi-Vehicle Routing)

Consider n vehicles that move along the arcs of a given graph. Some of the
nodes of the graph include a task to be performed by the vehicles. Each
task will be performed only once, immediately after a vehicle reaches the
corresponding node for the first time. We assume a horizon that is large
enough to allow every task to be performed. The problem is to find a route
for each vehicle so that, roughly speaking, the tasks are collectively performed
by the vehicles in minimum time. To express this objective, we assume that
for each move by a vehicle there is a cost of one unit. These costs are summed
up to the point where all the tasks have been performed.

For a large number of vehicles and a complicated graph, this is a non-
trivial combinatorial problem. It can be approached by DP, like any discrete
deterministic optimization problem, as we discussed earlier, in Section 1.2.1.
In particular, we can view as state at a given stage the n-tuple of current po-
sitions of the vehicles together with the list of pending tasks. Unfortunately,
however, the number of these states can be enormous (it increases exponen-
tially with the number of tasks and the number of vehicles), so an exact DP
solution is intractable.

This motivates an optimization in value space approach based on roll-
out. For this we need an easily implementable base heuristic that will solve
suboptimally the problem starting from any state xk+1, and will provide the
cost approximation J̃k+1(xk+1) in Eq. (1.9). One possibility is based on the
vehicles choosing their actions selfishly, along shortest paths to their nearest

24 Exact and Approximate Dynamic Programming Principles Chap. 1

pending task, one-at-a-time in a fixed order. To illustrate, consider the two-
vehicle problem of Fig. 1.2.9. We introduce a vehicle order (say, first vehicle
1 then vehicle 2), and move each vehicle in turn one step to the next node
towards its nearest pending task, until all tasks have been performed.

The rollout algorithm will work as follows. At a given state xk [involving
for example vehicle positions at the node pair (1, 2) and tasks at nodes 7 and
9, as in Fig. 1.2.9], we consider all possible joint vehicle moves (the controls uk

at the state) resulting in the node pairs (3,5), (4,5), (3,4) (4,4), corresponding
to the next states xk+1 [thus, as an example (3,5) corresponds to vehicle 1
moving from 1 to 3, and vehicle 2 moving from 2 to 5]. We then run the
heuristic starting from each of these node pairs, and accumulate the incurred
costs up to the time when both tasks are completed. For example starting
from the vehicle positions/next state (3,5), the heuristic will produce the
following sequence of moves:

• Vehicle 1 moves from 3 to 6.

• Vehicle 2 moves from 5 to 2.

• Vehicle 1 moves from 6 to 9 and performs the task at 9.

• Vehicle 2 moves from 2 to 4.

• Vehicle 1 moves from 9 to 12.

• Vehicle 2 moves from 4 to 7 and performs the task at 7.

The two tasks are thus performed in 6 moves once the move to (3,5) has been
made.

The process of running the heuristic is repeated from the other three
vehicle position pairs/next states (4,5), (3,4) (4,4), and the heuristic cost
(number of moves) is recorded. We then choose the next state that cor-
responds to minimum cost. In our case the joint move to state xk+1 that
involves the pair (3, 4) produces the sequence

• Vehicle 1 moves from 3 to 6,

• Vehicle 2 moves from 4 to 7 and performs the task at 7,

• Vehicle 1 moves from 6 to 9 and performs the task at 9,

and performs the two tasks in 3 moves. It can be seen that it yields minimum
first stage cost plus heuristic cost from the next state, as per Eq. (1.9). Thus,
the rollout algorithm will choose it at the state (1,2), and move the vehicles
to state (3,4). At that state the rollout process will be repeated, i.e., consider
the possible next joint moves to the node pairs (6,7), (6,2), (6,1), (3,7), (3,2),
(3,1), perform a heuristic calculation from each of them, compare, etc.

It can be verified that the rollout algorithm starting from the state (1,2)
shown in Fig. 1.2.9 will attain the optimal cost (a total of 5 vehicle moves). It
will perform much better than the heuristic, which starting from state (1,2),
will move the two vehicles to state (4,4) and then to (7,1), etc (a total of 9
vehicle moves). This is an instance of the cost improvement property of the
rollout algorithm: it performs better than its base heuristic.

A related context where rollout can be very useful is when an optimal

Sec. 1.2 Deterministic Dynamic Programming 25

solution has been derived for a given mathematical or simulation-based
model of the problem, and the model changes as the system is operating.
Then the solution at hand is not optimal anymore, but it can be used as a
base heuristic for rollout using the new model, thereby restoring much of
the optimality loss due to the change in model. This is known as on-line
replanning with rollout , and will be discussed further in Section 1.4.7. For
example, in the preceding multi-vehicle example, on-line replanning would
perform well if the number and location of tasks may change unpredictably,
as new tasks appear or old tasks disappear, or if some of the vehicles break
down and get repaired randomly over time.

Lookahead Simplification and Multiagent Problems

Regardless of the method used to select the approximate cost-to-go func-
tions J̃k, another important issue is to perform efficiently the minimiza-
tion over uk ∈ Uk(x̃k) in Eq. (1.9). This minimization can be very time-
consuming or even impossible, in which case it must be simplified for prac-
tical use.

An important example is when the control consists of multiple com-
ponents, uk = (u1

k, . . . , u
m
k), with each component taking values in a finite

set. Then the size of the control space grows exponentially with m, and
may make the minimization intractable even for relatively small values of
m. This situation arises in several types of problems, including the case
of multiagent problems , where each control component is chosen by a sep-
arate decision maker, who will be referred to as an “agent.” For instance
in the multi-vehicle routing Example 1.2.3, each vehicle may be viewed as
an agent, and the number of joint move choices by the vehicles increases
exponentially with their number. This motivates another rollout approach,
called multiagent or agent-by-agent rollout , which we will discuss in Section
1.4.5.

Another case where the lookahead minimization in Eq. (1.9) may be-
come very difficult is when uk takes a continuum of values. Then, it is
necessary to either approximate the control constraint set Uk(x̃k) by dis-
cretization or sampling, or to use a continuous optimization algorithm such
as a gradient or Newton-like method. A coordinate descent-type method
may also be used in the multiagent case where the control consists of mul-
tiple components, uk = (u1

k, . . . , u
m
k). These possibilities will be considered

further in subsequent chapters. An important case in point is the model
predictive control methodology, which will be illustrated in Section 1.4.7
and discussed extensively later, starting with Section 3.1.

Q-Factors and Q-Learning

An alternative (and equivalent) form of the DP algorithm (1.4), uses the
optimal cost-to-go functions J*

k indirectly. In particular, it generates the

26 Exact and Approximate Dynamic Programming Principles Chap. 1

optimal Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (1.10)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.4).

Note that the optimal cost function J*
k can be recovered from the

optimal Q-factor Q*
k by means of the minimization

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk). (1.11)

Moreover, the DP algorithm (1.4) can be written in an essentially equivalent
form that involves Q-factors only [cf. Eqs. (1.10)-(1.11)]:

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

Exact and approximate forms of this and other related algorithms, in-
cluding counterparts for stochastic optimal control problems, comprise an
important class of RL methods known as Q-learning.

The expression

Q̃k(xk, uk) = gk(xk, uk) + J̃k+1

(

fk(xk, uk)
)

,

which is minimized in approximation in value space [cf. Eq. (1.9)] is known
as the (approximate) Q-factor of (xk, uk).† Note that the computation of
the suboptimal control (1.9) can be done through the Q-factor minimization

ũk ∈ arg min
uk∈Uk(x̃k)

Q̃k(x̃k, uk).

This suggests the possibility of using Q-factors in place of cost functions in
approximation in value space schemes. We will discuss such schemes later.

1.3 STOCHASTIC DYNAMIC PROGRAMMING

We will now extend the DP algorithm and our discussion of approximation
in value space to problems that involve stochastic uncertainty in their sys-
tem equation and cost function. We will first discuss the finite horizon case,
and the extension of the ideas underlying the principle of optimality and
approximation in value space schemes. We will then consider the infinite
horizon version of the problem, and provide an overview of the underly-
ing theory and algorithmic methodology, in sufficient detail to allow us to
speculate about infinite horizon extensions of finite horizon RL algorithms
to be developed in Chapters 2-4. A more detailed discussion of the infinite
horizon RL methodology will be given in Chapter 5.

† The term “Q-factor” has been used in the books [BeT96], [Ber19a], and is
adopted here as well. Another term used is “action value” (at a given state). The

terms “state-action value” and “Q-value” are also common in the literature. The

name “Q-factor” originated in reference to the notation used in the influential
Ph.D. thesis by Watkins [Wat89], which suggested the use of Q-factors in RL.

Sec. 1.3 Stochastic Dynamic Programming 27

......) xk k xk+1 +1 xN) x0

Random Transition

Random Transition xk+1 = fk(xk, uk, wk) Random cost

) Random Cost
) Random Cost gk(xk, uk, wk)

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN)

Control uk

Stage k k Future Stages

Figure 1.3.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xk, the next state under control uk is generated randomly,
according to xk+1 = fk(xk, uk, wk), where wk is the random disturbance, and a
random stage cost gk(xk , uk, wk) is incurred.

1.3.1 Finite Horizon Problems

The stochastic optimal control problem differs from the deterministic ver-
sion primarily in the nature of the discrete-time dynamic system that
governs the evolution of the state xk. This system includes a random
“disturbance” wk with a probability distribution Pk(· | xk, uk) that may
depend explicitly on xk and uk, but not on values of prior disturbances
wk−1, . . . , w0. The system has the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where as earlier xk is an element of some state space and the control uk

is an element of some control space. The cost per stage is denoted by
gk(xk, uk, wk) and also depends on the random disturbance wk; see Fig.
1.3.1. The control uk is constrained to take values in a given subset Uk(xk),
which depends on the current state xk.

Given an initial state x0 and a policy π = {µ0, . . . , µN−1}, the fu-
ture states xk and disturbances wk are random variables with distributions
defined through the system equation

xk+1 = fk
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , N − 1,

and the given distributions Pk(· | xk, uk). Thus, for given functions gk,
k = 0, 1, . . . , N , the expected cost of π starting at x0 is

Jπ(x0) = E
wk

k=0,...,N−1

{

gN (xN) +
N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

,

where the expected value operation E{·} is taken with respect to the joint
distribution of all the random variables wk and xk.† An optimal policy π∗

† We assume an introductory probability background on the part of the

reader. For an account that is consistent with our use of probability in this
book, see the text by Bertsekas and Tsitsiklis [BeT08].

28 Exact and Approximate Dynamic Programming Principles Chap. 1

is one that minimizes this cost; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0),

where Π is the set of all policies.
An important difference from the deterministic case is that we op-

timize not over control sequences {u0, . . . , uN−1}, but rather over policies
(also called closed-loop control laws , or feedback policies) that consist of a
sequence of functions

π = {µ0, . . . , µN−1},

where µk maps states xk into controls uk = µk(xk), and satisfies the con-
trol constraints, i.e., is such that µk(xk) ∈ Uk(xk) for all xk. Policies
are more general objects than control sequences, and in the presence of
stochastic uncertainty, they can result in improved cost, since they allow
choices of controls uk that incorporate knowledge of the state xk. Without
this knowledge, the controller cannot adapt appropriately to unexpected
values of the state, and as a result the cost can be adversely affected. This
is a fundamental distinction between deterministic and stochastic optimal
control problems.

The optimal cost depends on x0 and is denoted by J*(x0); i.e.,

J*(x0) = min
π∈Π

Jπ(x0).

We view J* as a function that assigns to each initial state x0 the optimal
cost J*(x0), and call it the optimal cost function or optimal value function.

Finite Horizon Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and xk the values J*
k (xk), which give

the optimal cost-to-go starting from state xk at stage k.

(c) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
we replace J*

k by approximations J̃k, and obtain a suboptimal policy
by the corresponding minimization.

Sec. 1.3 Stochastic Dynamic Programming 29

DP Algorithm for Stochastic Finite Horizon Problems

Start with
J*
N (xN) = gN (xN),

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

.

(1.12)
For each xk and k, define µ∗

k(xk) = u∗

k where u∗

k attains the min-
imum in the right side of this equation. Then, the policy π∗ =
{µ∗

0, . . . , µ
∗

N−1} is optimal.

The key fact is that starting from any initial state x0, the optimal
cost is equal to the number J*

0 (x0), obtained at the last step of the above
DP algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (which incidentally involves some mathematical
fine points; see the discussion of Section 1.3 in the textbook [Ber17a]).

Simultaneously with the off-line computation of the optimal cost-
to-go functions J*

0 , . . . , J
*
N , we can compute and store an optimal policy

π∗ = {µ∗
0, . . . , µ

∗

N−1} by minimization in Eq. (1.12). We can then use this
policy on-line to retrieve from memory and apply the control µ∗

k(xk) once
we reach state xk. The alternative is to forego the storage of the policy π∗

and to calculate the control µ∗

k(xk) by executing the minimization (1.12)
on-line.

Let us now illustrate some of the analytical and computational aspects
of the stochastic DP algorithm by means of some examples. There are a few
favorable cases where the optimal cost-to-go functions J*

k and the optimal
policies µ∗

k can be computed analytically. A prominent such case involves
a linear system and a quadratic cost function, which is a fundamental
problem in control theory. We illustrate the scalar version of this problem
next. The analysis can be generalized to multidimensional systems (see
optimal control textbooks such as [Ber17a]).

Example 1.3.1 (Linear Quadratic Optimal Control)

Consider a vehicle that moves on a straight-line road under the influence of
a force uk and without friction. Our objective is to maintain the vehicle’s
velocity at a constant level v̄ (as in an oversimplified cruise control system).
The velocity vk at time k, after time discretization of its Newtonian dynamics
and addition of stochastic noise, evolves according to

vk+1 = vk + buk +wk, (1.13)

where wk is a stochastic disturbance with zero mean and given variance σ2.
By introducing xk = vk − v̄, the deviation between the vehicle’s velocity vk

30 Exact and Approximate Dynamic Programming Principles Chap. 1

at time k from the desired level v̄, we obtain the system equation

xk+1 = xk + buk + wk.

Here the coefficient b relates to a number of problem characteristics
including the weight of the vehicle and the road conditions. Moreover in
practice there is friction, which introduces a coefficient a < 1 multiplying
vk in Eq. (1.13). For our present purposes, we assume that a = 1, and b
is constant and known to the controller (problems involving a system with
unknown and/or time-varying parameters will be discussed later). To express
our desire to keep xk near zero with relatively little force, we introduce a
quadratic cost over N stages:

x2
N +

N−1
∑

k=0

(x2
k + ru2

k),

where r is a known nonnegative weighting parameter. We assume no con-
straints on xk and uk (in reality such problems include constraints, but it
is common to neglect the constraints initially, and check whether they are
seriously violated later).

We will apply the DP algorithm, and derive the optimal cost-to-go
functions J∗

k and optimal policy. We have

J∗
N (xN) = x2

N ,

and by applying Eq. (1.12), we obtain

J∗
N−1(xN−1) = min

uN−1

E
{

x2
N−1 + ru2

N−1 + J∗
N (xN−1 + buN−1 + wN−1)

}

= min
uN−1

E
{

x2
N−1 + ru2

N−1 + (xN−1 + buN−1 + wN−1)
2
}

= min
uN−1

[

x2
N−1 + ru2

N−1 + (xN−1 + buN−1)
2

+ 2E{wN−1}(xN−1 + buN−1) + E{w2
N−1}

]

,

and finally, using the assumption E{wN−1} = 0,

J∗
N−1(xN−1) = x2

N−1 + min
uN−1

[

ru2
N−1 + (xN−1 + buN−1)

2
]

+ σ2. (1.14)

The expression minimized over uN−1 in the preceding equation is convex
quadratic in uN−1, so by setting to zero its derivative with respect to uN−1,

0 = 2ruN−1 + 2b(xN−1 + buN−1),

we obtain the optimal policy for the last stage:

µ∗
N−1(xN−1) = − b

r + b2
xN−1.

Sec. 1.3 Stochastic Dynamic Programming 31

Substituting this expression into Eq. (1.14), we obtain with a straightforward
calculation

J∗
N−1(xN−1) = PN−1x

2
N−1 + σ2,

where

PN−1 =
r

r + b2
+ 1.

We can now continue the DP algorithm to obtain J∗
N−2 from J∗

N−1.
An important observation is that J∗

N−1 is quadratic (plus an inconsequential
constant term), so with a similar calculation we can derive µ∗

N−2 and J∗
N−2 in

closed form, as a linear and a quadratic function of xN−2, respectively. This
process can be continued going backwards, and it can be verified by induction
that for all k, we have the optimal policy and optimal cost-to-go function in
the form

µ∗
k(xk) = Lkxk, k = 0, 1, . . . , N − 1,

J∗
k (xk) = Pkx

2
k + σ2

N−1
∑

t=k

Pt+1, k = 0, 1, . . . , N − 1,

where

Lk = − bPk+1

r + b2Pk+1
, k = 0, 1, . . . , N − 1,

and the sequence {Pk} is generated backwards by the equation

Pk =
rPk+1

r + b2Pk+1
+ 1, k = 0, 1, . . . , N − 1,

starting from the terminal condition PN = 1.
The process by which we obtained an analytical solution in this example

is noteworthy. A little thought while tracing the steps of the algorithm will
convince the reader that what simplifies the solution is the quadratic nature
of the cost and the linearity of the system equation. Indeed, it can be shown
in generality that when the system is linear and the cost is quadratic, the
optimal policy and cost-to-go function are given by closed-form expressions,
even for multi-dimensional linear systems (see [Ber17a], Section 3.1). The
optimal policy is a linear function of the state, and the optimal cost function
is a quadratic in the state plus a constant.

Another remarkable feature of this example, which can also be extended
to multi-dimensional systems, is that the optimal policy does not depend on
the variance of wk, and remains unaffected when wk is replaced by its mean
(which is zero in our example). This is known as certainty equivalence, and
occurs in several types of problems involving a linear system and a quadratic
cost; see [Ber17a], Sections 3.1 and 4.2. For example it holds even when wk

has nonzero mean. For other problems, certainty equivalence can be used as
a basis for problem approximation, e.g., assume that certainty equivalence
holds (i.e., replace stochastic quantities by some typical values, such as their
expected values) and apply exact DP to the resulting deterministic optimal
control problem (see the discussion in Chapter 2).

32 Exact and Approximate Dynamic Programming Principles Chap. 1

The linear quadratic type of problem illustrated in the preceding ex-
ample is exceptional in that it admits an elegant analytical solution. Most
practical DP problems require a computational solution, and this may in-
volve formidable difficulties. This is illustrated by the next example (which
may be skipped with no loss of continuity by readers that are familiar with
exact DP computations).

Example 1.3.2 (Inventory Control - Computational
Illustration of Stochastic DP)

Consider a problem of ordering a quantity of a certain item at each of N
stages so as to (roughly) meet a stochastic demand, while minimizing the
incurred expected cost. We denote

xk stock available at the beginning of the kth stage,

uk stock ordered (and immediately delivered) at the beginning of the kth
stage,

wk demand during the kth stage with given probability distribution.

We assume that there is an upper bound B on the amount of stock that
can be stored, and that any excess demand (wk − xk − uk) is turned away
and is lost. As a result, the stock evolves according to the system equation

xk+1 = max(0, xk + uk − wk),

with the states xk taking values in the interval [0, B]. This also implies the
control constraint

0 ≤ uk ≤ B − xk.

The demands w0, . . . , wN−1 are assumed to be independent nonnegative ran-
dom variables with given probability distributions. Moreover we assume that
xk, uk, and wk take nonnegative integer values, so the state space is finite for
all k, and consists of the integers in the interval [0, B].

The cost incurred in stage k consists of two components:

(a) The purchasing cost cuk, where c is cost per unit ordered.

(b) A cost for holding excess inventory if stock xk + uk −wk > 0, or a cost
for unfilled demand if xk + uk −wk < 0. We write this cost generically
as r(xk + uk − wk); as an example, for linear excess inventory/unfilled
demand costs,

r(xk + uk − wk) = β+ max(0, xk + uk − wk)− β− min(0, xk + uk − wk),

where β+ and β− are some positive scalars.

See Fig. 1.3.2.
There is also a terminal cost gN (xN) for being left with inventory xN

at the end of N stages. Thus, the total cost is

E

{

gN(xN) +

N−1
∑

k=0

(

cuk + r(xk + uk − wk)
)

}

.

Sec. 1.3 Stochastic Dynamic Programming 33

wk

xk

uk

Demand at Period k

wk

Demand at Period k

Stock at Period k Stock at Period k + 1

Inventory System

Stock Ordered at Period

Stock Ordered at Period k

∗ xk+1 = max(0, xk + uk − wk)

Cost of Period k

cuk + r(xk + uk − wk)

Figure 1.3.2 Inventory control example. At stage k, the current stock (state)
xk, the stock ordered (control) uk, and the demand (random disturbance) wk

determine the cost cuk + r(xk + uk − wk) of stage k and the stock xk+1 =
max(0, xk + uk − wk) at the next stage.

We want to minimize this cost by proper choice of the orders. Consistent with
our closed-loop policies framework, we assume that the order uk is chosen
with knowledge of the state xk. We are thus optimizing over ordering policies
µ0, . . . , µN−1 that satisfy the constraint 0 ≤ µk(xk) ≤ B for all xk and k.

The DP algorithm starts with J∗
N (xN) = gN (xN). At stage N − 1, it

computes the optimal cost-to-go

J∗
N−1(xN−1) = min

0≤uN−1≤B−xN−1

EwN−1

{

cuN−1 + r(xN−1 + uN−1 − wN−1)

+ gN
(

max(0, xN−1 + uN−1 − wN−1)
)

}

,

for all values of xN−1 in the interval [0, B]. Similarly, at stage k, the DP
algorithm computes the optimal cost-to-go,

J∗
k (xk) = min

0≤uk≤B−xk

Ewk

{

cuk + r(xk + uk − wk)

+ J∗
k+1

(

max(0, xk + uk − wk)
)

}

,

(1.15)

for all values of xk in the interval [0, B].
The value J∗

0 (x0) is the optimal expected cost when the initial stock
at time 0 is x0. The optimal policy µ∗

k(xk) is computed simultaneously with
J∗
k (xk) from the minimization in the right-hand side of Eq. (1.15).

We will now go through the numerical calculations of the DP algorithm
for a particular set of problem data. In particular, we assume that there is
an upper bound of B = 2 units on the stock that can be stored, i.e. there is
a constraint 0 ≤ xk + uk ≤ 2. The unit purchase cost of inventory is c = 1,
and the holding/shortage cost is

r(xk + uk − wk) = (xk + uk − wk)
2,

34 Exact and Approximate Dynamic Programming Principles Chap. 1

implying a penalty both for excess inventory and for unfilled demand at the
end of the kth stage. Thus the cost per stage is quadratic of the form

gk(xk, uk, wk) = uk + (xk + uk − wk)
2.

The terminal cost is assumed to be 0 (unused stock at the end of the planning
horizon is discarded):

gN (xN) = 0. (1.16)

The horizon N is 3 stages, and the initial stock x0 is 0. The demand wk has
the same probability distribution for all stages, given by

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2.

The state transition diagrams and the DP calculations are recorded in Fig.
1.3.3.

The starting equation for the DP algorithm is

J∗
3 (x3) = 0,

since the terminal cost is 0 [cf. Eq. (1.16)]. The algorithm takes the form [cf.
Eq. (1.12)]

J∗
k (xk) = min

0≤uk≤2−xk
uk=0,1,2

Ewk

{

uk+(xk+uk−wk)
2+J∗

k+1

(

max(0, xk+uk−wk)
)

}

,

where k = 0, 1, 2, and xk, uk, wk can take the values 0, 1, and 2.

Stage 2: We compute J∗
2 (x2) for each of the three possible states x2 = 0, 1, 2.

We have

J∗
2 (0) = min

u2=0,1,2
Ew2

{

u2 + (u2 − w2)
2
}

= min
u2=0,1,2

[

u2 + 0.1(u2)
2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2

]

.

We calculate the expected value of the right side for each of the three possible
values of u2:

u2 = 0 : E{·} = 0.7 · 1 + 0.2 · 4 = 1.5,

u2 = 1 : E{·} = 1 + 0.1 · 1 + 0.2 · 1 = 1.3,

u2 = 2 : E{·} = 2 + 0.1 · 4 + 0.7 · 1 = 3.1.

Hence we have, by selecting the minimizing u2,

J∗
2 (0) = 1.3, µ∗

2(0) = 1.

For x2 = 1, we have

J∗
2 (1) = min

u2=0,1
Ew2

{

u2 + (1 + u2 −w2)
2
}

= min
u2=0,1

[

u2 + 0.1(1 + u2)
2 + 0.7(u2)

2 + 0.2(u2 − 1)2
]

.

Sec. 1.3 Stochastic Dynamic Programming 35

Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2

Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2Stock = 0 Stock = 1 Stock = 2

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.0

0.1 0.2 0.7 0.9 1.00.1 0.2 0.7 0.9 1.0

Stock purchased = 0 = 0 Stock purchased = 1

Stock purchased = 2

Stage 0 Stage 0 Stage 1 Stage 1 Stage 2 Stage 2

Stock Cost-to-go Optimal Cost-to-go Optimal Cost-to-go Optimal
stock to stock to stock to
purchase purchase purchase

0 3.7 1 2.5 1 1.3 1

1 2.7 0 1.5 0 0.3 0

2 2.818 0 1.68 0 1.1 0

Figure 1.3.3 The DP results for Example 1.3.2. The state transition dia-
grams for the different values of stock purchased (control) are shown. The
numbers next to the arcs are the transition probabilities. The control u = 1
is not available at state 2 because of the limitation xk + uk ≤ 2. Similarly,
the control u = 2 is not available at states 1 and 2. The results of the DP
algorithm are given in the table.

The expected value in the right side is

u2 = 0 : E{·} = 0.1 · 1 + 0.2 · 1 = 0.3,

u2 = 1 : E{·} = 1 + 0.1 · 4 + 0.7 · 1 = 2.1.

Hence

J∗
2 (1) = 0.3, µ∗

2(1) = 0.

36 Exact and Approximate Dynamic Programming Principles Chap. 1

For x2 = 2, the only admissible control is u2 = 0, so we have

J∗
2 (2) = Ew2

{

(2− w2)
2
}

= 0.1 · 4 + 0.7 · 1 = 1.1,

J∗
2 (2) = 1.1, µ∗

2(2) = 0.

Stage 1: Again we compute J∗
1 (x1) for each of the three possible states

x1 = 0, 1, 2, using the values J∗
2 (0), J∗

2 (1), J∗
2 (2) obtained in the previous

stage. For x1 = 0, we have

J∗
1 (0) = min

u1=0,1,2
Ew1

{

u1 + (u1 − w1)
2 + J∗

2

(

max(0, u1 −w1)
)

}

,

u1 = 0 : E{·} = 0.1 · J∗
2 (0) + 0.7

(

1 + J∗
2 (0)

)

+ 0.2
(

4 + J∗
2 (0)

)

= 2.8,

u1 = 1 : E{·} = 1 + 0.1
(

1 + J∗
2 (1)

)

+ 0.7 · J∗
2 (0) + 0.2

(

1 + J∗
2 (0)

)

= 2.5,

u1 = 2 : E{·} = 2 + 0.1
(

4 + J∗
2 (2)

)

+ 0.7
(

1 + J∗
2 (1)

)

+ 0.2 · J∗
2 (0) = 3.68,

J∗
1 (0) = 2.5, µ∗

1(0) = 1.

For x1 = 1, we have

J∗
1 (1) = min

u1=0,1
Ew1

{

u1 + (1 + u1 −w1)
2 + J∗

2

(

max(0, 1 + u1 − w1)
)

}

,

u1 = 0 : E{·} = 0.1
(

1 + J∗
2 (1)

)

+ 0.7 · J∗
2 (0) + 0.2

(

1 + J∗
2 (0)

)

= 1.5,

u1 = 1 : E{·} = 1 + 0.1
(

4 + J∗
2 (2)

)

+ 0.7
(

1 + J∗
2 (1)

)

+ 0.2 · J∗
2 (0) = 2.68,

J∗
1 (1) = 1.5, µ∗

1(1) = 0.

For x1 = 2, the only admissible control is u1 = 0, so we have

J∗
1 (2) = Ew1

{

(2− w1)
2 + J∗

2

(

max(0, 2− w1)
)

}

= 0.1
(

4 + J∗
2 (2)

)

+ 0.7
(

1 + J∗
2 (1)

)

+ 0.2 · J∗
2 (0)

= 1.68,

J∗
1 (2) = 1.68, µ∗

1(2) = 0.

Stage 0: Here we need to compute only J∗
0 (0) since the initial state is known

to be 0. We have

J∗
0 (0) = min

u0=0,1,2
Ew0

{

u0 + (u0 − w0)
2 + J∗

1

(

max(0, u0 −w0)
)

}

,

u0 = 0 : E{·} = 0.1 · J∗
1 (0) + 0.7

(

1 + J∗
1 (0)

)

+ 0.2
(

4 + J∗
1 (0)

)

= 4.0,

u0 = 1 : E{·} = 1 + 0.1
(

1 + J∗
1 (1)

)

+ 0.7 · J∗
1 (0) + 0.2

(

1 + J∗
1 (0)

)

= 3.7,

u0 = 2 : E{·} = 2 + 0.1
(

4 + J∗
1 (2)

)

+ 0.7
(

1 + J∗
1 (1)

)

+ 0.2 · J∗
1 (0) = 4.818,

Sec. 1.3 Stochastic Dynamic Programming 37

J∗
0 (0) = 3.7, µ∗

0(0) = 1.

If the initial state were not known a priori, we would have to compute
in a similar manner J∗

0 (1) and J∗
0 (2), as well as the minimizing u0. The reader

may verify that these calculations yield

J∗
0 (1) = 2.7, µ∗

0(1) = 0,

J∗
0 (2) = 2.818, µ∗

0(2) = 0.

Thus the optimal ordering policy for each stage is to order one unit if the
current stock is zero and order nothing otherwise. The results of the DP
algorithm are given in lookup table form in Fig. 1.3.3.

1.3.2 Approximation in Value Space for Stochastic DP

Generally the computation of the optimal cost-to-go functions J*
k can be

very time-consuming or impossible. One of the principal RL methods to
deal with this difficulty is approximation in value space. Here approxima-
tions J̃k are used in place of J*

k , similar to the deterministic case; cf. Eqs.
(1.7) and (1.9).

Approximation in Value Space - Use of J̃k in Place of J*
k

At any state xk encountered at stage k, set

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

.

(1.17)

The motivation for approximation in value space for stochastic DP
problems is similar to the one for deterministic problems. The one-step
lookahead minimization (1.17) needs to be performed only for the N states
x0, . . . , xN−1 that are encountered during the on-line control of the system,
and not for every state within the potentially enormous state space.

Our discussion of rollout (cf. Section 1.2.3) also applies to stochastic
problems: we select J̃k to be the cost function of a suitable base policy
(perhaps with some approximation). Note that any policy can be used
on-line as base policy, including policies obtained by a sophisticated off-
line procedure, using for example neural networks and training data.† The

† The principal role of neural networks within the context of this book is to
provide the means for approximating various target functions from input-output

data. This includes cost functions and Q-factors of given policies, and optimal

cost-to-go functions and Q-factors; in this case the neural network is referred to
as a value network (sometimes the alternative term critic network is also used). In

38 Exact and Approximate Dynamic Programming Principles Chap. 1

Truncated Horizon Rollout
Approximation in Policy Space Heuristic Cost Approximation

for Stages Beyond Truncation
for Stages Beyond Truncation

for Stages Beyond Truncation

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Base Policy

Base Policy m-Step

Rollout with Base Policy

Multiagent Q-factor minimization xk

Possible States Possible States
Possible States xk+1 xk+m+1

, uk, wk)

Figure 1.3.4 Schematic illustration of truncated rollout. One-step lookahead is
followed by simulation of the base policy for m steps, and an approximate cost
J̃k+m+1(xk+m+1) is added to the cost of the simulation, which depends on the
state xk+m+1 obtained at the end of the rollout. If the base policy simulation
is omitted (i.e., m = 0), one recovers the general approximation in value space
scheme (1.17). There are also multistep lookahead versions of truncated rollout
(see Chapter 2).

rollout algorithm has the cost improvement property, whereby it yields an
improved cost relative to its underlying base policy.

A major variant of rollout is truncated rollout , which combines the
use of one-step optimization, simulation of the base policy for a certain
number of steps m, and then adds an approximate cost J̃k+m+1(xk+m+1)
to the cost of the simulation, which depends on the state xk+m+1 obtained
at the end of the rollout (see Chapter 2). Note that if one foregoes the use
of a base policy (i.e., m = 0), one recovers as a special case the general
approximation in value space scheme (1.17); see Fig. 1.3.4. Note also that
versions of truncated rollout with multistep lookahead minimization are
possible. They will be discussed in subsequent chapters. The terminal cost
approximation is necessary in infinite horizon problems, since an infinite
number of stages of the base policy rollout is impossible. However, even for
finite horizon problems it may be necessary and/or beneficial to artificially
truncate the rollout horizon. This is particularly true if the truncated
rollout is implemented with the aid of Monte Carlo simulation, in which
case simulation noise may become a concern.

Another helpful point of view is to interpret m-step truncated roll-
out as an approximate m-step extension of the length of the multistep

other cases the neural network represents a policy viewed as a function from state
to control, in which case it is called a policy network (the alternative term actor

network is also used). The training methods for constructing the cost function,

Q-factor, and policy approximations themselves from data are mostly based on
optimization and regression, and will be discussed in Chapter 4.

Sec. 1.3 Stochastic Dynamic Programming 39

Steps “Future”Steps “Future” First Step

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

Cost-to-go approximation Expected value approximationCost-to-go approximation Expected value approximation

Simplified minimization

At xk

Figure 1.3.5 Schematic illustration of approximation in value space for stochastic
problems, and the three approximations involved in its design. Typically these
approximations can be designed independently of each other. There are also
multistep lookahead versions of approximation in value space (see Chapter 2).

minimization. Since a long lookahead minimization is likely beneficial,
it follows that unless the terminal cost approximation is very good (i.e.,
J̃k+m+1 ≈ J*

k+m+1), a large combined number of multistep lookahead min-
imization and rollout steps is also likely to be beneficial.

Note that we may be useful to simplify the lookahead minimization
over uk ∈ Uk(xk) [cf. Eq. (1.12)]. In particular, in the multiagent case
where the control consists of multiple components, uk = (u1

k, . . . , u
m
k), a

sequence of m single component minimizations can be used instead, with
potentially enormous computational savings resulting.

There is one additional issue in approximation in value space for
stochastic problems: the computation of the expected value in Eq. (1.17)
may be very time-consuming. Then one may consider approximations in
the computation of this expected value, based for example on Monte Carlo
simulation or other schemes. Some of the possibilities along this line will
be discussed in the next chapter.

Figure 1.3.5 illustrates the three approximations involved in approx-
imation in value space for stochastic problems: cost-to-go approximation,
expected value approximation, and simplified minimization. They may be
designed largely independently of each other, and with a variety of meth-
ods. Most of the discussion in this book will revolve around different ways
to organize these three approximations, in the context of finite and infinite
horizon problems, and some of their special cases.

Q-Factors for Stochastic Problems

We can define optimal Q-factors for a stochastic problem, similar to the
case of deterministic problems [cf. Eq. (1.10)], as the expressions that are
minimized in the right-hand side of the stochastic DP equation (1.12).
They are given by

Q*
k(xk, uk) = Ewk

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

. (1.18)

40 Exact and Approximate Dynamic Programming Principles Chap. 1

The optimal cost-to-go functions J*
k can be recovered from the optimal

Q-factors Q*
k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk),

and the DP algorithm can be written in terms of Q-factors as

Q*
k(xk, uk) =Ewk

{

gk(xk, uk, wk)

+ min
uk+1∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), uk+1

)

}

.

Similar to the deterministic case, Q-learning involves the calculation
of either the optimal Q-factors (1.18) or approximations Q̃k(xk, uk). The
approximate Q-factors may be obtained using approximation in value space
schemes, and can be used to obtain approximately optimal policies through
the Q-factor minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (1.19)

In Chapter 4, we will discuss the use of neural networks in such approxi-
mations.

Cost Versus Q-Factor Approximations - Robustness and On-
Line Replanning

We have seen that it is possible to implement approximation in value space
by using cost function approximations [cf. Eq. (1.17)] or by using Q-factor
approximations [cf. Eq. (1.19)], so the question arises which one to use in a
given practical situation. One important consideration is the facility of ob-
taining suitable cost or Q-factor approximations. This depends largely on
the problem and also on the availability of data on which the approxima-
tions can be based. However, there are some other major considerations.

In particular, the cost function approximation scheme

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,

has an important disadvantage: the expected value above needs to be com-
puted on-line for all uk ∈ Uk(xk), and this may involve substantial compu-
tation. On the other hand it also has an important advantage in situations
where the system function fk, the cost per stage gk, or the control con-
straint set Uk(xk) can change as the system is operating. Assuming that
the new fk, gk, or Uk(xk) become known to the controller at time k, on-line
replanning may be used, and this may improve substantially the robustness

Sec. 1.3 Stochastic Dynamic Programming 41

......) xk xk+1) x0

Random Transition

) Random Cost

xk+1 = f(xk, uk, wk)

) αkg(xk, uk, wk)

Termination State Infinite Horizon

Figure 1.3.6 Illustration of an infinite horizon problem. The system and cost
per stage are stationary, except for the use of a discount factor α. If α = 1, there
is typically a special cost-free termination state that we aim to reach.

of the approximation in value space scheme, as discussed earlier for deter-
ministic problems.

By comparison, the Q-factor function approximation scheme (1.19)
does not allow for on-line replanning. On the other hand, for problems
where there is no need for on-line replanning, Q-factor approximation does
not require the on-line evaluation of expected values and may allow fast
on-line computation of the minimizing control µ̃k(xk) via Eq. (1.19).

1.3.3 Infinite Horizon Problems - An Overview

We will now provide an outline of infinite horizon stochastic DP with an
emphasis on its aspects that relate to our RL/approximation methods.
In Chapter 5 we will deal with two types of infinite horizon stochastic
problems, where we aim to minimize the total cost over an infinite number
of stages, given by

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

; (1.20)

see Fig. 1.3.6. Here, Jπ(x0) denotes the cost associated with an initial state
x0 and a policy π = {µ0, µ1, . . .}, and α is a scalar in the interval (0, 1].

When α is strictly less that 1, it has the meaning of a discount factor ,
and its effect is that future costs matter to us less than the same costs
incurred at the present time. Among others, a discount factor guarantees
that the limit defining Jπ(x0) exists and is finite (assuming that the range
of values of the stage cost g is bounded). This is a nice mathematical
property that makes discounted problems analytically and algorithmically
tractable.

Thus, by definition, the infinite horizon cost of a policy is the limit
of its finite horizon costs as the horizon tends to infinity. The two types of
problems that we will focus on in Chapter 5 are:

(a) Stochastic shortest path problems (SSP for short). Here, α = 1 but
there is a special cost-free termination state; once the system reaches
that state it remains there at no further cost. In some types of prob-
lems, the termination state may represent a goal state that we are

42 Exact and Approximate Dynamic Programming Principles Chap. 1

trying to reach at minimum cost, while in others it may be a state
that we are trying to avoid for as long as possible. We will mostly
assume a problem structure such that termination is inevitable under
all policies. Thus the horizon is in effect finite, but its length is ran-
dom and may be affected by the policy being used. A significantly
more complicated type of SSP problems arises when termination can
be guaranteed only for a subset of policies, which includes all opti-
mal policies. Some common types of SSP problems belong to this
category, including deterministic shortest path problems that involve
graphs with cycles.

(b) Discounted problems . Here, α < 1 and there need not be a termi-
nation state. However, we will see that a discounted problem with
a finite number of states can be readily converted to an SSP prob-
lem. This can be done by introducing an artificial termination state
to which the system moves with probability 1− α at every state and
stage, thus making termination inevitable. As a result, algorithms
and analysis for SSP problems can be easily adapted to discounted
problems. Moreover, a common line of analysis and algorithmic de-
velopment may often be used for both SSP and discounted problems,
as we will see in Chapter 5.

In our theoretical and algorithmic analysis of Chapter 5, we will focus
on finite state problems. Much of our infinite horizon methodology applies
in principle to problems with continuous spaces problems as well, but there
are significant exceptions and mathematical complications (the abstract
DP monograph [Ber18a] takes a closer look at such problems). Still we will
use the infinite horizon methodology in continuous spaces settings with
somewhat limited justification, as an extension of the finite-state methods
that we will justify more rigorously.

Infinite Horizon Theory - Value Iteration

There are several analytical and computational issues regarding our infinite
horizon problems. Many of them revolve around the relation between the
optimal cost function J* of the infinite horizon problem and the optimal
cost functions of the corresponding N -stage problems.

In particular, consider the undiscounted case (α = 1) and let JN (x)
denote the optimal cost of the problem involving N stages, initial state x,
cost per stage g(x, u, w), and zero terminal cost. This cost is generated
after N iterations of the DP algorithm

Jk+1(x) = min
u∈U(x)

Ew

{

g(x, u, w) + Jk
(

f(x, u, w)
)

}

, k = 0, 1, . . . ,

(1.21)
starting from J0(x) ≡ 0. The algorithm (1.21) is just the DP algorithm with
the time indexing reversed, and is known as the value iteration algorithm

Sec. 1.3 Stochastic Dynamic Programming 43

(VI for short). Since the infinite horizon cost of a given policy is, by
definition, the limit of the corresponding N -stage costs as N → ∞, it is
natural to speculate that:

(1) The optimal infinite horizon cost is the limit of the corresponding
N -stage optimal costs as N → ∞; i.e.,

J*(x) = lim
N→∞

JN (x) (1.22)

for all states x.

(2) The following equation should hold for all states x,

J*(x) = min
u∈U(x)

Ew

{

g(x, u, w) + J*
(

f(x, u, w)
)

}

. (1.23)

This is obtained by taking the limit as N → ∞ in the VI algorithm
(1.21) using Eq. (1.22). The preceding equation, called Bellman’s
equation, is really a system of equations (one equation per state x),
which has as solution the optimal costs-to-go of all the states.

(3) If µ(x) attains the minimum in the right-hand side of the Bellman
equation (1.23) for each x, then the policy {µ, µ, . . .} should be op-
timal. This type of policy is called stationary. Intuitively, optimal
policies can be found within this class of policies, since optimization
of the future costs (the tail subproblem) when starting at a given
state looks the same regardless of the time when we start.

All three of the preceding results hold for finite-state SSP problems
under reasonable assumptions. They also hold for discounted problems
in suitably modified form that incorporates the discount factor, provided
the cost per stage function g is bounded over the set of possible values of
(x, u, w) (see [Ber12], Chapter 1). In particular, the discounted version of
the VI algorithm of Eq. (1.21) is†

Jk+1(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJk
(

f(x, u, w)
)

}

, k = 0, 1, . . . ,

(1.24)

† This is again the finite horizon DP algorithm. In particular, consider the
N-stages problem and let VN−k(x) be the optimal cost-to-go starting at x with
k stages to go, and with terminal cost equal to 0. Applying DP, we have

VN−k(x) = min
u∈U(x)

Ew

{

αN−kg(x, u,w) + VN−k+1

(

f(x, u, w)
)

}

, VN(x) = 0,

for all x. By dividing by αN−k and defining Jk(x) = VN−k+1(x)/α
N−k+1, we

obtain the discounted version of the VI algorithm.

44 Exact and Approximate Dynamic Programming Principles Chap. 1

while the discounted version of Bellman’s equation [cf. Eq. (1.23)] is

J*(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJ*
(

f(x, u, w)
)

}

. (1.25)

The VI algorithm of Eq. (1.24) simply expresses the fact that the
optimal cost for k + 1 stages is obtained by minimizing the sum of the
first stage cost and the optimal cost for the next k stages starting from the
next state f(x, u, w). The latter cost, however, should be discounted by
α in view of the cost definition (1.20). The intuitive interpretation of the
Bellman equation (1.25) is that it is the limit as k → ∞ of the VI algorithm
(1.24) assuming that Jk → J*.

The VI algorithm is also often valid, in the sense that Jk → J*, even
if the initial function J0 is nonzero. The motivation for a different choice
of J0 is faster convergence to J*; generally the convergence is faster as J0
is chosen closer to J*.

We will now provide two examples that illustrate how the infinite
horizon DP theory can be used for an analytical solution of the problem.
The first example involves continuous state and control spaces and is based
on the linear quadratic formulation (cf. Example 1.3.1). The second exam-
ple involves discrete state and control spaces and is of the SSP type. These
examples involve a favorable special structure, which allows an analytical
solution. Such problems are rare. Most practical DP problems require a
computational solution.

Example 1.3.3 (Linear Quadratic Optimal Control)

Consider the infinite horizon version of the linear quadratic problem of Ex-
ample 1.3.1, assuming a discount factor α < 1. Thus the cost function is
given by

lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αk(x2
k + ru2

k)

}

,

and the VI algorithm (1.24) has the form

Jk+1(x) = min
u

Ew

{

x2 + ru2 + αJk(x+ bu+ w)
}

, k = 0, 1, (1.26)

Since the VI iterates are cost functions of linear quadratic finite horizon prob-
lems, it follows from the analysis of the finite horizon case of Example 1.3.1
that Jk is a convex quadratic in the state plus a constant. A simple modi-
fication of the calculations of that example (to incorporate the effect of the
discount factor) yields the VI iterates as

Jk+1(x) = Kkx
2 + σ2

k−1
∑

t=0

αk−tKt, k = 0, 1, . . . , (1.27)

Sec. 1.3 Stochastic Dynamic Programming 45

0

r

b2
+ 1 1

+ 1 1

K K

K K

K K∗Kk Kk+1

K̃ K K+ 1 1 −

r

αb2

F (K) = αrK

r+αb2K
+ 1

45◦Line

Figure 1.3.7 Graphical construction of the two solutions of Bellman’s equa-
tion, and proof of the convergence of the VI algorithm (1.27)-(1.28) for the
linear quadratic Example 1.3.3, starting from a quadratic initial function. The
sequence {Kk} generated by the VI algorithm is given by Kk+1 = F (Kk)
where F is the function given by

F (K) =
αrK

r + αb2K
+ 1.

Because F is concave and monotonically increasing in the interval (−r/αb2,∞)
and “flattens out” as K → ∞, as shown in the figure, the equation K = F (K)
has one positive solution K∗ and one negative solution K̃. The iteration
Kk+1 = F (Kk) [cf. Eq. (1.28)] converges to K∗ starting from anywhere in
the interval (K̃,∞) as shown in the figure. This iteration is essentially equiv-
alent to the VI algorithm (1.26) with a quadratic starting function.

starting from the initial condition J0(x) = 0, where the sequence {Kk} is
generated by the equation

Kk+1 =
αrKk

r + αb2Kk
+ 1, k = 0, 1, . . . , (1.28)

starting from the initial condition K0 = 1 (Kk corresponds to PN−k in Ex-
ample 1.3.1 because of the reversal of time indexing).

It can be verified that the sequence {Kk} is convergent to the scalar
K∗, which is the unique positive solution of the equation

K =
αrK

r + αb2K
+ 1, (1.29)

the limit as k → ∞ of Eq. (1.28) (a graphical explanation is given in Fig.
1.3.7). Equation (1.29) is a one-dimensional special case of the famous discrete-
time Riccati equation from control theory. Moreover, the VI algorithm (1.27)
converges to the optimal cost function, which is the quadratic function

J∗(x) = K∗x2 +
α

1− α
K∗σ2; (1.30)

46 Exact and Approximate Dynamic Programming Principles Chap. 1

cf. Eq. (1.27). It can be verified by straightforward calculation that J∗ satisfies
Bellman’s equation,

J∗(x) = min
u

Ew

{

x2 + ru2 + αJ∗(x+ bu+ w)
}

.

The optimal policy is obtained by the preceding minimization:

µ∗(x) ∈ argmin
u

Ew

{

x2 + ru2 + αK∗(x+ bu+ w)2
}

+
α2

1− α
K∗σ2.

By setting the derivative of the minimized expression to 0, it can be seen that
µ∗ is linear and stationary of the form

µ∗(x) = Lx, (1.31)

where

L = − αbK∗

r + αb2K∗ . (1.32)

This is the limit of the nonstationary optimal policy derived in Example 1.3.1
for the finite horizon version of the problem.

The preceding derivation can be extended to general multidimensional
linear quadratic infinite horizon discounted problems, and can be established
by a rigorous analysis (see [Ber12], Chapter 4). The linearity and simplicity of
the optimal policy (1.31) is noteworthy, and a major reason for the popularity
of the linear quadratic formulation.

The undiscounted version (α = 1) of the infinite horizon linear quadratic
problem is also of interest. A mathematical complication here is that the
optimal cost function (1.30) becomes infinite as α → 1, when σ2 > 0. On
the other hand, for a deterministic problem (wk ≡ 0 or equivalently σ2 = 0)
the informal derivation given above goes through, and the optimal controller
is still linear of the form (1.31), where now L is the limit as α → 1 of the
discounted version (1.32):

L = − bK∗

r + b2K∗ , (1.33)

where K∗ is the positive solution of the Riccati equation

K =
rK

r + b2K
+ 1.

(This quadratic equation in K has two solutions, one positive and one nega-
tive, when r > 0; see Fig. 1.3.7.)

The linear policy µ∗(x) = Lx, with the coefficient L given by Eq. (1.33),
is also optimal for a stochastic linear quadratic optimal control problem with
the average cost criterion, which is not discussed in this book, but is covered
elsewhere in the literature (see e.g., [Ber12], Section 5.6.5, and the references
quoted there).

Sec. 1.3 Stochastic Dynamic Programming 47

+1, . . . , kSpider 1 Spider 2 Fly 1 Fly 2 n− 11 n n 2 0 1 2+ 1 n− 2 0 1 2 2 0 1 22 0 1 2

Figure 1.3.8 Illustration of transition probabilities of the spider and fly prob-
lem. The state is the distance between spider and fly, and cannot increase,
except when the spider and fly are one unit apart. There are n + 1 states,
with state 0 being the termination state.

Example 1.3.4 (Spider and Fly)

A spider and a fly move along a straight line at times k = 0, 1, . . . The initial
positions of the fly and the spider are integer. At each stage, the fly moves
one unit to the left with probability p, one unit to the right with probability p,
and stays where it is with probability 1−2p. The spider, knows the position of
the fly at the beginning of each stage, and will always move one unit towards
the fly if its distance from the fly is more that one unit. If the spider is one
unit away from the fly, it will either move one unit towards the fly or stay
where it is. If the spider and the fly land in the same position at the end
of a stage, then the spider captures the fly and the process terminates. The
spider’s objective is to capture the fly in minimum expected time; see Fig.
1.3.8.

We view as state the distance between spider and fly. Then the problem
can be formulated as an SSP problem with states 0, 1, . . . , n, where n is the
initial distance. State 0 is a termination state where the spider captures the
fly. Let us denote p1y(m) and p1y(m) the transition probabilities from state
1 to state y under the two spider choices/controls of moving and not moving,
respectively, and let us denote by pxy the transition probabilities from a state
x ≥ 2.† We have

pxx = p, px(x−1) = 1− 2p, px(x−2) = p, x ≥ 2,

p11(m) = 2p, p10(m) = 1− 2p,

p12(m) = p, p11(m) = 1− 2p, p10(m) = p,

with all other transition probabilities being 0.
For states x ≥ 2, Bellman’s equation is written as

J∗(x) = 1 + pJ∗(x) + (1− 2p)J∗(x− 1) + pJ∗(x− 2), x ≥ 2, (1.34)

† Transition probabilities are a common way to describe stochastic finite-
state systems, and will be used in Chapter 5. In particular, given the transition
probabilities pxy(u), i.e., the conditional probabilities of moving from state x to
state y under control u, an equivalent system equation description is xk+1 = wk,
where the disturbance wk is generated according to the conditional distribution

p(wk = y | xk = x, uk = u) = pxy(u),

for all possible values of (x, y, u).

48 Exact and Approximate Dynamic Programming Principles Chap. 1

where for the termination state 0, we have J∗(0) = 0. The only state where
the spider has a choice is when it is one unit away from the fly, and for that
state Bellman’s equation is given by

J∗(1) = 1 + min
[

2pJ∗(1), pJ∗(2) + (1− 2p)J∗(1)
]

, (1.35)

where the first and the second expression within the bracket above are asso-
ciated with the spider moving and not moving, respectively. By writing Eq.
(1.34) for x = 2, we obtain

J∗(2) = 1 + pJ∗(2) + (1− 2p)J∗(1),

from which

J∗(2) =
1

1− p
+

(1− 2p)J∗(1)

1− p
.

Substituting this expression in Eq. (1.35), we obtain

J∗(1) = 1 + min

[

2pJ∗(1),
p

1− p
+

p(1− 2p)J∗(1)

1− p
+ (1− 2p)J∗(1)

]

,

or equivalently,

J∗(1) = 1 + min

[

2pJ∗(1),
p

1− p
+

(1− 2p)J∗(1)
1− p

]

. (1.36)

Thus Bellman’s equation at state 1 can be reduced to the one-dimensio-
nal Eq. (1.36), and once this equation is solved it can be used to solve the
Bellman Eq. (1.34) for all x > 1. It is also possible to derive analytically
the optimal policy, but the derivation is somewhat lengthy, so we refer to
[Ber17a], Section 5.2, for the details. It turns out that the optimal policy
is simple and intuitive: for p ≤ 1/3 (when the fly does not move a lot), it
is optimal for the spider to move towards the fly, and it is optimal to stay
motionless otherwise.

Despite its simplicity, the spider-and-fly problem of the preceding ex-
ample can become quite difficult even with seemingly minor modifications.
For example if the fly is “faster” than the spider, and can move up to two
units to the left or right with positive probabilities, the distance between
spider and fly may become arbitrarily large with positive probability, and
the number of states becomes infinite. Then, not only the Bellman equation
is hard to solve analytically, but also the standard theory of SSP problems
does not apply (a more complex extension of the theory that applies to
infinite state space problems is needed; see [Ber18a], Chapter 4).

As another example, suppose that the spider has “blurry” vision and
cannot see the exact location of the fly. Then we may formulate the prob-
lem as one where the choice of the fly depends on all of its past observa-
tions. We will consider later such problems, called POMDP for (partially
observed Markovian decision problem), and we will see that they are far
more difficult, both analytically and computationally, than the problems
we have discussed so far.

Sec. 1.3 Stochastic Dynamic Programming 49

1.3.4 Infinite Horizon - Approximation in Value Space

A principal RL approach to deal with the often intractable exact compu-
tation of J* is approximation in value space. Here an approximation J̃ is
used in place of J*, similar to the finite horizon case.

Approximation in Value Space - Use of J̃ in Place of J*

For any state x, use a control µ̃(x) obtained by the one-step lookahead
minimization

µ̃(x) ∈ arg min
uk∈U(x)

Ew

{

g(x, u, w) + J̃
(

f(x, u, w)
)

}

. (1.37)

Some insight into Bellman’s equation, the VI algorithm, approxima-
tion in value space, and some of the properties of the corresponding one-step
lookahead policy µ̃, can be obtained with the help of geometric construc-
tions, given in Figs. 1.3.9 and 1.3.10. To understand these figures we need
some abstract notation (we will use extensively this notation in Chapter
5). In particular, we denote by TJ the function in the right-hand side of
Bellman’s equation. Its value at state x is given by

(TJ)(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

. (1.38)

Also for each policy µ, we introduce the corresponding function TµJ , which
has value at x given by

(TµJ)(x) = Ew

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

. (1.39)

Thus T and Tµ can be viewed as operators (referred to as the Bellman
operators), which map cost functions J to other cost functions (TJ or
TµJ , respectively).

An important property of T and Tµ is that they are monotone, in the
sense that if J and J ′ are two functions of x such that

J(x) ≥ J ′(x), for all x,

then we have

(TJ)(x) ≥ (TJ ′)(x), (TµJ)(x) ≥ (TµJ ′)(x), for all x.

Note that the Bellman equation J = TµJ is linear, while the function
TJ can be written as minµ TµJ and its components are concave. For ex-
ample, assume two states 1 and 2, and two controls u and v. Consider the

50 Exact and Approximate Dynamic Programming Principles Chap. 1

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

J0 J1 J2

Optimal cost Cost of rollout policy ˜

TJ

45◦Line

TµJ

Cost of µ
Jµ

provement Bellman Equation Value Iterations

Figure 1.3.9 Geometric interpretation of the Bellman operators Tµ and T , the
Bellman equations, and the VI algorithm. The function TµJ for each policy µ
is linear, while the function TJ can be written as minµ TµJ and its components
are concave. The functions J , J∗, TJ , etc, are multidimensional (they have
as many scalar components as there are states), but they are shown projected
onto one dimension. The optimal cost J∗ satisfies J∗ = TJ∗, so it is obtained
from the intersection of the graph of TJ and the 45 degree line shown. The
VI sequence {Jk}, generated by Jk+1 = TJk, is obtained with the staircase
construction shown, and asymptotically converges to J∗ (cf. the linear-quadratic
case of Fig. 1.3.7).

policy µ that applies control u at state 1 and control v at state 2. Then,
using transition probability notation, the operator Tµ takes the form

(TµJ)(1) =
2

∑

j=1

p1j(u)
(

g(1, u, j) + αJ(j)
)

,

(TµJ)(2) =
2

∑

j=1

p2j(v)
(

g(2, v, j) + αJ(j)
)

,

where pij(u) and pij(v) are the probabilities that the next state will be j,
when the current state is i, and the control is u or v, respectively. Clearly,
(TµJ)(1) and (TµJ)(2) are linear functions of J . Also the operator T of
the Bellman equation J = TJ takes the form

(TJ)(1) = min

[

2
∑

j=1

p1j(u)
(

g(1, u, j) + αJ(j)
)

,

2
∑

j=1

p1j(v)
(

g(1, v, j) + αJ(j)
)

]

,

Sec. 1.3 Stochastic Dynamic Programming 51

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Value Space Approximation
Value Space Approximation

J̃

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l
One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost
One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

45◦Line

Figure 1.3.10 Geometric interpretation of approximation in value space and
the one-step lookahead policy µ̃ [cf. Eq. (1.37)]. Each policy µ defines the linear
function TµJ of J , given by Eq. (1.39), and TJ can be written as TJ = minµ TµJ ,
while µ̃ attains the minimum over µ of TµJ̃. Note that if there are finitely many
policies, the components of TJ are piecewise linear. Approximation in value space
with "-step lookahead minimization can be similarly interpreted: we obtain µ̃ with
the construction in the figure, using T !J̃ instead of T J̃.

(TJ)(2) = min

[

2
∑

j=1

p2j(u)
(

g(2, u, j) + αJ(j)
)

,

2
∑

j=1

p2j(v)
(

g(2, v, j) + αJ(j)
)

]

.

Clearly, (TJ)(1) and (TJ)(2) are concave and piecewise linear (with two
pieces; more generally, as many linear pieces as the number of controls).
The concavity property holds in generality because (TJ)(x) is the minimum
of a collection of linear functions of J , one for each control u ∈ U(x).

The operator notation simplifies algorithmic descriptions, derivations,
and proofs related to DP, and facilitates its extensions to infinite horizon
DP models beyond the ones that we have discussed in this section (see
Chapter 5, the DP textbook [Ber12], and the abstract DP monograph
[Ber18a]). In particular, using the operators T and Tµ, we can write the
VI algorithm in the compact form

Jk+1 = TJk,

while the one-step lookahead policy µ̃ is characterized by the equation

Tµ̃J̃ = T J̃ ;

cf. Figs. 1.3.9 and 1.3.10, respectively.

52 Exact and Approximate Dynamic Programming Principles Chap. 1

1.3.5 Infinite Horizon - Policy Iteration, Rollout, and
Newton’s Method

Another major class of infinite horizon algorithms is based on policy itera-
tion (PI for short), which involves the repeated use of policy improvement
and rollout (start from some policy and generate an improved policy). Fig-
ure 1.3.11 describes the method and indicates that each of its iterations
consists of two phases:

(a) Policy evaluation, which computes the cost function Jµ. One possi-
bility is to solve the corresponding Bellman equation

Jµ(x) = Ew

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(1.40)
However, the value Jµ(x) for any x can also be computed by Monte
Carlo simulation, by averaging over many randomly generated trajec-
tories the cost of the policy starting from x. Other, more sophisticated
possibilities include the use of specialized simulation-based methods,
such as temporal difference methods , for which there is extensive lit-
erature (see e.g., the books [BeT96], [SuB98], [Ber12]).

(b) Policy improvement , which computes the improved rollout policy µ̃
[in the sense that Jµ̃(x) ≤ Jµ(x) for all x] using the one-step lookahead
minimization

µ̃(x) ∈ arg min
u∈U(x)

Ew

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

(1.41)

Thus PI generates a sequence of policies {µk}, by obtaining µk+1

through a policy improvement operation using Jµk in place of Jµ in Eq.
(1.41), which is obtained through policy evaluation of the preceding policy
µk using Eq. (1.40). Note that by using the abstract notation of Bellman
operators, the PI algorithm can be written in the compact form

Tµk+1Jµk = TJµk ,

where {µk} is the generated policy sequence.
We will discuss several different forms of PI in Chapter 5. We will

argue there that PI forms the foundation for self-learning in RL, i.e., learn-
ing from data that is self-generated (from the system itself as it operates)
rather than from data supplied from an external source.

Example 1.3.5 (Policy Iteration for Linear Quadratic
Problems)

Consider the infinite horizon version of the linear quadratic problem discussed
in Example 1.3.3, assuming a discount factor α < 1. We will derive the form
of PI starting from a linear base policy of the form

µ0(x) = L0x,

Sec. 1.3 Stochastic Dynamic Programming 53

Rollout Policy µ̃

Jµ

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

Jµ instead of J*

Bellman Eq. with

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

x µ

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Figure 1.3.11 Schematic illustration of PI as repeated rollout. It generates a
sequence of policies, with each policy µ in the sequence being the base policy
that generates the next policy µ̃ in the sequence as the corresponding rollout
policy; cf. Eq. (1.41).

where L0 is a scalar such that the closed loop system

xk+1 = (1 + bL0)xk + wk, (1.42)

is stable, i.e., |1+bL0| < 1, or equivalently − 1
b
< L0 < 0. This is necessary for

the policy µ0 to keep the state bounded and the corresponding costs Jµ0 (x)
finite. We will see that the PI algorithm generates a sequence of linear stable
policies.

We will now describe the policy evaluation and policy improvement
phases for the starting policy µ0. We can calculate Jµ0 by noting that it
involves the uncontrolled closed loop system (1.42) and a quadratic cost func-
tion. Thus we expect that it has the form

Jµ0 (x) = K0x
2 + constant, (1.43)

and to calculate K0 we will simply ignore the constant above, since it does
not affect the minimization in the Bellman equation and in the VI operations.
Equivalently, we will focus on the deterministic case (wk ≡ 0), so that under
the policy µ0, we have

xk+1 = (1 + bL0)xk = (1 + bL0)
kx0,

and

Jµ0 (x) = K0x
2 = lim

N→∞

N−1
∑

k=0

αk(1 + rL2
0)(1 + bL0)

2kx2.

Thus, by cancelling x2 from both sides above, we can calculate K0 as

K0 =
1 + rL2

0

1− α(1 + bL0)2
. (1.44)

In conclusion, the policy evaluation phase of PI for the starting linear
policy µ0(x) = L0x yields Jµ0 in the form (1.43)-(1.44). The policy improve-
ment phase involves the quadratic minimization

µ1(x) ∈ argmin
u

[

x2 + ru2 + αK0(x+ bu)2
]

,

54 Exact and Approximate Dynamic Programming Principles Chap. 1

and after a straightforward calculation (setting to 0 the derivative with respect
to u) yields µ1 as the linear policy µ1(x) = L1x, where

L1 = − αbK0

r + αb2K0
. (1.45)

It can also be verified that µ1 is a stable policy. An intuitive way to get a sense
of this is via the cost improvement property of PI: we have Jµ1 (x) ≤ Jµ0 (x)

for all x, so Jµ1(x) must be finite, which implies stability of µ1.
The preceding calculation can be continued, so the PI algorithm yields

the sequence of linear policies

µk(x) = Lkx, k = 0, 1, . . . , (1.46)

where Lk is generated by the iteration

Lk+1 = − αbKk

r + αb2Kk
, (1.47)

[cf. Eq. (1.45)], with Kk given by

Kk =
1 + rL2

k

1− α(1 + bLk)2
, (1.48)

[cf. Eq. (1.44)]. The corresponding cost function sequence has the form
Jµk (x) = Kkx

2 for the deterministic problem where wk ≡ 0, and the form

Jµk (x) = Kkx
2 + constant,

for the more general stochastic problem where wk has zero mean but nonzero
variance. It can be shown to converge to the optimal cost function J∗, while
the generated sequence of linear policies {µk}, where µk(x) = Lkx, converges
to the optimal policy. The convergence rate of the sequence {Kk} has been
shown to be superlinear (i.e., the ratio of the error of new iterate to the error
of the previous iterate asymptotically tends to 0); see Exercise 1.5. We will
discuss shortly this property, which stems from an interpretation of PI as a
form of Newton’s method.

In the deterministic case where wk ≡ 0, PI is well-defined even in the
undiscounted case where α = 1. The generated policies are given by Eq.
(1.46) with Lk given by

Lk+1 = − bKk

r + b2Kk
,

with

Kk =
1 + rL2

k

1− (1 + bLk)2
,

[cf. Eqs. (1.47) and (1.48) for α = 1]. Their cost functions are quadratic of
the form Jµk (x) = Kkx

2.
Our mathematical justification of the preceding analysis has been some-

what abbreviated, but it serves as a prototype for the analysis of more general
multidimensional linear quadratic problems, and illustrates the PI process.
Further discussion of the ideas underlying PI, including the policy improve-
ment property, will be given in Chapter 5.

Sec. 1.3 Stochastic Dynamic Programming 55

Relation to Newton’s Method

The convergence rate of PI (in its exact form) is very fast in both theory
and practice. In particular, it converges in a finite number of iterations
for finite-state discounted problems, as we will see in Chapter 5. It also
converges quadratically for linear quadratic problems (its iteration error is
proportional to the square of the preceding iteration error) and superlin-
early for other continuous-state problems.

An intuitive explanation is that PI can be viewed as a form of New-
ton’s method for solving the Bellman equation

J(x) = min
u∈U(x)

Ew

{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

[cf. Eq. (1.25)], in the function space of cost functions J(x). The analysis
is complicated, but an insightful geometric interpretation is given in Fig.
1.3.12. The subject has a long history, for which we refer to the original
papers by Kleinman [Klei68] for linear quadratic problems, and by Pol-
latschek and Avi-Itzhak [PoA69] for finite-state MDP and Markov game
cases. Subsequent works include (among others) Hewer [Hew71], Puter-
man and Brumelle [PuB78], [PuB79], Saridis and Lee [SaL79] (following
Rekasius [Rek64]), Beard [Bea95], Beard, Saridis, and Wen [BSW99], San-
tos and Rust [SaR04], Bokanowski, Maroso, and Zidani [BMZ09], Hylla
[Hyl11], Magirou, Vassalos, and Barakitis [MVB20], and Kundu and Ku-
nitsch [KuK21]. These papers discuss algorithmic variations under a variety
of assumptions, and include superlinear convergence rate results.†

† Newton’s method for solving a fixed point problem of the form y = T (y),
where y is an n-dimensional vector, operates as follows: At the current iterate
yk, we linearize T and find the solution yk+1 of the corresponding linear fixed
point problem, obtained using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n×n Jacobian matrix of T evaluated at the n-dimensional
vector yk. The most commonly given convergence rate property of Newton’s
method is quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ ·‖ is the Euclidean norm, and holds assuming the Jacobian matrix exists

and is Lipschitz continuous (see [Ber16], Section 1.4). Qualitatively similar results

hold under other assumptions. In particular a superlinear convergence statement
(suitably modified to account for lack of differentiability of T) can be proved for

problems where T (y) has piecewise linear monotonically increasing and either

concave or convex components. This is the version that is consistent with the
geometric interpretation of PI given in Fig. 1.3.12.

56 Exact and Approximate Dynamic Programming Principles Chap. 1

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Cost-to-go approximation Expected value approximation TµJ

Cost-to-go approximation Expected value approximation
Jµ = TµJµJµ̃ = Tµ̃Jµ̃

Value iterations Policy evaluations

Policy Improvement with Base Policy
Policy Improvement with Base Policy µ

Policy evaluations for µ and µ̃

Linearized Bellman Eq. at Jµ
Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Optimal cost Cost of rollout policy ˜

Optimal cost Cost of rollout policy µ̃Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

45◦Line

Figure 1.3.12 Geometric interpretation of PI and rollout. Each policy µ defines
the linear function TµJ of J , given by Eq. (1.39), and TJ is the function given
by Eq. (1.38), which can also be written as TJ = minµ TµJ . The figure shows a
policy iteration starting from a base policy µ. It computes Jµ by policy evaluation
(by solving the linear equation J = TµJ as shown). It then performs a policy
improvement using µ as the base policy to produce the rollout policy µ̃ as shown:
the cost function of the rollout policy, Jµ̃, is obtained by solving the version of
Bellman’s equation that is linearized at the point Jµ, as in Newton’s method.
This process will be discussed further in Chapter 5.

Generally, rollout with base policy µ can be viewed as a single iteration
of Newton’s method applied to the solution of the Bellman equation starting
from Jµ. This can be seen also from Fig. 1.3.12. In particular, given the
base policy µ and its cost function Jµ, the rollout algorithm first constructs
a linearized version of Bellman’s equation at Jµ (its linear approximation
at Jµ), and then solves it to obtain Jµ̃. If the function TJ is nearly linear
(has small “curvature,”) the rollout policy performance Jµ̃(x) is very close
to the optimal J*(x), even if the base policy µ is far from optimal. This
explains the large cost improvements that are typically observed in practice
with the rollout algorithm (see Fig. 1.3.12). Note that from Fig. 1.3.10,
approximation in value space with cost approximation J̃ can also be viewed
as a single Newton iteration starting from J̃ .

An interesting question is how to compare the rollout performance for
a given initial state, denote it by J̃ , with the optimal performance, denote
it by J*, and with the base policy performance, denote it by J . Clearly, we
would like J − J̃ to be large, but this is not the right way to look at cost
improvement. The reason is that J − J̃ will be small if its upper bound,

Sec. 1.3 Stochastic Dynamic Programming 57

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Base Policy Rollout Policy Approximation in Value SpaceBase Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value SpaceApproximation in Policy Space

Cost Data Policy Data System:

x µ

Rollout Policy µ̃

Value Network Policy Network Value Data

-Step Value Network Policy Network-Step Value Network Policy Network

Figure 1.3.13 Schematic illustration of approximate PI. Either the policy evalu-
ation and policy improvement phases (or both) are approximated with a value or
a policy network, respectively. These could be neural networks, which are trained
with (state, cost function value) data that is generated using the current base
policy µ, and with (state, rollout policy control) data that is generated using the
rollout policy µ̃; see Chapters 4 and 5. Note that there are three different types
of approximate implementation involving: 1) a value network but no policy net-
work, or 2) a policy network but no value network, or 3) both a policy and a value
network.

J − J*, is small, i.e., if the base heuristic is close to optimal. What is
important is that the error ratio

J̃ − J*

J − J*
(1.49)

is small. Indeed, this ratio becomes smaller as J−J* approaches 0 because
of the superlinear/quadratic convergence rate of Newton’s method that
underlies the rollout algorithm (cf. Fig. 1.3.12). Unfortunately, it is hard to
evaluate this ratio, since we do not know J*. On the other hand, we should
not be underwhelmed if we observe a small performance improvement J−J̃ :
the reason may be that the base policy is already near-optimal, and in fact
we may be doing very well in terms of the ratio (1.49).

Approximate Policy Iteration

Both policy evaluation and policy improvement can be approximated, pos-
sibly using neural networks, and training data collected through simulation,
as we will discuss in Chapters 4 and 5; see Fig. 1.3.13. Other approxima-
tions include truncated rollout for policy evaluation. This is closely con-
nected to a variant of PI called optimistic. Moreover, multistep lookahead
may be used in place of one-step lookahead, and simplified minimization,
based for example on multiagent rollout, may also be used. Let us also
mention the possibility of a combined rollout and PI algorithm, whereby
we use PI for on-line policy improvement of the base policy, by using data
collected during the rollout process. This idea is relatively new and has
not been tested extensively. It is described in Exercise 5.6 and in [Ber21b].

Note that the methods for policy evaluation and for policy improve-
ment can be designed largely independently of each other. Moreover, there

58 Exact and Approximate Dynamic Programming Principles Chap. 1

are many exact and approximate methods for policy evaluation. In this
book we will focus primarily on methods that evaluate Jµ using samples of
pairs

(

x, Jµ(x)
)

. We will not discuss alternatives, such as temporal differ-
ence and aggregation methods, which are based on the solution of projected
equations that approximate Bellman’s equation for Jµ; see the author’s
survey [Ber11b], and the textbook [Ber12], Chapters 6 and 7. They are
popular and are supported by extensive theoretical analysis, but they are
not central to our principal themes of rollout and distributed computation.

Finally, we should emphasize the important link between off-line and
on-line PI-type algorithms. The final policy and policy evaluation obtained
by off-line (exact or approximate) PI can be used as base policy and cost
function approximation, respectively, for implementing on-line a truncated
rollout policy that provides both on-line policy improvement and also al-
lows for on-line replanning. This type of scheme is largely responsible for
the success of the AlphaGo/AlphaZero programs, as well as Tesauro’s 1996
backgammon program. The base policies in both cases were obtained via
sophisticated neural network training, but play at levels below top hu-
mans. However, the one-step or multistep lookahead policies that are used
for on-line play perform much better than the best humans. We noted
earlier in Section 1.1 this significant “policy improvement by on-line play”
phenomenon: it is simply the improvement due to a single on-line policy
iteration.

1.4 EXAMPLES, VARIATIONS, AND SIMPLIFICATIONS

In this section we provide a few examples that illustrate problem formula-
tion techniques, exact and approximate solution methods, and adaptations
of the basic DP algorithm to various contexts. We refer to DP textbooks
for extensive additional discussions of modeling and problem formulation
techniques (see e.g, the many examples that can be found in the author’s
DP and RL textbooks [Ber12], [Ber17a], [Ber19a], as well as in the neuro-
dynamic programming monograph [BeT96]).

An important fact to keep in mind is that there are many ways to
model a given practical problem in terms of DP, and that there is no unique
choice for state and control variables. This will be brought out by the
examples in this section, and is facilitated by the generality of DP: its basic
algorithmic principles apply for arbitrary state, control, and disturbance
spaces, and system and cost functions.

1.4.1 A Few Words About Modeling

In practice, optimization problems seldom come neatly packaged as mathe-
matical problems that can be solved by DP/RL or some other methodology.
Generally, a practical problem is a prime candidate for a DP formulation

Sec. 1.4 Examples, Variations, and Simplifications 59

if it involves multiple sequential decisions separated by the collection of
information that can enhance the effectiveness of future decisions.

However, there are other types of problems that can be fruitfully for-
mulated by DP. These include the entire class of deterministic problems,
where there is no information to be collected: all the information needed
in a deterministic problem is either known or can be predicted from the
problem data that is available at time 0. Moreover, for deterministic prob-
lems there is a plethora of non-DP methods, such as linear, nonlinear, and
integer programming, random and nonrandom search, discrete optimiza-
tion heuristics, etc. Still, however, the use of RL methods for deterministic
optimization is a major subject in this book, which will be discussed in
Chapters 2 and 3. We will argue there that rollout, when suitably applied,
can improve substantially the performance of other heuristic or suboptimal
methods, however derived. Moreover, we will see that often for discrete op-
timization problems the DP sequential structure is introduced artificially,
with the aim to facilitate the use of approximate DP/RL methods.

There are also problems that fit quite well into the sequential struc-
ture of DP, but can be fruitfully addressed by RL methods that do not have
a fundamental connection with DP. An important case in point is policy
gradient and policy search methods, which will be considered only periph-
erally in this book. Here the policy of the problem is parametrized by a set
of parameters, so that the cost of the policy becomes a function of these
parameters, and can be optimized by non-DP methods such as gradient
or random search-based suboptimal approaches. This is approximation in
policy space approach, which will be discussed further in Chapter 2; see
also Section 5.7 of the RL book [Ber19a] and the end-of-chapter references.

As a guide for formulating optimal control problems in a manner that
is suitable for a DP solution the following two-stage process is suggested:

(a) Identify the controls/decisions uk and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {u0, . . . , uN−1}, one may lump multiple controls
to be chosen together, e.g., view the pair (u0, u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states xk. The basic guideline here is that xk should en-
compass all the information that is relevant for future optimization,
i.e., the information that is known to the controller at time k and
can be used with advantage in choosing uk. In effect, at time k the
state xk should separate the past from the future, in the sense that
anything that has happened in the past (states, controls, and dis-
turbances from stages prior to stage k) is irrelevant to the choices

60 Exact and Approximate Dynamic Programming Principles Chap. 1

of future controls as long we know xk. Sometimes this is described
by saying that the state should have a “Markov property” to express
an analogy with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

The control and state selection may also have to be refined or special-
ized in order to enhance the application of known results and algorithms.
This includes the choice of a finite or an infinite horizon, and the availability
of good base policies or heuristics in the context of rollout.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It may thus be worth con-
sidering alternative ways to choose the states; for example try to use states
that minimize the dimensionality of the state space. For a trivial example
that illustrates the point, if a quantity xk qualifies as state, then (xk−1, xk)
also qualifies as state, since (xk−1, xk) contains all the information con-
tained within xk that can be useful to the controller when selecting uk.
However, using (xk−1, xk) in place of xk, gains nothing in terms of optimal
cost while complicating the DP algorithm that would have to be executed
over a larger space.

The concept of a sufficient statistic, which refers to a quantity that
summarizes all the essential content of the information available to the
controller, may be useful in providing alternative descriptions of the state
space. An important paradigm is problems involving partial or imperfect
state information, where xk evolves over time but is not fully accessible
for measurement (for example, xk may be the position/velocity vector of
a moving vehicle, but we may obtain measurements of just the position).
If Ik is the collection of all measurements and controls up to time k (the
information vector), it is correct to use Ik as state in a reformulated DP
problem that involves perfect state observation. However, a better al-
ternative may be to use as state the conditional probability distribution
Pk(xk | Ik), called belief state, which (as it turns out) subsumes all the
information that is useful for the purposes of choosing a control. On the
other hand, the belief state Pk(xk | Ik) is an infinite-dimensional object,
whereas Ik may be finite dimensional, so the best choice may be problem-
dependent. Still, in either case, the stochastic DP algorithm applies, with
the sufficient statistic [whether Ik or Pk(xk | Ik)] playing the role of the
state; see Section 1.4.4.

1.4.2 Problems with a Termination State

Many DP problems of interest involve a termination state, i.e., a state t
that is cost-free and absorbing in the sense that for all k,

gk(t, uk, wk) = 0, fk(t, uk, wk) = t, for all wk and uk ∈ Uk(t).

Sec. 1.4 Examples, Variations, and Simplifications 61

Thus the control process essentially terminates upon reaching t, even if this
happens before the end of the horizon. One may reach t by choice if a special
stopping decision is available, or by means of a random transition from
another state. Problems involving games, such as chess, Go, backgammon,
and others involve a termination state (the end of the game).†

Generally, when it is known that an optimal policy will reach the ter-
mination state with certainty within at most some given number of stages
N , the DP problem can be formulated as an N -stage horizon problem, with
a very large termination cost for the nontermination states.‡ The reason
is that even if the termination state t is reached at a time k < N , we can
extend our stay at t for an additional N − k stages at no additional cost,
so the optimal policy will still be optimal, since it will not incur the large
termination cost at the end of the horizon. An example is the multi-vehicle
problem of Example 1.2.3: we reach the termination state once all tasks
have been performed, but the number of stages for this to occur is un-
known and depends on the policy. However, a bound of the required time
for termination by an optimal policy can be easily calculated.

Example 1.4.1 (Parking)

A driver is looking for inexpensive parking on the way to his destination.
The parking area contains N spaces, numbered 0, . . . , N − 1, and a garage
following space N − 1. The driver starts at space 0 and traverses the parking
spaces sequentially, i.e., from space k he goes next to space k + 1, etc. Each
parking space k costs c(k) and is free with probability p(k) independently of
whether other parking spaces are free or not. If the driver reaches the last
parking space N − 1 and does not park there, he must park at the garage,
which costs C. The driver can observe whether a parking space is free only
when he reaches it, and then, if it is free, he makes a decision to park in that
space or not to park and check the next space. The problem is to find the
minimum expected cost parking policy.

We formulate the problem as a DP problem with N stages, correspond-
ing to the parking spaces, and an artificial termination state t that corre-
sponds to having parked; see Fig. 1.4.1. At each stage k = 1, . . . , N − 1, we
have three states: the artificial termination state, and the two states F and
F , corresponding to space k being free or taken, respectively. At stage 0, we
have only two states, F and F , and at the final stage there is only one state,
the termination state t. The decision/control is to park or continue at state F

† Games often involve two players/decision makers, in which case they can
be addressed by suitably modified exact or approximate DP algorithms. The

DP algorithm that we have discussed in this chapter involves a single decision

maker, but can be used to find an optimal policy for one player against a fixed
and known policy of the other player.

‡ When an upper bound on the number of stages to termination is not known,

the problem may be formulated as an infinite horizon problem of the stochastic
shortest path type, which we will discuss in Chapter 5.

62 Exact and Approximate Dynamic Programming Principles Chap. 1

j · · · j · · ·n 0 10 1 0 1 2

) C c

C c(1)

Garage

Stage 1 Stage 2 Stage 3 Stage N NN N − 1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0)

1) k k

(0) c(k)) c(k + 1)

+ 1) c(N − 1) Parked

1) Parking Spaces

k k + 1

Termination State

Figure 1.4.1 Cost structure of the parking problem. The driver may park at
space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free, or continue to the
next space k+ 1 at no cost. At space N (the garage) the driver must park at
cost C.

[there is no choice at states F and state t]. From location k, the termination
state t is reached at cost c(k) when a parking decision is made (assuming
location k is free). Otherwise, the driver continues to the next state at no
cost. At stage N , the driver must park at cost C.

Let us now derive the form of the DP algorithm, denoting:

J∗
k (F): The optimal cost-to-go upon arrival at a space k that is free.

J∗
k (F): The optimal cost-to-go upon arrival at a space k that is taken.

J∗
k (t): The cost-to-go of the “parked”/termination state t.

The DP algorithm for k = 0, . . . , N − 1 takes the form

J∗
k (F) =

{

min
[

c(k), p(k + 1)J∗
k+1(F) +

(

1− p(k + 1)
)

J∗
k+1(F)

]

if k < N − 1,

min
[

c(N − 1), C
]

if k = N − 1,

J∗
k (F) =

{

p(k + 1)J∗
k+1(F) +

(

1− p(k + 1)
)

J∗
k+1(F) if k < N − 1,

C if k = N − 1,

for the states other than the termination state t, while for t we have

J∗
k (t) = 0, k = 1, . . . , N.

The minimization above corresponds to the two choices (park or not park) at
the states F that correspond to a free parking space.

While this algorithm is easily executed, it can be written in a simpler
and equivalent form. This can be done by introducing the scalars

Ĵk = p(k)J∗
k (F) +

(

1− p(k)
)

J∗
k (F), k = 0, . . . , N − 1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status. Indeed, from the preceding DP
algorithm, we have

ĴN−1 = p(N − 1)min
[

c(N − 1), C
]

+
(

1− p(N − 1)
)

C,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

From this algorithm we can also obtain the optimal parking policy:

Park at space k = 0, . . . , N − 1 if it is free and we have c(k) ≤ Ĵk+1.

Sec. 1.4 Examples, Variations, and Simplifications 63

1.4.3 State Augmentation, Time Delays, Forecasts, and
Uncontrollable State Components

In practice, we are often faced with situations where some of the assump-
tions of our stochastic optimal control problem are violated. For example,
the disturbances may involve a complex probabilistic description that may
create correlations that extend across stages, or the system equation may
include dependences on controls applied in earlier stages, which affect the
state with some delay.

Generally, in such cases the problem can be reformulated into our
DP problem format through a technique, which is called state augmentation
because it typically involves the enlargement of the state space. The general
guideline in state augmentation is to include in the enlarged state at time
k all the information that is known to the controller at time k and can
be used with advantage in selecting uk. State augmentation allows the
treatment of time delays in the effects of control on future states, correlated
disturbances, forecasts of probability distributions of future disturbances,
and many other complications. We note, however, that state augmentation
often comes at a price: the reformulated problem may have a very complex
state space. We provide some examples.

Time Delays

In some applications the system state xk+1 depends not only on the pre-
ceding state xk and control uk, but also on earlier states and controls. Such
situations can be handled by expanding the state to include an appropriate
number of earlier states and controls.

As an example, assume that there is at most a single stage delay in
the state and control; i.e., the system equation has the form

xk+1 = fk(xk, xk−1, uk, uk−1, wk), k = 1, . . . , N − 1, (1.50)

x1 = f0(x0, u0, w0).

If we introduce additional state variables yk and sk, and we make the
identifications yk = xk−1, sk = uk−1, the system equation (1.50) yields





xk+1

yk+1

sk+1



 =





fk(xk, yk, uk, sk, wk)
xk

uk



 . (1.51)

By defining x̃k = (xk, yk, sk) as the new state, we have

x̃k+1 = f̃k(x̃k, uk, wk),

where the system function f̃k is defined from Eq. (1.51).

64 Exact and Approximate Dynamic Programming Principles Chap. 1

By using the preceding equation as the system equation and by ex-
pressing the cost function in terms of the new state, the problem is reduced
to a problem without time delays. Naturally, the control uk should now
depend on the new state x̃k, or equivalently a policy should consist of func-
tions µk of the current state xk, as well as the preceding state xk−1 and
the preceding control uk−1.

When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form

J*
N (xN) = gN (xN),

JN−1(xN−1, xN−2, uN−2)

= min
uN−1∈UN−1(xN−1)

EwN−1

{

gN−1(xN−1, uN−1, wN−1)

+ J*
N

(

fN−1(xN−1, xN−2, uN−1, uN−2, wN−1)
)

}

,

J*
k (xk, xk−1, uk−1) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk)

+ J*
k+1

(

fk(xk, xk−1, uk, uk−1, wk), xk, uk

)

}

, k = 1, . . . , N − 2,

J*
0 (x0) = min

u0∈U0(x0)
Ew0

{

g0(x0, u0, w0) + J*
1

(

f0(x0, u0, w0), x0, u0
)

}

.

Similar reformulations are possible when time delays appear in the
cost or the control constraints; for example, in the case where the cost has
the form

E

{

gN(xN , xN−1) + g0(x0, u0, w0) +
N−1
∑

k=1

gk(xk, xk−1, uk, wk)

}

.

The extreme case of time delays in the cost arises in the nonadditive form

E
{

gN (xN , xN−1, . . . , x0, uN−1, . . . , u0, wN−1, . . . , w0)
}

.

Then, the problem can be reduced to the standard problem format, by
using as augmented state

x̃k =
(

xk, xk−1, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0
)

and E
{

gN(x̃N)
}

as reformulated cost. Policies consist of functions µk of
the present and past states xk, . . . , x0, the past controls uk−1, . . . , u0, and
the past disturbances wk−1, . . . , w0. Naturally, we must assume that the
past disturbances are known to the controller. Otherwise, we are faced with
a problem where the state is imprecisely known to the controller, which will
be discussed in the next section.

Sec. 1.4 Examples, Variations, and Simplifications 65

Forecasts

Consider a situation where at time k the controller has access to a forecast
yk that results in a reassessment of the probability distribution of the sub-
sequent disturbance wk and, possibly, future disturbances. For example, yk
may be an exact prediction of wk or an exact prediction that the probability
distribution of wk is a specific one out of a finite collection of distributions.
Forecasts of interest in practice are, for example, probabilistic predictions
on the state of the weather, the interest rate for money, and the demand for
inventory. Generally, forecasts can be handled by introducing additional
state variables corresponding to the information that the forecasts provide.
We will illustrate the process with a simple example.

Assume that at the beginning of each stage k, the controller receives
an accurate prediction that the next disturbance wk will be selected ac-
cording to a particular probability distribution out of a given collection of
distributions {P1, . . . , Pm}; i.e., if the forecast is i, then wk is selected ac-
cording to Pi. The a priori probability that the forecast will be i is denoted
by pi and is given.

The forecasting process can be represented by means of the equation

yk+1 = ξk,

where yk+1 can take the values 1, . . . ,m, corresponding to the m possible
forecasts, and ξk is a random variable taking the value i with probability
pi. The interpretation here is that when ξk takes the value i, then wk+1

will occur according to the distribution Pi.
By combining the system equation with the forecast equation yk+1 =

ξk, we obtain an augmented system given by

(

xk+1

yk+1

)

=

(

fk(xk, uk, wk)
ξk

)

.

The new state and disturbance are

x̃k = (xk, yk), w̃k = (wk, ξk).

The probability distribution of w̃k is determined by the distributions Pi

and the probabilities pi, and depends explicitly on x̃k (via yk) but not on
the prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

J*
N (xN , yN) = gN (xN),

66 Exact and Approximate Dynamic Programming Principles Chap. 1

J*
k (xk, yk) = min

uk∈Uk(xk)
Ewk

{

gk(xk, uk, wk)

+
m
∑

i=1

piJ*
k+1

(

fk(xk, uk, wk), i
)

∣

∣

∣
yk

}

,

(1.52)
where yk may take the values 1, . . . ,m, and the expected value over wk is
taken with respect to the distribution Pyk .

Note that the preceding formulation admits several extensions. One
example is the case where forecasts can be influenced by the control action
(e.g., pay extra for a more accurate forecast), and may involve several
future disturbances. However, the price for these extensions is increased
complexity of the corresponding DP algorithm.

Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state.

As an example, let the state of the system be a composite (xk, yk) of
two components xk and yk. The evolution of the main component, xk, is
affected by the control uk according to the equation

xk+1 = fk(xk, yk, uk, wk),

where the distribution Pk(wk | xk, yk, uk) is given. The evolution of the
other component, yk, is governed by a given conditional distribution Pk(yk |
xk) and cannot be affected by the control, except indirectly through xk.
One is tempted to view yk as a disturbance, but there is a difference: yk is
observed by the controller before applying uk, while wk occurs after uk is
applied, and indeed wk may probabilistically depend on uk.

It turns out that we can formulate a DP algorithm that is executed
over the controllable component of the state, with the dependence on the
uncontrollable component being “averaged out” as in the preceding ex-
ample (see also the parking Example 1.4.1). In particular, let J*

k (xk, yk)
denote the optimal cost-to-go at stage k and state (xk, yk), and define

Ĵk(xk) = Eyk

{

J*
k (xk, yk) | xk

}

.

Note that the preceding expression can be interpreted as an “average cost-
to-go” at xk (averaged over the values of the uncontrollable component
yk). Then, similar to the preceding parking example, a DP algorithm that

Sec. 1.4 Examples, Variations, and Simplifications 67

generates Ĵk(xk) can be obtained, and has the following form:

Ĵk(xk) = Eyk

{

min
uk∈Uk(xk,yk)

Ewk

{

gk(xk, yk, uk, wk)

+ Ĵk+1

(

fk(xk, yk, uk, wk)
) ∣

∣ xk, yk, uk

}∣

∣

∣
xk

}

.

(1.53)
This is a consequence of the calculation

Ĵk(xk) = Eyk

{

J∗

k (xk, yk) | xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk ,xk+1,yk+1

{

gk(xk, yk, uk, wk)

+ J∗

k+1(xk+1, yk+1)
∣

∣ xk, yk, uk

} ∣

∣ xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk ,xk+1

{

gk(xk, yk, uk, wk)

+ Eyk+1

{

J∗

k+1(xk+1, yk+1)
∣

∣ xk+1

} ∣

∣ xk, yk, uk

}
∣

∣

∣
xk

}

.

Note that the minimization in the right-hand side of the preceding
equation must still be performed for all values of the full state (xk, yk) in
order to yield an optimal control law as a function of (xk, yk). Nonetheless,
the equivalent DP algorithm (1.53) has the advantage that it is executed
over a significantly reduced state space. Later, when we consider approx-
imation in value space, we will find that it is often more convenient to
approximate Ĵk(xk) than to approximate J*

k (xk, yk); see the following dis-
cussions of forecasts and of the game of tetris.

As an example, consider the augmented state resulting from the incor-
poration of forecasts, as described earlier. Then, the forecast yk represents
an uncontrolled state component, so that the DP algorithm can be simpli-
fied as in Eq. (1.53). In particular, assume that the forecast yk can take
values i = 1, . . . ,m with probability pi. Then, by defining

Ĵk(xk) =
m
∑

i=1

piJ*
k (xk, i), k = 0, 1, . . . , N − 1,

and ĴN (xN) = gN (xN), we have using Eq. (1.52),

Ĵk(xk) =
m
∑

i=1

pi min
uk∈Uk(xk)

Ewk

{

gk(xk, uk, wk)

+ Ĵk+1

(

fk(xk, uk, wk)
)
∣

∣ yk = i
}

,

which is executed over the space of xk rather than xk and yk. Note that
this is a simpler algorithm to approximate than the one of Eq. (1.52).

68 Exact and Approximate Dynamic Programming Principles Chap. 1

Figure 1.4.2 Illustration of a tetris board.

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.53). Here is an example of this type.

Example 1.4.2 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.4.2). The squares fill up as blocks of different
shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a finite horizon stochastic DP problem, with very long horizon. The state
consists of two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.

(2) The shape of the current falling block, denoted by y.

Sec. 1.4 Examples, Variations, and Simplifications 69

The control, denoted by u, is the horizontal positioning and rotation applied
to the falling block. There is also an additional termination state which is
cost-free. Once the state reaches the termination state, it stays there with no
change in score. Moreover there is a very large amount added to the score
when the end of the horizon is reached without the game having terminated.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.53) is executed over the space of board
positions x and has the intuitive form

Ĵk(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵk+1

(

f(x, y, u)
)

]

, for all x, (1.54)

where

g(x, y, u) is the number of points scored (rows removed),

f(x, y, u) is the next board position (or termination state),

when the state is (x, y) and control u is applied, respectively. The DP algo-
rithm (1.54) assumes a finite horizon formulation of the problem.

Alternatively, we may consider an undiscounted infinite horizon formu-
lation, involving a termination state (i.e., a stochastic shortest path problem).
The “reduced” form of Bellman’s equation, which corresponds to the DP al-
gorithm (1.54), has the form

Ĵ(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵ
(

f(x, y, u)
)

]

, for all x.

The value Ĵ(x) can be interpreted as an “average score” at x (averaged over
the values of the uncontrollable block shapes y).

Finally, let us note that despite the simplification achieved by elimi-
nating the uncontrollable portion of the state, the number of states x is still
enormous, and the problem can only be addressed by suboptimal methods,
which will be discussed later in this book.†

1.4.4 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value of
the current state xk, so a policy consists of a sequence of functions µk(·),
k = 0, . . . , N − 1. However, in many practical settings this assumption is
unrealistic, because some components of the state may be inaccessible for
observation, the sensors used to measure them may be inaccurate, or the
cost of more accurate observations may be prohibitive.

† Tetris has received a lot of attention as a challenging testbed for RL al-
gorithms over a period spanning 20 years (1996-2015), starting with the papers
[TsV96] and [BeI96], and ending with the papers [GGS13], [SGG15], which con-
tain many references to related works in the intervening years.

70 Exact and Approximate Dynamic Programming Principles Chap. 1

Often in such situations the controller has access to only some of
the components of the current state, and the corresponding observations
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of po-
sition and velocity components, but the observations may consist of noise-
corrupted radar measurements of the three position components. This
gives rise to problems of partial or imperfect state information, which have
received a lot of attention in the optimization and artificial intelligence
literature (see e.g., [Ber17a], [RuN16]; these problems are also popularly
referred to with the acronym POMDP for partially observed Markovian
decision problem).

Generally, there are DP algorithms for solving a POMDP exactly, al-
though the computation necessary for this is typically intractable in prac-
tice. The most common approach is to replace the state xk with a belief
state, which we will denote by bk. It is the probability distribution of xk

given all the observations that have been obtained by the controller up
to time k, and it can serve as “state” in an appropriate DP algorithm.
The belief state can in principle be computed and updated by a variety
of methods that are based on Bayes’ rule, such as Kalman filtering (see
[AnM79], [KuV86], [Kri16], [ChC17]) and particle filtering (see [GSS93],
[DoJ09], [Can16], [Kri16]).

In problems where the state xk can take a finite but large number
of values, say n, the belief states comprise an n-dimensional simplex, so
discretization becomes problematic. As a result, alternative suboptimal
solution methods are often used in POMDP. Some of these methods will
be described in future chapters.

Example 1.4.3 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.4.1. As in that example, a driver is looking for inexpensive parking on the
way to his destination, along a line of N parking spaces with a garage at the
end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space i, the driver
can park at cost c(i) if i is free, can move to i− 1 at a cost t−i or can move to
i+1 at a cost t+i . Moreover, the driver records and remembers the free/taken
status of the spaces previously visited and may return to any of these spaces;
see Fig. 1.4.3.

Let us assume that the probability p(i) of a space i being free changes
over time, i.e., a space found free (or taken) at a given visit may get taken
(or become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time stage, p(i) increases by a certain
known factor with some probability ξ and decreases by another known factor
with the complementary probability 1− ξ.

Sec. 1.4 Examples, Variations, and Simplifications 71

j · · · j · · ·n 0 10 1 0 1 2

) C c
C c(1)

Garage

Stage 1 Stage 2 Stage 3 Stage N NN N − 1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0)

1) k k

(0) c(k)) c(k + 1)

+ 1) c(N − 1) Parked

1) Parking Spaces

k k + 1

Termination State

Enlarged State Space t
+

k
t
−

k

Figure 1.4.3 Cost structure and transitions of the bidirectional parking prob-
lem. The driver may park at space k = 0, 1, . . . , N − 1 at cost c(k), if the
space is free, can move to k − 1 at cost t−

k
, or can move to k + 1 at cost t+

k
.

At space N (the garage) the driver must park at cost C.

Here the belief state is the vector of current probabilities
(

p(0), . . . , p(N − 1)
)

,

and it can be updated with a simple algorithm at each time based on the new
observation: the free/taken status of the space visited at that time.

Despite their inherent computational difficulty, it turns out that con-
ceptually, partial state information problems are no different than the per-
fect state information problems we have been addressing so far. In fact by
various reformulations, we can reduce a partial state information problem
to one with perfect state information. Once this is done, it is possible to
state an exact DP algorithm that is defined over the set of belief states.
This algorithm has the form

J*
k (bk) = min

uk∈Uk

[

ĝk(bk, uk) + Ezk+1

{

J*
k+1

(

Fk(bk, uk, zk+1)
)

}

]

, (1.55)

where:

J*
k (bk) denotes the optimal cost-to-go starting from belief state bk at

stage k.

Uk is the control constraint set at time k (since the state xk is un-
known at stage k, Uk must be independent of xk).

ĝk(bk, uk) denotes the expected stage cost of stage k. It is calculated
as the expected value of the stage cost gk(xk, uk, wk), with the joint
distribution of (xk, wk) determined by the belief state bk and the
distribution of wk.

Fk(bk, uk, zk+1) denotes the belief state at the next stage, given that
the current belief state is bk, control uk is applied, and observation
zk+1 is received following the application of uk:

bk+1 = Fk(bk, uk, zk+1). (1.56)

72 Exact and Approximate Dynamic Programming Principles Chap. 1

k Controller

Controller µk

Belief State“Future” System x Belief State∗y bk

k Control uk = µk(bk)

+1 bk+1 = Fk(bk, uk, zk+1) ˆ

zk+1

) Cost ĝk(bk, uk)

Belief Estimator

Figure 1.4.4 Schematic illustration of the view of an imperfect state information
problem as one of perfect state information, whose state is the belief state bk, i.e.,
the conditional probability distribution of xk given all the observations up to time
k. The observation zk+1 plays the role of the stochastic disturbance. The function
Fk is a sequential estimator that updates the current belief state bk .

This is the system equation for a perfect state information problem
with state bk, control uk, “disturbance” zk+1, and cost per stage
ĝk(bk, uk). The function Fk is viewed as a sequential belief estimator ,
which updates the current belief state bk based on the new observation
zk+1. It is given by either an explicit formula or an algorithm (such as
Kalman filtering or particle filtering) that is based on the probability
distribution of zk and the use of Bayes’ rule.

The expected value Ezk+1{·} is taken with respect to the distribu-
tion of zk+1, given bk and uk. Note that zk+1 is random, and its
distribution depends on xk and uk, so the expected value

Ezk+1

{

J*
k+1

(

Fk(bk, uk, zk+1)
)

}

in Eq. (1.55) is a function of bk and uk.

The algorithm (1.55) is just the ordinary DP algorithm for the perfect
state information problem shown in Fig. 1.4.4. It involves the system/belief
estimator (1.56) and the cost per stage ĝk(bk, uk). Note that since bk takes
values in a continuous space, the algorithm (1.55) can only be executed
approximately, using approximation in value space methods.

We refer to the textbook [Ber17a], Chapter 4, for a detailed derivation
of the DP algorithm (1.55), and to the monograph [BeS78] for a mathe-
matical treatment that applies to infinite state, control, and disturbance
spaces as well.

1.4.5 Multiagent Problems and Multiagent Rollout

Let us consider the discounted infinite horizon problem and a special struc-

Sec. 1.4 Examples, Variations, and Simplifications 73

2 Agent 1 Agent

State InfoState Info State Info

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5 Environment Computing Cloud
Environment Computing Cloud

+1u1

u2

u3

u4

u5

Single policy Info

Single policy Info Single policy Info

Single policy InfoSingle policy Info

Single policy Info

Single policy InfoSingle policy Info

Figure 1.4.5 Schematic illustration of a multiagent problem. There are multiple
“agents,” and each agent " = 1, . . . ,m, controls its own decision variable u!. At
each stage, agents exchange new information and also exchange information with
the “environment,” and then select their decision variables for the stage.

ture of the control space, whereby the control u consists of m components,
u = (u1, . . . , um), with a separable control constraint structure u! ∈ U!(x),
! = 1, . . . ,m. Thus the control constraint set is the Cartesian product

U(x) = U1(x)× · · ·× Um(x), (1.57)

where the sets U!(x) are given. This structure is inspired by applications
involving distributed decision making by multiple agents with communica-
tion and coordination between the agents; see Fig. 1.4.5.

In particular, we will view each component u!, ! = 1, . . . ,m, as being
chosen from within U!(x) by a separate “agent” (a decision making entity).
For the sake of the following discussion, we assume that each set U!(x) is
finite. Then the one-step lookahead minimization of the standard rollout
scheme with base policy µ is given by

ũ ∈ arg min
u∈U(x)

Ew

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, (1.58)

and involves as many as nm Q-factors, where n is the maximum number of
elements of the sets U!(x) [so that nm is an upper bound to the number of
controls in U(x), in view of its Cartesian product structure (1.57)]. Thus
the standard rollout algorithm requires an exponential [order O(nm)] num-
ber of Q-factor computations per stage, which can be overwhelming even
for moderate values of m.

This potentially large computational overhead motivates a far more
computationally efficient rollout algorithm, whereby the one-step lookahead

74 Exact and Approximate Dynamic Programming Principles Chap. 1

minimization (1.58) is replaced by a sequence of m successive minimiza-
tions, one-agent-at-a-time, with the results incorporated into the subse-
quent minimizations. In particular, at state x we perform the sequence of
minimizations

µ̃1(x) ∈ arg min
u1∈U1(x)

Ew

{

g(x, u1, µ2(x), . . . , µm(x), w)

+ αJµ
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

µ̃2(x) ∈ arg min
u2∈U2(x)

Ew

{

g(x, µ̃1(x), u2, µ3(x) . . . , µm(x), w)

+ αJµ
(

f(x, µ̃1(x), u2, µ3(x), . . . , µm(x), w)
)

}

,

.

µ̃m(x) ∈ arg min
um∈Um(x)

Ew

{

g(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)

+ αJµ
(

f(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)
)

}

.

Thus each agent component u! is obtained by a minimization with the pre-
ceding agent components u1, . . . , u!−1 fixed at the previously computed val-
ues of the rollout policy, and the following agent components u!+1, . . . , um

fixed at the values given by the base policy. This algorithm requires order
O(nm) Q-factor computations per stage, a potentially huge computational
saving over the order O(nm) computations required by standard rollout.

A key idea here is that the computational requirements of the rollout
one-step minimization (1.58) are proportional to the number of controls in
the set Uk(xk) and are independent of the size of the state space. This mo-
tivates a reformulation of the problem, first suggested in the book [BeT96],
Section 6.1.4, whereby control space complexity is traded off with state
space complexity, by “unfolding” the control uk into its m components,
which are applied one agent-at-a-time rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the
collective decision uk into m sequential component decisions, thereby re-
ducing the complexity of the control space while increasing the complexity
of the state space. The potential advantage is that the extra state space
complexity does not affect the computational requirements of some RL
algorithms, including rollout.

To this end, we introduce a modified but equivalent problem, involv-
ing one-at-a-time agent control selection. At the generic state x, we break
down the control u into the sequence of the m controls u1, u2, . . . , um, and
between x and the next state x̄ = f(x, u, w), we introduce artificial inter-
mediate “states” (x, u1), (x, u1, u2), . . . , (x, u1, . . . , um−1), and correspond-
ing transitions. The choice of the last control component um at “state”

Sec. 1.4 Examples, Variations, and Simplifications 75

...

Random Transition

) Random Cost
x x x̄

x̄ x̄ = f(x, u, w)

) Control um

Stage

) g(x, u, w)

) u1

(x, u1)
) u2

(x, u1, u2)
u3 um−1

(x, u1, . . . , um−1) Control

Figure 1.4.6 Equivalent formulation of the N-stage stochastic optimal control
problem for the case where the control u consists of m components u1, u2, . . . , um:

u = (u1, . . . , um) ∈ U1(xk)× · · ·× Um(xk).

The figure depicts the kth stage transitions. Starting from state x, we generate
the intermediate states

(x, u1), (xk, u1, u2), . . . , (x, u1, . . . , um−1),

using the respective controls u1, . . . , um−1. The final control um leads from
(x, u1, . . . , um−1) to x̄ = f(x, u,w), and the random cost g(x, u,w) is incurred.

(x, u1, . . . , um−1) marks the transition to the next state x̄ = f(x, u, w) ac-
cording to the system equation, while incurring cost g(x, u, w); see Fig.
1.4.6.

It is evident that this reformulated problem is equivalent to the origi-
nal, since any control choice that is possible in one problem is also possible
in the other problem, while the cost structure of the two problems is the
same. In particular, every policy

(

µ1(x), . . . , µm(x)
)

of the original prob-
lem, is admissible for the reformulated problem, and has the same cost
function for the original as well as the reformulated problem. Reversely,
every policy for the reformulated problem can be converted into a policy for
the original problem that produces the same state and control trajectories
and has the same cost function.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing m−1 additional layers of states,
and the corresponding m− 1 cost-to-go functions

J1(x, u1), J2(x, u1, u2), . . . , Jm−1(x, u1, . . . , um−1).

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the Q-factor minimization (1.58) is performed for just
one state at each stage.

The major fact that follows from the preceding reformulation is that
multiagent rollout still achieves cost improvement :

Jµ̃(x) ≤ Jµ(x), for all x,

where Jµ(x) is the cost function of the base policy µ, and Jµ̃(x) is the
cost function of the rollout policy µ̃ = (µ̃1, . . . , µ̃m), starting from state

76 Exact and Approximate Dynamic Programming Principles Chap. 1

Figure 1.4.7 Illustration of a 2-dimensional spiders-and-fly problem with 20
spiders and 5 flies (cf. Example 1.4.4). The flies moves randomly, regardless of
the position of the spiders. During a stage, each spider moves to a neighboring
location or stays where it is, so there are 5 moves per spider (except for spiders at
the edges of the grid). The total number of possible joint spider moves is a little
less than 520.

x. Furthermore, this cost improvement property can be extended to mul-
tiagent PI schemes that involve one-agent-at-a-time policy improvement
operations, and have sound convergence properties (see the discussion of
Chapters 3 and 5). Moreover, multiagent rollout will become the starting
point for various related PI schemes that are well suited for distributed
operation in important practical contexts involving multiple autonomous
decision makers.

The following two-dimensional version of the spider-and-fly Example
1.3.4 illustrates the multiagent rollout scheme; see Fig. 1.4.7.

Example 1.4.4 (Spiders and Flies)

This example is representative of a broad range of practical problems such as
multirobot service systems involving delivery, maintenance and repair, search
and rescue, firefighting, etc. Here there are m spiders and several flies moving
on a 2-dimensional grid; cf. Fig. 1.4.7. The objective is for the spiders to catch
all the flies as fast as possible.

During a stage, each fly moves according to a given probability distri-
bution. Each spider learns the current state (the vector of spiders and fly
locations) at the beginning of each stage, and either moves to a neighboring
location or stays where it is. Thus each spider has as many as 5 choices at

Sec. 1.4 Examples, Variations, and Simplifications 77

each stage. The control is u = (u1, . . . , um), where u! is the choice of the &th
spider, so there are about 5m possible values of u.

To apply multiagent rollout, we need a base policy. A simple possibility
is to use the policy that directs each spider to move on the path of minimum
distance to the closest fly position. According to the multiagent rollout for-
malism, the spiders choose their moves one-at-time in the order 1, . . . ,m,
taking into account the current positions of the flies and the earlier moves of
other spiders, while assuming that future moves will be chosen according to
the base policy. This is a tractable computation.

In particular, at the beginning at the typical stage, spider 1 selects
its best move (out of the no more than 5 possible moves), assuming the
other spiders 2, . . . ,m will move towards their closest surviving fly during the
current stage, and all spiders will move towards their closest surviving fly
during the following stages, up to the time where no surviving flies remain.
Spider 1 then broadcasts its selected move to all other spiders. Then spider
2 selects its move taking into account the move already chosen by spider 1,
and assuming that spiders 3, . . . , m will move towards their closest surviving
fly during the current stage, and all spiders will move towards their closest
surviving fly during the following stages, up to the time where no surviving
flies remain. Spider 2 then broadcasts its choice to all other spiders. This
process of one-spider-at-a-time move selection is repeated for the remaining
spiders 3, . . . ,m, marking the end of the stage.

Note that while standard rollout computes and compares 5m Q-factors
(actually a little less to take into account edge effects), multiagent rollout
computes and compares ≤ 5 moves per spider, for a total of less than 5m.
Despite this tremendous computational economy, experiments with this type
of spiders and flies problems have shown that multiagent rollout achieves a
comparable performance to the one of standard rollout.

1.4.6 Problems with Unknown Parameters - Adaptive Control

Our discussion so far dealt with problems with a known mathematical
model, i.e., one where the system equation, cost function, control con-
straints, and probability distributions of disturbances are perfectly known.
The mathematical model may be available through explicit mathematical
formulas and assumptions, or through a computer program that can em-
ulate all of the mathematical operations involved in the model, including
Monte Carlo simulation for the calculation of expected values.

In this connection, it is important to note that from our point of view,
it makes no difference whether the mathematical model is available through
closed form mathematical expressions or through a computer simulator :
the methods that we discuss are valid either way, only their suitability
for a given problem may be affected by the availability of mathematical
formulas. Indeed, problems with a known mathematical model are the only
type that we will formally address in this book with DP and approximate
DP methods. In particular, we will not discuss model estimation methods,
except peripherally, as in the present section.

78 Exact and Approximate Dynamic Programming Principles Chap. 1

In practice, however, it is common that the system parameters are
either not known exactly or may change over time. In such cases it is im-
portant to design controllers that take the parameter changes into account.
The methodology for doing so is generally known as adaptive control . This
is an intricate and multifaceted methodology, with many and diverse ap-
plications, and a long history.†

As an example consider our oversimplified cruise control system of
Example 1.3.1 or its infinite horizon version of Examples 1.3.3 and 1.3.5.
The state evolves according to

xk+1 = xk + buk + wk, (1.59)

where xk is the deviation vk−v̄ of the vehicle’s velocity vk from the nominal
v̄, uk is the force that propels the car forward, and wk is the disturbance
that has nonzero mean. However, the coefficient b and the distribution of
wk change frequently, and cannot be modeled with any precision because
they depend on unpredictable time-varying conditions, such as the slope
and condition of the road, and the weight of the car (which is affected by
the number of passengers). Moreover, the nominal velocity v̄ is set by the
driver, and when it changes it may affect the parameter b in the system
equation, and other parameters.‡

We should note also that unknown problem environments are an in-
tegral part of the artificial intelligence view of RL. In particular, to quote
from the book by Sutton and Barto [SuB18], “learning from interaction
with the environment is a foundational idea underlying nearly all theories
of learning and intelligence.” The idea of interaction with the environment
is typically connected with the idea of exploring the environment to iden-
tify its characteristics. In control theory this is often viewed as part of the
system identification methodology, which aims to construct mathematical
models of dynamic systems. The system identification process is often com-
bined with the control process to deal with unknown or changing problem
parameters. This is one of the most challenging areas of stochastic optimal
and suboptimal control, and has been studied since the early 1960s.

In this book we will not provide a systematic discussion of adaptive
control. Instead, in what follows in this section, we will briefly review some

† The difficulties of designing adaptive controllers are often underestimated.
Among others, they complicate the balance between off-line training and on-line

play, which we discussed in Section 1.1 in connection to AlphaZero. It is worth
keeping in mind that as much as learning to play high quality chess is a great

challenge, the rules of play are stable and do not change unpredictably in the

middle of a game! Problems with changing system parameters can be far more
challenging!

‡ Adaptive cruise control, which can also adapt the car’s velocity based on its

proximity to other cars, has been studied extensively and has been incorporated
in several commercially sold car models.

Sec. 1.4 Examples, Variations, and Simplifications 79

of the principal types of adaptive control methods. We will then focus on
schemes that are based on on-line replanning, including the use of rollout,
which we will discuss in greater detail in the next section.

Robust and PID Control

Given a controller design that has been obtained assuming a nominal DP
problem model, one possibility is to simply ignore changes in problem pa-
rameters. We may then try to design a controller that is adequate for the
entire range of the changing parameters. This is sometimes called a robust
controller . For example, consider the oversimplified cruise control system
of Eq. (1.59), where we choose a linear controller of the form µ(x) = Lx for
some scalar L. Then we may perform a robustness analysis, i.e., determine
the range of parameters b for which the current controller is stable (this is
the interval of values b for which |1 + bL| < 1), and check that b remains
within that range during the system’s operation. Thus, a robust controller
makes no effort to keep track of changing problem parameters. It is just
designed so that it is resilient to parameter changes.

An important time-honored robust control approach for continuous-
state problems is the PID (Proportional-Integral-Derivative) controller ; see
e.g., the books by Aström and Hagglund [AsH95], [AsH06], and the end-of-
chapter references. In particular, PID control aims to maintain the output
of a single-input single-output dynamic system around a set point or to fol-
low a given trajectory, as the system parameters change within a relatively
broad range. In its simplest form, the PID controller is parametrized by
three scalar parameters, which may be determined by a variety of methods,
some of them manual/heuristic. PID control is used widely and with suc-
cess, although its range of application is mainly restricted to single-input,
single-output continuous-state control systems.

Dealing with Unknown Parameters by System Identification
and On-Line Replanning

In robust control schemes, such as PID control, no attempt is made to main-
tain a mathematical model and to track unknown model parameters as they
change. Alternatively we may introduce into the controller a mechanism
for measuring or estimating the unknown or changing system parameters,
and make suitable control adaptations in response.†

† In the adaptive control literature, schemes that involve parameter estima-

tion are sometimes called indirect , while schemes that do not involve parameter

estimation (like PID control) are called direct . To quote from the book by Aström
and Wittenmark [AsW08], “indirect methods are those in which the estimated

parameters are used to calculate required controller parameters” (see Fig. 1.4.8).

The methods subsequently described in this section, and the rollout-based adap-
tive control methods discussed in the next section should be viewed as indirect.

80 Exact and Approximate Dynamic Programming Principles Chap. 1

k Controller

) System Data Control Parameter Estimation

System Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation

System State Data Control Parameter Estimation
System State Data Control Parameter Estimation

Figure 1.4.8 Schematic illustration of concurrent parameter estimation and sys-
tem control. The system parameters are estimated on-line and the estimates are
passed on to the controller whenever this is desirable (e.g., after the estimates
change substantially). This structure is also known as indirect adaptive control.

An apparently reasonable scheme is to separate the control process
into two phases, a system identification phase and a control phase. In
the first phase the unknown parameters are estimated, while the control
takes no account of the interim results of estimation. The final parameter
estimates from the first phase are then used to implement an optimal or
suboptimal policy in the second phase.

This alternation of estimation and control phases may be repeated
several times during the system’s operation in order to take into account
subsequent changes of the parameters. Note that it is not necessary to in-
troduce a hard separation between the identification and the control phases.
They may be going on simultaneously, with new parameter estimates be-
ing generated in the background, and introduced into the control process,
whenever this is thought to be desirable; see Fig. 1.4.8.

One drawback of this approach is that it is not always easy to deter-
mine when to terminate one phase and start the other. A second difficulty,
of a more fundamental nature, is that the control process may make some of
the unknown parameters invisible to the estimation process. This is known
as the problem of parameter identifiability , which is discussed in the con-
text of optimal control in several sources, including [BoV79] and [Kum83];
see also [Ber17a], Section 6.7. Here is a simple illustrative example.

Example 1.4.5 (On-Line Identification in Linear Quadratic
Optimal Control)

Consider the scalar system

xk+1 = axk + buk, k = 0, . . . , N − 1,

Sec. 1.4 Examples, Variations, and Simplifications 81

and the quadratic cost
N
∑

k=1

(xk)
2.

Assuming perfect state information, if the parameters a and b are known, it
can be seen that the optimal policy is

µ∗
k(xk) = −a

b
xk,

which sets all future states to 0. Assume now that the parameters a and b
are unknown, and consider the two-phase method. During the first phase the
policy

µ̃k(xk) = γxk (1.60)

is used (γ is some scalar; for example, γ = −a/b, where a and b are some a
priori estimates of a and b, respectively). At the end of the first phase, the
policy is changed to

µk(xk) = − â

b̂
xk,

where â and b̂ are the estimates obtained from the estimation process. How-
ever, with the policy (1.60), the closed-loop system is

xk+1 = (a+ bγ)xk,

so the estimation process can at best yield the value of (a + bγ) but not
the values of both a and b. In other words, the estimation process cannot
discriminate between pairs of values (a1, b1) and (a2, b2) such that a1+ b1γ =
a2 + b2γ. Therefore, a and b are not identifiable when feedback control of the
form (1.60) is applied.

On-line parameter estimation algorithms, which address among oth-
ers the issue of identifiability, have been discussed extensively in the control
theory literature, but the corresponding methodology is complex and be-
yond our scope in this book. However, assuming that we can make the
estimation phase work somehow, we are free to reoptimize the controller
using the newly estimated parameters, in a form of on-line replanning pro-
cess.

Unfortunately, there is still another difficulty with this type of on-
line replanning: it may be hard to recompute an optimal or near-optimal
policy on-line, using a newly identified system model. In particular, it may
be impossible to use time-consuming methods that involve for example the
training of a neural network, or discrete/integer control constraints.† A
simpler possibility is to use rollout, which we discuss in the next section.

† Another possibility is to deal with this difficulty by precomputation. In

particular, assume that the set of problem parameters may take a known finite
set of values (or example each set of parameter values may correspond to a distinct

82 Exact and Approximate Dynamic Programming Principles Chap. 1

1.4.7 Adaptive Control by Rollout and On-Line Replanning

We will now consider an approach for dealing with unknown or changing
parameters, which is based on rollout and on-line replanning. We have
already noted this approach in Sections 1.1 and 1.2, where we stressed the
importance of fast on-line policy improvement.

Let us assume that some problem parameters change over time and
the controller becomes aware of the changes, perhaps after a suitable delay
for data collection and estimation. The method by which the problem pa-
rameters are recalculated or become known is immaterial for the purposes
of the following discussion. It may involve a limited form of parameter esti-
mation, whereby the unknown parameters are “tracked” by data collection
over a few time stages, with due attention paid to issues of parameter iden-
tifiability; or it may involve new features of the control environment, such
as a changing number of servers and/or tasks in a service system (think
of new spiders and/or flies appearing or disappearing unexpectedly in the
spiders-and-flies Example 1.4.4).

We thus assume away/ignore the detailed issues of parameter estima-
tion, and focus on revising the controller by on-line replanning based on the
newly obtained parameters. This revision may be based on any suboptimal
method, but rollout with some base policy is particularly attractive. The
base policy may be either a fixed robust controller (such as some form of
PID control) or it may be updated over time (in the background, on the
basis of some unspecified rationale), in which case the rollout policy will
be revised both in response to the changed base policy and in response to
the changing parameters.

Here the advantage of rollout is that it is simple, reliable, and rela-
tively fast. In particular, it does not require a complicated training pro-
cedure, based for example on the use of neural networks or other approxi-
mation architectures, so no new policy is explicitly computed in response to
the parameter changes . Instead the available controls at the current state
are compared by a one-step or multistep minimization, with cost function
approximation provided by the base policy (cf. Fig. 1.4.9).

Another issue to consider is the stability and robustness properties
of the rollout policy. In this connection, see Exercises 1.6 and 3.2, which
suggest that if the base policy is stable within a range of parameter values,
the same is true for the rollout policy; this can also be inferred from Fig.
1.3.12. Related ideas have a long history in the control theory literature;

maneuver of a vehicle, motion of a robotic arm, flying regime of an aircraft, etc).

Then we may precompute a separate controller for each of these values. Once
the control scheme detects a change in problem parameters, it switches to the

corresponding predesigned current controller. This is sometimes called a multiple

model control design or gain scheduling , and has been applied with success in
various settings over the years.

Sec. 1.4 Examples, Variations, and Simplifications 83

Multiagent Q-factor minimization xk

Possible States
Possible States xk+1

Rollout with Base Policy
Rollout with Base Policy

Changing System, Cost, and Constraint Parameters

Changing System, Cost, and Constraint Parameters
Changing System, Cost, and Constraint Parameters

Lookahead Minimization
Lookahead Minimization

Figure 1.4.9 Schematic illustration of adaptive control by on-line replanning
based on rollout. One-step lookahead is followed by simulation with the base pol-
icy, which stays fixed. The system, cost, and constraint parameters are changing
over time, and the most recent estimates of their values are incorporated into the
lookahead minimization and rollout operations. Truncated rollout with terminal
cost approximation is also possible. For the discussion in this section, we may
assume that all the changing parameter information is provided by some compu-
tation and sensor “cloud” that is beyond our control. The base policy may also
be revised based on various criteria.

see Beard [Bea95], Beard, Saridis, and Wen [BSW99], Jiang and Jiang
[JiJ17], Kalise, Kundu, Kunisch [KKK20].

The principal requirement for using rollout in an adaptive control
context is that the rollout control computation should be fast enough to
be performed between stages. In this connection, we note that acceler-
ated/truncated or simplified versions of rollout, as well as parallel compu-
tation, can be used to meet this time constraint.

Generally, adaptive control by rollout and on-line replanning makes
sense in situations where the calculation of the rollout controls for a given
set of problem parameters is faster and/or more convenient than the calcu-
lation of the optimal controls for the same set of parameter values. These
problems include cases involving nonlinear systems and/or difficult (e.g.,
integer) constraints.

The following example illustrates on-line replanning with the use of
rollout in the context of the simple one-dimensional linear quadratic prob-
lem that we discussed earlier in this chapter. The purpose of the example
is to show analytically how rollout with a base policy that is optimal for a

84 Exact and Approximate Dynamic Programming Principles Chap. 1

nominal set of problem parameters works well when the parameters change
from their nominal values. This property is not practically useful in lin-
ear quadratic problems because when the parameter change, it is possible
to calculate the new optimal policy in closed form, but it is indicative of
the performance robustness of rollout in other contexts; for example linear
quadratic problems with constraints.

Example 1.4.6 (On-Line Replanning for Linear Quadratic
Problems Based on Rollout)

Consider the deterministic undiscounted infinite horizon linear quadratic prob-
lem of Example 1.3.3. It involves the linear system

xk+1 = xk + buk,

and the quadratic cost function

lim
N→∞

N−1
∑

k=0

(x2
k + ru2

k).

The optimal cost function is given by

J∗(x) = K∗x2,

where K∗ is the unique positive solution of the Riccati equation

K =
rK

r + b2K
+ 1. (1.61)

The optimal policy has the form

µ∗(x) = L∗x, (1.62)

where

L∗ = − bK∗

r + b2K∗ . (1.63)

As an example, consider the optimal policy that corresponds to the
nominal problem parameters b = 2 and r = 0.5: this is the policy (1.62)-
(1.63), with K obtained as the positive solution of the quadratic Riccati Eq.
(1.61) for b = 2 and r = 0.5. We thus obtain

K =
2 +

√
6

4
.

From Eq. (1.63) we then have

L = − 2 +
√
6

5 + 2
√
6
. (1.64)

Sec. 1.4 Examples, Variations, and Simplifications 85

We will now consider changes of the values of b and r while keeping L constant,
and we will compare the quadratic cost coefficient of the following three cost
functions as b and r vary:

(a) The optimal cost function K∗x2, where K∗ is given by the positive
solution of the Riccati Eq. (1.61).

(b) The cost function KLx
2 that corresponds to the base policy

µL(x) = Lx,

where L is given by Eq. (1.64). Here, from Example 1.3.5, we have

KL =
1 + rL2

1− (1 + bL)2
. (1.65)

(c) The cost function K̃Lx
2 that corresponds to the rollout policy

µ̃L(x) = L̃x,

obtained by using the policy µL as base policy. Using the formulas of
Example 1.3.5, we have

L̃ = − bKL

r + b2KL
, (1.66)

and

K̃L =
1 + rL̃2

1− (1 + bL̃)2
.

Figure 1.4.10 shows the coefficients K∗, KL, and K̃L for a range of
values of r and b. We have

K∗ ≤ K̃L ≤ KL.

The differenceKL−K∗ is indicative of the robustness of the policy µL, i.e., the
performance loss incurred by ignoring the values of b and r, and continuing
to use the policy µL, which is optimal for the nominal values b = 2 and
r = 0.5, but suboptimal for other values of b and r. The difference K̃L−K∗ is
indicative of the performance loss due to using on-line replanning by rollout
rather than using optimal replanning. Finally, the difference KL − K̃L is
indicative of the performance improvement due to on-line replanning using
rollout rather than keeping the policy µL unchanged.

Note that Fig. 1.4.10 illustrates the behavior of the error ratio

J̃ − J∗

J − J∗ ,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This ratio approaches 0 as
J−J∗ becomes smaller because of the superlinear/quadratic convergence rate
of Newton’s method that underlies the rollout algorithm (cf. Section 1.3.4).

The next example summarizes how rollout and on-line replanning
relate to model predictive control (MPC). A detailed discussion will be
given in Chapter 3; see also the author’s papers [Ber05a], [Ber05b], where
the relations between rollout and MPC were first explored.

86 Exact and Approximate Dynamic Programming Principles Chap. 1

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Cost of rollout policy ˜ Optimal Base Rolllout

Optimal Base Rolllout

Optimal Base Rollout

Optimal Base Rollout

Cost of rollout policy ˜ Optimal Base Rolllout

Optimal Base Rolllout

Figure 1.4.10 Illustration of control by rollout under changing problem pa-
rameters. The quadratic cost coefficients K∗ (optimal, denoted by solid line),
KL (base policy, denoted by circles), and K̃L (rollout policy, denoted by as-
terisks) for the two cases where r = 0.5 and b varies, and b = 2 and r varies.
The value of L is fixed at the value that is optimal for b = 2 and r = 0.5
[cf. Eq. (1.64)]. The rollout policy performance is very close to optimal, even
when the base policy is far from optimal.

Note that, as the figure illustrates, we have

lim
J→J∗

J̃ − J∗

J − J∗ = 0,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance. This is a consequence of
the superlinear/quadratic convergence rate of Newton’s method that underlies
rollout, and guarantees that the rollout performance approaches the optimal
much faster than the base policy performance does (cf. Section 1.3.4).

Sec. 1.4 Examples, Variations, and Simplifications 87

uk x

k xk+1

-Factors Current State x

Current State xk

Next Cities Next States

Sample Q-Factors Simulation Control 1 Control 2 Control 3

,n Stage k k Stages
Stages k+1, . . . , k+!−1

Sample Q-Factors Simulation Control 1 State
Sample Q-Factors Simulation Control 1 State xk+! = 0

1)-Stages Base Heuristic Minimization
k (!− 1)-Stages Base Heuristic Minimization

Figure 1.4.11 Illustration of the problem solved by MPC at state xk. We
minimize the cost function over the next " stages while imposing the require-
ment that xk+! = 0. We then apply the first control of the optimizing se-
quence. In the context of rollout, the minimization over uk is the one-step
lookahead, while the minimization over uk+1, . . . , uk+!−1 that drives xk+! to
0 is the base heuristic.

Example 1.4.7 (Model Predictive Control, Rollout, and
On-Line Replanning)

Let us briefly discuss the MPC methodology, with a view towards its connec-
tion with the rollout algorithm. Consider an undiscounted infinite horizon
deterministic problem, involving the system

xk+1 = f(xk, uk),

whose state xk and control uk are finite-dimensional vectors. The cost per
stage is assumed nonnegative

g(xk, uk) ≥ 0, for all (xk, uk),

(e.g., a positive definite quadratic cost). There are control constraints uk ∈
U(xk), and to simplify the following discussion, we will assume that there are
no state constraints. We assume that the system can be kept at the origin at
zero cost, i.e.,

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ U(0).

For a given initial state x0, we want to obtain a sequence {u0, u1, . . .} that
satisfies the control constraints, while minimizing the total cost. This is a
classical problem in control system design, where the aim is to keep the state
of the system near the origin (or more generally some desired set point), in
the face of disturbances and/or parameter changes.

The MPC algorithm at each encountered state xk applies a control that
is computed as follows; see Fig. 1.4.11:

88 Exact and Approximate Dynamic Programming Principles Chap. 1

(a) It solves an &-stage optimal control problem involving the same cost
function and the requirement xk+! = 0. This is the problem

min
ut, t=k,...,k+!−1

k+!−1
∑

t=k

g(xt, ut), (1.67)

subject to the system equation constraints

xt+1 = f(xt, ut), t = k, . . . , k + &− 1,

the control constraints

ut ∈ U(xt), t = k, . . . , k + &− 1,

and the terminal state constraint xk+! = 0. Here & is an integer with
& > 1, which is chosen in some largely empirical way (see Section 3.1
for further discussion).

(b) If {ũk, . . . , ũk+!−1} is the optimal control sequence of this problem,
MPC applies ũk and discards the other controls ũk+1, . . . , ũk+!−1.

(c) At the next stage, MPC repeats this process, once the next state xk+1

is revealed.

To make the connection of MPC with rollout, we note that the one-
step lookahead function J̃ implicitly used by MPC [cf. Eq. (1.67)] is the cost-
to-go function of a certain base heuristic. This is the heuristic that drives
to 0 the state after & − 1 stages (not & stages) and keeps the state at 0
thereafter, while observing the state and control constraints, and minimizing
the associated (& − 1)-stages cost. This rollout view of MPC, first discussed
in the author’s paper [Ber05a], is useful for making a connection with the
approximate DP/RL techniques that are the main subject of this book, such
as truncated rollout, cost function approximations, PI, etc.

Returning to the issue of dealing with changing problem parameters,
it is natural to consider on-line replanning as per our earlier discussion. In
particular, once new estimates of system and/or cost function parameters
become available, MPC can adapt accordingly by introducing the new pa-
rameter estimates into the &-stage optimization problem in (a) above.

Let us also note a common variant of MPC, where the requirement of
driving the system state to 0 in & steps in the &-stage MPC problem (1.67),
is replaced by a terminal cost G(xk+!) (other variants, which include state
constraints, will be discussed in Section 3.1). Thus at state xk, we solve the
problem

min
ut, t=k,...,k+!−1

[

G(xk+!) +

k+!−1
∑

t=k

g(xt, ut)

]

,

instead of problem (1.67) where we require that xk+! = 0. This variant can
also be viewed as rollout with one-step lookahead, and a base heuristic, which

Sec. 1.5 Reinforcement Learning and Optimal Control 89

at state xk+1 applies the first control ũk+1 of the sequence {ũk+1, . . . , ũk+!−1}
that minimizes

G(xk+!) +

k+!−1
∑

t=k+1

g(xt, ut).

Note that the preceding MPC controller may outperform substantially
its base heuristic (in relative terms), particularly if the base heuristic is close
to optimal [which is true if G(xk+!) ≈ J∗(xk+!)+ a constant]. This is because
in view of the superlinear/quadratic convergence rate of Newton’s method
that underlies rollout, we have

lim
J→J∗

J̃ − J∗

J − J∗ = 0,

where for a given initial state, J̃ is the rollout performance, J∗ is the optimal
performance, and J is the base policy performance (cf. Section 1.3.4, Fig.
1.4.10, and the discussion in Section 3.1).

1.5 REINFORCEMENT LEARNING AND OPTIMAL
CONTROL - SOME TERMINOLOGY

The current state of RL has greatly benefited from the cross-fertilization of
ideas from optimal control and from artificial intelligence. The strong con-
nections between these two fields are now widely recognized. Still, however,
substantial differences in language and emphasis remain between RL-based
discussions (where artificial intelligence-related terminology is used) and
DP-based discussions (where optimal control-related terminology is used).

The terminology used in this book is standard in DP and optimal con-
trol, and in an effort to forestall confusion of readers that are accustomed
to either the artificial intelligence or the optimal control terminology, we
provide a list of terms commonly used in RL, and their optimal control
counterparts.

(a) Environment = System.

(b) Agent = Decision maker or controller.

(c) Action = Decision or control.

(d) Reward of a stage = (Opposite of) Cost of a stage.

(e) State value = (Opposite of) Cost starting from a state.

(f) Value (or reward) function = (Opposite of) Cost function.

(g) Maximizing the value function = Minimizing the cost function.

(h) Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair. (Q-value is also used often in RL.)

(i) Planning = Solving a DP problem with a known mathematical
model.

90 Exact and Approximate Dynamic Programming Principles Chap. 1

(j) Learning = Solving a DP problem without using an explicit mathe-
matical model. (This is the principal meaning of the term “learning”
in RL. Other meanings are also common.)

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using some form of policy iteration.

(l) Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.

(o) State abstraction = State aggregation.

(p) Temporal abstraction = Time aggregation.

(q) Learning a model = System identification.

(r) Episodic task or episode = Finite-step system trajectory.

(s) Continuing task = Infinite-step system trajectory.

(t) Experience replay = Reuse of samples in a simulation process.

(u) Bellman operator = DP mapping or operator (the name “Bellman
operator” is also used in the optimal control literature).

(v) Backup = Applying the DP operator at some state.

(w) Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J .

(x) Afterstate = Post-decision state.

(y) Generative model = Computer simulator of a controlled system.

(z) Ground truth = Empirical evidence or information provided by
direct observation.

Some of the preceding terms will be introduced in future chapters; see also
the RL textbook [Ber19a]. The reader may then wish to return to this
section as an aid in connecting with the relevant RL literature.

Notation

Unfortunately the confusion arising from different terminology has been
exacerbated by the use of different notations. The present book roughly
follows the “standard” notation of the Bellman/Pontryagin optimal con-
trol era; see e.g., the classical books by Athans and Falb [AtF66], Bellman
[Bel67], and Bryson and Ho [BrH75]. This notation is the most appropri-
ate for a unified treatment of the subject, which simultaneously addresses
discrete and continuous spaces problems, as well as deterministic problems
for which the MDP-style notation is unsuitable.

A summary of our most prominently used symbols is as follows:

Sec. 1.6 Notes and Sources 91

(a) x: state.

(b) u: control.

(c) J : cost function.

(d) g: cost per stage.

(e) f : system function.

(f) i: discrete state.

(g) pxy(u): transition probability from state x to state y under control u.

(h) α: discount factor in discounted problems.

The x-u-J notation is standard in optimal control textbooks (e.g.,
the books by Athans and Falb [AtF66], and Bryson and Ho [BrH75], as
well as the more recent book by Liberzon [Lib11]). The notations f and g
are also used most commonly in the literature of the early optimal control
period as well as later (unfortunately the more natural symbol “c” has not
been used much in place of “g” for the cost per stage). The discrete system
notations i and pij(u) are very common in the operations research litera-
ture, where discrete-state MDP have been treated extensively [sometimes
the alternative notation p(j | i, u) is used for the transition probabilities].

The artificial intelligence literature addresses for the most part finite-
state Markov decision problems, most frequently the discounted and sto-
chastic shortest path infinite horizon problems that are discussed in Chap-
ter 5. The most commonly used notation is s for state, a for action,
r(s, a, s′) for reward per stage, p(s′ | s, a) or p(s, a, s′) for transition prob-
ability from s to s′ under action a, and γ for discount factor. However,
this type of notation is not well suited for continuous spaces models, which
are of major interest for this book. The reason is that it requires the use
of transition probability distributions defined over continuous spaces, and
it leads to more complex and less intuitive mathematics. Moreover the
transition probability notation makes no sense for deterministic problems,
which involve no probabilistic structure at all.

1.6 NOTES AND SOURCES

In this section we first provide an overview of the DP and RL literature that
supplements our presentation, focusing primarily on books and research
monographs. We then summarize our rollout and policy iteration (PI)
focus, how it relates to the experiences with AlphaZero and TD-Gammon,
and what the implications are for decision and control problems.

Exact DP and Approximate DP/RL Books

Our discussion of exact DP in this chapter has been brief since our focus in
this book will be on approximate DP and RL. The author’s DP textbook

92 Exact and Approximate Dynamic Programming Principles Chap. 1

[Ber17a] provides an extensive discussion of finite horizon exact DP, and its
applications to discrete and continuous spaces problems, using a notation
and style that is consistent with the one used here. The books by Puterman
[Put94] and by the author [Ber12] provide detailed treatments of infinite
horizon finite-state stochastic DP problems, including average cost infinite
horizon problems, which we will not consider at all here. The book [Ber12]
also covers continuous/infinite state and control spaces problems, includ-
ing the linear quadratic problems that we have discussed in this chapter
through examples. Continuous spaces problems present special analytical
and computational challenges, which are currently at the forefront of RL
research.

Some of the more complex mathematical aspects of exact DP are
discussed in the monograph by Bertsekas and Shreve [BeS78], particularly
the probabilistic/measure-theoretic issues associated with stochastic opti-
mal control, including partial state information problems, by using uni-
versally measurable policies. The book [Ber12] provides in an appendix an
accessible summary introduction of the measure-theoretic framework of the
book [BeS78], while a long paper by Yu and Bertsekas [YuB15] contains
recent supplementary research with a particular focus on the analysis of
PI methods, which were not treated in [BeS78]. The papers by Yu [Yu20],
[Yu21] consider average cost infinite horizon DP problems with universally
measurable policies.

The author’s abstract DP monograph [Ber18a] aims at a unified devel-
opment of the core theory and algorithms of total cost sequential decision
problems, and addresses simultaneously stochastic, minimax, game, risk-
sensitive, and other DP problems, through the use of abstract DP operators
[or Bellman operators as they are often called in RL; Eqs. (1.38) and (1.39)
provide the Bellman operators for discounted infinite horizon problems].
The idea here is to gain insight through abstraction. In particular, the
structure of a DP model is encoded in its abstract Bellman operator, which
serves as the “mathematical signature” of the model. Thus, characteristics
of this operator (such as monotonicity and contraction) largely determine
the analytical results and computational algorithms that can be applied to
that model. This abstract viewpoint has been adopted in Sections 5.5-5.8
of the present book.

The approximate DP and RL literature has expanded tremendously
since the connections between DP and RL became apparent in the late 80s
and early 90s. We restrict ourselves to mentioning textbooks and research
monographs, which supplement our discussion, express related viewpoints,
and collectively provide a guide to the literature.

Two books were written in the 1990s, setting the tone for subsequent
developments in the field. One in 1996 by Bertsekas and Tsitsiklis [BeT96],
which reflects a decision, control, and optimization viewpoint, and another
in 1998 by Sutton and Barto, which reflects an artificial intelligence view-
point (a 2nd edition, [SuB18], was published in 2018). We refer to the

Sec. 1.6 Notes and Sources 93

former book and also to the author’s DP textbooks [Ber12], [Ber17a] for
a broader discussion of some of the topics of this book, including algorith-
mic convergence issues and additional DP models, such as those based on
average cost and semi-Markov problem optimization. Note that both of
the books [BeT96] and [SuB18] deal with finite-state Markovian decision
models and use a transition probability notation, as they do not address
continuous spaces problems, which are of major interest in this book.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensitiv-
ity approach to simulation-based DP methods, Chang, Hu, Fu, and Mar-
cus [CHF13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/multistep lookahead schemes and adaptive sampling, Buso-
niu, Babuska, De Schutter, and Ernst [BBD10a], which focuses on function
approximation methods for continuous space systems and includes a dis-
cussion of random search methods, Szepesvari [Sze10], which is a short
monograph that selectively treats some of the major RL algorithms such
as temporal differences, armed bandit methods, and Q-learning, Powell
[Pow11], which emphasizes resource allocation and operations research ap-
plications, Powell and Ryzhov [PoR12], which focuses on specialized topics
in learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adap-
tive control, Kochenderfer et al. [KAC15], which selectively discusses ap-
plications and approximations in DP and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent/team problems with nonclassical in-
formation patterns.

There are also several books that, while not exclusively focused on
DP and/or RL, touch upon several of the topics of this book. The book by
Borkar [Bor08] is an advanced monograph that addresses rigorously many
of the convergence issues of iterative stochastic algorithms in approximate
DP, mainly using the so called ODE approach. The book by Meyn [Mey07]
is broader in its coverage, but discusses some of the popular approximate
DP/RL algorithms. The book by Haykin [Hay08] discusses approximate
DP in the broader context of neural network-related subjects. The book
by Krishnamurthy [Kri16] focuses on partial state information problems,
with discussion of both exact DP, and approximate DP/RL methods. The
book by Brandimarte [Bra21] is a tutorial introduction to DP/RL that
emphasizes operations research applications and includes MATLAB codes.

The present book is similar in style, terminology, and notation to
the author’s recent RL textbook [Ber19a], which provides a more com-

94 Exact and Approximate Dynamic Programming Principles Chap. 1

prehensive account of the subject. It particular, this textbook includes
a broader coverage of approximation in value space methods, including
certainty equivalent control and aggregation methods. It also covers sub-
stantially policy gradient and random search methods for approximation
in policy space, which we will not address here. Moreover, it provides the
proofs for some of the analytical and computational infinite horizon results
and error bounds, which we give here without proofs.

In addition to textbooks, there are many surveys and short research
monographs relating to our subject, which are rapidly multiplying in num-
ber. We refer to the author’s RL textbook [Ber19a] for a fairly comprehen-
sive list up to 2019. We next provide some more specific comments and
references that supplement the material of this chapter.

Comments and References

Sections 1.1-1.3: Approximation in value space, rollout, and policy iter-
ation (PI) are the principal subjects of this book.† These are very powerful
and general techniques: they can be applied to deterministic and stochas-
tic problems, finite and infinite horizon problems, discrete and continuous
spaces problems, and mixtures thereof. Rollout is reliable, easy to imple-
ment, and can be used in conjunction with on-line replanning.

As we have noted, rollout with a given base policy is simply the first
iteration of the PI algorithm starting from the base policy. Truncated
rollout will be interpreted in Chapter 5 as an “optimistic” form of PI,
whereby a policy is evaluated inexactly, by using a limited number of value
iterations.‡

† The name “rollout” (also called “policy rollout”) was introduced by Tesauro
and Galperin [TeG96] in the context of rolling the dice in the game of backgam-

mon. In Tesauro’s proposal, a given backgammon position is evaluated by “rolling
out” many games starting from that position to the end of the game. To quote

from the paper [TeG96]: “In backgammon parlance, the expected value of a po-

sition is known as the “equity” of the position, and estimating the equity by
Monte-Carlo sampling is known as performing a “rollout.” This involves playing

the position out to completion many times with different random dice sequences,

using a fixed policy P to make move decisions for both sides.”
‡ Truncated rollout was also proposed in [TeG96]. To quote from this paper:

“Using large multi-layer networks to do full rollouts is not feasible for real-time
move decisions, since the large networks are at least a factor of 100 slower than

the linear evaluators described previously. We have therefore investigated an

alternative Monte-Carlo algorithm, using so-called “truncated rollouts.” In this
technique trials are not played out to completion, but instead only a few steps in

the simulation are taken, and the neural net’s equity estimate of the final position

reached is used instead of the actual outcome. The truncated rollout algorithm
requires much less CPU time, due to two factors: First, there are potentially many

Sec. 1.6 Notes and Sources 95

Policy iteration, which will be viewed here as the repeated use of
rollout, is more ambitious and challenging than rollout. It requires off-line
training, possibly in conjunction with the use of neural networks. Together
with its neural network and distributed implementations, it will be dis-
cussed in Chapters 4 and 5. Unconventional forms of PI, such as multistep,
simplified, and multiagent, their approximate and distributed versions, and
their applications in MPC and discrete optimization are among the prin-
cipal research contributions of this book. References for rollout, PI, and
their variants will be given at the end of Chapters 2-5.

There is a vast literature on linear quadratic problems. The con-
nection of PI with Newton’s method within this context and its quadratic
convergence rate was first derived by Kleinman [Kle68] for continuous-
time problems (the corresponding discrete-time result was given by Hewer
[Hew71]). For followup work, which relates to PI with approximations,
see Feitzinger, Hylla, and Sachs [FHS09], and Hylla [Hyl11]. Simulation-
based PI was applied to adaptive control in the context of linear quadratic
problems by Vrabie, Pastravanu, Abu-Khalaf, and Lewis [VPA09], and
has been discussed by several other authors. It can be used in conjunc-
tion with simulation-based model-free implementations of PI for linear
quadratic problems introduced by Bradtke, Ydstie, and Barto [BYB94].

Section 1.4.4: The theory of POMDP has a long history, which dates to
the 1960s. A key fact is that a POMDP can be transformed into an equiva-
lent perfect state information stochastic problem, by using the belief state
or other sufficient statistics (see, e.g., [Ber17a], Ch. 4). This brings to bear
perfect state information DP, as well as state estimation methodologies,
such as Kalman filtering, which is a broad subject with many applications.

Another interesting fact is that a perfect state information stochastic
problem (and hence also a POMDP) can be transformed into an equiva-
lent deterministic problem defined over a space of probability distributions.
This is a conceptually useful idea. In fact it is the foundation for the math-
ematical development of the book by Bertsekas and Shreve [BeS78], which
deals with measurability issues in stochastic DP. Within the RL method-
ology, the POMDP to deterministic problem transformation has been ex-
ploited by Ng and Jordan [NgJ13].

Section 1.4.5: Multiagent problems have a long history (Marschak [Mar55],
Radner [Rad62], Witsenhausen [Wit68], [Wit71a], [Wit71b]), and were re-

fewer steps per trial. Second, there is much less variance per trial, since only a few

random steps are taken and a real-valued estimate is recorded, rather than many

random steps and an integer final outcome. These two factors combine to give at
least an order of magnitude speed-up compared to full rollouts, while still giving

a large error reduction relative to the base player.” Analysis and computational

experience with truncated rollout since 1996 are consistent with the preceding
assessment.

96 Exact and Approximate Dynamic Programming Principles Chap. 1

searched extensively in the 70s; see the review paper by Ho [Ho80] and
the references cited there. The names used for the field at that time were
team theory and decentralized control . For a sampling of subsequent works
in team theory and multiagent optimization, we refer to the papers by
Krainak, Speyer, and Marcus [KLM82a], [KLM82b], and de Waal and van
Schuppen [WaS00]. For more recent works, see Nayyar, Mahajan, and
Teneketzis [NMT13], Nayyar and Teneketzis [NaT19], Li et al. [LTZ19], Qu
and Li [QuL19], Gupta [Gup20], the book by Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], and the references quoted there. Surveys of multi-
agent sequential decision making from an RL perspective were given by
Busoniu, Babuska, and De Schutter [BBD08], [BBD10b].

We note that the term “multiagent” has been used with several differ-
ent meanings in the literature. For example some authors place emphasis
on the case where the agents do not have common information when se-
lecting their decisions. This gives rise to sequential decision problems with
“nonclassical information patterns,” which can be very complex, partly be-
cause they cannot be addressed by exact DP. Other authors adopt as their
starting point a problem where the agents are “weakly” coupled through
the system equation, the cost function, or the constraints, and consider
methods that exploit the weak coupling to address the problem through
(suboptimal) decoupled computations.

Agent-by-agent minimization in multiagent approximation in value
space and rollout was first proposed in the author’s paper [Ber19c], which
also discusses extensions to infinite horizon PI algorithms, and explores
connections with the concept of person-by-person optimality from team
theory; see also the survey [Ber21a], and the papers [Ber19d], [Ber20].
A computational study where several of the multiagent algorithmic ideas
were tested and validated is the paper by Bhattacharya et al. [BKB20].
This paper considers a large-scale multi-robot routing and repair problem,
involving partial state information, and explores some of the attendant
implementation issues, including autonomous multiagent rollout, through
the use of policy neural networks and other precomputed signaling policies.

Applications of rollout in multiagent problems and MPC will be dis-
cussed in Chapter 3. Rollout will also be applied to deterministic discrete
spaces problems, including a vast array of combinatorial optimization prob-
lems in Chapter 3. Some of these applications involve multiagent rollout.

Sections 1.4.6-1.4.7: Adaptive control is a classical subject with an ex-
tensive literature, including quite a few books, which we list alphabetically:
Astolfi, Karagiannis, and Ortega [AKO07], Aström and Hagglund [AsH95],
[AsH06], Aström and Murray [AsM10], Aström and Wittenmark [AsW08],
Bodson [Bod20], Goodwin and Sin [GoS84], Ioannou and Sun [IoS96], Jiang
and Jiang [JiJ17], Krstic, Kanellakopoulos, and Kokotovic [KKK95], Koko-
tovic [Kok91], Kumar and Varaiya [KuV86], Liu, et al. [LWW17], Lavretsky
and Wise [LaW13], Narendra and Annaswamy [NaA12], Sastry and Bod-

Sec. 1.6 Notes and Sources 97

son [SaB11], Slotine and Li [SlL91], and Vrabie, Vamvoudakis, and Lewis
[VVL13].

These books describe a vast array of methods spanning 60 years, and
ranging from adaptive and PID model-free approaches, to simultaneous or
sequential control and identification, to ARMAX/time series models, to
extremum-seeking methods, to simulation-based RL techniques, etc.†

The research on problems involving unknown models and using data
for model identification prior to or simultaneously with control was rekin-
dled with the advent of the artificial intelligence side of RL and its focus
on the active exploration of the environment. Here there is emphasis in
“learning from interaction with the environment” [SuB18] through the use
of (possibly hidden) Markov decision models, machine learning, and neural
networks, in a wide array of methods that are under active development at
present. In this book we will not deal with unknown models and the atten-
dant system identification issues, except tangentially, and in the context of
on-line replanning for problems with changing model parameters.

The idea of using simulation-based rollout for on-line indirect adaptive
control (cf. Section 1.4.7), as a more economical substitute for reoptimiza-
tion, seems to be new and applies to a broader class of problems than the
ones addressed with traditional adaptive control methods. In particular,
our approach applies under no restrictions on the state and control spaces,
which can be discrete or continuous or a mixture thereof.

The literature on MPC is voluminous. Some early widely cited pa-
pers are Clarke, Mohtadi, and Tuffs [CMT87a], [CMT87b], and Keerthi and
Gilbert [KeG88]. For early surveys, see Morari and Lee [MoL99], Mayne
et al. [MRR00], and Findeisen et al. [FIA03], and for a more recent re-
view, see Mayne [May14]. The connections between MPC and rollout were
discussed in the author’s survey [Ber05a]. Textbooks on MPC include Ma-
ciejowski [Mac02], Goodwin, Seron, and De Dona [GSD06], Camacho and
Bordons [CaB07], Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad,
and Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17].

The extensive experience with MPC schemes has confirmed their ben-
eficial robustness properties in the face of changing system parameters. In
view of the connection between MPC and rollout, this supports the idea of
adaptive control by rollout and on-line replanning.

From AlphaZero and TD-Gammon to Optimal, Adaptive, and
Model Predictive Control

While the ideas of rollout and PI go back many years, their significance
has been highlighted by the success of AlphaZero and the earlier, but just

† The ideas of PID control originated even earlier, nearly 100 years ago.
According to Wikipedia, “a formal control law for what we now call PID or three-
term control was first developed using theoretical analysis, by Russian American
engineer Nicolas Minorsky” [Min22].

98 Exact and Approximate Dynamic Programming Principles Chap. 1

as impressive, TD-Gammon program (more accurately the 1996 rollout
version of the program [BeG96], which uses short lookahead minimization,
long truncated rollout, and terminal cost approximation).

Both programs were trained off-line extensively using sophisticated
approximate PI algorithms and neural networks. Yet the players obtained
off-line were greatly improved by on-line play. In particular:

(a) The on-line player of AlphaZero plays much better than its exten-
sively trained off-line player. This is due to the beneficial effect of ap-
proximation in value space with long lookahead minimization, which
corrects for the inevitable imperfections of the off-line player and its
value network.

(b) The TD-Gammon player that uses long truncated rollout between
short lookahead minimization and terminal cost approximation plays
much better than TD-Gammon without rollout. This is due to the
beneficial effect of long rollout, which serves as a substitute for long
lookahead minimization.

In practice, whether in the context of games or decision and con-
trol, a lot of analysis and/or off-line computation is often directed towards
obtaining a policy, which is inevitably suboptimal, because of policy repre-
sentation errors, model imperfections, changing problem parameters, and
overwhelming computational bottlenecks. An important lesson from Alp-
haZero and TD-Gammon is that performance may be greatly improved by
on-line approximation in value space, with long lookahead (whether involv-
ing minimization or rollout with an off-line obtained policy), and possibly
terminal cost approximation that may be obtained off-line.

This performance enhancement by on-line play goes well beyond the
conventional control wisdom that “feedback corrects for noise, uncertainty,
and modeling errors.” It defines a new paradigm, whose implications have
yet to be fully appreciated within the decision and control community.

There is an additional benefit of policy improvement by approxima-
tion in value space, not observed in the context of games (which have stable
rules and environment). It is well-suited for on-line replanning and chang-
ing problem parameters, as in the context of indirect adaptive control.

In this book we aim to provide the mathematical framework, analy-
sis, and insights (often based on visualization), which facilitate the use of
on-line decision making on top of off-line training. In particular, through a
unified analysis, we show that the principal ideas of approximation in value
space and rollout apply very broadly to deterministic, stochastic, and com-
binatorial/integer problems, involving both discrete and continuous search
spaces. Moreover, these ideas can be effectively integrated with other im-
portant methodologies such as MPC, adaptive control, decentralized con-
trol, discrete and Bayesian optimization, neural network-based value and
policy approximations, and heuristic algorithms for discrete optimization.

Sec. 1.6 Notes and Sources 99

Research Content of this Book

This book has a research focus and a point of view. It provides a synthesis of
most of the research of the author and his collaborators on rollout, PI algo-
rithms, and related RL methods, starting with the rollout papers [BTW97]
and [BeC98]. The original sources, the nature of the contributions, and the
relation to preexisting works are recounted in the end-of-chapter references.
Recent work of the author, published in the last couple of years, has fo-
cused primarily on multiagent and distributed computation issues [Ber19c],
[Ber19d], [Ber20], [Ber21a], [BBW20], and [BKB20], as well as on-line PI
[Ber21b]. It is discussed at length in this book. Several other research
ideas, which were developed as the book was being written, are sprinkled
throughout the text and have been noted at the appropriate points.

Beyond the details and analysis of individual algorithms, the book
aims to convey the author’s view that the rollout approach, coupled with
on-line approximation in value space and multistep lookahead, is theoret-
ically solid, thanks to its cost improvement property, and its relation to
PI and Newton’s method. Most importantly, based on extensive compu-
tational experience, rollout and its variations seem to be by far the most
reliable and easiest to implement RL algorithmic approach.

E X E R C I S E S

1.1 (Computational Exercise - Multi-Vehicle Routing)

In the routing problem of Example 1.2.3 view the two vehicles as separate agents.

(a) Apply the multiagent rollout algorithm of Section 1.4.5, starting from the
pair location (1,2). Compare the multiagent rollout performance with the
performance of the ordinary rollout algorithm, where both vehicles move
at once, and with the base heuristic that moves each vehicle one step along
the shortest path to the nearest pending task.

(b) Repeat for the case where, in addition to vehicles 1 and 2 that start at
nodes 1 and 2, respectively, there is a third vehicle that starts at node 10,
and there is a third task to be performed at node 8.

1.2 (Computational Exercise - Spiders and Flies)

Consider the spiders and flies problem of Example 1.2.3 with two differences: the
five flies are stationary (rather than moving randomly), and there are only two
spiders that start at the fourth square from the right at the top row of the grid
of Fig. 1.4.7. The base heuristic is to move each spider one square towards its
nearest fly, with distance measured by the Manhattan metric, and with preference

100 Exact and Approximate Dynamic Programming Principles Chap. 1

given to a horizontal direction over a vertical direction in case of a tie. Apply the
multiagent rollout algorithm of Section 1.4.5, and compare its performance with
the one of the ordinary rollout algorithm, and with the one of the base heuristic.

1.3 (Computational Exercise - Linear Quadratic Problem)

In a more realistic version of the cruise control system of Example 1.3.1, the
system has the form xk+1 = axk + buk + wk, where the coefficient a satisfies
0 < a ≤ 1, and the disturbance wk has zero mean and variance σ2. The cost
function has the form

(xN − x̄N)2 +

N−1
∑

k=0

(

(xk − x̄k)
2 + ru2

k)
)

,

where x̄0, . . . , x̄N are given nonpositive target values (a velocity profile) that
serve to adjust the vehicle’s velocity, in order to maintain a safe distance from
the vehicle ahead, etc. In a practical setting, the velocity profile is recalculated
by using on-line radar measurements.

(a) Use exact DP to derive the optimal policy for given values of a and b,
and a given velocity profile. Hint : Hypothesize that J∗

k (xk), the optimal
cost-to-go starting from state xk at time k, has the form

J∗
k (xk) = Pkx

2
k − 2pkxk + constant,

and assuming your hypothesis is correct, verify that the optimal policy is
linear in the state plus a constant, and has the form µ∗

k(xk) = Lkxk + &k,
where

Lk = − abPk+1

r + b2Pk+1
, &k =

bpk+1

r + b2Pk+1
.

Use the DP algorithm to verify that your hypothesis is correct, and to
derive recursive formulas that express the scalar coefficients Pk and pk in
terms of Pk+1, pk+1, Lk, and &k, starting with PN = 1 and pN = x̄N .

(b) Design an experiment to compare the performance of a fixed linear policy
π, derived for a fixed nominal velocity profile as in part (a), and the perfor-
mance of the algorithm that uses on-line replanning, whereby the optimal
policy π∗ is recalculated each time the velocity profile changes. Compare
with the performance of the rollout policy π̃ that uses π as the base policy
and on-line replanning.

1.4 (Computational Exercise - Parking Problem)

In reference to Example 1.4.3, a driver aims to park at an inexpensive space on
the way to his destination. There are L parking spaces available and a garage at
the end. The driver can move in either direction. For example if he is in space i
he can either move to i− 1 with a cost t−i , or to i+ 1 with a cost t+i , or he can
park at a cost c(i) (if the parking space i is free). The only exception is when he

Sec. 1.6 Notes and Sources 101

arrives at the garage (indicated by index N) and he has to park there at a cost
C. Moreover, after the driver visits a parking space he remembers its free/taken
status and has an option to return to any parking space he has already visited.
However, the driver must park within a given number of stages N , so that the
problem has a finite horizon. The initial probability of each space being free is
given, and the driver can only observe the free/taken status of a parking space
only after he/she visits the space. Moreover, the free/taken status of a parking
space that has been visited so far does not change over time.

Write a program to calculate the optimal solution using exact dynamic
programming over a state space that is as small as possible. Try to experiment
with different problem data, and try to visualize the optimal cost/policy with
suitable graphical plots. Comment on the run-time as you increase the number
of parking spots L.

1.5 (PI and Newton’s Method for Linear Quadratic Problems)

The purpose of this exercise is to demonstrate the fast convergence of the PI
algorithm for the case of the one-dimensional linear quadratic problem without
discounting (α = 1); cf. Examples 1.3.5 and 1.4.6.

(a) Verify that the Bellman equation,

Kx2 = min
u

[

x2 + ru2 +K(x+ bu)2
]

,

can be written as the equation H(K) = 0, where H(K) = K − rK

r+b2K
− 1.

(b) Consider the PI algorithm

Kk =
1 + rL2

k

1− (1 + bLk)2
,

where

Lk+1 = − bKk

r + b2Kk
,

and µ(x) = L0x is the starting policy. Verify that this iteration is equivalent
to Newton’s method

Kk+1 = Kk −
(

∂H(Kk)

∂K

)−1

H(Kk),

for solving the Bellman equation H(K) = 0. This relation can be shown in
greater generality, for multidimensional linear quadratic problems.

(c) Verify computationally that limJ→J∗ J̃−J∗
J−J∗ = 0, for the two cases where

r = 0.5 and b varies, and b = 2 and r varies. Here for a given initial state,
J̃ is the rollout performance, J∗ is the optimal performance, and J is the
performance of the base policy µL(x) = Lx, where L is given by Eq. (1.64).

(d) Rollout cost improvement over base policy in adaptive control : Consider a
range of values of b, r, and L0, and study computationally the effect of the

102 Exact and Approximate Dynamic Programming Principles Chap. 1

second derivative of H on the ratio K1/K0 of rollout to base policy costs,
and on the ratio K1/K∗ of rollout to optimal policy costs.

Solution of part (b): We have L = − bK

r+b2K
if and only if K = − rL

b(1+bL) , so

H(K) = K − rK
r + b2K

− 1 =
b2K2

r + b2K
− 1 = −bLK − 1 =

rL2 − (bL+ 1)

bL+ 1
.

We next calculate the inverse partial derivative ∂H
∂K

as
(

∂H
∂K

)−1

=
(r + b2K)2

b2K(2r + b2K)
=

1
L2

· K
2r + b2K

=
1
L2

· 1 + bL
2 + bL

· K
r

= − 1
L2

· 1 + bL
2 + bL

· L
b(1 + bL)

= − 1
bL(2 + bL)

.

Therefore, the iterate of Newton’s method is given by

K −
(

∂H
∂K

)−1

H(K) = − rL
b(1 + bL)

+
1

bL(2 + bL)
· rL

2 − (bL+ 1)
1 + bL

=
−rL2(2 + bL) + rL2 − (1 + bL)

bL(2 + bL)(1 + bL)

=
−rL2(1 + bL)− (1 + bL)

bL(2 + bL)(1 + bL)
=

−rL2 − 1
bL(2 + bL)

=
1 + rL2

1− (1 + bL)2
,

and is identical to the PI iterate.

1.6 (Linear Quadratic Problems: Stability in Approximation in
Value Space and Adaptive Control)

This exercise focuses on the linear quadratic problem of Examples 1.3.3 and 1.4.6,
and aims to address issues of stability.

(a) Consider approximation in value space with J̃(x) = βx2. Show that for
β = 0, the closed-loop system obtained from the one-step lookahead mini-
mization is xk+1 = xk, so it is unstable.

(b) Consider the issue of stability of the closed-loop system under the base and
the rollout policies, as the problem parameters b and r change. Let the
base policy be µ(x) = Lx, where L is given by Eq. (1.64). This base policy

is stable when |1+ bL| < 1, or equivalently if 0 < b < 2(5+2
√

6)

2+
√

6
. The rollout

policy is stable when |1 + bL̃| < 1, where L̃ is given by Eq. (1.66). Verify
that this is equivalent to 0 < 2r + b2KL, where KL is given by Eq. (1.65),
and conclude that contrary to the base policy, the rollout policy is stable
for all values of b and values of r > 0.

(c) Suppose that the system is xk+1 = axk + buk instead of xk+1 = xk + buk.
Derive the range of values of a for which the conclusion of part (b) holds.
Explain your results with the aid of Figs. 1.3.10 and 1.3.12.

Note: The issue of stability of policies obtained by approximation in value space
(including MPC) is important, and is intimately connected with the notion of
sequential improvement conditions (also called Lyapunov conditions); see Sections
2.3 and 3.1.2, and Exercises 5.1-5.3 in Chapter 5, for further discussion.

References

[ABB19] Agrawal, A., Barratt, S., Boyd, S., and Stellato, B., 2019. “Learning Convex
Optimization Control Policies,” arXiv preprint arXiv:1912.09529.

[ACF02] Auer, P., Cesa-Bianchi, N., and Fischer, P., 2002. “Finite Time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, Vol. 47, pp. 235-256.

[ADH19] Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R., 2019. “Fine-Grained
Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural
Networks,” arXiv preprint arXiv:1901.08584.

[AHZ19] Arcari, E., Hewing, L., and Zeilinger, M. N., 2019. “An Approximate Dynamic
Programming Approach for Dual Stochastic Model Predictive Control,” arXiv preprint
arXiv:1911.03728.

[AKO07] Astolfi, A., Karagiannis, D., and Ortega, R., 2007. Nonlinear and Adaptive
Control with Applications, Springer, N. Y.

[ALZ08] Asmuth, J., Littman, M. L., and Zinkov, R., 2008. “Potential-Based Shaping
in Model-Based Reinforcement Learning,” Proc. of 23rd AAAI Conference, pp. 604-609.

[AMS09] Audibert, J.Y., Munos, R., and Szepesvari, C., 2009. “Exploration-Exploitation
Tradeoff Using Variance Estimates in Multi-Armed Bandits,” Theoretical Computer
Science, Vol. 410, pp. 1876-1902.

[ASR20] Andersen, A. R., Stidsen, T. J. R., and Reinhardt, L. B., 2020. “Simulation-
Based Rolling Horizon Scheduling for Operating Theatres,” in SN Operations Research
Forum, Vol. 1, pp. 1-26.

[AXG16] Ames, A. D., Xu, X., Grizzle, J. W., and Tabuada, P., 2016. “Control Bar-
rier Function Based Quadratic Programs for Safety Critical Systems,” IEEE Trans. on
Automatic Control, Vol. 62, pp. 3861-3876.

[Abr90] Abramson, B., 1990. “Expected-Outcome: A General Model of Static Evalua-
tion,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 182-193.

[Agr95] Agrawal, R., 1995. “Sample Mean Based Index Policies with O(logn) Regret for
the Multiarmed Bandit Problem,” Advances in Applied Probability, Vol. 27, pp. 1054-
1078.

[AnH14] Antunes, D., and Heemels, W. P. M. H., 2014. “Rollout Event-Triggered Con-
trol: Beyond Periodic Control Performance,” IEEE Trans. on Automatic Control, Vol.
59, pp. 3296-3311.

[AnM79] Anderson, B. D. O., and Moore, J. B., 1979. Optimal Filtering, Prentice-Hall,
Englewood Cliffs, N. J.

451

452 References

[AsH95] Aström, K. J., and Hagglund, T., 1995. PID Controllers: Theory, Design, and
Tuning, Instrument Society of America, Research Triangle Park, NC.

[AsH06] Aström, K. J., and Hagglund, T., 2006. Advanced PID Control, Instrument
Society of America, Research Triangle Park, N. C.

[AsM10] Aström, K. J., and Murray, R. M., 2010. Feedback Systems, Princeton Univ.
Press.

[AsW08] Aström, K. J., and Wittenmark, B., 2008. Adaptive Control, Dover Books;
also Prentice-Hall, Englewood Cliffs, N. J, 1994.

[Ast83] Aström, K. J., 1983. “Theory and Applications of Adaptive Control - A Survey,”
Automatica, Vol. 19, pp. 471-486.

[AtF66] Athans, M., and Falb, P., 1966. Optimal Control, McGraw-Hill, N. Y.

[AvB20] Avrachenkov, K., and Borkar, V. S., 2020. “Whittle Index Based Q-Learning
for Restless Bandits with Average Reward,” arXiv preprint arXiv:2004.14427.

[BBD08] Busoniu, L., Babuska, R., and De Schutter, B., 2008. “A Comprehensive Survey
of Multiagent Reinforcement Learning,” IEEE Trans. on Systems, Man, and Cybernetics,
Part C, Vol. 38, pp. 156-172.

[BBD10a] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., 2010. Reinforcement
Learning and Dynamic Programming Using Function Approximators, CRC Press, N. Y.

[BBD10b] Busoniu, L., Babuska, R., and De Schutter, B., 2010. “Multi-Agent Reinforce-
ment Learning: An Overview,” in Innovations in Multi-Agent Systems and Applications,
Springer, pp. 183-221.

[BBG13] Bertazzi, L., Bosco, A., Guerriero, F., and Lagana, D., 2013. “A Stochastic
Inventory Routing Problem with Stock-Out,” Transportation Research, Part C, Vol. 27,
pp. 89-107.

[BBK20] Balandin, D. V., Biryukov, R. S., and Kogan, M. M., 2020. “Ellipsoidal Reach-
able Sets of Linear Time-Varying Continuous and Discrete Systems in Control and Es-
timation Problems,”Automatica, Vol. 116, p. 108926.

[BBM17] Borrelli, F., Bemporad, A., and Morari, M., 2017. Predictive Control for Linear
and Hybrid Systems, Cambridge Univ. Press, Cambridge, UK.

[BBP13] Bhatnagar, S., Borkar, V. S., and Prashanth, L. A., 2013. “Adaptive Feature
Pursuit: Online Adaptation of Features in Reinforcement Learning,” in Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control , by F. Lewis
and D. Liu (eds.), IEEE Press, Piscataway, N. J., pp. 517-534.

[BBW20] Bhattacharya, S., Badyal, S., Wheeler, T., Gil, S., and Bertsekas, D. P., 2020.
“Reinforcement Learning for POMDP: Partitioned Rollout and Policy Iteration with
Application to Autonomous Sequential Repair Problems,” IEEE Robotics and Automa-
tion Letters, Vol. 5, pp. 3967-3974.

[BCD10] Brochu, E., Cora, V. M., and De Freitas, N., 2010. “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User Modeling
and Hierarchical Reinforcement Learning,” arXiv preprint arXiv:1012.2599.

[BCN18] Bottou, L., Curtis, F. E., and Nocedal, J., 2018. “Optimization Methods for
Large-Scale Machine Learning,” SIAM Review, Vol. 60, pp. 223-311.

[BKB20] Bhattacharya, S., Kailas, S., Badyal, S., Gil, S., and Bertsekas, D. P., 2020.
“Multiagent Rollout and Policy Iteration for POMDP with Application to Multi-Robot
Repair Problems,” in Proc. of Conference on Robot Learning (CoRL); also arXiv preprint,

References 453

arXiv:2011.04222.

[BLL19] Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A., 2019. “Benign Over-
fitting in Linear Regression,” arXiv preprint arXiv:1906.11300.

[BMM18] Belkin, M., Ma, S., and Mandal, S., 2018. “To Understand Deep Learning we
Need to Understand Kernel Learning,” arXiv preprint arXiv:1802.01396.

[BMZ09] Bokanowski, O., Maroso, S., and Zidani, H., 2009. “Some Convergence Results
for Howard’s Algorithm,” SIAM J. on Numerical Analysis, Vol. 47, pp. 3001-3026.

[BPW12] Browne, C., Powley, E., Whitehouse, D., Lucas, L., Cowling, P. I., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S., 2012. “A Survey of
Monte Carlo Tree Search Methods,” IEEE Trans. on Computational Intelligence and AI
in Games, Vol. 4, pp. 1-43.

[BRT18] Belkin, M., Rakhlin, A., and Tsybakov, A. B., 2018. “Does Data Interpolation
Contradict Statistical Optimality?” arXiv preprint arXiv:1806.09471.

[BSW99] Beard, R. W., Saridis, G. N., and Wen, J. T., 1998. “Approximate Solutions
to the Time-Invariant Hamilton-Jacobi-Bellman Equation,” J. of Optimization Theory
and Applications, Vol. 96, pp. 589-626.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algorithms for
Combinatorial Optimization,” Heuristics, Vol. 3, pp. 245-262.

[BWL19] Beuchat, P. N., Warrington, J., and Lygeros, J., 2019. “Accelerated Point-
Wise Maximum Approach to Approximate Dynamic Programming,” arXiv preprint
arXiv:1901.03619.

[BYB94] Bradtke, S. J., Ydstie, B. E., and Barto, A. G., 1994. “Adaptive Linear
Quadratic Control Using Policy Iteration,” Proc. IEEE American Control Conference,
Vol. 3, pp. 3475-3479.

[BaF88] Bar-Shalom, Y., and Fortman, T. E., 1988. Tracking and Data Association,
Academic Press, N. Y.

[BaL19] Banjac, G., and Lygeros, J., 2019. “A Data-Driven Policy Iteration Scheme
Based on Linear Programming,” Proc. 2019 IEEE CDC, pp. 816-821.

[BaM20] Barzgaran, B., and Mesbahi, M., 2020. “Robust Analysis and Sensitivity Design
of Model Predictive Control,”IFAC-PapersOnLine,Vol. 53, pp. 7111-7116.

[BaP12] Bauso, D., and Pesenti, R., 2012. “Team Theory and Person-by-Person Opti-
mization with Binary Decisions,” SIAM J. on Control and Optimization, Vol. 50, pp.
3011-3028.

[Bad21] Badyal, S., 2021. A Comparative Study of Multi-Agent Reinforcement Learning
on Real World Problems, MS Thesis, Arizona State University.

[Bai93] Baird, L. C., 1993. “Advantage Updating,” Report WL-TR-93-1146, Wright
Patterson AFB, OH.

[Bai94] Baird, L. C., 1994. “Reinforcement Learning in Continuous Time: Advantage
Updating,” International Conf. on Neural Networks, Orlando, Fla.

[Bar90] Bar-Shalom, Y., 1990. Multitarget-Multisensor Tracking: Advanced Applica-
tions, Artech House, Norwood, MA.

[BeC89] Bertsekas, D. P., and Castañon, D. A., 1989. “The Auction Algorithm for
Transportation Problems,” Annals of Operations Research, Vol. 20, pp. 67-96.

454 References

[BeC99] Bertsekas, D. P., and Castañon, D. A., 1999. “Rollout Algorithms for Stochastic
Scheduling Problems,” Heuristics, Vol. 5, pp. 89-108.

[BeC02] Ben-Gal, I., and Caramanis, M., 2002. “Sequential DOE via Dynamic Program-
ming,” IIE Transactions, Vol. 34, pp. 1087-1100.

[BeC08] Besse, C., and Chaib-draa, B., 2008. “Parallel Rollout for Online Solution of
DEC-POMDPs,” Proc. of 21st International FLAIRS Conference, pp. 619-624.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iter-
ation and Applications in Neuro-Dynamic Programming,” Lab. for Info. and Decision
Systems Report LIDS-P-2349, Massachusetts Institute of Technology.

[BeL14] Beyme, S., and Leung, C., 2014. “Rollout Algorithm for Target Search in a
Wireless Sensor Network,” 80th Vehicular Technology Conference (VTC2014), IEEE,
pp. 1-5.

[BeP03] Bertsimas, D., and Popescu, I., 2003. “Revenue Management in a Dynamic
Network Environment,” Transportation Science, Vol. 37, pp. 257-277.

[BeR71a] Bertsekas, D. P., and Rhodes, I. B., 1971. “On the Minimax Reachability of
Target Sets and Target Tubes,” Automatica, Vol. 7, pp. 233-247.

[BeR71b] Bertsekas, D. P., and Rhodes, I. B., 1971. “Recursive State Estimation for a
Set-Membership Description of the Uncertainty,” IEEE Trans. Automatic Control, Vol.
AC-16, pp. 117-128.

[BeR73] Bertsekas, D. P., and Rhodes, I. B., 1973. “Sufficiently Informative Functions
and the Minimax Feedback Control of Uncertain Dynamic Systems,” IEEE Trans. Au-
tomatic Control, Vol. AC-18, pp. 117-124.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control: The
Discrete Time Case, Academic Press, N. Y.; republished by Athena Scientific, Belmont,
MA, 1996 (can be downloaded from the author’s website).

[BeS18] Bertazzi, L., and Secomandi, N., 2018. “Faster Rollout Search for the Vehicle
Routing Problem with Stochastic Demands and Restocking,” European J. of Operational
Research, Vol. 270, pp.487-497.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computa-
tion: Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J.; republished by Athena
Scientific, Belmont, MA, 1997 (can be downloaded from the author’s website).

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N., 1991. “An Analysis of Stochastic Shortest
Path Problems,” Math. Operations Res., Vol. 16, pp. 580-595.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming,
Athena Scientific, Belmont, MA.

[BeT97] Bertsimas, D., and Tsitsiklis, J. N., 1997. Introduction to Linear Optimization,
Athena Scientific, Belmont, MA.

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence of Gradient
Methods with Errors,” SIAM J. on Optimization, Vol. 36, pp. 627-642.

[BeT08] Bertsekas, D. P., and Tsitsiklis, J. N., 2008. Introduction to Probability, 2nd
Ed., Athena Scientific, Belmont, MA.

[BeY09] Bertsekas, D. P., and Yu, H., 2009. “Projected Equation Methods for Approxi-
mate Solution of Large Linear Systems,” J. of Computational and Applied Math., Vol.
227, pp. 27-50.

[BeY10] Bertsekas, D. P., and Yu, H., 2010. “Asynchronous Distributed Policy Iteration

References 455

in Dynamic Programming,” Proc. of Allerton Conf. on Communication, Control and
Computing, Allerton Park, Ill, pp. 1368-1374.

[BeY12] Bertsekas, D. P., and Yu, H., 2012. “Q-Learning and Enhanced Policy Iteration
in Discounted Dynamic Programming,” Math. of Operations Research, Vol. 37, pp. 66-
94.

[BeY16] Bertsekas, D. P., and Yu, H., 2016. “Stochastic Shortest Path Problems Un-
der Weak Conditions,” Lab. for Information and Decision Systems Report LIDS-2909,
Massachusetts Institute of Technology.

[Bea95] Beard, R. W., 1995. Improving the Closed-Loop Performance of Nonlinear Sys-
tems, Ph.D. Thesis, Rensselaer Polytechnic Institute.

[Bel56] Bellman, R., 1956. “A Problem in the Sequential Design of Experiments,”
Sankhya: The Indian J. of Statistics, Vol. 16, pp. 221-229.

[Bel57] Bellman, R., 1957. Dynamic Programming, Princeton University Press, Prince-
ton, N. J.

[Bel67] Bellman, R., 1967. Introduction to the Mathematical Theory of Control Pro-
cesses, Academic Press, Vols. I and II, New York, N. Y.

[Bel84] Bellman, R., 1984. Eye of the Hurricane, World Scientific Publishing, Singapore.

[Ben09] Bengio, Y., 2009. “Learning Deep Architectures for AI,” Foundations and Trends
in Machine Learning, Vol. 2, pp. 1-127.

[Ber71] Bertsekas, D. P., 1971. “Control of Uncertain Systems With a Set-Membership
Description of the Uncertainty,” Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA (can be downloaded from the author’s website).

[Ber72] Bertsekas, D. P., 1972. “Infinite Time Reachability of State Space Regions by
Using Feedback Control,” IEEE Trans. Automatic Control, Vol. AC-17, pp. 604-613.

[Ber73] Bertsekas, D. P., 1973. “Linear Convex Stochastic Control Problems over an
Infinite Horizon,” IEEE Trans. Automatic Control, Vol. AC-18, pp. 314-315.

[Ber77] Bertsekas, D. P., 1977. “Monotone Mappings with Application in Dynamic Pro-
gramming,” SIAM J. on Control and Opt., Vol. 15, pp. 438-464.

[Ber79] Bertsekas, D. P., 1979. “A Distributed Algorithm for the Assignment Problem,”
Lab. for Information and Decision Systems Report, Massachusetts Institute of Technol-
ogy, May 1979.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans. Au-
tomatic Control, Vol. AC-27, pp. 610-616.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of Fixed Points,”
Math. Programming, Vol. 27, pp. 107-120.

[Ber91] Bertsekas, D. P., 1991. Linear Network Optimization: Algorithms and Codes,
MIT Press, Cambridge, MA (can be downloaded from the author’s website).

[Ber96] Bertsekas, D. P., 1996. “Incremental Least Squares Methods and the Extended
Kalman Filter,” SIAM J. on Optimization, Vol. 6, pp. 807-822.

[Ber97a] Bertsekas, D. P., 1997. “A New Class of Incremental Gradient Methods for
Least Squares Problems,” SIAM J. on Optimization, Vol. 7, pp. 913-926.

[Ber97b] Bertsekas, D. P., 1997. “Differential Training of Rollout Policies,” Proc. of the
35th Allerton Conference on Communication, Control, and Computing, Allerton Park,
Ill.

456 References

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and Discrete Models,
Athena Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber05a] Bertsekas, D. P., 2005. “Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC,” European J. of Control, Vol. 11, pp. 310-334.

[Ber05b] Bertsekas, D. P., 2005. “Rollout Algorithms for Constrained Dynamic Program-
ming,” Lab. for Information and Decision Systems Report LIDS-P-2646, Massachusetts
Institute of Technology.

[Ber07] Bertsekas, D. P., 2007. “Separable Dynamic Programming and Approximate
Decomposition Methods,” IEEE Trans. on Aut. Control, Vol. 52, pp. 911-916.

[Ber10a] Bertsekas, D. P., 2010. “Incremental Gradient, Subgradient, and Proximal
Methods for Convex Optimization: A Survey,” Lab. for Information and Decision Sys-
tems Report LIDS-P-2848, Massachusetts Institute of Technology; a condensed version
with the same title appears in Optimization for Machine Learning, by S. Sra, S. Nowozin,
and S. J. Wright, (eds.), MIT Press, Cambridge, MA, 2012, pp. 85-119.

[Ber10b] Bertsekas, D. P., 2010. “Williams-Baird Counterexample for Q-Factor Asyn-
chronous Policy Iteration,”
http://web.mit.edu/dimitrib/www/Williams-Baird Counterexample.pdf.

[Ber11a] Bertsekas, D. P., 2011. “Incremental Proximal Methods for Large Scale Convex
Optimization,” Math. Programming, Vol. 129, pp. 163-195.

[Ber11b] Bertsekas, D. P., 2011. “Approximate Policy Iteration: A Survey and Some
New Methods,” J. of Control Theory and Applications, Vol. 9, pp. 310-335; a somewhat
expanded version appears as Lab. for Info. and Decision Systems Report LIDS-2833,
Massachusetts Institute of Technology, 2011.

[Ber12] Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control, Vol. II,
4th Ed., Athena Scientific, Belmont, MA.

[Ber13a] Bertsekas, D. P., 2013. “Rollout Algorithms for Discrete Optimization: A Sur-
vey,” Handbook of Combinatorial Optimization, Springer.

[Ber13b] Bertsekas, D. P., 2013. “λ-Policy Iteration: A Review and a New Implementa-
tion,” in Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, by F. Lewis and D. Liu (eds.), IEEE Press, Piscataway, N. J., pp. 381-409.

[Ber15a] Bertsekas, D. P., 2015. Convex Optimization Algorithms, Athena Scientific,
Belmont, MA.

[Ber15b] Bertsekas, D. P., 2015. “Incremental Aggregated Proximal and Augmented
Lagrangian Algorithms,” Lab. for Information and Decision Systems Report LIDS-P-
3176, Massachusetts Institute of Technology; arXiv preprint arXiv:1507.1365936.

[Ber16] Bertsekas, D. P., 2016. Nonlinear Programming, 3rd Ed., Athena Scientific,
Belmont, MA.

[Ber17b] Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control, Vol. I,
4th Ed., Athena Scientific, Belmont, MA.

[Ber17b] Bertsekas, D. P., 2017. “Value and Policy Iteration in Deterministic Optimal
Control and Adaptive Dynamic Programming,” IEEE Trans. on Neural Networks and
Learning Systems, Vol. 28, pp. 500-509.

[Ber18a] Bertsekas, D. P., 2018. Abstract Dynamic Programming, 2nd Ed., Athena
Scientific, Belmont, MA (can be downloaded from the author’s website).

[Ber18b] Bertsekas, D. P., 2018. “Feature-Based Aggregation and Deep Reinforcement

References 457

Learning: A Survey and Some New Implementations,” Lab. for Information and Decision
Systems Report, Massachusetts Institute of Technology; arXiv preprint arXiv:1804.04577;
IEEE/CAA J. of Automatica Sinica, Vol. 6, 2019, pp. 1-31.

[Ber18c] Bertsekas, D. P., 2018. “Biased Aggregation, Rollout, and Enhanced Policy
Improvement for Reinforcement Learning,” Lab. for Information and Decision Systems
Report, Massachusetts Institute of Technology; arXiv preprint arXiv:1910.02426.

[Ber18d] Bertsekas, D. P., 2018. “Proximal Algorithms and Temporal Difference Methods
for Solving Fixed Point Problems,” Computational Optim. Appl., Vol. 70, pp. 709-736.

[Ber19a] Bertsekas, D. P., 2019. Reinforcement Learning and Optimal Control, Athena
Scientific, Belmont, MA.

[Ber19b] Bertsekas, D. P., 2019. “Robust Shortest Path Planning and Semicontractive
Dynamic Programming,” Naval Research Logistics, Vol. 66, pp. 15-37.

[Ber19c] Bertsekas, D. P., 2019. “Multiagent Rollout Algorithms and Reinforcement
Learning,” arXiv preprint arXiv:1910.00120.

[Ber19d] Bertsekas, D. P., 2019. “Constrained Multiagent Rollout and Multidimensional
Assignment with the Auction Algorithm,” arXiv preprint, arxiv.org/abs/2002.07407.

[Ber20] Bertsekas, D. P., 2020. “Multiagent Value Iteration Algorithms in Dynamic
Programming and Reinforcement Learning,” arXiv preprint, arxiv.org/abs/2005.01627;
Results in Control and Optimization J., Vol. 1, 2020.

[Ber21a] Bertsekas, D. P., 2021. “Multiagent Reinforcement Learning: Rollout and Pol-
icy Iteration,” IEEE/CAA J. of Automatica Sinica, Vol. 8, pp. 249-271.

[Ber21b] Bertsekas, D. P., 2021. “On-Line Policy Iteration for Infinite Horizon Dynamic
Programming,” arXiv preprint arXiv:2106.00746, May 2021.

[Bet10] Bethke, B. M., 2010. Kernel-Based Approximate Dynamic Programming Using
Bellman Residual Elimination, Ph.D. Thesis, Massachusetts Institute of Technology.

[BiL97] Birge, J. R., and Louveaux, 1997. Introduction to Stochastic Programming,
Springer, New York, N. Y.

[Bia16] Bianchi, P., 2016. “Ergodic Convergence of a Stochastic Proximal Point Algo-
rithm,” SIAM J. on Optimization, Vol. 26, pp. 2235-2260.

[Bis95] Bishop, C. M, 1995. Neural Networks for Pattern Recognition, Oxford University
Press, N. Y.

[Bis06] Bishop, C. M, 2006. Pattern Recognition and Machine Learning, Springer, N. Y.

[BlG54] Blackwell, D., and Girshick, M. A., 1954. Theory of Games and Statistical
Decisions, Wiley, N. Y.

[BlM08] Blanchini, F., and Miani, S., 2008. Set-Theoretic Methods in Control, Birkhauser,
Boston.

[Bla86] Blackman, S. S., 1986. Multi-Target Tracking with Radar Applications, Artech
House, Dehdam, MA.

[Bla99] Blanchini, F., 1999. “Set Invariance in Control – A Survey,” Automatica, Vol.
35, pp. 1747-1768.

[Bod20] Bodson, M., 2020. Adaptive Estimation and Control, Independently Published.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems View-
point, Cambridge Univ. Press.

458 References

[BrH75] Bryson, A., and Ho, Y. C., 1975. Applied Optimal Control: Optimization,
Estimation, and Control, (revised edition), Taylor and Francis, Levittown, Penn.

[Bra21] Brandimarte, P., 2021. From Shortest Paths to Reinforcement Learning: A
MATLAB-Based Tutorial on Dynamic Programming, Springer.

[BuK97] Burnetas, A. N., and Katehakis, M. N., 1997. “Optimal Adaptive Policies for
Markov Decision Processes,” Math. of Operations Research, Vol. 22, pp. 222-255.

[CBH09] Choi, H. L., Brunet, L., and How, J. P., 2009. “Consensus-Based Decentralized
Auctions for Robust Task Allocation,” IEEE Trans. on Robotics, Vol. 25, pp. 912-926.

[CHF05] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2005. “An Adaptive
Sampling Algorithm for Solving Markov Decision Processes,” Operations Research, Vol.
53, pp. 126-139.

[CHF13] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2013. Simulation-Based
Algorithms for Markov Decision Processes, 2nd Ed., Springer, N. Y.

[CLT19] Chapman, M. P., Lacotte, J., Tamar, A., Lee, D., Smith, K. M., Cheng, V.,
Fisac, J. F., Jha, S., Pavone, M., and Tomlin, C. J., 2019. “A Risk-Sensitive Finite-
Time Reachability Approach for Safety of Stochastic Dynamic Systems,” arXiv preprint
arXiv:1902.11277.

[CMT87a] Clarke, D. W., Mohtadi, C., and Tuffs, P. S., 1987. “Generalized Predictive
Control - Part I. The Basic Algorithm,” Automatica Vol. 23, pp. 137-148.

[CMT87b] Clarke, D. W., Mohtadi, C., and Tuffs, P. S., 1987. “Generalized Predictive
Control - Part II,” Automatica Vol. 23, pp. 149-160.

[CRV06] Cogill, R., Rotkowitz, M., Van Roy, B., and Lall, S., 2006. “An Approximate
Dynamic Programming Approach to Decentralized Control of Stochastic Systems,” in
Control of Uncertain Systems: Modelling, Approximation, and Design, Springer, Berlin,
pp. 243-256.

[CXL19] Chu, Z., Xu, Z., and Li, H., 2019. “New Heuristics for the RCPSP with Multiple
Overlapping Modes,” Computers and Industrial Engineering, Vol. 131, pp. 146-156.

[CaB07] Camacho, E. F., and Bordons, C., 2007. Model Predictive Control, 2nd Ed.,
Springer, New York, N. Y.

[Can16] Candy, J. V., 2016. Bayesian Signal Processing: Classical, Modern, and Particle
Filtering Methods, Wiley-IEEE Press.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based
Approach, Springer, N. Y.

[ChC17] Chui, C. K., and Chen, G., 2017. Kalman Filtering, Springer International
Publishing.

[ChS00] Christianini, N., and Shawe-Taylor, J., 2000. Support Vector Machines and
Other Kernel-Based Learning Methods, Cambridge Univ. Press.

[Che59] Chernoff, H., 1959. “Sequential Design of Experiments,” The Annals of Mathe-
matical Statistics, Vol. 30, pp. 755-770.

[Chr97] Christodouleas, J. D., 1997. “Solution Methods for Multiprocessor Network
Scheduling Problems with Application to Railroad Operations,” Ph.D. Thesis, Opera-
tions Research Center, Massachusetts Institute of Technology.

[Cou06] Coulom, R., 2006. “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” International Conference on Computers and Games, Springer, pp. 72-83.

References 459

[CrS00] Cristianini, N., and Shawe-Taylor, J., 2000. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge Univ. Press.

[Cyb89] Cybenko, 1989. “Approximation by Superpositions of a Sigmoidal Function,”
Math. of Control, Signals, and Systems, Vol. 2, pp. 303-314.

[DDF19] Daubechies, I., DeVore, R., Foucart, S., Hanin, B., and Petrova, G., 2019.
“Nonlinear Approximation and (Deep) ReLU Networks,” arXiv preprint arXiv:1905.02199.

[DFM12] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2012. “Aproximate Dynamic
Programming via a Smoothed Approximate Linear Program,” Operations Research, Vol.
60, pp. 655-674.

[DFM13] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2013. “Bounds for Markov
Decision Processes,” in Reinforcement Learning and Approximate Dynamic Program-
ming for Feedback Control, by F. Lewis and D. Liu (eds.), IEEE Press, Piscataway, N.
J., pp. 452-473.

[DFV03] de Farias, D. P., and Van Roy, B., 2003. “The Linear Programming Approach
to Approximate Dynamic Programming,” Operations Research, Vol. 51, pp. 850-865.

[DFV04] de Farias, D. P., and Van Roy, B., 2004. “On Constraint Sampling in the
Linear Programming Approach to Approximate Dynamic Programming,” Mathematics
of Operations Research, Vol. 29, pp. 462-478.

[DHS12] Duda, R. O., Hart, P. E., and Stork, D. G., 2012. Pattern Classification, J.
Wiley, N. Y.

[DNW16] David, O. E., Netanyahu, N. S., and Wolf, L., 2016. “Deepchess: End-to-End
Deep Neural Network for Automatic Learning in Chess,” in International Conference on
Artificial Neural Networks, pp. 88-96.

[DeA20] Devonport, A., and Arcak, M., 2020. “Estimating Reachable Sets with Scenario
Optimization,” in Learning for Dynamics and Control, pp. 75-84.

[DeF04] De Farias, D. P., 2004. “The Linear Programming Approach to Approximate
Dynamic Programming,” in Handbook of Learning and Approximate Dynamic Program-
ming, by J. Si, A. Barto, W. Powell, and D. Wunsch, (Eds.), J. Wiley, N. Y.

[DeK11] Devlin, S., and Kudenko, D., 2011. “Theoretical Considerations of Potential-
Based Reward Shaping for Multi-Agent Systems,” in Proceedings of AAMAS.

[Den67] Denardo, E. V., 1967. “Contraction Mappings in the Theory Underlying Dy-
namic Programming,” SIAM Review, Vol. 9, pp. 165-177.

[DiL08] Dimitrakakis, C., and Lagoudakis, M. G., 2008. “Rollout Sampling Approximate
Policy Iteration,” Machine Learning, Vol. 72, pp. 157-171.

[DiM10] Di Castro, D., and Mannor, S., 2010. “Adaptive Bases for Reinforcement Learn-
ing,” Machine Learning and Knowledge Discovery in Databases, Vol. 6321, pp. 312-327.

[DiW02] Dietterich, T. G., and Wang, X., 2002. “Batch Value Function Approximation
via Support Vectors,” in Advances in Neural Information Processing Systems, pp. 1491-
1498.

[DoJ09] Doucet, A., and Johansen, A. M., 2009. “A Tutorial on Particle Filtering and
Smoothing: Fifteen Years Later,” Handbook of Nonlinear Filtering, Oxford University
Press, Vol. 12, p. 3.

[DrH01] Drezner, Z., and Hamacher, H. W. eds., 2001. Facility Location: Applications
and Theory, Springer Science and Business Media.

[DuJ20] Durasevic, M., and Jakobovic, D., 2020. “Automatic Design of Dispatching

460 References

Rules for Static Scheduling Conditions,” Neural Computing and Applications, Vol. 33,
pp. 1-26.

[DuV99] Duin, C., and Voss, S., 1999. “The Pilot Method: A Strategy for Heuristic Rep-
etition with Application to the Steiner Problem in Graphs,” Networks: An International
Journal, Vol. 34, pp. 181-191.

[EDS18] Efroni, Y., Dalal, G., Scherrer, B., and Mannor, S., 2018. “Beyond the One-Step
Greedy Approach in Reinforcement Learning,” in Proc. International Conf. on Machine
Learning, pp. 1387-1396.

[EMM05] Engel, Y., Mannor, S., and Meir, R., 2005. “Reinforcement Learning with
Gaussian Processes,” in Proc. of the 22nd ICML, pp. 201-208.

[FHS09] Feitzinger, F., Hylla, T., and Sachs, E. W., 2009. “Inexact Kleinman-Newton
Method for Riccati Equations,” SIAM J. on Matrix Analysis and Applications, Vol. 3,
pp. 272-288.

[FIA03] Findeisen, R., Imsland, L., Allgower, F., and Foss, B.A., 2003. “State and
Output Feedback Nonlinear Model Predictive Control: An Overview,” European J. of
Control, Vol. 9, pp. 190-206.

[FPB15] Farahmand, A. M., Precup, D., Barreto, A. M., and Ghavamzadeh, M., 2015.
“Classification-Based Approximate Policy Iteration,” IEEE Trans. on Automatic Con-
trol, Vol. 60, pp. 2989-2993.

[FeV02] Ferris, M. C., and Voelker, M. M., 2002. “Neuro-Dynamic Programming for
Radiation Treatment Planning,” Numerical Analysis Group Research Report NA-02/06,
Oxford University Computing Laboratory, Oxford University.

[FeV04] Ferris, M. C., and Voelker, M. M., 2004. “Fractionation in Radiation Treatment
Planning,” Mathematical Programming B, Vol. 102, pp. 387-413.

[Fel60] Feldbaum, A. A., 1960. “Dual Control Theory,” Automation and Remote Control,
Vol. 21, pp. 874-1039.

[FiV96] Filar, J., and Vrieze, K., 1996. Competitive Markov Decision Processes, Springer.

[FoK09] Forrester, A. I., and Keane, A. J., 2009. “Recent Advances in Surrogate-Based
Optimization. Progress in Aerospace Sciences,” Vol. 45, pp. 50-79.

[Fra18] Frazier, P. I., 2018. “A Tutorial on Bayesian Optimization,” arXiv preprint
arXiv:1807.02811.

[Fu17] Fu, M. C., 2017. “Markov Decision Processes, AlphaGo, and Monte Carlo Tree
Search: Back to the Future,” Leading Developments from INFORMS Communities,
INFORMS, pp. 68-88.

[Fun89] Funahashi, K., 1989. “On the Approximate Realization of Continuous Mappings
by Neural Networks,” Neural Networks, Vol. 2, pp. 183-192.

[GBC16] Goodfellow, I., Bengio, J., and Courville, A., Deep Learning, MIT Press, Cam-
bridge, MA.

[GBL19] Goodson, J. C., Bertazzi, L., and Levary, R. R., 2019. “Robust Dynamic Media
Selection with Yield Uncertainty: Max-Min Policies and Dual Bounds,” Report.

[GDM19] Guerriero, F., Di Puglia Pugliese, L., and Macrina, G., 2019. “A Rollout Algo-
rithm for the Resource Constrained Elementary Shortest Path Problem,” Optimization
Methods and Software, Vol. 34, pp. 1056-1074.

[GGS13] Gabillon, V., Ghavamzadeh, M., and Scherrer, B., 2013. “Approximate Dy-
namic Programming Finally Performs Well in the Game of Tetris,” in NIPS, pp. 1754-

References 461

1762.

[GGW11] Gittins, J., Glazebrook, K., and Weber, R., 2011. Multi-Armed Bandit Allo-
cation Indices, J. Wiley, N. Y.

[GLG11] Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer, B., 2011. “Classi-
fication-Based Policy Iteration with a Critic,” in Proc. of ICML.

[GMP15] Ghavamzadeh, M., Mannor, S., Pineau, J., and Tamar, A., 2015. ”Bayesian
Reinforcement Learning: A Survey,” Foundations and Trends in Machine Learning, Vol.
8, pp. 359-483.

[GSD06] Goodwin, G., Seron, M. M., and De Dona, J. A., 2006. Constrained Control
and Estimation: An Optimisation Approach, Springer, N. Y.

[GSS93] Gordon, N. J., Salmond, D. J., and Smith, A. F., 1993. “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation,” in IEE Proceedings, Vol. 140, pp.
107-113.

[GTA17] Gommans, T. M. P., Theunisse, T. A. F., Antunes, D. J., and Heemels, W.
P. M. H., 2017. “Resource-Aware MPC for Constrained Linear Systems: Two Rollout
Approaches,” Journal of Process Control, Vol. 51, pp. 68-83.

[GTO15] Goodson, J. C., Thomas, B. W., and Ohlmann, J. W., 2015. “Restocking-
Based Rollout Policies for the Vehicle Routing Problem with Stochastic Demand and
Duration Limits,” Transportation Science, Vol. 50, pp. 591-607.

[GTO17] Goodson, J. C., Thomas, B. W., and Ohlmann, J. W., 2017. “A Rollout Al-
gorithm Framework for Heuristic Solutions to Finite-Horizon Stochastic Dynamic Pro-
grams,” European J. of Operational Research, Vol. 258, pp. 216-229.

[GoS84] Goodwin, G. C., and Sin, K. S. S., 1984. Adaptive Filtering, Prediction, and
Control, Prentice-Hall, Englewood Cliffs, N. J.

[Gos15] Gosavi, A., 2015. Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning, 2nd Ed., Springer, N. Y.

[Grz17] Grzes, M., 2017. “Reward Shaping in Episodic Reinforcement Learning,” in Proc.
of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 565-573.

[GuM01] Guerriero, F., and Musmanno, R., 2001. “Label Correcting Methods to Solve
Multicriteria Shortest Path Problems,” J. Optimization Theory Appl., Vol. 111, pp.
589-613.

[GuM03] Guerriero, F., and Mancini, M., 2003. “A Cooperative Parallel Rollout Algo-
rithm for the Sequential Ordering Problem,” Parallel Computing, Vol. 29, pp. 663-677.

[Gup20] Gupta, A., 2020. “Existence of Team-Optimal Solutions in Static Teams with
Common Information: A Topology of Information Approach,” SIAM J. on Control and
Optimization, Vol. 58, pp. 998-1021.

[HCR21] Hoffmann, F., Charlish, A., Ritchie, M., and Griffiths, H., 2021. “Policy Rollout
Action Selection in Continuous Domains for Sensor Path Planning,” IEEE Trans. on
Aerospace and Electronic Systems.

[HJG16] Huang, Q., Jia, Q. S., and Guan, X., 2016. “Robust Scheduling of EV Charging
Load with Uncertain Wind Power Integration,” IEEE Trans. on Smart Grid, Vol. 9, pp.
1043-1054.

[HKT18] Hernandez-Leal, P., Kartal, B., and Taylor, M. E., 2018. “A Survey and Cri-
tique of Multiagent Deep Reinforcement Learning,” arXiv preprint arXiv:1810.05587.

[HLS06] Han, J., Lai, T. L., and Spivakovsky, V., 2006. “Approximate Policy Optimiza-

462 References

tion and Adaptive Control in Regression Models,” Computational Economics, Vol. 27,
pp. 433-452.

[HLZ19] Ho, T. Y., Liu, S., and Zabinsky, Z. B., 2019. “A Multi-Fidelity Rollout Al-
gorithm for Dynamic Resource Allocation in Population Disease Management,” Health
Care Management Science, Vol. 22, pp. 727-755.

[HMR19] Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J., 2019. “Surprises
in High-Dimensional Ridgeless Least Squares Interpolation,” arXiv preprint arXiv:1903-
.08560.

[HSD17] Hostetler, J., Fern, A., and Dietterich, T., 2017. “Sample-Based Tree Search
with Fixed and Adaptive State Abstractions,” J. of Artificial Intelligence Research, Vol.
60, pp. 717-777.

[HSS08] Hofmann, T., Scholkopf, B., and Smola, A. J., 2008. “Kernel Methods in Ma-
chine Learning,” The Annals of Statistics, Vol. 36, pp. 1171-1220.

[HSW89] Hornick, K., Stinchcombe, M., and White, H., 1989. “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, Vol. 2, pp. 359-159.

[HWM19] Hewing, L., Wabersich, K. P., Menner, M., and Zeilinger, M. N., 2019.
“Learning-Based Model Predictive Control: Toward Safe Learning in Control,” Annual
Review of Control, Robotics, and Autonomous Systems.

[HaR21] Hardt, M., and Recht, B., 2021. Patterns, Predictions, and Actions: A Story
About Machine Learning, arXiv preprint arXiv:2102.05242.

[HaZ01] Hansen, E. A., and Zilberstein, S., 2001. “LAO*: A Heuristic Search Algorithm
that Finds Solutions with Loops,” Artificial Intelligence, Vol. 129, pp. 35-62.

[Han98] Hansen, E. A., 1998. “Solving POMDPs by Searching in Policy Space,” in Proc.
of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 211-219.

[Hay08] Haykin, S., 2008. Neural Networks and Learning Machines, 3rd Ed., Prentice-
Hall, Englewood-Cliffs, N. J.

[HeZ19] Hewing, L., and Zeilinger, M. N., 2019. “Scenario-Based Probabilistic Reach-
able Sets for Recursively Feasible Stochastic Model Predictive Control,” IEEE Control
Systems Letters, Vol. 4, pp. 450-455.

[Hew71] Hewer, G., 1971. “An Iterative Technique for the Computation of the Steady
State Gains for the Discrete Optimal Regulator,” IEEE Trans. on Automatic Control,
Vol. 16, pp. 382-384.

[Ho80] Ho, Y. C., 1980. “Team Decision Theory and Information Structures,” Proceed-
ings of the IEEE, Vol. 68, pp. 644-654.

[HoF21] Houy, N., and Flaig, J., 2021. “Hospital-Wide Surveillance-Based Antimicrobial
Treatments: A Monte-Carlo Look-Ahead Method,” Computer Methods and Programs
in Biomedicine, Vol. 204, p. 106050.

[HuM16] Huan, X., and Marzouk, Y. M., 2016. “Sequential Bayesian Optimal Experi-
mental Design via Approximate Dynamic Programming,” arXiv preprint arXiv:1604.08320.

[Hua15] Huan, X., 2015. Numerical Approaches for Sequential Bayesian Optimal Exper-
imental Design, Ph.D. Thesis, Massachusetts Institute of Technology.

[Hyl11] Hylla, T., 2011. Extension of Inexact Kleinman-Newton Methods to a General
Monotonicity Preserving Convergence Theory, Ph.D. Thesis, Univ. of Trier.

[IFT20] Issakkimuthu, M., Fern, A., and Tadepalli, P., 2020. “The Choice Function
Framework for Online Policy Improvement,” in Proc. of the AAAI Conference on Arti-

References 463

ficial Intelligence, Vol. 34, pp. 10178-10185.

[IJT18] Iusem, Jofre, A., and Thompson, P., 2018. “Incremental Constraint Projec-
tion Methods for Monotone Stochastic Variational Inequalities,” Math. of Operations
Research, Vol. 44, pp. 236-263.

[IoS96] Ioannou, P. A., and Sun, J., 1996. Robust Adaptive Control, Prentice-Hall,
Englewood Cliffs, N. J.

[JCG20] Jiang, S., Chai, H., Gonzalez, J., and Garnett, R., 2020. “BINOCULARS for
Efficient, Nonmyopic Sequential Experimental Design,” in Proc. Intern. Conference on
Machine Learning, pp. 4794-4803.

[JGJ18] Jones, M., Goldstein, M., Jonathan, P., and Randell, D., 2018. “Bayes Linear
Analysis of Risks in Sequential Optimal Design Problems,” Electronic J. of Statistics,
Vol. 12, pp. 4002-4031.

[JJB20] Jiang, S., Jiang, D. R., Balandat, M., Karrer, B., Gardner, J. R., and Garnett,
R., 2020. “Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees,”
arXiv preprint arXiv:2006.15779.

[JiJ17] Jiang, Y., and Jiang, Z. P., 2017. Robust Adaptive Dynamic Programming, J.
Wiley, N. Y.

[Jon90] Jones, L. K., 1990. “Constructive Approximations for Neural Networks by Sig-
moidal Functions,” Proceedings of the IEEE, Vol. 78, pp. 1586-1589.

[JuP07] Jung, T., and Polani, D., 2007. “Kernelizing LSPE(λ),” Proc. 2007 IEEE Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning, Honolulu,
Ha., pp. 338-345.

[KAC15] Kochenderfer, M. J., with Amato, C., Chowdhary, G., How, J. P., Davison
Reynolds, H. J., Thornton, J. R., Torres-Carrasquillo, P. A., Ore, N. K., Vian, J., 2015.
Decision Making under Uncertainty: Theory and Application, MIT Press, Cambridge,
MA.

[KAH15] Khashooei, B. A., Antunes, D. J., and Heemels, W. P. M. H., 2015. “Rollout
Strategies for Output-Based Event-Triggered Control,” in Proc. 2015 European Control
Conference, pp. 2168-2173.

[KBM20] Khosravi, M., Behrunani, V., Myszkorowski, P., Smith, R. S., Rupenyan, A.,
and Lygeros, J., 2020. “Performance-Driven Cascade Controller Tuning with Bayesian
Optimization,” arXiv e-prints, pp. arXiv-2007.

[KKK95] Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive
Control Design, J. Wiley, N. Y.

[KKK20] Kalise, D., Kundu, S., and Kunisch, K., 2020. “Robust Feedback Control of
Nonlinear PDEs by Numerical Approximation of High-Dimensional Hamilton-Jacobi-
Isaacs Equations.” SIAM J. on Applied Dynamical Systems, Vol. 19, pp. 1496-1524.

[KLC98] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R., 1998. “Planning and
Acting in Partially Observable Stochastic Domains,” Artificial Intelligence, Vol. 101, pp.
99-134.

[KLM82a] Krainak, J. L. S. J. C., Speyer, J., and Marcus, S., 1982. “Static Team
Problems - Part I: Sufficient Conditions and the Exponential Cost Criterion,” IEEE
Trans. on Automatic Control, Vol. 27, pp. 839-848.

[KLM82b] Krainak, J. L. S. J. C., Speyer, J., and Marcus, S., 1982. “Static Team Prob-
lems - Part II: Affine Control Laws, Projections, Algorithms, and the LEGT Problem,”
IEEE Trans. on Automatic Control, Vol. 27, pp. 848-859.

464 References

[KMN02] Kearns, M. J., Mansour, Y., and Ng, A. Y., 2002. A Sparse Sampling Algorithm
for Near-Optimal Planning in Large Markov Decision Processes,” Machine Learning, Vol.
49, pp. 193?208.

[KMP06] Keller, P. W., Mannor, S., and Precup, D., 2006. “Automatic Basis Function
Construction for Approximate Dynamic Programming and Reinforcement Learning,”
Proc. of the 23rd ICML, Pittsburgh, Penn.

[KaW94] Kall, P., and Wallace, S. W., 1994. Stochastic Programming, Wiley, Chichester,
UK.

[KeG88] Keerthi, S. S., and Gilbert, E. G., 1988. “Optimal, Infinite Horizon Feedback
Laws for a General Class of Constrained Discrete Time Systems: Stability and Moving-
Horizon Approximations,” J. Optimization Theory Appl., Vo. 57, pp. 265-293.

[Kle68] Kleinman, D. L., 1968. “On an Iterative Technique for Riccati Equation Com-
putations,” IEEE Trans. Aut. Control, Vol. AC-13, pp. 114-115.

[KoC16] Kouvaritakis, B., and Cannon, M., 2016. Model Predictive Control: Classical,
Robust and Stochastic, Springer, N. Y.

[KoG98] Kolmanovsky, I., and Gilbert, E. G., 1998. “Theory and Computation of Distur-
bance Invariant Sets for Discrete-Time Linear Systems,” Math. Problems in Engineering,
Vol. 4, pp. 317-367.

[KoS06] Kocsis, L., and Szepesvari, C., 2006. “Bandit Based Monte-Carlo Planning,”
Proc. of 17th European Conference on Machine Learning, Berlin, pp. 282-293.

[Kok91] Kokotovic, P. V., ed., 1991. Foundations of Adaptive Control, Springer.

[Kre19] Krener, A. J., 2019. “Adaptive Horizon Model Predictive Control and Al’brekht’s
Method,” arXiv preprint arXiv:1904.00053.

[Kri16] Krishnamurthy, V., 2016. Partially Observed Markov Decision Processes, Cam-
bridge Univ. Press.

[KuK21] Kundu, S., and Kunisch, K., 2021. “Policy Iteration for Hamilton-Jacobi-
Bellman Equations with Control Constraints,” Computational Optimization and Ap-
plications, pp. 1-25.

[KuV86] Kumar, P. R., and Varaiya, P. P., 1986. Stochastic Systems: Estimation, Iden-
tification, and Adaptive Control, Prentice-Hall, Englewood Cliffs, N. J.

[Kun14] Kung, S. Y., 2014. Kernel Methods and Machine Learning, Cambridge Univ.
Press.

[LEC20] Lee, E. H., Eriksson, D., Cheng, B., McCourt, M., and Bindel, D., 2020. “Effi-
cient Rollout Strategies for Bayesian Optimization,” arXiv preprint arXiv:2002.10539.

[LGM10] Lazaric, A., Ghavamzadeh, M., and Munos, R., 2010. “Analysis of a Classifica-
tion-Based Policy Iteration Algorithm,” INRIA Report.

[LGW16] Lan, Y., Guan, X., and Wu, J., 2016. “Rollout Strategies for Real-Time Multi-
Energy Scheduling in Microgrid with Storage System,” IET Generation, Transmission
and Distribution, Vol. 10, pp. 688-696.

[LJM19] Li, Y., Johansson, K. H., and Martensson, J., 2019. “Lambda-Policy Iteration
with Randomization for Contractive Models with Infinite Policies: Well Posedness and
Convergence,” arXiv preprint arXiv:1912.08504.

[LKG21] Li, T., Krakow, L. W., and Gopalswamy, S., 2021. “Optimizing Consensus-
Based Multi-Target Tracking with Multiagent Rollout Control Policies,” arXiv preprint
arXiv:2102.02919.

References 465

[LLL19] Liu, Z., Lu, J., Liu, Z., Liao, G., Zhang, H. H., and Dong, J., 2019. “Patient
Scheduling in Hemodialysis Service,” J. of Combinatorial Optimization, Vol. 37, pp.
337-362.

[LLP93] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S., 1993. “Multilayer Feed-
forward Networks with a Nonpolynomial Activation Function can Approximate any
Function,” Neural Networks, Vol. 6, pp. 861-867.

[LPS21] Liu, M., Pedrielli, G., Sulc, P., Poppleton, E., and Bertsekas, D. P., 2021. “Ex-
pertRNA: A New Framework for RNA Structure Prediction,” bioRxiv 2021.01.18.427087.

[LTZ19] Li, Y., Tang, Y., Zhang, R., and Li, N., 2019. “Distributed Reinforcement Learn-
ing for Decentralized Linear Quadratic Control: A Derivative-Free Policy Optimization
Approach,” arXiv preprint arXiv:1912.09135.

[LWT17] Lowe, L., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I., 2017. “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments,” in Advances in
Neural Information Processing Systems, pp. 6379-6390.

[LWW16] Lam, R., Willcox, K., and Wolpert, D. H., 2016. “Bayesian Optimization with
a Finite Budget: An Approximate Dynamic Programming Approach,” In Advances in
Neural Information Processing Systems, pp. 883-891.

[LWW17] Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H., 2017. Adaptive Dynamic
Programming with Applications in Optimal Control, Springer, Berlin.

[LZS20] Li, H., Zhang, X., Sun, J., and Dong, X., 2020. “Dynamic Resource Levelling
in Projects under Uncertainty,” International J. of Production Research.

[LaP03] Lagoudakis, M. G., and Parr, R., 2003. “Reinforcement Learning as Classifica-
tion: Leveraging Modern Classifiers,” in Proc. of ICML, pp. 424-431.

[LaR85] Lai, T., and Robbins, H., 1985. “Asymptotically Efficient Adaptive Allocation
Rules,” Advances in Applied Math., Vol. 6, pp. 4-22.

[LaW13] Lavretsky, E., andWise, K., 2013. Robust and Adaptive Control with Aerospace
Applications, Springer.

[LaW17] Lam, R., and Willcox, K., 2017. “Lookahead Bayesian Optimization with In-
equality Constraints,” in Advances in Neural Information Processing Systems, pp. 1890-
1900.

[Lee20] Lee, E. H., 2020. “Budget-Constrained Bayesian Optimization, Doctoral disser-
tation, Cornell University.

[LiL20] Li, Y., and Liu, J., 2020. “Robustly Complete Synthesis of Memoryless Con-
trollers for Nonlinear Systems with Reach-and-Stay Specifications,”IEEE Trans. on Au-
tomatic Control.

[LiS16] Liang, S., and Srikant, R., 2016. “Why Deep Neural Networks for Function
Approximation?” arXiv preprint arXiv:1610.04161.

[LiW14] Liu, D., and Wei, Q., 2014. “Policy Iteration Adaptive Dynamic Programming
Algorithm for Discrete-Time Nonlinear Systems,” IEEE Trans. on Neural Networks and
Learning Systems, Vol. 25, pp. 621-634.

[LiW15] Li, H., and Womer, N. K., 2015. “Solving Stochastic Resource-Constrained
Project Scheduling Problems by Closed-Loop Approximate Dynamic Programming,”
European J. of Operational Research, Vol. 246, pp. 20-33.

[Lib11] Liberzon, D., 2011. Calculus of Variations and Optimal Control Theory: A
Concise Introduction, Princeton Univ. Press.

466 References

[MCT10] Mishra, N., Choudhary, A. K., Tiwari, M. K., and Shankar, R., 2010. “Rollout
Strategy-Based Probabilistic Causal Model Approach for the Multiple Fault Diagnosis,”
Robotics and Computer-Integrated Manufacturing, Vol. 26, pp. 325-332.

[MKS15] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.
G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and Petersen, S., 2015.
“Human-Level Control Through Deep Reinforcement Learning,” Nature, Vol. 518, p.
529.

[MLM20] Montenegro, M., Lopez, R., Menchaca-Mendez, R., Becerra, E., and Menchaca-
Mendez, R., 2020. “A Parallel Rollout Algorithm for Wildfire Suppression,” in Proc.
Intern. Congress of Telematics and Computing, pp. 244-255.

[MMB02] McGovern, A., Moss, E., and Barto, A., 2002. “Building a Basic Building
Block Scheduler Using Reinforcement Learning and Rollouts,” Machine Learning, Vol.
49, pp. 141-160.

[MMS05] Menache, I., Mannor, S., and Shimkin, N., 2005. “Basis Function Adaptation
in Temporal Difference Reinforcement Learning,” Ann. Oper. Res., Vol. 134, pp. 215-238.

[MPK99] Meuleau, N., Peshkin, L., Kim, K. E., and Kaelbling, L. P., 1999. “Learning
Finite-State Controllers for Partially Observable Environments,” in Proc. of the 15th
Conference on Uncertainty in Artificial Intelligence, pp. 427-436.

[MPP04] Meloni, C., Pacciarelli, D., and Pranzo, M., 2004. “A Rollout Metaheuristic for
Job Shop Scheduling Problems,” Annals of Operations Research, Vol. 131, pp. 215-235.

[MRR00] Mayne, D., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., 2000. “Con-
strained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, pp.
789-814.

[MVB20] Magirou, E. F., Vassalos, P., and Barakitis, N., 2020. “A Policy Iteration
Algorithm for the American Put Option and Free Boundary Control Problems,” J. of
Computational and Applied Mathematics, vol. 373, p. 112544.

[MVS19] Muthukumar, V., Vodrahalli, K., and Sahai, A., 2019. “Harmless Interpolation
of Noisy Data in Regression,” arXiv preprint arXiv:1903.09139.

[MYF03] Moriyama, H., Yamashita, N., and Fukushima, M., 2003. “The Incremental
Gauss-Newton Algorithm with Adaptive Stepsize Rule,” Computational Optimization
and Applications, Vol. 26, pp. 107-141.

[MaJ15] Mastin, A., and Jaillet, P., 2015. “Average-Case Performance of Rollout Algo-
rithms for Knapsack Problems,” J. of Optimization Theory and Applications, Vol. 165,
pp. 964-984.

[Mac02] Maciejowski, J. M., 2002. Predictive Control with Constraints, Addison-Wesley,
Reading, MA.

[Mar55] Marschak, J., 1975. “Elements for a Theory of Teams,” Management Science,
Vol. 1, pp. 127-137.

[Mar84] Martins, E. Q. V., 1984. “On a Multicriteria Shortest Path Problem,” European
J. of Operational Research, Vol. 16, pp. 236-245.

[May14] Mayne, D. Q., 2014. “Model Predictive Control: Recent Developments and
Future Promise,” Automatica, Vol. 50, pp. 2967-2986.

[MeB99] Meuleau, N., and Bourgine, P., 1999. “Exploration of Multi-State Environ-
ments: Local Measures and Back-Propagation of Uncertainty,” Machine Learning, Vol.
35, pp. 117-154.

References 467

[MeK20] Meshram, R., and Kaza, K., 2020. “Simulation Based Algorithms for Markov
Decision Processes and Multi-Action Restless Bandits,” arXiv preprint arXiv:2007.12933.

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge Univ.
Press, N. Y.

[Min22] Minorsky, N., 1922. “Directional Stability of Automatically Steered Bodies,” J.
Amer. Soc. Naval Eng., Vol. 34, pp. 280-309.

[MoL99] Morari, M., and Lee, J. H., 1999. “Model Predictive Control: Past, Present,
and Future,” Computers and Chemical Engineering, Vol. 23, pp. 667-682.

[Mon17] Montgomery, D. C., 2017. Design and Analysis of Experiments, J. Wiley.

[Mun14] Munos, R., 2014. “From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning,” Foundations and Trends in Machine
Learning, Vol. 7, pp. 1-129.

[NHR99] Ng, A. Y., Harada, D., and Russell, S. J., 1999. “Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping,” in Proc. of the
16th International Conference on Machine Learning, pp. 278-287.

[NMS19] Neumann-Brosig, M., Marco, A., Schwarzmann, D., and Trimpe, S., 2019.
“Data-Efficient Autotuning with Bayesian Optimization: An Industrial Control Study,”
IEEE Trans. on Control Systems Technology, Vol. 28, pp. 730-740.

[NMT13] Nayyar, A., Mahajan, A., and Teneketzis, D., 2013. “Decentralized Stochastic
Control with Partial History Sharing: A Common Information Approach,” IEEE Trans.
on Automatic Control, Vol. 58, pp. 1644-1658.

[NNN20] Nguyen, T. T., Nguyen, N. D., and Nahavandi, S., 2020. “Deep Reinforcement
Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications,”
IEEE Trans. on Cybernetics, Vol. 50, pp. 3826-3839.

[NSE19] Nozhati, S., Sarkale, Y., Ellingwood, B., Chong, E. K., and Mahmoud, H.,
2019. “Near-Optimal Planning Using Approximate Dynamic Programming to Enhance
Post-Hazard Community Resilience Management,” Reliability Engineering and System
Safety, Vol. 181, pp. 116-126.

[NaA12] Narendra, K. S., and Annaswamy, A. M., 2012. Stable Adaptive Systems,
Courier Corporation.

[NaT19] Nayyar, A., and Teneketzis, D., 2019. “Common Knowledge and Sequential
Team Problems,” IEEE Trans. on Automatic Control, Vol. 64, pp. 5108-5115.

[Ned11] Nedić, A., 2011. “Random Algorithms for Convex Minimization Problems,”
Math. Programming, Ser. B, Vol. 129, pp. 225-253.

[NgJ13] Ng, A. Y., and Jordan, M. I., 2013. “PEGASUS: A Policy Search Method for
Large MDPs and POMDPs,” arXiv preprint arXiv:1301.3878.

[Noz21] Nozhati, S., 2021. “A Resilience-Based Framework for Decision Making Based
on Simulation-Optimization Approach,” Structural Safety, Vol. 89, p. 102032.

[OrH19] OroojlooyJadid, A., and Hajinezhad, D., 2019. “A Review of Cooperative Multi-
Agent Deep Reinforcement Learning,” arXiv preprint arXiv:1908.03963.

[OrS02] Ormoneit, D., and Sen, S., 2002. “Kernel-Based Reinforcement Learning,” Ma-
chine Learning, Vol. 49, pp. 161-178.

[PDB92] Pattipati, K. R., Deb, S., Bar-Shalom, Y., and Washburn, R. B., 1992. “A New
Relaxation Algorithm and Passive Sensor Data Association,” IEEE Trans. Automatic
Control, Vol. 37, pp. 198-213.

468 References

[PDC14] Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., and Ljung, L., 2014.
“Kernel Methods in System Identification, Machine Learning and Function Estimation:
A Survey,” Automatica, Vol. 50, pp. 657-682.

[PPB01] Popp, R. L., Pattipati, K. R., and Bar-Shalom, Y., 2001. “m-Best SD Assign-
ment Algorithm with Application to Multitarget Tracking,” IEEE Trans. on Aerospace
and Electronic Systems, Vol. 37, pp. 22-39.

[PaB99] Patek, S. D., and Bertsekas, D. P., 1999. “Stochastic Shortest Path Games,”
SIAM J. on Control and Optimization, Vol. 37, pp. 804-824.

[PaR12] Papahristou, N., and Refanidis, I., 2012. “On the Design and Training of Bots to
Play Backgammon Variants,” in IFIP International Conference on Artificial Intelligence
Applications and Innovations, pp. 78-87.

[PaT00] Paschalidis, I. C., and Tsitsiklis, J. N., 2000. “Congestion-Dependent Pricing
of Network Services,” IEEE/ACM Trans. on Networking, Vol. 8, pp. 171-184.

[PeG04] Peret, L., and Garcia, F., 2004. “On-Line Search for Solving Markov Decision
Processes via Heuristic Sampling,” in Proc. of the 16th European Conference on Artificial
Intelligence, pp. 530-534.

[PeW96] Peng, J., and Williams, R., 1996. “Incremental Multi-Step Q-Learning,” Ma-
chine Learning, Vol. 22, pp. 283-290.

[PoA69] Pollatschek, M. A., and Avi-Itzhak, B., 1969. “Algorithms for Stochastic Games
with Geometrical Interpretation,” Management Science, Vol. 15, pp. 399-415.

[PoB04] Poupart, P., and Boutilier, C., 2004. “Bounded Finite State Controllers,” in
Advances in Neural Information Processing Systems, pp. 823-830.

[PoF08] Powell, W. B., and Frazier, P., 2008. “Optimal Learning,” in State-of-the-Art
Decision-Making Tools in the Information-Intensive Age, INFORMS, pp. 213-246.

[PoR97] Poore, A. B., and Robertson, A. J. A., 1997. “New Lagrangian Relaxation
Based Algorithm for a Class of Multidimensional Assignment Problems,” Computational
Optimization and Applications, Vol. 8, pp. 129-150.

[PoR12] Powell, W. B., and Ryzhov, I. O., 2012. Optimal Learning, J. Wiley, N. Y.

[Poo94] Poore, A. B., 1994. “Multidimensional Assignment Formulation of Data As-
sociation Problems Arising from Multitarget Tracking and Multisensor Data Fusion,”
Computational Optimization and Applications, Vol. 3, pp. 27-57.

[Pow11] Powell, W. B., 2011. Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd Ed., J. Wiley and Sons, Hoboken, N. J.

[Pre95] Prekopa, A., 1995. Stochastic Programming, Kluwer, Boston.

[PuB78] Puterman, M. L., and Brumelle, S. L., 1978. “The Analytic Theory of Pol-
icy Iteration,” in Dynamic Programming and Its Applications, M. L. Puterman (ed.),
Academic Press, N. Y.

[PuB79] Puterman, M. L., and Brumelle, S. L., 1979. “On the Convergence of Policy
Iteration in Stationary Dynamic Programming,” Mathematics of Operations Research,
Vol. 4, pp. 60-69.

[PuS78] Puterman, M. L., and Shin, M. C., 1978. “Modified Policy Iteration Algorithms
for Discounted Markov Decision Problems,” Management Sci., Vol. 24, pp. 1127-1137.

[PuS82] Puterman, M. L., and Shin, M. C., 1982. “Action Elimination Procedures for
Modified Policy Iteration Algorithms,” Operations Research, Vol. 30, pp. 301-318.

References 469

[Put94] Puterman, M. L., 1994. Markovian Decision Problems, J. Wiley, N. Y.

[QHS05] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and
Tucker, P. K., 2005. “Surrogate-Based Analysis and Optimization,” Progress in Aerospace
Sciences, Vol. 41, pp. 1-28.

[QuL19] Qu, G., and Li, N., “Exploiting Fast Decaying and Locality in Multi-Agent
MDP with Tree Dependence Structure,” Proc. of 2019 CDC, Nice, France.

[RCR17] Rudi, A., Carratino, L., and Rosasco, L., 2017. “Falkon: An Optimal Large
Scale Kernel Method,” in Advances in Neural Information Processing Systems, pp. 3888-
3898.

[RGG21] Rimélé, A., Grangier, P., Gamache, M., Gendreau, M., and Rousseau, L. M.,
2021. “E-Commerce Warehousing: Learning a Storage Policy,” arXiv:2101.08828.

[RKL21] Rupenyan, A., Khosravi, M., and Lygeros, J., 2021. “Performance-Based Tra-
jectory Optimization for Path Following Control Using Bayesian Optimization,” arXiv
preprint arXiv:2103.15416.

[RMD17] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M., 2017. Model Predictive
Control: Theory, Computation, and Design, 2nd Ed., Nob Hill Publishing (updated in
2019 and 2020).

[RPF12] Ryzhov, I. O., Powell, W. B., and Frazier, P. I., 2012. “The Knowledge Gradient
Algorithm for a General Class of Online Learning Problems,” Operations Research, Vol.
60, pp. 180-195.

[RPP08] Ross, S., Pineau, J., Paquet, S., and Chaib-Draa, B., 2008. “Online Planning
Algorithms for POMDPs,” J. of Artificial Intelligence Research, Vol. 32, pp. 663-704.

[RSM08] Reisinger, J., Stone, P., and Miikkulainen, R., 2008. “Online Kernel Selection
for Bayesian Reinforcement Learning,” in Proc. of the 25th International Conference on
Machine Learning, pp. 816-823.

[RaF91] Raghavan, T. E. S., and Filar, J. A., 1991. “Algorithms for Stochastic Games
- A Survey,” Zeitschrift fur Operations Research, Vol. 35, pp. 437-472.

[RaR17] Rawlings, J. B., and Risbeck, M. J., 2017. “Model Predictive Control with
Discrete Actuators: Theory and Application,” Automatica, Vol. 78, pp. 258-265.

[RaW06] Rasmussen, C. E., and Williams, C. K., 2006. Gaussian Processes for Machine
Learning, MIT Press, Cambridge, MA.

[Rad62] Radner, R., 1962. “Team Decision Problems,” Ann. Math. Statist., Vol. 33, pp.
857-881.

[Rek64] Rekasius, Z. V., 1964. “Suboptimal Design of Intentionally Nonlinear Con-
trollers,” IEEE Trans. on Automatic Control, Vol. 9, pp. 380-386.

[RoB17] Rosolia, U., and Borrelli, F., 2017. “Learning Model Predictive Control for It-
erative Tasks. A Data-Driven Control Framework,” IEEE Trans. on Automatic Control,
Vol. 63, pp. 1883-1896.

[RoB19] Rosolia, U., and Borrelli, F., 2019. “Sample-Based Learning Model Predictive
Control for Linear Uncertain Systems,” 58th Conference on Decision and Control (CDC),
pp. 2702-2707.

[Rob52] Robbins, H., 1952. “Some Aspects of the Sequential Design of Experiments,”
Bulletin of the American Mathematical Society, Vol. 58, pp. 527-535.

[Ros70] Ross, S. M., 1970. Applied Probability Models with Optimization Applications,
Holden-Day, San Francisco, CA.

470 References

[Ros12] Ross, S. M., 2012. Simulation, 5th Ed., Academic Press, Orlando, Fla.

[Rot79] Rothblum, U. G., 1979. “Iterated Successive Approximation for Sequential De-
cision Processes,” in Stochastic Control and Optimization, by J. W. B. van Overhagen
and H. C. Tijms (eds), Vrije University, Amsterdam.

[RuK16] Rubinstein, R. Y., and Kroese, D. P., 2016. Simulation and the Monte Carlo
Method, 3rd Ed., J. Wiley, N. Y.

[RuN94] Rummery, G. A., and Niranjan, M., 1994. “On-Line Q-Learning Using Con-
nectionist Systems,” University of Cambridge, England, Department of Engineering,
TR-166.

[RuN16] Russell, S. J., and Norvig, P., 2016. Artificial Intelligence: A Modern Approach,
Pearson Education Limited, Malaysia.

[RuS03] Ruszczynski, A., and Shapiro, A., 2003. “Stochastic Programming Models,” in
Handbooks in Operations Research and Management Science, Vol. 10, pp. 1-64.

[SDY20] Schope, M. I., Driessen, H., and Yarovoy, A., 2020. “Multi-Task Sensor Re-
source Balancing Using Lagrangian Relaxation and Policy Rollout,” in 2020 IEEE 23rd
International Conference on Information Fusion (FUSION), pp. 1-8.

[SGC02] Savagaonkar, U., Givan, R., and Chong, E. K. P., 2002. “Sampling Techniques
for Zero-Sum, Discounted Markov Games,” in Proc. 40th Allerton Conference on Com-
munication, Control and Computing, Monticello, Ill.

[SGG15] Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and Geist, M., 2015.
“Approximate Modified Policy Iteration and its Application to the Game of Tetris,” J.
of Machine Learning Research, Vol. 16, pp. 1629-1676.

[SHB15] Simroth, A., Holfeld, D., and Brunsch, R., 2015. “Job Shop Production Plan-
ning under Uncertainty: A Monte Carlo Rollout Approach,” Proc. of the International
Scientific and Practical Conference, Vol. 3, pp. 175-179.

[SHM16] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and Dieleman,
S., 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search,”
Nature, Vol. 529, pp. 484-489.

[SHS17] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and Lillicrap, T., 2017. “Mastering
Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” arXiv
preprint arXiv:1712.01815.

[SJL18] Soltanolkotabi, M., Javanmard, A., and Lee, J. D., 2018. “Theoretical Insights
into the Optimization Landscape of Over-Parameterized Shallow Neural Networks,”
IEEE Trans. on Information Theory, Vol. 65, pp. 742-769.

[SLA12] Snoek, J., Larochelle, H., and Adams, R. P., 2012. “Practical Bayesian Opti-
mization of Machine Learning Algorithms,” in Advances in Neural Information Process-
ing Systems, pp. 2951-2959.

[SLJ13] Sun, B., Luh, P. B., Jia, Q. S., Jiang, Z., Wang, F., and Song, C., 2013. “Build-
ing Energy Management: Integrated Control of Active and Passive Heating, Cooling,
Lighting, Shading, and Ventilation Systems,” IEEE Trans. on Automation Science and
Engineering, Vol. 10, pp. 588-602.

[SNC18] Sarkale, Y., Nozhati, S., Chong, E. K., Ellingwood, B. R., and Mahmoud, H.,
2018. “Solving Markov Decision Processes for Network-Level Post-Hazard Recovery via
Simulation Optimization and Rollout,” in 2018 IEEE 14th International Conference on

References 471

Automation Science and Engineering, pp. 906-912.

[SSS17] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., and Chen, Y., 2017. “Mastering the Game
of Go Without Human Knowledge,” Nature, Vol. 550, pp. 354-359.

[SSW16] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N., 2015.
“Taking the Human Out of the Loop: A Review of Bayesian Optimization,” Proc. of
IEEE, Vol. 104, pp. 148-175.

[SVR10] Stewart, B. T., Venkat, A. N., Rawlings, J. B., Wright, S. J., and Pannocchia,
G., 2010. “Cooperative Distributed Model Predictive Control,” Systems and Control
Letters, Vol. 59, pp. 460-469.

[SWM89] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989. “Design and
Analysis of Computer Experiments,” Statistical Science, Vol. 4, pp. 409-423.

[SWR11] Stewart, B. T., Wright, S. J., and Rawlings, J. B., 2011. “Cooperative Dis-
tributed Model Predictive Control for Nonlinear Systems,” Journal of Process Control,
Vol. 21, pp. 698-704.

[SYL17] Saldi, N., Yuksel, S., and Linder, T., 2017. “Finite Model Approximations for
Partially Observed Markov Decision Processes with Discounted Cost,” arXiv preprint
arXiv:1710.07009.

[SZL08] Sun, T., Zhao, Q., Lun, P., and Tomastik, R., 2008. “Optimization of Joint
Replacement Policies for Multipart Systems by a Rollout Framework,” IEEE Trans. on
Automation Science and Engineering, Vol. 5, pp. 609-619.

[SaB11] Sastry, S., and Bodson, M., 2011. Adaptive Control: Stability, Convergence and
Robustness, Courier Corporation.

[SaL79] Saridis, G. N., and Lee, C.-S. G., 1979. “An Approximation Theory of Optimal
Control for Trainable Manipulators,” IEEE Trans. Syst., Man, Cybernetics, Vol. 9, pp.
152-159.

[SaR04] Santos, M. S., and Rust, J., 2004. “Convergence Properties of Policy Iteration,”
SIAM J. on Control and Optimization, Vol. 42, pp. 2094-2115.

[Sal21] Saldi, N., 2021. “Regularized Stochastic Team Problems,” Systems and Control
Letters, Vol. 149.

[Sas02] Sasena, M. J., 2002. Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations, Ph.D. Thesis, Univ. of Michi-
gan.

[ScS02] Scholkopf, B., and Smola, A. J., 2002. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA.

[Sch13] Scherrer, B., 2013. “Performance Bounds for Lambda Policy Iteration and Appli-
cation to the Game of Tetris,” J. of Machine Learning Research, Vol. 14, pp. 1181-1227.

[Sco10] Scott, S. L., 2010. “A Modern Bayesian Look at the Multi-Armed Bandit,”
Applied Stochastic Models in Business and Industry, Vol. 26, pp. 639-658.

[Sec00] Secomandi, N., 2000. “Comparing Neuro-Dynamic Programming Algorithms for
the Vehicle Routing Problem with Stochastic Demands,” Computers and Operations
Research, Vol. 27, pp. 1201-1225.

[Sec01] Secomandi, N., 2001. “A Rollout Policy for the Vehicle Routing Problem with
Stochastic Demands,” Operations Research, Vol. 49, pp. 796-802.

472 References

[Sec03] Secomandi, N., 2003. “Analysis of a Rollout Approach to Sequencing Problems
with Stochastic Routing Applications,” J. of Heuristics, Vol. 9, pp. 321-352.

[ShC04] Shawe-Taylor, J., and Cristianini, N., 2004. Kernel Methods for Pattern Anal-
ysis, Cambridge Univ. Press.

[Sha50] Shannon, C., 1950. “Programming a Digital Computer for Playing Chess,” Phil.
Mag., Vol. 41, pp. 356-375.

[Sha53] Shapley, L. S., 1953. “Stochastic Games,” Proc. of the National Academy of
Sciences, Vol. 39, pp. 1095-1100.

[SiK19] Singh, R., and Kumar, P. R., 2019. “Optimal Decentralized Dynamic Policies
for Video Streaming over Wireless Channels,” arXiv preprint arXiv:1902.07418.

[SiV10] Silver, D., and Veness, J., 2010. “Monte-Carlo Planning in Large POMDPs,” in
Proc. 23rd Int. Conf. NeurIPS, pp. 2164-2172.

[SlL91] Slotine, J.-J. E., and Li, W., Applied Nonlinear Control, Prentice-Hall, Engle-
wood Cliffs, N. J.

[StW91] Stewart, B. S., and White, C. C., 1991. “Multiobjective A∗,” J. ACM, Vol. 38,
pp. 775-814.

[SuB18] Sutton, R., and Barto, A. G., 2018. Reinforcement Learning, 2nd Ed., MIT
Press, Cambridge, MA.

[SuY19] Su, L., and Yang, P., 2019. ‘On Learning Over-Parameterized Neural Networks:
A Functional Approximation Perspective,” in Advances in Neural Information Process-
ing Systems, pp. 2637-2646.

[Sun19] Sun, R., 2019. “Optimization for Deep Learning: Theory and Algorithms,”
arXiv preprint arXiv:1912.08957.

[Sze10] Szepesvari, C., 2010. Algorithms for Reinforcement Learning, Morgan and Clay-
pool Publishers, San Franscisco, CA.

[TBP21] Tuncel, Y., Bhat, G., Park, J., and Ogras, U., 2021. “ECO: Enabling Energy-
Neutral IoT Devices through Runtime Allocation of Harvested Energy,” arXiv preprint
arXiv:2102.13605.

[TCW19] Tseng, W. J., Chen, J. C., Wu, I. C., and Wei, T. H., 2019. “Comparison
Training for Computer Chinese Chess,” IEEE Trans. on Games, Vol. 12, pp. 169-176.

[TGL13] Tesauro, G., Gondek, D. C., Lenchner, J., Fan, J., and Prager, J. M., 2013.
“Analysis of Watson’s Strategies for Playing Jeopardy!,” J. of Artificial Intelligence
Research, Vol. 47, pp. 205-251.

[TRV16] Tu, S., Roelofs, R., Venkataraman, S., and Recht, B., 2016. “Large Scale Kernel
Learning Using Block Coordinate Descent,” arXiv preprint arXiv:1602.05310.

[TaL20] Tanzanakis, A., and Lygeros, J., 2020. “Data-Driven Control of Unknown Sys-
tems: A Linear Programming Approach,” arXiv preprint arXiv:2003.00779.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using
Monte Carlo Search,” NIPS, Denver, CO.

[Tes89a] Tesauro, G. J., 1989. “Neurogammon Wins Computer Olympiad,” Neural Com-
putation, Vol. 1, pp. 321-323.

[Tes89b] Tesauro, G. J., 1989. “Connectionist Learning of Expert Preferences by Com-
parison Training,” in Advances in Neural Information Processing Systems, pp. 99-106.

References 473

[Tes92] Tesauro, G. J., 1992. “Practical Issues in Temporal Difference Learning,” Ma-
chine Learning, Vol. 8, pp. 257-277.

[Tes94] Tesauro, G. J., 1994. “TD-Gammon, a Self-Teaching Backgammon Program,
Achieves Master-Level Play,” Neural Computation, Vol. 6, pp. 215-219.

[Tes95] Tesauro, G. J., 1995. “Temporal Difference Learning and TD-Gammon,” Com-
munications of the ACM, Vol. 38, pp. 58-68.

[Tes01] Tesauro, G. J., 2001. “Comparison Training of Chess Evaluation Functions,” in
Machines that Learn to Play Games, Nova Science Publishers, pp. 117-130.

[Tes02] Tesauro, G. J., 2002. “Programming Backgammon Using Self-Teaching Neural
Nets,” Artificial Intelligence, Vol. 134, pp. 181-199.

[ThS09] Thiery, C., and Scherrer, B., 2009. “Improvements on Learning Tetris with
Cross-Entropy,” International Computer Games Association J., Vol. 32, pp. 23-33.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-Scale
Dynamic Programming,” Machine Learning, Vol. 22, pp. 59-94.

[TsV97] Tsitsiklis, J. N., and Van Roy, B., 1997. “An Analysis of Temporal-Difference
Learning with Function Approximation,” IEEE Trans. on Aut. Control, Vol. 42, pp.
674-690.

[TsV99] Tsitsiklis, J. N., and Van Roy, B., 1999. “Optimal Stopping of Markov Pro-
cesses: Hilbert Space Theory, Approximation Algorithms, and an Application to Pricing
Financial Derivatives”, IEEE Trans. on Aut. Control, Vol. 44, pp. 1840-1851.

[Tse98] Tseng, P., 1998. “Incremental Gradient(-Projection) Method with Momentum
Term and Adaptive Stepsize Rule,” SIAM J. on Optimization, Vol. 8, pp. 506-531.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and Q-Learning,”
Machine Learning, Vol. 16, pp. 185-202.

[TuP03] Tu, F., and Pattipati, K. R., 2003. “Rollout Strategies for Sequential Fault
Diagnosis,” IEEE Trans. on Systems, Man and Cybernetics, Part A, pp. 86-99.

[UGM18] Ulmer, M.W., Goodson, J. C., Mattfeld, D. C., and Hennig, M., 2018. “Offline-
Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochas-
tic Requests,” Transportation Science, Vol. 53, pp. 185-202.

[Ulm17] Ulmer, M. W., 2017. Approximate Dynamic Programming for Dynamic Vehicle
Routing, Springer, Berlin.

[VBC19] Vinyals, O., Babuschkin, I., Czarnecki, W. M., and thirty nine more authors,
2019. “Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning,”
Nature, Vol. 575, p. 350.

[VPA09] Vrabie, D., Pastravanu, O., Abu-Khalaf, M., and Lewis, F. L., 2009. “Adap-
tive Optimal Control for Continuous-Time Linear Systems Based on Policy Iteration,”
Automatica, Vol. 45, pp. 477-484.

[VVL13] Vrabie, D., Vamvoudakis, K. G., and Lewis, F. L., 2013. Optimal Adaptive
Control and Differential Games by Reinforcement Learning Principles, The Institution
of Engineering and Technology, London.

[Van76] Van Nunen, J. A., 1976. Contracting Markov Decision Processes, Mathematical
Centre Report, Amsterdam.

[WCG02] Wu, G., Chong, E. K. P., and Givan, R. L., 2002. “Burst-Level Congestion
Control Using Hindsight Optimization,” IEEE Trans. on Aut. Control, Vol. 47, pp.
979-991.

474 References

[WCG03] Wu, G., Chong, E. K. P., and Givan, R. L., 2003. “Congestion Control Using
Policy Rollout,” Proc. 2nd IEEE CDC, Maui, Hawaii, pp. 4825-4830.

[WOB15] Wang, Y., O’Donoghue, B., and Boyd, S., 2015. “Approximate Dynamic Pro-
gramming via Iterated Bellman Inequalities,” International J. of Robust and Nonlinear
Control, Vol. 25, pp. 1472-1496.

[WaB15] Wang, M., and Bertsekas, D. P., 2015. “Incremental Constraint Projection
Methods for Variational Inequalities,” Mathematical Programming, Vol. 150, pp. 321-
363.

[WaB16] Wang, M., and Bertsekas, D. P., 2016. “Stochastic First-Order Methods with
Random Constraint Projection,” SIAM J. on Optimization, Vol. 26, pp. 681-717.

[WaS00] de Waal, P. R., and van Schuppen, J. H., 2000. “A Class of Team Problems
with Discrete Action Spaces: Optimality Conditions Based on Multimodularity,” SIAM
J. on Control and Optimization, Vol. 38, pp. 875-892.

[Wat89] Watkins, C. J. C. H., Learning from Delayed Rewards, Ph.D. Thesis, Cambridge
Univ., England.

[WeB99] Weaver, L., and Baxter, J., 1999. “Learning from State Differences: STD(λ),”
Tech. Report, Dept. of Computer Science, Australian National University.

[WhS94] White, C. C., and Scherer, W. T., 1994. “Finite-Memory Suboptimal Design
for Partially Observed Markov Decision Processes,” Operations Research, Vol. 42, pp.
439-455.

[Whi88] Whittle, P., 1988. “Restless Bandits: Activity Allocation in a Changing World,”
J. of Applied Probability, pp. 287-298.

[Whi91] White, C. C., 1991. “A Survey of Solution Techniques for the Partially Observed
Markov Decision Process,” Annals of Operations Research, Vol. 32, pp. 215-230.

[WiB93] Williams, R. J., and Baird, L. C., 1993. “Analysis of Some Incremental Variants
of Policy Iteration: First Steps Toward Understanding Actor-Critic Learning Systems,”
Report NU-CCS-93-11, College of Computer Science, Northeastern University, Boston,
MA.

[WiS98] Wiering, M., and Schmidhuber, J., 1998. “Fast Online Q(λ),” Machine Learning,
Vol. 33, pp. 105-115.

[Wie03] Wiewiora, E., 2003. “Potential-Based Shaping and Q-Value Initialization are
Equivalent,” J. of Artificial Intelligence Research, Vol. 19, pp. 205-208.

[Wit66] Witsenhausen, H. S., 1966. Minimax Control of Uncertain Systems, Ph.D. thesis,
MIT.

[Wit68] Witsenhausen, H., 1968. “A Counterexample in Stochastic Optimum Control,”
SIAM J. on Control, Vol. 6, pp. 131-147.

[Wit71a] Witsenhausen, H. S., 1971. “On Information Structures, Feedback and Causal-
ity,” SIAM J. Control, Vol. 9, pp. 149-160.

[Wit71b] Witsenhausen, H., 1971. “Separation of Estimation and Control for Discrete
Time Systems,” Proceedings of the IEEE, Vol. 59, pp. 1557-1566.

[XLX21] Xie, F., Li, H., and Xu, Z., 2021. “An Approximate Dynamic Programming
Approach to Project Scheduling with Uncertain Resource Availabilities,” Applied Math-
ematical Modelling.

[YDR04] Yan, X., Diaconis, P., Rusmevichientong, P., and Van Roy, B., 2004. “Solitaire:
Man Versus Machine,” Advances in Neural Information Processing Systems, Vol. 17, pp.

References 475

1553-1560.

[YSH17] Ye, N., Somani, A., Hsu, D., and Lee, W.S., 2017. “DESPOT: Online POMDP
Planning with Regularization,” J. of Artificial Intelligence Research, Vol. 58, pp. 231-266.

[YWX20] Yan, S., Wang, X., and Xu, L., 2020. “Rollout Algorithm for Light-Weight
Physical-Layer Authentication in Cognitive Radio Networks,” IET Communications,
Vol. 14, pp. 3128-3134.

[YYM19] Yu, L., Yang, H., Miao, L., and Zhang, C., 2019. “Rollout Algorithms for
Resource Allocation in Humanitarian Logistics,” IISE Trans., Vol. 51, pp. 887-909.

[Yar17] Yarotsky, D., 2017. “Error Bounds for Approximations with Deep ReLU Net-
works,” Neural Networks, Vol. 94, pp. 103-114.

[YuB07] Yu, H., and Bertsekas, D. P., 2007. “A Least Squares Q-Learning Algorithm for
Optimal Stopping Problems,” Proc. European Control Conference 2007, Kos, Greece,
pp. 2368-2375; an extended version appears in Lab. for Information and Decision Systems
Report LIDS-P-2731, MIT.

[YuB08] Yu, H., and Bertsekas, D. P., 2008. “On Near-Optimality of the Set of Finite-
State Controllers for Average Cost POMDP,” Math. of OR, Vol. 33, pp. 1-11.

[YuB09] Yu, H., and Bertsekas, D. P., 2009. “Basis Function Adaptation Methods for
Cost Approximation in MDP,” Proceedings of 2009 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2009), Nashville, Tenn.

[YuB13a] Yu, H., and Bertsekas, D. P., 2013. “Q-Learning and Policy Iteration Algo-
rithms for Stochastic Shortest Path Problems,” Annals of Operations Research, Vol.
208, pp. 95-132.

[YuB13b] Yu, H., and Bertsekas, D. P., 2013. “On Boundedness of Q-Learning Iterates
for Stochastic Shortest Path Problems,” Math. of OR, Vol. 38, pp. 209-227.

[YuB15] Yu, H., and Bertsekas, D. P., 2015. “A Mixed Value and Policy Iteration Method
for Stochastic Control with Universally Measurable Policies,” Math. of OR, Vol. 40, pp.
926-968.

[YuK20] Yue, X., and Kontar, R. A., 2020. “Lookahead Bayesian Optimization via
Rollout: Guarantees and Sequential Rolling Horizons,” arXiv preprint arXiv:1911.01004.

[Yu14] Yu, H., 2014. “Stochastic Shortest Path Games and Q-Learning,” arXiv preprint
arXiv:1412.8570.

[Yu20] Yu, H., 2020. “Average Cost Optimality Inequality for Markov Decision Pro-
cesses with Borel Spaces and Universally Measurable Policies,” SIAM J. on Control and
Optimization, Vol. 58, pp. 2469-2502.

[Yu21] Yu, H., 2021. “Average-Cost Optimality Results for Borel-Space Markov Decision
Processes with Universally Measurable Policies,” arXiv preprint arXiv:2104.00181.

[Yua19] Yuanhong, L. I. U., 2019. “Optimal Selection of Tests for Fault Detection and
Isolation in Multi-Operating Mode System,” Journal of Systems Engineering and Elec-
tronics, Vol. 30, pp. 425-434.

[ZBH16] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2016. “Un-
derstanding Deep Learning Requires Rethinking Generalization,” arXiv preprint arXiv:
1611.03530.

[ZBH21] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2021. “Under-
standing Deep Learning (Still) Requires Rethinking Generalization,” Communications
of the ACM, VOL. 64, pp. 107-115.

476 References

[ZKY20] Zhang, H., Kafouros, M., and Yu, Y., 2020. “PlanLight: Learning to Optimize
Traffic Signal Control With Planning and Iterative Policy Improvement,” IEEE Access,
Vol. 8, pp. 219244-219255.

[ZOT18] Zhang, S., Ohlmann, J. W., and Thomas, B. W., 2018. “Dynamic Orienteering
on a Network of Queues,” Transportation Science, Vol. 52, pp. 691-706.

[ZSG20] Zoppoli, R., Sanguineti, M., Gnecco, G., and Parisini, T., 2020. Neural Ap-
proximations for Optimal Control and Decision, Springer.

[ZYB19] Zhang, K., Yang, Z., and Basar, T., 2019. “Multi-Agent Reinforcement Learn-
ing: A Selective Overview of Theories and Algorithms,” arXiv preprint arXiv:1911.10635.

[ZuS81] Zuker, M., and Stiegler, P., 1981. “Optimal Computer Folding of Larger RNA
Sequences Using Thermodynamics and Auxiliary Information,” Nucleic Acids Res., Vol.
9, pp. 133-148.

	Rollout, Policy Iteration, and Distributed Reinforcement Learning
	About the Author
	Contents
	Preface
	Chapter 1: Exact and Approximate Dynamic Programming Principles
	Chapter 2: General Principles of Approximation in Value Space
	Chapter 3: Specialized Rollout Algorithms
	Chapter 4: Learning Values and Policies
	Chapter 5: Infinite Horizon Problems
	References
	Index

