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Preface

This monograph is the outgrowth of research carried out at the Uni-
versity of Illinois over a three-year period beginning in the latter half of
1974. The objective of the monograph is to provide a unifying and
mathematically rigorous theory for a broad class of dynamic programming
and discrete-time stochastic optimal control problems. It is divided into
two parts, which can be read independently.

Part I provides an analysis of dynamic programming models in a
unified framework applicable to deterministic optimal control, stochastic
optimal control, minimax control, sequential games, and other areas. It
resolves the structural questions associated with such problems, i.e., it
provides results that draw their validity exclusively from the sequential
nature of the problem. Such results hold for models where measurability
of various objects is of no essential concern, for example, in deterministic
problems and stochastic problems defined over a countable probability
space. The starting point for the analysis is the mapping defining the
dynamic programming algorithm. A single abstract problem is formulated
in terms of this mapping and counterparts of nearly all results known for
deterministic optimal control problems are derived. A new stochastic
optimal control model based on outer integration is also introduced in this

xi
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part. It is a broadly applicable model and requires no topological assump-
tions. We show that all the results of Part I hold for this model.

Part Il resolves the measurability questions associated with stochastic
optimal control problems with perfect and imperfect state information.
These questions have been studied over the past fifteen years by several
researchers in statistics and control theory. As we explain in Chapter 1,
the approaches that have been used are either limited by restrictive
assumptions such as compactness and continuity or else they are not
sufficiently powerful to yield results that are as strong as their structural
counterparts. These deficiencies can be traced to the fact that the class of
policies considered is not sufficiently rich to ensure the existence of
everywhere optimal or e-optimal policies except under restrictive assump-
tions. In our work we have appropriately enlarged the space of admissible
policies to include universally measurable policies. This guarantees the
existence of e-optimal policies and allows, for the first time, the develop-
ment of a general and comprehensive theory which is as powerful as its
deterministic counterpart.

We mention, however, that the class of universally measurable policies
is not the smallest class of policies for which these results are valid. The
smallest such class is the class of limit measurable policies discussed in
Section 11.1. The o-algebra of limit measurable sets (or C-sets) is defined in
a constructive manner involving transfinite induction that, from a set
theoretic point of view, is more satisfying than the definition of the univer-
sal o-algebra. We believe, however, that the majority of readers will find
the universal o-algebra and the methods of proof associated with it more
understandable, and so we devote the main body of Part II to models with
universally measurable policies.

Parts I and II are related and complement each other. Part II makes
extensive use of the results of Part I. However, the special forms in which
these results are needed are also available in other sources (e.g., the
textbook by Bertsekas [B4]). Each time we make use of such a result, we
refer to both Part I and the Bertsekas textbook, so that Part II can be read
independently of Part I. The developments in Part II show also that
stochastic optimal control problems with measurability restrictions on the
admissible policies can be embedded within the framework of Part I, thus
demonstrating the broad scope of the formulation given there.

The monograph is intended for applied mathematicians, statisticians,
and mathematically oriented analysts in engineering, operations research,
and related fields. We have assumed throughout that the reader is familiar
with the basic notions of measure theory and topology. In other respects,
the monograph is self-contained. In particular, we have provided all
necessary background related to Borel spaces and analytic sets.
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Chapter 1

Introduction

1.1 Structure of Sequential Decision Models

Sequential decision models are mathematical abstractions of situations
in which decisions must be made in several stages while incurring a certain
cost at each stage. Each decision may influence the circumstances under
which future decisions will be made, so that if total cost is to be minimized,
one must balance his desire to minimize the cost of the present decision
against his desire to avoid future situations where high cost is inevitable.

A classical example of this situation, in which we treat profit as negative
cost, is portfolio management. An investor must balance his desire to achieve
immediate return, possibly in the form of dividends, against a desire to avoid
investments in areas where low long-run yield is probable. Other examples
can be drawn from inventory management, reservoir control, sequential
analysis, hypothesis testing, and, by discretizing a continuous problem,
from control of a large variety of physical systems subject to random dis-
turbances. For an extensive set of sequential decision models, see Bellman
[B1], Bertsekas [ B4], Dynkin and Juskevi¢ [D8], Howard [H7], Wald [W2],
and the references contained therein.

Dynamic programming (DP for short) has served for many years as the
principal method for analysis of a large and diverse group of sequential
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2 1. INTRODUCTION

decision problems. Examples are deterministic and stochastic optimal con-
trol problems, Markov and semi-Markov decision problems, minimax con-
trol problems, and sequential games. While the nature of these problems
may vary widely, their underlying structures turn out to be very similar. In
all cases, the cost corresponding to a policy and the basic iteration of the
DP algorithm may be described by means of a certain mapping which differs
from one problem to another in details which to a large extent are inessential.
Typically, this mapping summarizes all the data of the problem and deter-
mines all quantities of interest to the analyst. Thus, in problems with a
finite number of stages, this mapping may be used to obtain the optimal
cost function for the problem as well as to compute an optimal or e-optimal
policy through a finite number of steps of the DP algorithm. In problems
with an infinite number of stages, one hopes that the sequence of functions
generated by successive application of the DP iteration converges in some
sense to the optimal cost function for the problem. Furthermore, all basic
results of an analytical and computational nature can be expressed in terms
of the underlying mapping defining the DP algorithm. Thus by taking this
mapping as a starting point one can provide powerful analytical results
which are applicable to a large collection of sequential decision problems.

To illustrate our viewpoint, let us consider formally a deterministic
optimal control problem. We have a discrete-time system described by the
system equation

X+ 1 = [, W), (1)

where x, and x,,, represent a state and its succeeding state and will be
assumed to belong to some state space S; u, represents a control variable
chosen by the decisionmaker in some constraint set U(x,), which is in turn
a subset of some control space C. The cost incurred at the kth stage is given
by a function g(x,,u,). We seek a finite sequence of control functions n =
(Mostys--->un—q) (also referred to as a policy) which minimizes the total
cost over N stages. The functions y, map S into C and must satisfy u,(x)e U(x)
for all xeS. Each function g, specifies the control u;, = y,(x,) that will be
chosen when at the kth stage the state is x; . Thus the total cost corresponding
to a policy 7 = (fo, Uy, - - - » n— 1) and initial state x, is given by

N-1
In,=(x0) = Z g%k ()]s 2
k=0
where the states x;,x,, ..., Xy, are generated from x, and = via the system
equation
Xew 1 = S )], k=0,...,N—=2. 3)

Corresponding to each initial state x, and policy =, there is a sequence of
control variables ug,uy, ..., uy_, where u, = w,(x;) and x, is generated by
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(3). Thus an alternative formulation of the problem would be to select a
sequence of control variables minimizing Y ¥4 g(x;, u,) rather than a policy
7 minimizing Jy .(x,). The formulation we have given here, however, is
more consistent with the DP framework we wish to adopt.

As is well known, the DP algorithm for the preceding problem is given by

Jo(x) =0, 4
Jer1(x) = inf {g(x,u) + J,[f(x,u)]}, k=0,...,N—1, (%)

ueU(x)
and the optimal cost J*(x,) for the problem is obtained at the Nth step, i.e.,

J*(xo) = infJy, o(xo) = J(xo)-

One may also obtain the value Jy ,.(x,) corresponding to any 7 = (g, s, - -,
Uy-1) at the Nth step of the algorithm

Jo.x(x) =0, (6)
Jir1,2(%) = glx, iy 1= 1 ()] + Ji <[ f 06, - = 1(x))], k=0,...,N—-1
()

Now it is possible to formulate the previous problem as well as to
describe the DP algorithm (4)-(5) by means of the mapping H given by

H(x,u,J) = g(x,u) + J[ f(x,u)]. (8)
Let us define the mapping T by
T(J)(x)= inf H(x,uJ) ©)

ueU(x)
and, for any function u:S — C, define the mapping T, by
T (J)(x) = H[x, u(x),J]. (10)

Both T and T, map the set of real-valued (or perhaps extended real-valued)
functions on § into itself. Then in view of (6)—(7), we may write the cost
functional Jy_,(x,) of (2) as

JN.?L'(XO) = (T#OTMI. : 'T‘uN_l)(JO)(XOL (11)
where J,, is the zero function on S [J,(x) = 0 VxeS] and (T Ty, Top )
denotes the composition of the mappings T,,, T,,s- - -, T,._,.Similarly the

DP algorithm (4)—(5) may be described by
Ji+1(x) = T(J)(x), k=0,...,N—1, (12)



4 1. INTRODUCTION

and we have

infJy, (xo) = TV(Jo)(Xo),
where TV is the composition of T with itself N times. Thus both the problem
and the major algorithmic procedure relating to it can be expressed in terms
of the mappings T and T ,.
One may also consider an infinite horizon version of the problem whereby
we seek a sequence © = (o, U, - - .) that minimizes

N-1

Jx(xo) = 13151; kzzo glxw ()] = ,JET:O(T“"T“" “Tux-)Jo)(Xo)  (13)

subject to the system equation constraint (3). In this case one needs, of course,
to make assumptions which ensure that the limit in (13) is well defined for
each 7 and x,. Under appropriate assumptions, the optimal cost function
defined by

J*(x) = inf J,(x)

can be shown to satisfy Bellman’s functional equation given by

Jx) = inf {geu)+ T f(x )]}
ueU(x)

Equivalently
J*(x) = T(J*)(x) VxeS,

ie., J* is a fixed point of the mapping T. Most of the infinite horizon results
of analytical interest center around this equation. Other questions relate to
the existence and characterization of optimal policies or nearly optimal
policies and to the validity of the equation

J*(x) = lim TN(J,)(x) VxeS, (14)
N—oo

which says that the DP algorithm yields in the limit the optimal cost function
for the problem. Again the problem and the basic analytical and computa-
tional results relating to it can be expressed in terms of the mappings T
and T,.

The deterministic optimal control problem just described is representa-
tive of a plethora of sequential optimization problems of practical interest
which may be formulated in terms of mappings similar to the mapping H
of (8). As shall be described in Chapter 2, one can formulate in the same
manner stochastic optimal control problems, minimax control problems,
and others. The objective of Part I is to provide a common analytical frame-
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work for all these problems and derive in a broadly applicable form all the
results which draw their validity exclusively from the basic sequential structure
of the decision-making process. This is accomplished by taking as a starting
point a mapping H such as the one of (8) and deriving all major analytical
and computational results within a generalized setting. The results are sub-
sequently specialized to five particular models described in Section 2.3:
deterministic optimal control problems, three types of stochastic optimal con-
trol problems (countable disturbance space, outer integral formulation, and
multiplicative cost functional), and minimax control problems.

1.2 Discrete-Time Stochastic Optimal Control Problems—
Measurability Questions

The theory of Part I is not adequate by itself to provide a complete
analysis of stochastic optimal control problems, the treatment of which is
the major objective of this book. The reason is that when such problems
are formulated over uncountable probability spaces nontrivial measurability
restrictions must be placed on the admissible policies unless we resort to
an outer integration framework.

A discrete-time stochastic optimal control problem is obtained from the
deterministic problem of the previous section when the system includes a
stochastic disturbance wy in its description. Thus (1) is replaced by

X+ 1 = [k, tye, Wi) (15)

and the cost per stage becomes g(x;,, u, w;). The disturbance w, is a member
of some probability space (W, #) and has distribution p(dw,|x,, u,). Thus the
control variable u, exercises influence over the transition from x, to x;.,
in two places, once in the system equation (15) and again as a parameter in
the distribution of the disturbance w,. Likewise, the control u, influences the
cost at two points. This is a redundancy in the system equation model given
above which will be eliminated in Chapter 8 when we introduce the transition
kernel and reduced one-stage cost function and thereby convert to a model
frequently adopted in the statistics literature (see, e.g., Blackwell [B9T;
Strauch [S14]). The system equation model is more common in engineering
literature and generally more convenient in applications, so we are taking it
as our starting point. The transition kernel and reduced one-stage cost
function are technical devices which eliminate the disturbance space (W, )
from consideration and make the model more suitable for analysis. We take
pains initially to point out how properties of the original system carry over
into properties of the transition kernel and reduced one-stage cost function
(see the remarks following Definitions 8.1 and 8.7).
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Stochastic optimal control is distinguished from its deterministic counter-
part by the concern with when information becomes available. In deter-
ministic control, to each initial state and policy there corresponds a sequence
of control variables (u,. . . ,uy—) which can be specified beforehand, and
the resulting states of the system are determined by (1). In contrast, if the
control variables are specified beforehand for a stochastic system, the deci-
sionmaker may realize in the course of the system evolution that unexpected
states have appeared and the specified control variables are no longer
appropriate. Thus it is essential to consider policies © = (tg,. .., Hn-1)
where y, is a function from history to control. If x, is the initial state, u, =
Uo(xo) is taken to be the first control. If the states and controls (xg, ug,. . - ,
U, — 1, X;) have occurred, the control

Uy = Ui(Xo,Ugs- -+ 5 Ug—1, Xg) (16)

is chosen. We require that the control constraint
Pie(Xo,Uos - - - > Ui—1,Xk) € U(xy)

be satisfied for every (xq,uq,. . ., Ux—1,X;) and k. In this way the decision-
maker utilizes the full information available to him at each stage. Rather
than choosing a sequence of control variables, the decisionmaker attempts
to choose a policy which minimizes the total expected cost of the system
operation. Actually, we will show that for most cases it is sufficient to con-
sider only Markov policies, those for which the corresponding controls u,
depend only on the current state x, rather than the entire history (xo, tg,- - - ,
u._1,x;). This is the type of policy encountered in Section 1.1.

The analysis of the stochastic decision model outlined here can be fairly
well divided into two categories—structural considerations and measurability
considerations. Structural analysis consists of all those results which can be
obtained if measurability of all functions and sets arising in the problem is
of no real concern; for example, if the model is deterministic or, more
generally, if the disturbance space W is countable. In Part I structural results
are derived using mappings H, T,, and T of the kind considered in the
previous section. Measurability analysis consists of showing that the struc-
tural results remain valid even when one places nontrivial measurability
restrictions on the set of admissible policies. The work in Part II consists
primarily of measurability analysis relying heavily on structural results
developed in Part I as well as in other sources (e.g., Bertsekas [B4]).

One can best illustrate this dichotomy of analysis by the finite horizon
DP algorithm considered by Bellman [B1]:

Jo(x) =0, 17)
Jer1(x) = inf E{g(x,u,w) + J,[ f(x,u,w)]}, k=0,...,N—1, (18)

ue U(x)
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where the expectation is with respect to p(dw|x,u). This is the stochastic
counterpart of the deterministic DP algorithm (4)—(5).

It is reasonable to expect that J,(x) is the optimal cost of operating the
system over k stages when the initial state is x, and that if u,(x) achieves the
infimum in (18) for every x and k=0,...,N — 1, then 7w = (tg,-- ., Un-1)
is an optimal policy for every initial state x. If there are no measurability
considerations, this is indeed the case under very mild assumptions, as shall
be shown in Chapter 3. Yet it is a major task to properly formulate the
stochastic control problem and demonstrate that the DP algorithm (17)—(18)
makes sense in a measure-theoretic framework. One of the difficulties lies in
showing that the expression in curly braces in (18) is measurable in some
sense. Thus we must establish measurability properties for the functions J,.
Related to this is the need to balance the measurability of policies (necessary
so the expected cost corresponding to a policy can be defined) against a
desire to be able to select at or near the infimum in (18). We illustrate these
difficulties by means of a simple two-stage example.

Two-STAGE PrROBLEM  Consider the following sequence of events:

(a) An initial state x, € R is generated (R is the real line).

(b) Knowing x,, the decisionmaker selects a control u,eR.

(c) Astate x; e Ris generated according to a known probability measure
pldx,|xo,uo) on Zg, the Borel subsets of R, depending on xg, uy. [In terms
of our earlier model, this corresponds to a system equation of the form
Xy = wo and p(dwo|xo,up) = P(dxllxm“o)-]

(d) Knowing x,, the decisionmaker selects a control u; € R.

Given p(dx|x,,u,) for every (xo,u,)€ R? and a function g: R* — R, the
problem is to find a policy & = (ug, 14, ) consisting of two functions py: R — R
and p,: R — R that minimizes

Ja(xo) = fg[xl,/'h(xl)]P(dMlXOaﬂo(xo))- (19)

We temporarily postpone a discussion of restrictions (if any) that must be
placed on g, uo, and yu, in order for the integral in (19) to be well defined.
In terms of our earlier model, the function g gives the cost for the second
stage while we assume no cost for the first stage.

The DP algorithm associated with the problem is

Ji(xy) = infglxy, uy), (20)

Ut

J2lxo) = inf [, 0e1)p(ds o o), @)

and, assuming that J,(x,) > — oo, J;(x;) > —oo for all xoeR, x,; eR, the
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results one expects to be true are:

R.1 There holds
Jz(xo) == iann(xO) VXOGR.
R.2 Given ¢ > 0, there is an (everywhere) ¢-optimal policy, i.e., a policy
7, such that
Jo(x0) < infJ (x0) + ¢ Vxo€R.
R.3 If the infimum in (20) and (21) is attained for all x, e R and x,eR,
then there exists a policy that is optimal for every x, e R.

R.4 If p¥(xy) and p(x,), respectively, attain the infimum in (20) and
(21)forall x; e R and xq € R, then n* = (u§, ut)is optimal for every x, € R, i.e.,

J,,*(xo) = iann(xO) oneR.

A formal derivation of R.1 consists of the following steps:

infJ, (o) = infinf gL, ua(x:)]p(da o, tolxo)) (222)
= inff{infg(xu”1)}P(dxxlxo»#o(xo)) (22b)

= infle(xl)p(dx1|x0,/,t0(x0))

= inf [7,(x)p(dx1 0, o) = J2(xo).

Similar formal derivations can be given for R.2, R.3, and R 4.
The following points need to be justified in order to make the preceding
derivation meaningful and mathematically rigorous.

(a) In(22a),gand y,; must be such that g[x;, u;(x;)] can be integrated in
a well-defined manner.

(b) In (22b), the interchange of infimization and integration must be
legitimate. Furthermore g must be such that J,(x,) [ = inf,, g(x;,u;)] can be
integrated in a well-defined manner.

We first observe that if, for each (xq,u,), p(dxllxo,uo) has countable
support, i.e., is concentrated on a countable number of points, then integra-
tion in (22a) and (22b) reduces to infinite summation. Thus there is no need
to impose measurability restrictions on g, iy, and u,, and the interchange of
infimization and integration in (22b) is justified in view of the assumption
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inf,, g(x,,u;) > — oo for all x;eR. (For ¢ > 0, take y,: R — R such that

glx1,u(xy)] < ilflfg(xplh) +¢ Vxl'eR. (23)
Then

inffg[xls#1(X1)]P(dx1|x0»#o(xo)) < fg[xl’ #s(xl)]P(dx1|x0»#o(xo))

< infg(xuu1)P(dX1lX0,#o(xo)) + &
‘ (24)

Since ¢ > 0 is arbitrary, it follows that

inf [g0x,, 1 (x)]p(dxi o, wolxo)) < | {infg(xl,u1>}p(dxl|xo,ﬂo(xo>>.

The reverse inequality is clear, and the result follows.) A similar argument
proves R.2, while R.3 and R.4 are trivial in view of the fact that there are
no measurability restrictions on p, and y;.

If p(dx,|xo,u,) does not have countable support, there are two main
approaches. The first is to expand the notion of integration, and the second is
to restrict g, uo, and p; to be appropriately measurable.

Expanding the notion of integration can be achieved by interpreting the
integrals in (22a) and (22b) as outer integrals (see Appendix A). Since the
outer integral can be defined for any function, measurable or not, there
is no need to require that g, o, and u, are measurable in any sense. As a
result, (22a) and (22b) make sense and an argument such as the one beginning
with (23) goes through. This approach is discussed in detail in Part I, where
we show that all the basic results for finite and infinite horizon problems of
perfect state information carry through within an outer integration frame-
work. However, there are inherent limitations in this approach centering
around the pathologies of outer integration. Difficulties also occur in the
treatment of imperfect information problems using sufficient statistics.

The major alternative approach was initiated in more general form by
Blackwell [B9] in 1965. Here we assume at the outset that g is Borel- mea-
surable, and furthermore, for each Be % (% is the Borel g-algebra on R),
the function p(B|x,, u,) is Borel-measurable in (x,,uo). In the initial treat-
ment of the problem, the functions u, and u; were restricted to be Borel-
measurable. With these assumptions, g[x;, u;(x;)] is Borel-measurable in
x; when y; is Borel-measurable, and the integral in (22a) is well defined.

A major difficulty occurs in (22b) since it is not necessarily true that
Ji(xq) = inf,, g(x;,u;) is Borel-measurable, even if g is. The reason can be
traced to the fact that the orthogonal projection of a Borel set in R? on one
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of the axes need not be Borel-measurable (see Section 7.6). Since we have
for ceR

{x171(x1) < ¢} = proj{(xy, uy)|g(xy,us) < ¢},
X3

where proj,, denotes projection on the x;-axis, it can be seen that
{x1|J1(x;) < ¢} need not be Borel, even though {(x;,u;)|g(x;,u;) < ¢} is.
The difficulty can be overcome in part by showing that J, is a lower semi-
analytic and hence also universally measurable function (see Section 7.7).
Thus J, can be integrated with respect to any probability measure on %y.

Another difficulty stems from the fact that one cannot in general find
a Borel-measurable ¢-optimal selector y, satisfying (23), although a weaker
result is available whereby, given a probability measure p on %y, the exis-
tence of a Borel-measurable selector p, satisfying

glx1, pulx1)] <infg(xy,uy) + ¢

for p almost every x; € R can be ascertained. This result is sufficient to
justify (24) and thus prove result R.1 (J, = inf, J,). However, results R.2
and R.3 cannot be proved when p, and u, are restricted to be Borel-
measurable except in a weaker form involving the notion of p-optimality
(see [S14]; [H4]).

The objective of Part II is to resolve the measurability questions in
stochastic optimal control in such a way that almost every result can be proved
in a form as strong as its structural counterpart. This is accomplished by
enlarging the set of admissible policies to include all universally measurable
policies. In particular, we show the existence of policies within this class
that are optimal or nearly optimal for every initial state.

A great many authors have dealt with measurability in stochastic optimal
control theory. We describe three approaches taken and how their aims
and results relate to our own. A fourth approach, due to Blackwell et al.
[B12] and based on analytically measurable policies, is discussed in the
next section and in Section 11.2.

I The General Model

If the state, control, and disturbance spaces are arbitrary measure spaces,
very little can be done. One attempt in this direction is the work of Striebel
[S16] involving p-essential infima. Geared toward giving meaning to the
dynamic programming algorithm, this work replaces (18) by

Js 1(x) = p-essential inf E{g[x, u(x), w] + J [ f(x, u(x),w)]},  (25)
"
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k=0,...,N — 1, where the p-essential infimum is over all measurable u
from state space S to control space C satisfying any constraints which may
have been imposed. The functions J, are measurable, and if the probability
measures pg,...,Py—; are properly chosen and the so-called countable
e-lattice property holds, this modified dynamic programming algorithm
generates the optimal cost function and can be used to obtain policies which
are optimal or nearly optimal for py_, almost all initial states. The selection
of the proper probability measures p,,...,py-1, however, is at least as
difficult as executing the dynamic programming algorithm, and the verifica-
tion of the countable e-lattice property is equivalent to proving the existence
of an e-optimal policy.

II The Semicontinuous Models

Considerable attention has been directed toward models in which the
state and control spaces are Borel spaces or even R" and the reduced cost
function

h(x,u) = fg(x, u, w)p(dw|x, u)

has semicontinuity and/or convexity properties. A companion assumption
is that the mapping

x — U(x)

is a measurable closed-valued multifunction [R2]. In the latter case there
exists a Borel-measurable selector u:S — C such that u(x) e U(x) for every
state x (Kuratowski and Ryll-Nardzewski [K5]). This is of course necessary
if any Borel-measurable policy is to exist at all.

The main fact regarding models of this type is that under various com-
binations of semicontinuity and compactness assumptions, the functions J,
defined by (17) and (18) are semicontinuous. In addition, it is often possible
to show that the infimum in (18) is achieved for every x and k, and there
are Borel-measurable selectors pg,...,uy—; such that p(x) achieves this
infimum (see Freedman [F1], Furukawa [F3], Himmelberg, et al. [H3],
Maitra [M2], Schél [S3], and the references contained therein). Such a
policy (1o, - - - , iy —1) is optimal, and the existence of this optimal policy is
an additional benefit of imposing topological conditions to ensure that the
problem is well defined. In Section 9.5 we show that lower semicontinuity
and compactness conditions guarantee convergence of the dynamic pro-
gramming algorithm over an infinite horizon to the optimal cost function,
and that this algorithm can be used to generate an optimal stationary policy.

Continuity and compactness assumptions are integral to much of the
work that has been done in stochastic programming. This work differs from
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our own in both its aims and its framework. First, in the usual stochastic
programming model, the controls cannot influence the distribution of future
states (see Olsen [O1-03], Rockafellar and Wets [R3-R4], and the refer-
ences contained therein). As a result, the model does not include as special
cases many important problems such as, for example, the classical linear
quadratic stochastic control problem [B4, Section 3.1]. Second, assumptions
of convexity, lower semicontinuity, or both are made on the cost function,
the model is designed for the Kuratowski—Ryll-Nardzewski selection theo-
rem, and the analysis is carried out in a finite-dimensional Euclidean state
space. All of this is for the purpose of overcoming measurability problems.
Results are not readily generalizable beyond Euclidean spaces (Rockafellar
[R2]). The thrust of the work is toward convex programming type results,
ie., duality and Kuhn-Tucker conditions for optimality, and so a narrow
class of problems is considered and powerful results are obtained.

I1II The Borel Models

The Borel space framework was introduced by Blackwell [B9] and
further refined by Strauch, Dynkin, Juskevi¢, Hinderer, and others. The
state and control spaces S and C were assumed to be Borel spaces, and the
functions defining the model were assumed to be Borel-measurable. Initial
efforts were directed toward proving the existence of “nice” optimal or
nearly optimal policies in this framework. Policies were required to be
Borel-measurable. For this model it is possible to prove the universal
measurability of the optimal cost function and the existence for every & > 0
and probability measure p on S of a p—e-optimal policy (Strauch [S14,
Theorems 7.1 and 8.1]). A p—¢-optimal policy is one which leads to a cost
differing from the optimal cost by less than ¢ for p almost every initial
state. As discussed earlier, even over a finite horizon the optimal cost function
need not be Borel-measurable and there need not exist an everywhere
e-optimal policy (Blackwell [B9, Example 2]). The difficulty arises from the
inability to choose a Borel-measurable function y,:S— C which nearly
achieves the infimum in (18) uniformly in x. The nonexistence of such a
function interferes with the construction of optimal policies via the dynamic
programming algorithm (17) and (18), since one must first determine at each
stage the measure p with respect to which it is satisfactory to nearly achieve
the infimum in (18) for p almost every x. This is essentially the same problem
encountered with (25). The difficulties in constructing nearly optimal policies
over an infinite horizon are more acute. Furthermore, from an applications
point of view, a p—g-optimal policy, even if it can be constructed, is a much
less appealing object than an everywhere ¢-optimal policy, since in many
situations the distribution p is unknown or may change when the system is
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operated repetitively, in which case a new p—e-optimal policy must be
computed.

In our formulation, the class of admissible policies in the Borel model is
enlarged to include all universally measurable policies. We show in Part II
that this class is sufficiently rich to ensure that there exist everywhere e-optimal
policies and, if the infimum in the DP algorithm (18) is attained for every x and
k, then an everywhere optimal policy exists. Thus the notion of p-optimality
can be dispensed with. The basic reason why optimal and nearly optimal
policies can be found within the class of universally measurable policies may
be traced to the selection theorem of Section 7.7. Another advantage of
working with the class of universally measurable functions is that this class
is closed under certain basic operations such as integration with respect to
a universally measurable stochastic kernel and composition.

Our method of proof of infinite horizon results is based on an equivalence
of stochastic and deterministic decision models which is worked out in
Sections 9.1-9.3. The conversion is carried through only for the infinite
horizon model, as it is not necessary for the development in Chapter 8. It
is also done only under assumptions (P), (N), or (D) of Definition 9.1, although
the models make sense under conditions similar to the (F*) and (F ~) assump-
tions of Section 8.1. The relationship between the stochastic and the deter-
ministic models is utilized extensively in Sections 9.4-9.6, where structural
results proved in Part I are applied to the deterministic model and then
transferred to the stochastic model. The analysis shows how results for
stochastic models with measurability restrictions on the set of admissible
policies can be obtained from the general results on abstract dynamic
programming models given in Part I and provides the connecting link
between the two parts of this work.

1.3 The Present Work Related to the Literature

This section summarizes briefly the contents of each chapter and points
out relations with existing literature. During the course of our research,
many of our results were reported in various forms (Bertsekas [B3-B5];
Shreve [S7-S8]; Shreve and Bertsekas [S9-S12]). Since the present mono-
graph is the culmination of our joint work, we report particular results as
being new even though they may be contained in one or more of the preceding
references.

Part I

The objective of Part I is to provide a unifying framework for finite and
infinite horizon dynamic programming models. We restrict our attention to



14 1. INTRODUCTION

three types of infinite horizon models, which are patterned after the dis-
counted and positive models of Blackwell [B8—B9] and the negative model
of Strauch [S14]. It is an open question whether the framework of Part I
can be effectively extended to cover other types of infinite horizon models
such as the average cost model of Howard [H7] or convergent dynamic
programming models of the type considered by Dynkin and Juskevi¢ [ D8]
and Hordijk [H6].

The problem formulation of Part I is new. The work that is most closely
related to our framework is the one by Denardo [D2], who considered an
abstract dynamic programming model under contraction assumptions. Most
of Denardo’s results have been incorporated in slightly modified form in
Chapter 4. Denardo’s problem formulation is predicated on his contraction
assumptions and is thus unsuitable for finite horizon models such as the
one in Chapter 3 and infinite horizon models such as the ones in Chapter 5.
This fact provided the impetus for our different formulation.

Most of the results of Part I constitute generalizations of results known
for specific classes of problems such as, for example, deterministic and
stochastic optimal control problems. We make an effort to identify the
original sources, even though in some cases this is quite difficult. Some of
the results of Part I have not been reported earlier even for a specific class
of problems, and they will be indicated as new.

Chapter 2 Here we formulate the basic abstract sequential optimization
problem which is the subject of Part I. Several classes of problems of practical
interest are described in Section 2.3 and are shown to be special cases of the
abstract problem. All these problems have received a great deal of attention
in the literature with the exception of the stochastic optimal control model
based on outer integration (Section 2.3.3). This model, as well as the results
in subsequent chapters relating to it, is new. A stochastic model based on
outer integration has also been considered by Denardo [D2], who used a
different definition of outer integration. His definition works well under
contraction assumptions such as the one in Chapter 4. However, many of
the results of Chapters 3 and 5 do not hold if Denardo’s definition of outer
integral is adopted. By contrast, all the basic results of Part I are valid when
specialized to the model of Section 2.3.3.

Chapter 3 This chapter deals with the finite horizon version of our
abstract problem. The central results here relate to the validity of the dynamic
programming algorithm, i.e., the equation J§ = T"(J,). The validity of this
equation is often accepted without scrutiny in the engineering literature,
while in mathematical works it is usually proved under assumptions that
are stronger than necessary. While we have been unable to locate an appro-
priate source, we feel certain that the results of Proposition 3.1 are known
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for stochastic optimal control problems. The notion of a sequence of policies
exhibiting {¢,}-dominated convergence to optimality and the corresponding
existence result (Proposition 3.2) are new.

Chapter 4 Here we treat the infinite horizon version of our abstract
problem under a contraction assumption. The developments in this chapter
overlap considerably with Denardo’s work [D2]. Our contraction assump-
tion C is only slightly different from the one of Denardo. Propositions 4.1,
4.2, 4.3 (a), and 4.3 (c) are due to Denardo [D2], while Proposition 4.3 (b)
has been shown by Blackwell [ B9] for stochastic optimal control problems.
Proposition 4.4 is new. Related compactness conditions for existence of a
stationary optimal policy in stochastic optimal control problems were given
by Maitra [M2], Kushner [K6], and Schél [S5]. Propositions 4.6 and 4.7
improve on corresponding results by Denardo [D2] and McQueen [M3].
The modified policy iteration algorithm and the corresponding convergence
result (Proposition 4.9) are new in the form given here. Denardo [ D2] gives
a somewhat less general form of policy iteration. The idea of policy iteration
for deterministic and stochastic optimal control problems dates, of course,
to the early days of dynamic programming (Bellman [B1]; Howard [H7]).
The mathematical programming formulation of Section 4.3.3 is due to
Denardo [D2].

Chapter 5 Here we consider infinite horizon versions of our abstract
model patterned after the positive and negative models of Blackwell [ B8, B9]
and Strauch [S14]. When specialized to stochastic optimal control problems,
most of the results of this chapter have either been shown by these authors
or can be trivially deduced from their work. The part of Proposition 5.1
dealing with existence of an ¢-optimal stationary policy is new, as is the
last part of Proposition 5.2. Forms of Propositions 5.3 and 5.5 specialized
to certain gambling problems have been shown by Dubins and Savage [D6],
whose monograph provided the impetus for much of the subsequent work
on dynamic programming. Propositions 5.9-5.11 are new. Results similar
to those of Proposition 5.10 have been given by Schil [S5] for stochastic op-
timal control problems under semicontinuity and compactness assumptions.

Chapter 6 The analysis in this chapter is new. It is motivated by the
fact that the framework and the results of Chapters 2—-5 are primarily
applicable to problems where measurability issues are of no essential concern.
While it is possible to apply the results to problems where policies are sub-
ject to measurability restrictions, this can be done only after a fairly elaborate
reformulation (see Chapter 9). Here we generalize our framework so that
problems in which measurability issues introduce genuine complications can
be dealt with directly. However, only a portion of our earlier results carry
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through within the generalized framework—primarily those associated with
finite horizon models and infinite horizon models under contraction
assumptions.

Part 11

The objective of Part II is to develop in some detail the discrete-time
stochastic optimal control problem (additive cost) in Borel spaces. The
measurability questions are addressed explicitly. This model was selected
from among the specialized models of Part I because it is often encountered
and also because it can serve as a guide in the resolution of measurability
difficulties in a great many other decision models.

In Chapter 7 we present the relevant topological properties of Borel
spaces and their probability measures. In particular, the properties of analytic
sets are developed. Chapter 8 treats the finite horizon stochastic optimal
control problem, and Chapter 9 is devoted to the infinite horizon version.
Chapter 10 deals with the stochastic optimal control problem when only a
“noisy” measurement of the state of the system is possible. Various extensions
of the theory of Chapters 8 and 9 are given in Chapter 11.

Chapter 7 The properties presented for metrizable spaces are well
known. The material on Borel spaces can be found in Chapter 1 of Partha-
sarathy [P1] and is also available in Kuratowski [K2-K3]. A discussion
of the weak topology can be found in Parthasarathy [ P1]. Propositions 7.20,
7.21, and 7.23 are due to Prohorov [P2], but their presentation here follows
Varadarajan [ V1]. Part of Proposition 7.21 also appears in Billingsley [B7].
Proposition 7.25 is an extension of a result for compact X found in Dubins
and Freedman [DS5]. Versions of Proposition 7.25 have been used in the
literature for noncompact X (Strauch [S14]; Blackwell et al. [B12]), the
authors evidently intending an extension of the compact result by using
Urysohn’s theorem to embed X in a compact metric space. Proposition 7.27
is reported by Rhenius [R1], Juskevi¢ [J3] and Striebel [S16]. We give
Striebel’s proof. Propositions 7.28 and 7.29 appear in some form in several
texts on probability theory. A frequently cited reference is Loéve [L1].
Propositions 7.30 and 7.31 are easily deduced from Maitra [M2] or Schil
[S4], and much of the rest of the discussion of semicontinuous functions is
found in Hausdorff [H2]. Proposition 7.33 is due to Dubins and Savage [ D6].
Proposition 7.34 is taken from Freedman [F1].

The investigation of analytic sets in Borel spaces began several years ago,
but has been given additional impetus recently by the discovery of their
applications to stochastic processes. Suslin schemes and analytic sets first
appear in a paper by M. Suslin (or Souslin) in 1917 [S17], although the idea
is generally attributed to Alexandroff. Suslin pointed out that every Borel
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subset of the real line could be obtained as the nucleus of a Suslin scheme
for the closed intervals, and non-Borel sets could be obtained this way as
well. He also noted that the analytic subsets of R were just the projections
on an axis of the Borel subsets of R2. The universal measurability of analytic
sets (Corollary 7.42.1) was proved by Lusin and Sierpinski [L3] in 1918. (See
also Lusin [L2].) Our proof of this fact is taken from Saks [S1]. We have also
taken material on analytic sets from Kuratowski [K2], Dellacherie [D1],
Meyer [M4], Bourbaki [B13], Parthasarathy [P1], and Bressler and Sion
[B14]. Proposition 7.43 is due to Meyer and Traki [MS5], but our proof is
original. The proofs given here of Propositions 7.47 and 7.49 are very similar
to those found in Blackwell et al. [B12]. The basic result of Proposition 7.49
is due to Jankov [J1], but was also worked out about the same time and
published later by von Neumann [N1, Lemma 5, p. 448]. The Jankov-von
Neumann result was strengthened by Mackey [M1, Theorem 6.3]. The
history of this theorem is related by Wagner [W1, pp. 900-901]. Proposition
7.50(a) is due to Blackwell et al. [B12]. Proposition 7.50(b) together with
its strengthened version Proposition 11.4 generalize a result by Brown and
Purves [B15], who proved existence of a universally measurable ¢ for the
case where f is Borel measurable.

Chapter 8 The finite horizon stochastic optimal control model of Chap-
ter 8 is essentially a finite horizon version of the models considered by
Blackwell [B8,B9], Strauch [S14], Hinderer [H4], Dynkin and Juskevi¢
[D8], Blackwell et al. [B12], and others. With the exception of [B12], all
these works consider Borel-measurable policies and obtain existence results
of a p—¢e-optimal nature (see the discussion of the previous section). We allow
universally measurable policies and thereby obtain everywhere e-optimal
existence results. While in Chapters 8 and 9 we concentrate on proving
results that hold everywhere, the previously available results which allow
only Borel-measurable policies and hold p almost everywhere can be readily
obtained as corollaries. This follows from the following fact, whose proof
we sketch shortly:

(F) If X and Y are Borel spaces, py,p1,- . . iS a sequence of probability
measures on X, and y is a universally measurable map from X to Y,
then there is a Borel measurable map ' from X to Y such that

wx) = p(x)
for py almost every x, k =0,1,. ...

As an example of how this observation can be used to obtain p almost
everywhere existence results from ours, consider Proposition 9.19. It states
in part that if ¢ > 0 and the discount factor o is less than one, then an &-
optimal nonrandomized stationary policy exists, i.e., a policy = = (u, 4,. . .),
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where yu is a universally measurable mapping from S to C. Given p, on S,
this policy generates a sequence of measures pg, p;,. .. on S, where p, is the
distribution of the kth state when the initial state has distribution p, and
the policy 7 is used. Let y':S — C be Borel-measurable and equal to y for
pr almost every x, k=0,1,.... Let ' = (¢, 1/,. . .). Then it can be shown
that for p, almost every initial state, the cost corresponding to 7’ equals the
cost corresponding to =, so 7' is a py—¢-optimal nonrandomized stationary
Borel-measurable policy. The existence of such a n’ is a new result. This
type of argument can be applied to all the existence results of Chapters 8
and 9.

We now sketch a proof of (F). Assume first that Y is a Borel subset
of [0,1]. Then for re[0,1], r rational, the set

U(r) = {x|u(x) < r}

1s universally measurable. For every k, let pf[ U(r)] be the outer measure of
U(r) with respect to p, and let By, By,,... be a decreasing sequence of
Borel sets containing U(r) such that

p,’f[U(r)] = Pk[ _l Bkj:l'

Let B(r) = m?;l m})o:l Bk} Then

p,’f[U(r)]=pk[B(r)], k=0917 5

and the argument of Lemma 7.27 applies. If Y is an arbitrary Borel space, it
is Borel isomorphic to a Borel subset of [0,1] (Corollary 7.16.1), and (F)
follows.

Proposition 8.1 is due to Strauch [S14], and Proposition 8.2 is contained
in Theorem 14.4 of Hinderer [H4]. Example 8.1 is taken from Blackwell
[B9]. Proposition 8.3 is new, the strongest previous result along these lines
being the existence of an analytically measurable e-optimal policy when the
one-stage cost function is nonpositive [B12]. Propositions 8.4 and 8.5 are
new, as are the corollaries to Proposition 8.5. Lower semicontinuous models
have received much attention in the literature (Maitra [M2]; Furukawa
[F3]; Schal [S3-S5]; Freedman [F1]; Himmelberg et al. [H3]). Our lower
semicontinuous model differs somewhat from those in the literature, pri-
marily in the form of the control constraint. Proposition 8.6 is closely related
to the analysis in several of the previously mentioned references. Proposition
8.7 is due to Freedman [F1].

Chapter 9 Example 9.1 is a modification of Example 6.1 of Strauch
[S14], and Proposition 9.1 is taken from Strauch [S14]. The conversion of
the stochastic optimal control problem to the deterministic one was suggested
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by Witsenhausen [W3] in a different context and carried out systematically
for the first time here. This results in a simple proof of the lower semianaly-
ticity of the infinite horizon optimal cost function (cf. Corollary 9.4.1 and
Strauch [S14, Theorem 7.1]). Propositions 9.8 and 9.9 are due to Strauch
[S14], as are the (D) and (N) parts of Proposition 9.10. The (P) part of
Proposition 9.10 is new. Proposition 9.12 appears as Theorem 5.2.2 of Schél
[S5], but Corollary 9.12.1 is new. Proposition 9.14 is a special case of
Theorem 14.5 of Hinderer [H4]. Propositions 9.15-9.17 and the corollaries
to Proposition 9.17 are new, although Corollary 9.17.2 is very close to
Theorem 13.3 of Schil [S5]. Propositions 9.18-9.20 are new. Proposition
9.21 is an infinite horizon version of a finite horizon result due to Freedman
[F1], except that the nonrandomized e-optimal policy Freedman constructs
may not be semi-Markov.

Chapter 10 The use of the conditional distribution of the state given
the available information as a basis for controlling systems with imperfect
state information has been explored by several authors under various as-
sumptions (see, for example, Astrém [A2], Striebel [S15], and Sawaragi and
Yoshikawa [S2]). The treatment of imperfect state information models with
uncountable Borel state and action spaces, however, requires the existence
of a regular conditional distribution with a measurable dependence on a
parameter (Proposition 7.27), and this result is quite recent (Rhenius [R1];
Juskevi€ [J3]; Striebel [S16]). Chapter 10 is related to Chapter 3 of Striebel
[S16] in that the general concept of a statistic sufficient for control is defined.
We use such a statistic to construct a perfect state information model which
is equivalent in the sense of Propositions 10.2 and 10.3 to the original im-
perfect state information model. From this equivalence the validity of the
dynamic programming algorithm and the existence of ¢-optimal policies
under the mild conditions of Chapters 8 and 9 follow. Striebel justifies use of
a statistic sufficient for control by showing that under a very strong hypothesis
[S16, Theorem 5.5.1] the dynamic programming algorithm is valid and an
e-optimal policy can be based on the sufficient statistic. The strong hypothesis
arises from the need to specify the null sets in the range spaces of the
statistic in such a way that this specification is independent of the policy
employed. This need results from the inability to deal with the pointwise
partial infima of multivariate functions without the machinery of universally
measurable policies and lower semianalytic functions. Like Striebel, we show
that the conditional distributions of the states based on the available in-
formation constitute a statistic sufficient for control (Proposition 10.5), as
do the vectors of available information themselves (Proposition 10.6).

The treatments of Rhenius [R1] and Juskevi¢ [J3] are like our own
in that perfect state information models which are equivalent to the original
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one are defined. In his perfect state information model, Rhenius bases con-
trol on the observations and conditional distributions of the states, i.e., these
objects are the states of his perfect state information model. It is necessary
in Rhenius’ framework for the controller to know the most recent observa-
tion, since this tells him which controls are admissible. We show in Proposi-
tion 10.5 that if there are no control constraints, then there is nothing to be
gained by remembering the observations. In the model of Juskevi¢ [J3],
there are no control constraints and control is based on the past controls
and conditional distributions. In this case, ¢-optimal control is possible
without reference to the past controls (Propositions 10.5, 8.3, 9.19, and 9.20),
so our formulation is somewhat simpler and just as effective.

Chapter 10 differs from all the previously mentioned works in that simple
conditions which guarantee the existence of a statistic sufficient for control
are given, and once this existence is established, all the results of Chapters 8
and 9 can be brought to bear on the imperfect state information model.

Chapter 11 The use in Section 11.1 of limit measurability in dynamic
programming is new. In particular, Proposition 11.3 is new, and as discussed
earlier in regard to Proposition 7.50(b), a result by Brown and Purves [B15]
is generalized in Proposition 11.4. Analytically measurable policies were
introduced by Blackwell et al. [B12], whose work is referenced in Section
11.2. Borel space models with multiplicative cost fall within the framework
of Furukawa and Iwamoto [ F4-F5], and in [ F5] the dynamic programming
algorithm and a characterization of uniformly N-stage optimal policies are
given. The remainder of Proposition 11.7 is new.

Appendix A Outer integration has been used by several authors, but
we have been unable to find a systematic development.

Appendix B Proposition B.6 was first reported by Suslin [S17], but the
proof given here is taken from Kuratowski [K2, Section 38VI]. According
to Kuratowski and Mostowski [K4, p. 455], the limit o-algebra £y was
introduced by Lusin, who called its members the “C-sets.” A detailed discus-
sion of the g-algebra was given by Selivanovskij [S6] in 1928. Propositions
B.9 and B.10 are fairly well known among set theorists, but we have been
unable to find an accessible treatment. Proposition B.11 is new. Cenzer and
Mauldin [C1] have also shown independently that &£y is closed under
composition of functions, which is part of the result of Proposition B.11.
Proposition B.12 is new.

It seems plausible that there are an infinity of distinct o-algebras between
the limit g-algebra and the universal g-algebra that are suitable for dynamic
programming. One promising method of constructing such s-algebras in-
volves the R-operator of descriptive set theory (see Kantorovitch and
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Livenson [K1]). In a recent paper [B11], Blackwell has employed a different
method to define the “Borel-programmable” g-algebra and has shown it
to have many of the same properties we establish in Appendix B for the
limit o-algebra. It is not known, however, whether the Borel-programmable
c-algebra satisfies a condition like Proposition B.12 and is thereby suitable
for dynamic programming. It is easily seen that the limit s-algebra is con-
tained in Blackwell’s Borel-programmable o-algebra, but whether the two
coincide is also unknown.

Appendix C A detailed discussion of the exponential topology on the
set of closed subsets of a topological space can be found in Kuratowski
[K2-K3]. Properties of semicontinuous (K) functions are also proved there,
primarily in Section 43 of [K3]. The Hausdorff metric is discussed in Section
38 of [H2].
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