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Abstract. The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental
in a number of important optimization topics, including the existence of optimal solutions, the validity of the
minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We
consider asymptotic directions of a sequence of closed sets, and introduce associated notions of retractive,
horizon, and critical directions, based on which we provide new conditions that guarantee the nonemptiness
of the corresponding intersection. We show how these conditions can be used to obtain simple and unified
proofs of some known results on existence of optimal solutions, and to derive some new results, including a
new extension of the Frank–Wolfe Theorem for (nonconvex) quadratic programming.
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1. Introduction

In this paper, we focus on the question of whether a set intersection ∩∞
k=0Sk is nonempty,

where {Sk} is a sequence of nonempty closed sets in IRn with Sk+1 ⊂ Sk for all k. This is
a fundamental issue in optimization, because it lies at the heart of a number of important
questions, such as the following:

1. Does a function f : IRn �→ (−∞,∞] attain a minimum over a set X? This is true if
and only if the intersection

∞⋂

k=0

{x ∈ X | f (x) ≤ γk}

is nonempty, where {γk} is a scalar sequence with γk ↓ inf x∈X f (x).
2. If C is a closed set and A is a matrix, is A C closed? To prove this, we may let {yk}

be a sequence in A C that converges to some y ∈ IRn , and then show that y ∈ A C .
If we introduce the sets

Wk = {z | ‖z − y‖ ≤ ‖yk − y‖} , Nk = {x | Ax ∈ Wk}, (1)
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and

Sk = C ∩ Nk,

it is sufficient to show that the intersection ∩∞
k=0Sk is nonempty.

3. Given a function F : IRn+m �→ (−∞,∞] that is closed (i.e. has a closed epigraph),
is the function f : IRn �→ [−∞,∞] defined by f (x) = inf z∈IRm F(x, z) closed? It
is known that this is a critical question in duality theory and minimax theory (see, e.g.
[1, 11, 25]). Properties of epi( f ), the epigraph of f , can be inferred from properties
of epi(F), the epigraph of F , by using the relation

P (epi(F)) ⊂ epi( f ) ⊂ cl (P (epi(F))) ,

where cl(·) denotes closure of a set and P(·) denotes projection on the space of
(x, w), i.e. P(x, z, w) = (x, w). [The left-hand side of this relation follows from the
definition

epi( f ) =
{
(x, w)

∣∣∣ inf
z∈IRm

F(x, z) ≤ w

}
.

To show the right-hand side, note that for any (x, w) ∈ epi( f ) and every k, there
exists a zk such that (x, zk, w + 1/k) ∈ epi(F), so that (x, w + 1/k) ∈ P (epi(F))

and (x, w) ∈ cl (P (epi(F)))]. If F is closed and we can show that the projection P(·)
preserves closedness [a special case of question (2) above], it follows that epi( f ) is
closed and f is closed.

If the sets Sk are compact, then ∩∞
k=0Sk is nonempty and compact, a fact that under-

lies Weierstrass’ theorem (a closed function f attains a minimum over a compact set X );
see the reasoning in (1) above. The special case where the sets Sk are convex has been
the subject of much research, following the work of Helly [18] and others (e.g. Fenchel
[17] and Rockafellar [25]). A recent line of analysis that focuses on the issues (1)–(3)
discussed above, is given in Sect. 1.5 of Bertsekas et al. [11], and is based on the notions
of a direction of recession and lineality space. In this paper, we develop conditions that
guarantee the nonemptiness of the intersection ∩∞

k=0Sk in the general case where the
sets Sk may not be bounded and may not be convex.

Our analysis is based on an extension of the notion of a direction of recession, the
notion of an asymptotic direction of the set sequence {Sk}, which is a nonzero vector
in the horizon limit of {Sk} studied by Rockafellar and Wets [27]. A related notion of a
retractive direction (see Sect. 2) is new in the form given here, but is closely related to
ideas developed, principally within the context of optimization, by Auslender; see, e.g.
[2–4], and the book by Auslender and Teboulle [1]. These sources focus on asymptotic
directions of sets and functions, rather than sequences of sets. It appears that the notion
of asymptotic direction of a sequence of sets (rather than a set or a function) is simpler
and often more convenient for the aforementioned optimization applications. We also
develop the notions of a horizon and critical directions, which are formulated here for
the first time, for both cases of a single set and a sequence of sets. These notions are used
to study some important cases where the sets Sk have asymptotic directions that are not
retractive; e.g. when Sk are specified by quadratic inequalities. We show that asymp-
totic, retractive, horizon, and critical directions provide the basis for new set intersection
theorems, new existence of optimal solutions results, and simpler and unified proofs of



Set intersection theorems and existence of optimal solutions 289

known results. Some related analysis is given in Tseng and Ozdaglar [29], where vari-
ants of asymptotic direction and retractive direction are used to derive generalizations
of certain existence results by Auslender and by Luo and Zhang [21].

We note that in the case where the sets Sk are convex, as well as closed, the set of
asymptotic directions of {Sk} is in effect the intersection of the recession cones of the
sets Sk , and the set of retractive directions is related (but is not equal) to the intersection
of the lineality spaces of the sets Sk . A horizon direction of {Sk} is also somewhat related
to common directions of recession of the sets Sk (see the discussion of Sect. 3).

We note also that the set of asymptotic directions, when specialized to a closed,
possibly nonconvex, set (rather than a nested sequence of closed sets), is essentially the
horizon cone described by Rockafellar and Wets [27], and the asymptotic cone described
by Auslender and Teboulle [1]. These cones have been introduced in the works of Dedieu
[13, 14], and have been the subject of considerable attention recently; see the references
in [1, 27].

We organize the material as follows. In Sect. 2, we introduce asymptotic directions
and retractive directions, and we prove a key result relating to the nonemptiness of a
closed set intersection. In Sect. 3, we introduce horizon and critical directions, and we
use them to derive nonemptiness results for the case where Sk is the intersection of a
finite number of closed sets. Some of these results relate to level sets of bidirectionally
flat functions, a class that includes convex quadratic and, more generally, convex poly-
nomial functions. Finally, in Sect. 4 we unify and extend various known results on the
existence of optimal solutions, including a generalization of the Frank–Wolfe Theorem
of (nonconvex) quadratic programming. While we do not discuss in detail the applica-
tion to questions of preservation of closedness under linear transformation and partial
minimization, our results can also be used for the analysis of these issues, as discussed
earlier (see also some discussion at the end of Sect. 2).

Throughout the paper, all analysis is done in the n-dimensional Euclidean IRn . Thus,
unless otherwise specified, vectors and subsets are from IRn . All vectors are viewed as
columns vectors, and a prime denotes transpose. The standard Euclidean norm, ‖x‖ =√

x ′x is used throughout.

2. Asymptotic directions and retractive directions

We first introduce the notion of asymptotic direction of a nested set sequence {Sk}, i.e.
a sequence such that Sk+1 ⊂ Sk for all k.

Definition 1. Let {Sk} be a nested sequence of nonempty closed sets. We say that a non-
zero vector d is an asymptotic direction of {Sk} if there exists a sequence {xk} such that

xk ∈ Sk, k = 0, 1, . . . , ‖xk‖ → ∞,
xk

‖xk‖ → d

‖d‖ .

A sequence {xk} associated with an asymptotic direction d as above is called an asymp-
totic sequence corresponding to d. An asymptotic direction d of {Sk} is called retractive
if, for every corresponding asymptotic sequence {xk}, there exists an integer k such that

xk − d ∈ Sk, ∀k ≥ k.

The set sequence {Sk} is called retractive if all its asymptotic directions are retractive.
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Roughly speaking, an asymptotic direction is a direction along which we can escape
towards ∞ through each of the sets Sk (see Fig. 1). In particular, {Sk} has an asymptotic
direction if and only if all the sets Sk are unbounded. Equivalently, a nonzero vector d
is an asymptotic direction of {Sk} if there exists a sequence {xk} and a positive sequence
{tk} with xk ∈ Sk for all k, tk → ∞, and xk/tk → d. It can be seen that the asymp-
totic directions are exactly the nonzero vectors in the horizon limit of {Sk}, as defined
in [27] (see Sect. 4F). A retractive asymptotic direction d is one whose asymptotic
sequences still belong to the corresponding sets Sk when shifted by −d (see Fig. 2).
The importance of retractive directions is illustrated by the following key proposition,
showing that the intersection of a retractive nested sequence of nonempty closed sets
Sk, k = 0, 1, . . ., is nonempty. Its proof uses the argument that if this intersection is
empty, then the sequence of minimum norm vectors xk of Sk would be unbounded and
each cluster point d of xk/‖xk‖ would be an asymptotic direction, so moving xk opposite
of dk would yield another point in Sk of lesser norm than xk , contradicting xk having
minimum norm.

Proposition 1. A retractive nested sequence of nonempty closed sets has nonempty inter-
section.

Proof. Let {Sk} be the given sequence. For each k, let xk be a vector of minimum norm on
the closed set Sk (such a vector exists by Weierstrass’ theorem, since it can be obtained
by minimizing ‖x‖ over all x in the compact set Sk ∩{x | ‖x‖ ≤ ‖xk‖}, where xk is any
vector in Sk). It will be sufficient to show that a subsequence {xk}k∈K is bounded. Then,
since {Sk} is nested, for each m, we have xk ∈ Sm for all k ∈ K, k ≥ m, and since Sm

is closed, each of the limit points of {xk}k∈K will belong to each Sm and hence also to
∩∞

m=0 Sm , thereby showing the result. Thus, we will prove the proposition by showing
that there is no subsequence of {xk} that is unbounded.

Indeed, assume the contrary, let {xk}k∈K be a subsequence such that

lim
k→∞, k∈K

‖xk‖ = ∞,

and let d be the limit of a subsequence {xk/‖xk‖}k∈K, where K ⊂ K. For each k =
0, 1, . . ., define yk = xm , where m is the smallest index m ∈ K with k ≤ m. Then, since
yk ∈ Sk for all k and limk→∞{yk/‖yk‖} = d, we see that d is an asymptotic direction
of {Sk} and {yk} is an asymptotic sequence corresponding to d. Using the retractiveness
assumption, let k be such that yk − d ∈ Sk for all k ≥ k. We have d ′yk → ∞ since
d ′yk/‖yk‖ → ‖d‖2 = 1, so for all k ≥ k with 2d ′yk > 1, we obtain

‖yk − d‖2 = ‖yk‖2 − (2d ′yk − 1) < ‖yk‖2.

This is a contradiction, since for infinitely many k, yk is the vector of minimum norm
on Sk . ��

For an example where the above proposition applies, consider the sequence {Sk}
of Fig. 2a. Here the asymptotic directions (0, β), β > 0, are retractive, and indeed the
intersection ∩∞

k=0 Sk is nonempty. On the other hand, the condition of the proposition
is far from necessary for nonemptiness of ∩∞

k=0 Sk . For example, the sequence {Sk} of
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Fig. 1 Illustration of an asymptotic direction of a sequence of nonconvex sets and a corresponding asymptotic
sequence. The normalized direction sequence xk/‖xk‖ must converge to the unit direction d/‖d‖

Fig. 2b has nonempty intersection, yet the asymptotic directions (0, β), β > 0, are not
retractive.

We note that the conclusion of the preceding proposition also holds under a weaker
definition of retractive direction, whereby d is called retractive if, for every correspond-
ing asymptotic sequence {xk}, there exist a bounded sequence of positive scalars {αk}
and an index k such that xk −αkd ∈ Sk for all k ≥ k. This definition does not work well,
however, when we consider intersections of two or more sequences. By contrast, under
the given Definition 1, it follows that the sequence obtained by intersection or union or
Cartesian product of two retractive sequences is retractive. In particular, we have the
following proposition.

Proposition 2. Let
{

S j
k

}
, j = 1, . . . , r , be retractive nested sequences of nonempty

closed sets. Then the sequences {Uk} and {Tk}, where

Uk = S1
k ∪ S2

k ∪ · · · ∪ Sr
k , k = 0, 1, . . . ,

Tk = S1
k × S2

k × · · · × Sr
k , k = 0, 1, . . . ,

are both retractive. If the sets

Nk = S1
k ∩ S2

k ∩ · · · ∩ Sr
k , k = 0, 1, . . . ,

are all nonempty, then {Nk} is retractive.

2.1. Asymptotic directions of closed sets

We now specialize the definitions of asymptotic directions and retractiveness to the case
where all the sets in the sequence are the same. For this case, the notion of asymptotic
direction was studied in the works of Dedieu [13, 14], and others [1, 27].
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Fig. 2 Illustration of retractive and nonretractive directions in IR2. In both cases, the set of asymptotic direc-
tions is {(0, β) | β > 0}, and the intersection of the corresponding sequence is the set {(0, x2) | x2 ≥ 0}.
In (a), we have

Sk =
{
(x1, x2)

∣∣∣∣ |x1| ≤ 1

k + 1
, x2 ≥ − 1

k + 1

}
,

and it can be seen that every asymptotic direction is retractive. In (b), we have

Sk =
{
(x1, x2)

∣∣∣ x2 ≥ (k + 1)x2
1

}
,

and it can be seen that all asymptotic directions are not retractive. As an example, for the asymptotic direction

(0, 1), the corresponding asymptotic sequence
{
(k, (k + 1)k2)

}
does not belong to Sk when shifted by (0, −1)

Definition 2. Given a nonempty closed set S, we say that a nonzero vector d is an
asymptotic direction of S if it is an asymptotic direction of the sequence {Sk}, where
Sk = S for all k, i.e. there exists a sequence {xk} ⊂ S, called an asymptotic sequence
corresponding to d, such that

‖xk‖ → ∞ and
xk

‖xk‖ → d

‖d‖ .

An asymptotic direction d is called retractive if, for every corresponding asymptotic
sequence {xk}, there exists an integer k such that

xk − d ∈ S, ∀k ≥ k.

The set S is called retractive if all its asymptotic directions d are retractive.

We note that our notion of a retractive set is equivalent to the notion of an asymptot-
ically linear set introduced by Auslender [4], and Auslender and Teboulle [1] (see [1],
p. 37), who provide a great deal of related analysis, including the corresponding version
of Proposition 2.
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For any nonempty closed set S, let AS denote the set of asymptotic directions of S.
The next proposition shows that the asymptotic directions of a closed set sequence are
the common asymptotic directions of the sets in the sequence. This proposition can be
deduced from Exercise 4.21 in [27] about the horizon limit of a set sequence. We include
a proof for completeness.

Proposition 3. Let {Sk} be a nested sequence of nonempty closed sets. Then d is an
asymptotic direction of {Sk} if and only if d ∈ ∩∞

k=0 ASk .

Proof. Let d belong to ∩∞
k=0 ASk . For each k, since d ∈ ASk , there exists an xk ∈ Sk such

that ‖xk‖ ≥ k and |xk/‖xk‖−d/‖d‖| ≤ 1/k. Then ‖xk‖ → ∞ and xk/‖xk‖ → d/‖d‖,
showing that d is an asymptotic direction of {Sk}.

Conversely, let d be an asymptotic direction of {Sk}, and let {xk} be a corresponding
asymptotic sequence. Then, for each k, we have xk ∈ Sk ⊂ Sk for all k ≥ k. This shows
that d ∈ ASk

. Since this is true for each k, we have d ∈ ∩∞
k=0 ASk . ��

For any nonempty set S, we say that a vector d is a (global) direction of recession of
S if x + αd ∈ S for all x ∈ S and α ≥ 0 (see, e.g. [11, 25, 27]). The set of all directions
of recession of S, denoted by RS , is the recession cone of S. It is well known that, for
a nonempty closed convex set, the set of asymptotic directions coincides with the set
of nonzero directions of recession (see [27], Theorem 3.6 and Sect. 6G). The lineality
space of S is defined as

L S = RS ∩ (−RS).

It is readily seen that the lineality space directions are retractive.
The following result, which does not seem to have been reported in the literature,

shows that the complement of an open convex set is retractive.

Proposition 4. Let S be a nonempty closed set that is the complement of an open convex
set. Then, S is retractive.

Proof. Assume, to arrive at a contradiction, that there exists an asymptotic direction
d of S that is not retractive, and let {xk} be a corresponding asymptotic sequence for
which the definition of retractiveness is violated. Then xk − d �∈ S for an infinite
subsequence of indexes k. Without loss of generality, assume that this is true for all
indexes k. We have xk/‖xk‖ → d/‖d‖ and ‖xk‖ → ∞, so that ‖xk − d‖ → ∞ and
(xk −d)/‖(xk −d)‖ → d/‖d‖. It follows that {xk −d} is an asymptotic sequence of the
closure of the convex set IRn \ S, and d is the corresponding asymptotic direction. Then
d is a direction of recession of this closed convex set (see [27], Theorem 3.6). Since
xk − d lies in IRn \ S, the interior of this set, all the vectors of the form xk + αd with
α ∈ [−1,∞), including xk , lie in IRn \ S, contradicting the hypothesis xk ∈ S. ��

The preceding proposition can be extended to more general convex sets by restrict-
ing attention to their affine hull. In particular, if C is a relatively open convex set (i.e.
a convex set that coincides with its relative interior), then the intersection of the com-
plement of C with the affine hull of C is retractive. Note that by Proposition 4, a closed
half-space is retractive since its complement is an open half-space, which is convex.
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It follows from Proposition 2 that a polyhedral set is retractive, since it is the intersec-
tion of a finite number of half-spaces. More generally, the intersection and union of a
finite number of complements of open convex sets is retractive. An example of such a
set is

S = {x | f (x) ≥ 0},
where f is the pointwise minimum of a finite number of real-valued convex functions.
Note that the finiteness assumption is necessary for retractiveness, and in particular a
nonpolyhedral closed convex cone need not be retractive (see the example given at the
end of Sect. 2).

It is well known that a polyhedral set S can be expressed as the vector sum of a com-
pact polyhedral set and a polyhedral cone N (see, e.g. [11, 25]). Moreover, the asymptotic
directions of S are exactly the nonzero vectors in N . The following proposition presents
a useful generalization of these facts.

Proposition 5. Let S be a set which is the vector sum of a compact set and a closed set
N . Then the asymptotic directions of S are exactly the asymptotic directions of N , and
S is retractive if and only if N is retractive.

Proof. We write S = S + N , where S is nonempty and compact. Let d be an asymp-
totic direction of N . Then there exists a sequence {yk} ⊂ N with ‖yk‖ → ∞ and
yk/‖yk‖ → d/‖d‖. Fix any x ∈ S and let

xk = x + yk, k = 0, 1, . . . ,

Then xk ∈ S, ‖xk‖ → ∞, and xk/‖xk‖ → d/‖d‖, showing that d is an asymptotic
direction of S.

Conversely, let d be an asymptotic direction of S. Then, there exists a sequence
{xk} ⊂ S with ‖xk‖ → ∞ and xk/‖xk‖ → d/‖d‖. We can represent xk as

xk = xk + yk, ∀k = 0, 1, . . . ,

where xk ∈ S and yk ∈ N . Since S is compact, {xk} is bounded. This implies ‖yk‖ → ∞
and yk/‖yk‖ → d/‖d‖, showing that d is an asymptotic direction of N .

We note that d is an asymptotic direction of S, with {xk} being a corresponding
asymptotic sequence, if and only if xk = xk + yk , where {xk} ⊂ S and {yk} is an
asymptotic sequence of N corresponding to d, viewed as an asymptotic direction of N .
Hence d is retractive, when viewed as an asymptotic direction of S if and only if d is
retractive when viewed as an asymptotic direction of N . ��

By Proposition 2 and 5, the asymptotic directions of a nonempty set of the form
S = S1 ∩ · · · ∩ Sm such that each of the sets Si , i = 1, . . . , m, is the vector sum of a
compact set and a polyhedral cone N i , are the nonzero vectors in ∩m

i=1 N i . Furthermore,
S is retractive. Similarly, the vector sum of a compact set and the union of a finite number
of polyhedral cones is retractive. Sets of this type have been studied within the class of
asymptotically polyhedral sets introduced by Auslender and Teboulle [1], who prove a
similar result, namely that they are asymptotically linear (see [1], Proposition 2.3.1).

By using Proposition 1 and 3, we have the following new set intersection results
involving asymptotic directions and lineality space.
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Proposition 6. Let {Ck} be a nested sequence of nonempty closed sets. Denote

A = ∩∞
k=0 ACk , L = ∩∞

k=0 LCk .

(a) If A ⊂ L, then {Ck} is retractive, and ∩∞
k=0 Ck is nonempty.

(b) Let X be a retractive closed set. Assume that all the sets Sk = X ∩Ck are nonempty,
and that

AX ∩ A ⊂ L .

Then, {Sk} is retractive, and ∩∞
k=0 Sk is nonempty.

Proof. (a) This is a special case of (b) whereby we take X = IRn , so that AX is the set
of nonzero vectors in IRn and AX ∩ A = A.

(b) By Proposition 3, an asymptotic direction d of {Sk} must belong to AX ∩ A, and
hence also to L . Thus, for any corresponding asymptotic sequence {xk}, we have
xk ∈ Ck and hence xk −d ∈ Ck for all k. Since d is an asymptotic direction of X and
X is retractive, this implies that d is retractive for {Sk}. By Proposition 1, ∩∞

k=0 Sk

is nonempty. ��
If all the sets Ck are convex, then ACk comprises the nonzero vectors in RCk , and

since RCk ⊃ LCk , we have A ⊃ L \ {0}, and the assumption A ⊂ L in part (a) of Propo-
sition 6 is equivalent to A = L \{0}. In this case, part (a) and the special case where X is
a polyhedral set in part (b) are known (see [11] and the references there in), but the proof
given here is simpler than those found in the literature. Part (b) applies more generally
to the case where X is the vector sum of a compact set and a set N , with N being the
intersection and union of a finite number of polyhedral cones and complements of open
convex sets (see Propositions 2, 4, and 5).

Regarding the preservation of closedness of a set C under a linear transformation A,
by applying Propositions 1 and 2, we obtain that AC is closed if C is a closed retractive
set [we use here the retractiveness of the sequence {Nk} of Eq. (1)]. This result has
been shown by Auslender and Teboulle, but using a more specialized argument (see
[1], Theorems 2.3.1 and 2.3.3). A very different condition for closedness of AC was
given by Pataki [23], who assumes C to be a “nice” closed convex cone (in particular, a
polyhedral cone, the second-order cone, or the cone of symmetric positive semidefinite
matrices) in addition to a technical constraint qualification involving the range of A′,
the dual cone C∗, and the closure of the set of feasible directions of C∗. Pataki’s result
is different in nature from ours, since it can be seen that neither the second-order cone,
which is the epigraph of the Euclidean norm function, nor the cone of n × n symmetric
positive semidefinite matrices are retractive. For example, d = (1, 0, 1) is an asymptotic
direction of the second-order cone C = {(u, v, w) | ‖(u, v)‖ ≤ w}, with corresponding
asymptotic sequence xk = (

k,
√

k,
√

k2 + k
)
, but xk − d �∈ C for all k = 1, 2, . . .

3. Horizon directions and associated intersection theorems

While retractiveness is clearly an important property, it is inadequate for proving or
explaining some of the principal set intersection results that are useful in optimization.



296 D. P. Bertsekas, P. Tseng

Prominent among these, are results relating to sets specified by quadratic inequalities.
In this section, we introduce some additional properties of asymptotic directions, which
together with retractiveness, can be used to provide a more complete framework for set
intersection analysis.

We will focus on a key question, which does not seem to have been addressed so
far in the literature: Given two nested set sequences {S1

k } and {S2
k } each with nonempty

intersection by itself, and with

S1
k ∩ S2

k �= ∅, k = 0, 1, . . . ,

what causes the intersection sequence {S1
k ∩ S2

k } to have an empty intersection? By
sketching a few examples (see Fig. 3), one may suspect that the trouble lies with the
existence of some “critical asymptotes.” Roughly, these are asymptotic directions d,
common to {S1

k } and {S2
k }, and such that starting at ∩k S2

k (or ∩k S1
k ) and moving along d,

we do not meet ∩k S1
k (or ∩k S2

k , respectively). With this in mind, we introduce a subset
of asymptotic directions, called horizon directions, which we will subsequently use to
make precise the meaning of a “critical asymptote”.

Definition 3. Given a nested closed set sequence {Sk} with nonempty intersection, we
say that an asymptotic direction d of {Sk} is a horizon direction with respect to a set
G if, for every x ∈ G, there exists a scalar α ≥ 0 such that x + αd ∈ ∩∞

k=0 Sk for all
α ≥ α. We say that d is a global horizon direction if G = IRn, and we say that it is a
local horizon direction if G = ∩∞

k=0 Sk.

Thus d is a horizon direction with respect to G if starting at any point of G and going
along d we eventually enter and stay in ∩∞

k=0 Sk . The definition of a horizon direction of
a set sequence specializes naturally to the case of single closed set S by viewing the set
as the constant sequence of sets {Sk}, where Sk = S for all k. Thus, e.g. the statement
that d is a horizon direction of S with respect to G means that d is a horizon direction
of the sequence {Sk} with respect to G, where Sk = S for all k.

It can be seen that if the sets Sk are convex, the set of local horizon directions is equal
to the set of asymptotic directions, and also to the set of nonzero common directions of
recession of all the sets Sk (see Proposition 3). The set of global horizon directions may
be a strict subset of the set of asymptotic directions, even if the sets Sk are convex (take,
e.g. all the sets Sk to be equal to the same line on the plane).

Note also that if
{

S1
k

}
and

{
S2

k

}
are nested closed set sequences such that the sequence

{S1
k ∩ S2

k } has nonempty intersection, then a vector which is a horizon direction of both{
S1

k

}
and

{
S2

k

}
with respect to a (common) set G is also a horizon direction of

{
S1

k ∩ S2
k

}

with respect to G. However, the converse is not true, as simple examples indicate. On
the other hand, the set of vectors that are global horizon directions of both

{
S1

k

}
and{

S2
k

}
coincides with the set of global horizon directions of

{
S1

k ∩ S2
k

}
.

Here are some examples illustrating horizon directions.

Example 1. Let S be the complement of a bounded open set. Then all nonzero directions
are asymptotic directions as well as global horizon directions.
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S2

Sk
1

d: “Critical Asymptote”

Fig. 3 Illustration of a set sequence {S1
k } and a set S2 with

S1
k ∩ S2 �= ∅, k = 0, 1, . . . ,

and ∩∞
k=0 S1

k ∩ S2 = ∅. The problem is that there exists some “critical asymptote” along which {S1
k } and S2

“asymptotically lose contact”

Example 2. Let f : IRn �→ IR be a convex function that is coercive, and let S =
{x | f (x) ≥ γ } where γ is a scalar. Then S is closed and nonempty (since f is real-
valued and hence continuous over IRn , as well as coercive), and because the complement
of S is bounded (by the coercivity of f ), all nonzero directions are asymptotic directions
as well as global horizon directions, as per the preceding example.

Example 3. (Vector sums of compact sets and polyhedral cones) Let S = X1 ∩ X2 ∩
· · · ∩ Xm , where each Xi is the vector sum of a compact set and a polyhedral cone Ni .
Then, the set of asymptotic directions, which are the nonzero vectors in ∩m

i=1 Ni , is also
equal to the set of local horizon directions. However, the set of global horizon directions
may be strictly smaller, and in fact may be empty, even if ∩m

i=1 Ni contains a nonzero
direction (take, e.g. m = 1 and X1 to be a half-line on the plane).

Let us introduce a class of convex functions that includes convex quadratic and,
more generally, convex polynomial functions. These functions were introduced in Exer-
cise 2.7 of [11], and were shown to be interesting within the contexts of set intersection,
existence of optimal solutions, and strong duality (see [11], Proposition 6.5.7). We recall
that, for a closed proper convex function f : IRn �→ (−∞,∞], the recession cone of f
and the constancy space of f , denoted R f and L f , respectively, are the (common) reces-
sion cone and lineality space of its nonempty level sets (see, e.g. [11, 25]). Moreover, a
direction d belongs to the recession cone R f if and only if, for every x ∈ dom( f ), we
have

lim
α→∞

f (x + αd)

α
≤ 0,

(see [25], Theorems 8.5, 8.6).

Example 4. (Bidirectionally Flat Convex Functions) Let f : IRn �→ (−∞,∞] be
a closed proper convex function with the property that a direction d belongs to the
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constancy space L f if and only if

lim
α→∞

f (x + αd)

α
= 0, ∀x ∈ dom( f ). (2)

Functions of this type will be referred to as bidirectionally flat. It is clear that con-
vex polynomial functions, including convex quadratic functions, are bidirectionally flat,
since they are polynomial along any direction, and hence constant along any direction
d satisfying Eq. (2). Another class of bidirectionally flat functions, which also includes
convex quadratic functions, have the form

f (x) = h(Ax) + c′x + b, (3)

where A is an m × n matrix, c is a vector, b is a scalar, and h : IRm �→ (−∞,∞] is a
closed proper convex function satisfying

lim inf‖y‖→∞
h(y)

‖y‖ = ∞. (4)

In view of this property, we see that Eq. (2) is satisfied if and only if d is in the nullspace
of A and c′d = 0, which is true if and only if d ∈ L f .

A bidirectionally flat function is different from a weakly analytic convex function
[20] (see also [5]), [1], which has the property of being constant along a line whenever
it is constant along any open segment of the line. It is also different from a faithfully
convex function [26], which has the property of being affine along a line whenever
it is affine along any open segment of the line. In particular, the exponential function
f (x) = ex is weakly analytic and faithfully convex, but not bidirectionally flat; the
function f (x) = max{0, x − 1,−x − 1} is bidirectionally flat, but neither weakly ana-
lytic nor faithfully convex. We note that weakly analytic and faithfully convex functions
also include convex polynomial functions as special cases, and play important roles in
ensuring zero duality gap (rather than solution existence) in convex programs.

Let {Sk} be a set sequence defined by the level sets of f :

Sk = {x | f (x) ≤ γk},
where {γk} is a scalar nonnegative sequence with γk ↓ 0, and such that all the sets Sk are
nonempty. Then, for any nonzero vector d ∈ R f , one of the following two cases holds:

(1) d ∈ L f , in which case d is a local horizon direction that is retractive.
(2) d /∈ L f , in which case

lim
α→∞

f (x + αd)

α
< 0, ∀x ∈ IRn .

In the latter case, we have limα→∞ f (x + αd) = −∞ for all x ∈ dom( f ), implying
that x + αd ∈ ∩∞

k=0Sk , for all sufficiently large α. Thus, d is a horizon direction with
respect to dom( f ).

Also, if there exists a direction d with d ∈ R f but d /∈ L f , then by the preceding
argument, we must have inf x∈IRn f (x) = −∞, so that ∩∞

k=0Sk �= ∅. If on the other hand,
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we have R f = L f , then by Proposition 6(a), f attains its minimum over IRn , so again
∩∞

k=0Sk �= ∅.
In conclusion, if f is bidirectionally flat, every asymptotic direction of {Sk} is either

a horizon direction with respect to dom( f ), or else it is a local horizon direction that is
retractive. Furthermore, ∩∞

k=0Sk �= ∅.

As a special case of the preceding example, consider a set sequence {Sk} defined by
convex quadratic inequalities:

Sk = {x | x ′Qx + c′x + b ≤ γk}.
For each asymptotic direction d, there are two possibilities:

(a) d is a global horizon direction that satisfies Qd = 0 and c′d < 0.
(b) d is a local horizon direction that is also a lineality direction (satisfies Qd = 0 and

c′d = 0), and hence it is retractive.

Note that this property is not shared by nonconvex quadratic inequalities (unless the
quadratic is strictly concave, see Example 2). As an example, for the subset of the plane

S = {(x1, x2) | x1x2 ≥ 1} ,

the asymptotic direction (0, 1) is not a local horizon direction [moving from (−1,−1) ∈
S along (0, 1) exits S]. It is also not retractive because, for some of its corresponding
asymptotic sequences [e.g. the sequence {(1/k, k)}], the requirement for retractiveness
is not fulfilled.

3.1. Critical directions

We now introduce another type of asymptotic direction whose character reflects some of
the root causes of emptiness of set intersections. The idea is that if two nested sequences{

S1
k

}
and

{
S2

k

}
, each with nonempty intersection by itself

(∩∞
k=0 S1

k �=∅ and ∩∞
k=0 S2

k �=∅)
,

and with nonempty intersection with the other
(
S1

k ∩ S2
k �= ∅, for all k

)
, are combined

to form an empty intersection ∩∞
k=0

(
S1

k ∩ S2
k

)
, then some of their common asymptotic

directions must be “critical” in some sense. The following definition formulates this idea,
and is motivated by properties of the asymptotic directions of level sets of bidirectionally
flat functions.

Definition 4. Given a nested closed set sequence {Sk} with nonempty intersection, we
say that an asymptotic direction d of {Sk} is a critical direction with respect to a set
G if d is neither a horizon direction of {Sk} with respect to G, nor a retractive local
horizon direction of {Sk}. An asymptotic direction of {Sk} is referred to as noncritical
with respect to G if it is not critical with respect to G.

By convention, every asymptotic direction of {Sk} is noncritical with respect to the
empty set. In fact, Definitions 3 and 4 allow the possibility that the set G is empty, and
are consistent with this convention.

The definition of a critical and noncritical direction of a set sequence specializes
naturally to the case of a single closed set S by viewing the set as the constant sequence
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of sets {Sk}, where Sk = S for all k; see Fig. 4. Note that all global horizon directions and
all retractive local horizon directions are noncritical with respect to any nonempty set;
see Fig. 5. Note also that all asymptotic directions of sequences of level sets of bidirec-
tionally flat functions f , such as the ones considered in Example 4, are noncritical with
respect to dom( f ). In particular, sequences of nonempty convex quadratic level sets
Sk = {x | x ′Qx + c′x + b ≤ γk}, where γk ↓ 0, have noncritical asymptotic directions
with respect to IRn .

The significance of critical directions is illustrated by the following proposition,
which shows that a sequence {S1

k ∩ · · · ∩ Sr
k } with empty intersection must have an

asymptotic direction that is critical for at least one of its components {S j
k } with respect

to some of the other components. In particular, this implies that if all the components
{S j

k } have no critical directions, then the intersection ∩∞
k=0 (S1

k ∩ · · · ∩ Sr
k ) is nonempty.

The following proposition is actually a special case of a more general proposition that
we will prove shortly. We state the proposition separately because it is simpler and is
still sufficient to show most of the results on existence of optimal solutions to be given
in Section 4.

Proposition 7. Consider a set sequence {Sk} of the form

Sk = S1
k ∩ S2

k ∩ · · · ∩ Sr
k ,

where
{

S j
k

}
, j = 1, . . . , r , are nested sequences of nonempty closed sets such that

Sk �= ∅ for all k, and ∩∞
k=0 S j

k �= ∅ for all j . If ∩∞
k=0 Sk = ∅, there exists a nonempty

index subset J ⊂ {1, . . . , r} such that ∩∞
k=0

( ∩ j∈J S j
k

) = ∅, and an asymptotic direc-

tion of
{ ∩ j∈J S j

k

}
that for some j ∈ J , is a critical direction of

{
S j

k

}
with respect to

∪ j∈J−{ j} ∩∞
k=0 S j

k .

The proof of the preceding proposition will be obtained as a special case of the
subsequent Proposition 8. Note a special case of the proposition: the intersection ∩∞

k=0 Sk

is nonempty if the sets Sk, k = 0, 1, . . . , and ∩∞
k=0 S j

k , j = 1, . . . , r , are nonempty, and

the asymptotic directions of each sequence
{

S j
k

}
are noncritical with respect to IRn .

The conclusion of the proposition cannot be replaced by the stronger conclusion that if
∩∞

k=0 Sk = ∅, there exists an asymptotic direction of {Sk} that for some j ∈ {1, . . . , r},
is a critical direction of

{
S j

k

}
with respect to ∪ j∈{1,...,r}−{ j} ∩∞

k=0 S j
k . This is shown by

the following counterexample.

Example 5. (Counterexample) Consider the following three sequences of nonempty
closed sets:

S1
k = {(x, y, z) | 0 ≤ z ≤ 1/k} , k = 0, 1, . . . ,

S2
k = {(x, y, z) | x > 0, 1/x ≤ z} , k = 0, 1, . . . ,

S3
k =

{
(x, y, z) | y ≥ x2

}
, k = 0, 1, . . . ,

Each sequence has a nonempty intersection, and Sk = S1
k ∩ S2

k ∩ S3
k is nonempty for

k = 0, 1, . . .. The intersection of ∩∞
k=0 S1

k and ∩∞
k=0 S2

k is empty, and hence ∩∞
k=0 Sk is
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Global Horizon
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Retractive Critical
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Retractive Noncritical
Directions

Retractive Noncritical
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Fig. 4 Examples of horizon, critical, and noncritical directions of various sets. In (a), the asymptotic direc-
tion (0, β), β > 0, is a horizon direction and a noncritical direction with respect to any subset of the set
{(x1, x2) | −1 < x1 < 1}. It is not a horizon direction and it is a critical direction with respect to any other

subset. In (b), the given set is
{
(x1, x2) | x2

1 ≤ x2

}
, and all its asymptotic directions [(0, β), β > 0] are

global horizon directions and hence noncritical directions with respect to any subset. The sets in (c) and (d) are
retractive. In (c), some asymptotic directions [such as (0, β), β > 0] are retractive local horizon directions,
while others are not and are therefore critical with respect to some sets. In (d), all asymptotic directions are
retractive local horizon directions and are therefore noncritical with respect to any set

also empty. However, all asymptotic directions of {Sk} are along the y-axis, and are global
horizon directions of

{
S3

k

}
. These directions are also retractive local horizon directions

of
{

S1
k

}
and

{
S2

k

}
. Hence they are noncritical directions of

{
S j

k

}
with respect to IR3 (and

hence also with respect to the smaller set ∪ j∈{1,2,3}−{ j} ∩∞
k=0 S j

k ) for all j ∈ {1, 2, 3}.

As an illustration of how Proposition 7 may be applied, consider a sequence {Sk} of
the form

Sk = X ∩ S1
k ∩ S2

k ∩ · · · ∩ Sr
k ,
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Global Horizon
Directions

Retractive
Local Horizon
Directions

Noncritical
Directions
with Respect
to a Set

Asymptotic
Directions

Fig. 5 Relations between different types of asymptotic directions

where for each j, S j
k is given by

S j
k =

{
x | x ′Q j x + c′

j x + b j ≤ γ
j

k

}
,

and Q j is a real symmetric positive semidefinite matrix, c j is a vector, b j is a scalar, and

{γ j
k } is a scalar positive sequence with γ

j
k ↓ 0. Furthermore, X is a nonempty closed set

such that all its asymptotic directions are either global horizon directions or retractive
local horizon directions. Then, all the asymptotic directions of {S j

k } and X are noncritical
with respect to IRn , Proposition 7 applies, and shows that ∩∞

k=0 Sk is nonempty, assuming

the sets Sk are nonempty and ∩∞
k=0 S j

k = {x | x ′Q j x + c′
j x + b j ≤ 0} is nonempty for

all j . This result generalizes a theorem of Luo and Zhang (see [21], Theorem 1) for the
purely quadratic case (X = IRn).

The reasoning used above applies also in the more general case where the convex
quadratic functions are replaced by any real-valued bidirectionally flat functions. How-
ever, Proposition 7 does not apply to set intersections involving extended real-valued
bidirectionally flat functions (unless the domains of these functions are identical). The
following proposition is a generalization of Proposition 7, which will allow us to deal
with such situations (see Proposition 9 later in this section). Its proof uses Proposition 1
and a nontrivial generalization of an induction argument from [21].

Proposition 8. Consider a set sequence {Sk} of the form

Sk = Xk ∩ S1
k ∩ S2

k ∩ · · · ∩ Sr
k ,

where {Xk} and {S j
k }, j = 1, . . . , r , are nested sequences of nonempty closed sets, such

that Sk �= ∅ for all k, ∩∞
k=0 Xk �= ∅, and ∩∞

k=0 S j
k �= ∅ for all j . If ∩∞

k=0 Sk = ∅, there

exists a nonempty index subset J ⊂ {1, . . . , r} such that ∩∞
k=0

(
Xk ∩ ( ∩ j∈J S j

k

)) = ∅,

and an asymptotic direction d of
{

Xk ∩(∩ j∈J S j
k

)}
such that at least one of the following

two holds:

(1) d is not a retractive local horizon direction of {Xk}.
(2) For some j ∈ J, d is a critical direction of {S j

k } with respect to the set ∪ j∈J−{ j} ∩∞
k=0

(Xk ∩ S j
k ) (with the convention that this set equals ∩∞

k=0 Xk when J = { j}).
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Proof. We assume the contrary, i.e. that for every J ⊂ {1, . . . , r} such that
∩∞

k=0

(
Xk ∩ ( ∩ j∈J S j

k

)) = ∅, all asymptotic directions of
{

Xk ∩ ( ∩ j∈J S j
k

)}
are

noncritical directions of each {S j
k }, j ∈ J , with respect to ∪ j∈J−{ j} ∩∞

k=0

(
Xk ∩ S j

k

)

(which by our convention equals ∩∞
k=0 Xk when r = 1), while they are also retractive

local horizon directions of {Xk}.
Let A be the set of asymptotic directions of {Sk} (which is nonempty since ∩∞

k=0
Sk = ∅). Then, taking J = {1, . . . , r}, we see that there must exist some j1 ∈ {1, . . . , r}
and some d ∈ A that is a horizon direction of {S j1

k } with respect to ∪ j∈J−{ j1} ∩∞
k=0(

Xk ∩ S j
k

)
; otherwise each d ∈ A would be retractive for {Xk} and for all {S j

k }, and
hence also retractive for {Sk}, so, by Proposition 1, the hypothesis ∩∞

k=0 Sk = ∅ would
be contradicted.

Consider the sequence {Sk(1)}, obtained from {Sk} when the sets S j1
k are eliminated,

i.e.

Sk(1) = Xk ∩
(
∩ j∈J−{ j1} S j

k

)
.

We argue by contradiction that ∩∞
k=0 Sk(1) = ∅. Suppose that this is not so. Take any

x ∈ ∩∞
k=0 Sk(1), and consider the direction d ∈ A that is a horizon direction of {S j1

k }
with respect to ∪ j∈J−{ j1} ∩∞

k=0

(
Xk ∩ S j

k

)
. Since d ∈ A, d is also a retractive local

horizon direction of {Xk}. Then we have

x + αd ∈ ∩∞
k=0 Xk, ∀α sufficiently large, (5)

x + αd ∈ ∩∞
k=0 S j1

k , ∀α sufficiently large. (6)

For the case where J has cardinality 2 or more, we show below that, for all j ∈ J −{ j1},
we also have

x + αd ∈ ∩∞
k=0 S j

k , ∀α sufficiently large, (7)

which, combined with Eqs. (5) and (6), contradicts the assumed emptiness of ∩∞
k=0 Sk .

Indeed, for any j ∈ J − { j1}, under our working hypothesis, there are two possibil-
ities:

1. d is a retractive local horizon direction of
{

S j
k

}
, in which case, since x ∈ ∩∞

k=0 S j
k ,

Eq. (7) holds.

2. d is a horizon direction of
{

S j
k

}
with respect to ∪ j∈J−{ j} ∩∞

k=0

(
Xk ∩ S j

k

)
, and since

j1 ∈ J − { j}, d is a horizon direction of
{

S j̄
k

}
with respect to ∩∞

k=0

(
Xk ∩ S j1

k

)
.

Since, by Eqs. (5) and (6),

x + αd ∈ ∩∞
k=0

(
Xk ∩ S j1

k

)

for all α sufficiently large, this further implies that

(x + αd) + αd ∈ ∩∞
k=0S j̄

k

for all α sufficiently large. Thus, Eq. (7) holds in this case as well.
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In conclusion, Eq. (7) holds for all j ∈ J −{ j1}. Combining Eqs. (5)–(7), we see that
x + αd ∈ ∩∞

k=0 Sk for sufficiently large α. Thus, the contradiction argument showing
that ∩∞

k=0 Sk(1) = ∅ is complete.
We may now repeat this argument, with Sk replaced by Sk(1) and J redefined as

J = {1, . . . , r} − { j1},
to obtain another index j2 �= j1 such that ∩∞

k=0 Sk(2) = ∅, where Sk(2) is the set formed

by intersection of all the sets S j
k except S j1

k and S j2
k , i.e.

Sk(2) = Xk ∩
(
∩ j∈J−{ j2} S j

k

)
.

Continuing the process, after r steps we conclude that ∩∞
k=0 Sk(r) = ∩∞

k=0 Xk = ∅,
which contradicts the hypothesis. ��

Note that Proposition 7 is obtained as the special case of Proposition 8 where the
sets Xk are all equal to IRn . By combining Example 4 with the preceding proposition,
we obtain a generalization of a result given as Exercise 2.7 of [11] (the result of this
exercise is the special case where X = IRn in the following proposition).

Proposition 9. Consider a set sequence {Sk} of the form

Sk = Xk ∩ S1 ∩ S2 ∩ · · · ∩ Sr ,

where

Xk = X ∩ S0
k , k = 0, 1, . . . ,

and X is a closed set such that all its asymptotic directions are retractive local horizon
directions. Furthermore, S0

k and S j , j = 1, . . . , r, are given by

S0
k = {x | f0(x) ≤ γk}, k = 0, 1, . . . , S j = {x | f j (x) ≤ 0}, j = 1, . . . , r,

where {γk} is a scalar nonnegative sequence with γk ↓ 0, and for each j = 0, 1, . . . , r,
f j : IRn �→ (−∞,∞] is a closed proper convex function that is bidirectionally flat.
Assume that Sk is nonempty for all k, and that ∩∞

k=0 Xk ⊂ ∩r
j=1 dom( f j ). Then ∩∞

k=0 Sk

is nonempty.

Proof. We first show that ∩∞
k=0 Xk �= ∅. Let A be the set of asymptotic directions of

{Xk}. Then for all d ∈ A, we have x + αd ∈ X for all x ∈ X and α sufficiently large,
since the asymptotic directions of X are local horizon directions. Also, d ∈ R f0 . There
are two cases (see Example 4):

(1) d /∈ L f0 for some d ∈ A. Then, since f0 is closed, convex, and bidirectionally flat,
limα→∞ f0(x + αd) = −∞ for all x ∈ dom( f0), so that x + αd ∈ ∩∞

k=0 Xk for all
x ∈ X ∩ dom( f0) and all α sufficiently large. It follows that ∩∞

k=0 Xk �= ∅.
(2) d ∈ L f0 for all d ∈ A. Then, since f0 is closed, convex, and bidirectionally flat,

all d ∈ A are retractive for {S0
k } as well as retractive for X . Hence, all d ∈ A are

retractive for {Xk}, and it follows that ∩∞
k=0 Xk �= ∅ by Proposition 1.
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We will now prove that ∩∞
k=0 Sk �= ∅ by contradiction. In particular, we assume that

∩∞
k=0 Sk = ∅, and we will verify that the conclusion of Proposition 8 does not hold.

Indeed, consider an index subset J ⊂ {1, . . . , r} such that ∩∞
k=0

(
Xk ∩ ( ∩ j∈J S j

k

)) = ∅,

and let d be an asymptotic direction of
{

Xk ∩ ( ∩ j∈J S j
k

)}
. We will show that d is a

noncritical direction of all
{

S j
k

}
, j ∈ J , with respect to ∩∞

k=0 Xk [and hence also with

respect to the smaller set ∪ j∈J−{ j} ∩∞
k=0

(
Xk ∩ S j

k

)], while it is a retractive local horizon
direction of {Xk}, thereby contradicting the conclusion of Proposition 8.

We first note that d ∈ R f j for all j ∈ J . It follows that for each j ∈ J , either
d ∈ L f j , in which case d is a horizon direction of S j that is retractive, or d /∈ L f j , in
which case (since f j is closed, convex, and bidirectionally flat) d is a horizon direction
of S j with respect to dom( f j ), and hence also a horizon direction of S j with respect to
∩∞

k=0 Xk [since ∩∞
k=0 Xk ⊂ dom( f j ) by assumption]. Thus, d is a noncritical direction

of all S j , j ∈ J , with respect to ∩∞
k=0 Xk .

We also have that d ∈ R f0 . Assume that d /∈ L f0 , and let x be any vector in
X ∩ S0

0 ∩ S1 ∩ · · · ∩ Sr . Then for all α sufficiently large, we have

x + αd ∈
∞⋂

k=0

S0
k , (8)

since x ∈ dom( f0) and f0 is closed, convex, and bidirectionally flat, so that
limα→∞ f0(x + αd) = −∞. Furthermore, for all α sufficiently large, we have

x + αd ∈ X ∩
(
∩ j∈J S j

)
, (9)

since d is a local horizon direction of X and a direction of recession of each S j , j ∈ J .
Equations (8) and (9) contradict the assumed emptiness of the intersection of{

Xk ∩ (∩ j∈J S j )
}
. Hence d ∈ L f0 , from which by arguing as in case (2) above, we

see that d is a retractive local horizon direction of {Xk}. Thus the conclusion of Propo-
sition 8 is contradicted, and it follows that ∩∞

k=0 Sk is nonempty. ��
Example 6. (A Counterexample for Bidirectionally Flat Functions) To see that the
assumption ∩∞

k=0 Xk ⊂ ∩r
j=1 dom( f j ) is essential in Proposition 9, let X = IR2 and

consider the following two bidirectionally flat functions f0 and f1 defined on IR2:

f0(x1, x2) = x1, f1(x1, x2) = φ(x1) − x2,

where the function φ : IR �→ (−∞,∞] is convex, closed, and coercive with dom(φ) =
(0, 1) [e.g. φ(t) = − ln t − ln(1 − t) for 0 < t < 1]. Take also {γk} to be any sequence
in (0, 1) with γk ↓ 0, so

Sk = {x | x1 ≤ γk, φ(x1) − x2 ≤ 0} .

Then, it can be verified that Sk �= ∅ for every k [take x1 ↓ 0 and x2 ≥ φ(x1)], and we
have

∞⋂

k=0

Xk =
∞⋂

k=0

S0
k =

{
x | f0(x) ≤ 0

}
=

{
x | x1 ≤ 0, x2 ∈ IR

}
,
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∞⋂

k=0

S1
k = {x | f1(x) ≤ 0} = {x | 0 < x1 < 1, x2 ∈ IR} = dom( f1).

The two sets are disjoint, so the conclusion of Proposition 9 is violated, and in particular
we have

∞⋂

k=0

Sk = {x | f0(x) ≤ 0, f1(x) ≤ 0} =
( ∞⋂

k=0

Xk

)
∩

( ∞⋂

k=0

S1
k

)
= ∅.

We now consider sets defined by a finite number of concave quadratic inequalities.
We have seen that the asymptotic directions of such sets are retractive (see Proposi-
tion 4). We will delineate circumstances under which the asymptotic directions are also
local horizon directions, so that they are noncritical.

Example 7. (Level sets of concave quadratic functions) Consider a set of the form

S = {x | x ′Qx + c′x + b ≥ 0},
where Q is a positive semidefinite n × n matrix, c is a vector in IRn , and b is a scalar.
We first derive the set of asymptotic directions of S. We consider two cases:

(a) Q = 0. Then AS is the set of nonzero directions of recession of the convex function
−(c′x + b), as discussed earlier:

AS = {d | c′d ≥ 0, d �= 0}.
(b) Q �= 0. Then we claim that the asymptotic directions of S are the nonzero vectors

in IRn :

AS = {d | d �= 0}.
Indeed, take any nonzero vector d and any y such that

y′Qy + c′d > 0.

We will show that for sufficiently large k, the sequence of vectors

xk = kd + √
ky

is an asymptotic sequence of S that corresponds to d. We note that ‖xk‖ → ∞ and
that xk/‖xk‖ → d/‖d‖. Furthermore, we have

x ′
k Qxk + c′xk + b = k2d ′Qd + 2k

√
ky′Qd + ky′Qy + kc′d + √

kc′y + b.

(10)

If d ′Qd > 0, clearly we have xk ∈ S for sufficiently large k. On the other hand,
if d ′Qd = 0 (equivalently, Qd = 0, since Q is positive semidefinite), then from
Eq. (10),

x ′
k Qxk + c′xk + b = k(y′Qy + c′d) + √

kc′y + b.

Since y′Qy + c′d > 0, we again have xk ∈ S for sufficiently large k. Thus, for some
integer k, the subsequence

{
xk | k ≥ k

}
fulfills the requirements for an asymptotic

sequence of S corresponding to d, and it follows that d is an asymptotic direction.
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We know from Proposition 4 that all asymptotic directions of S are retractive.
However, some of these directions may be critical because they are not local horizon
directions. For example, let

S =
{
(x1, x2) | x1 ≤ x2

2

}
.

Then the vector (1, 0) is a retractive asymptotic direction (by the preceding analysis),
but is not a local horizon direction. More generally, the set of asymptotic directions S
that are not local horizon directions is the set

A = {
d | Qd = 0, c′d < 0, d �= 0

}
. (11)

To see this, note that it is true in the case where Q = 0, where AS = {d | d �= 0}, and
A = ∅. In the case where Q �= 0, note that for any x ∈ S, d ∈ AS , and α ≥ 0, we have

(x + αd)′Q(x + αd)+c′(x + αd) + b= x ′Qx + c′x + b + α2d ′Qd+α(2Qx + c)′d.

It follows that x + αd ∈ S for sufficiently large α if and only if either d ′Qd > 0, or
Qd = 0 and c′d ≥ 0. This proves Eq. (11).

Consider now a set sequence {Sk} defined by a finite number of concave quadratic
inequalities:

Sk = P ∩
{

x | x ′Q j x + c′
j x + b j ≥ γ

j
k , j = 1, . . . , r

}
,

where {γ j
k } are scalar sequences with γ

j
k ↑ 0, P is a polyhedral set, Q j are nonzero

positive semidefinite n × n matrices, c j are vectors in IRn , and b j are scalars. A slight
extension of the preceding analysis shows that the asymptotic directions of {Sk} form
a subset of the nonzero vectors in the recession cone RP , and all of them are retrac-
tive. A sufficient condition for all asymptotic directions to be noncritical local horizon
directions of {Sk} is that RP ∩ N (Q j ) = {0} for all j = 1, . . . , r , where N (Q j ) is the
nullspace of Q j . This is true in particular if all the matrices Q j are positive definite.

Let us also introduce a class of nonconvex functions whose level sets have the
essential property needed for application of Propositions 7 and 8, so that they can be
used in place of convex quadratic or real-valued bidirectionally flat functions to assert
nonemptiness of a set intersection.

Example 8. Let {Sk} be a level set sequence

Sk = {x | f (x) ≤ γk},
defined by a function f of the form Eq. (3), where A is an m × n matrix, c is a vector,
b is a scalar, and h : IRm �→ IR is a closed function satisfying Eq. (4). We assume that
{γk} is a scalar positive sequence with γk ↓ 0, and that {x | f (x) ≤ 0} = ∩∞

k=0Sk is
nonempty.

We have

f (x + αd) = h(Ax + αAd) + c′(x + αd) + b.
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A nonzero vector d is a local horizon direction if and only if for every x with f (x) ≤ 0,
there exists α ≥ 0 such that for all α ≥ α, we have f (x + αd) ≤ 0. In view of the
coercivity property of h, this is true if and only if Ad = 0 and c′d ≤ 0. A nonzero vector
d is a global horizon direction if and only if, for every x ∈ IRn , there exists α ≥ 0 such
that for all α ≥ α, we have f (x + αd) ≤ 0. This is true if and only if Ad = 0 and
c′d < 0. Thus, every asymptotic direction of {Sk} is either a global horizon direction,
or else it is a local horizon direction that is retractive, i.e. it is noncritical with respect to
IRn .

Thus, if we have functions f1, . . . , fr , each of the form f above, and {x | f j (x) ≤ 0}
is nonempty for j = 1, . . . , r , and {x | f1(x) ≤ γk, . . . , fr (x) ≤ γk} is nonempty for
k = 0, 1, . . ., then we can apply Proposition 7 [with S j

k = {x | f j (x) ≤ γk}] to conclude
that {x | f1(x) ≤ 0, . . . , fr (x) ≤ 0} is nonempty.

4. Existence of optimal solutions

We will now consider the problem of minimizing a closed function f : IRn �→ (−∞,∞]
over a closed set X ⊂ IRn . Let {γk} be a scalar sequence with γk ↓ infx∈X f (x), and
consider the (nonempty) level sets

Vk = {x | f (x) ≤ γk} .

The set of vectors that minimize f over X is the intersection

X∗ = ∩∞
k=0(X ∩ Vk),

so to show existence of an optimal solution, we can use asymptotic directions, and the
results of Sects. 2 and 3. In particular, it is sufficient to show that all asymptotic direc-
tions of the sequence {X ∩ Vk} are retractive (see Proposition 1). Also, if X is polyhedral
or more generally, if it is the vector sum of a compact set and a polyhedral cone N ,
it is sufficient to show that all the asymptotic directions of {Vk} that belong to N are
retractive (see Proposition 2).

We first consider the case of a closed convex function f : IRn �→ (−∞,∞] that is
quasiconvex, in the sense that all its level sets {x | f (x) ≤ γ } are convex. The preceding
observation, together with Proposition 6(b), yields the following proposition (new to our
knowledge). Notice that, in the case where f is convex, R� and L� in the following
proposition reduce to, respectively, the recession cone R f and constancy space L f of f .

Proposition 10 (Quasiconvex Cost Function). Let f : IRn �→ (−∞,∞] be a closed
quasiconvex function, and let X be a closed subset of IRn such that X ∩ dom( f ) �= ∅.
Let � be the set of all γ > inf x∈X f (x), and denote

R� = ∩γ∈� Rγ , L� = ∩γ∈� Lγ ,

where Rγ and Lγ are the recession cone and the lineality space of the level set {x | f (x)

≤ γ }, respectively. Then f attains a minimum over X under any one of the following
two conditions:



Set intersection theorems and existence of optimal solutions 309

(1) AX ∩ R� ⊂ L X ∩ L�.

(2) X is retractive and AX ∩ R� ⊂ L�.

Proof. Let

Vk = {x | f (x) ≤ γk} ,

where {γk} is a scalar sequence such that γk ↓ infx∈X f (x). We show that under each
of the two conditions, the intersection ∩∞

k=0(X ∩ Vk) (which is the set of minimizing
points) is nonempty.

Let condition (1) hold. The sets X ∩ Vk are nonempty, closed, convex, and nested.
Furthermore, they have the same set of asymptotic directions, AX ∩ R� , and the same
lineality space L X ∩ L� , while by assumption, AX ∩ R� ⊂ L X ∩ L�. The result follows
from Proposition 6(a).

Let condition (2) hold. The sets Vk are nested and the intersection X ∩ Vk is non-
empty for all k. Furthermore, the sets Vk have the same recession cone, R� , and the
same lineality space, L� , while by assumption, AX ∩ R� ⊂ L� . The result follows from
Proposition 6(b). ��

We now give a result involving convex bidirectionally flat functions (see Example 4),
which relies on the use of horizon directions. The following proposition extends an exis-
tence result given in [11] as Exercise 2.7(c), and also a result of Belousov [8], which
dates to 1977 (as discussed in [10]) and deals with the case where the functions involved
are convex polynomial functions (a special case of bidirectionally flat functions, as dis-
cussed in Example 4). The purely quadratic case of this result (X = IRn and f j is convex
quadratic) was independently given by Terlaky [28]; see also Luo and Zhang [21], who
prove some additional results that involve in part nonconvex quadratic functions. A
related existence result is given by Bank and Mandel [7] for quasiconvex polynomial
functions whose level sets have common recession directions that are finitely generated,
and with some of the variables constrained to be integer-valued (see [7], Theorem 7.4).

Proposition 11 (Bidirectionally Flat Functions). For j = 0, 1, . . . , r , let f j : IRn �→
(−∞,∞] be closed proper convex functions that are bidirectionally flat, and let X be a
closed set such that all its asymptotic directions are retractive local horizon directions.
Assume that (X ∩ dom( f0)) ⊂ ∩r

j=1 dom( f j ). Then, the problem

minimize f0(x)

subject to x ∈ X, f j (x) ≤ 0, j = 1, . . . , r,

has at least one optimal solution if and only if its optimal value is finite.

Proof. Assume that f ∗, the optimal value, is finite, and let {γk} be a scalar sequence
such that γk ↓ 0. Consider the set sequence {Sk} given by

Sk = Xk ∩ S1 ∩ S2 ∩ · · · ∩ Sr ,

where

Xk = X ∩ S0
k , S0

k = {x | f0(x) − f ∗ ≤ γk}, k = 0, 1, . . . ,

S j = {x | f j (x) ≤ 0}, j = 1, . . . , r.

Using Proposition 9, we have that ∩∞
k=0 Sk , the optimal solution set, is nonempty. ��
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We were informed by a referee that Belousov ([8], Theorem 14 of Chap. 13) proved
an existence result for minimizing a convex polynomial function over a set X which is
the vector sum of a convex compact set and a polyhedral cone. It is readily seen that such
a set satisfies the assumption of the preceding proposition, so this result is a special case
of our proposition. The same referee remarked that a book of Belousov and Andronov
[9], which unfortunately is not accessible to us, proves another existence result similar
to the preceding proposition, but with X = IRn and each convex f j : IRn → IR having
the property that, for each d ∈ IRn , either

lim
α→∞

f j (x + αd)

α
= ∞, ∀x ∈ IRn (12)

or, for some µ j ∈ IR (depending on d),

f j (x + αd) = f j (x) + µ jα, ∀α ∈ IR, ∀x ∈ IRn . (13)

This result is again a special case of Proposition 11 since it can be verified that each
such f j (which includes convex polynomials) is bidirectionally flat.1 The converse is
not true. The Euclidean norm function is bidirectionally flat, but does not have the above
property.

We now consider another type of direction, which when used in conjunction with
horizon directions, yields some conditions that slightly improve on the conditions of
Proposition 10. Let f : IRn �→ (−∞,∞] be a closed proper convex function, and let F f

be the set of all directions y such that for every x ∈ dom( f ), the limit limα→∞ f (x+αy)

exists and is finite. Intuitively, F f is the set of directions along which f is “flat”. Note
that

L f ⊂ F f ⊂ R f .

We have the following variant of Proposition 10.

Proposition 12 (Convex Cost Function). Let f : IRn �→ (−∞,∞] be a closed proper
convex function, and let X be a closed set whose asymptotic directions are retractive
local horizon directions. Assume that

AX ∩ F f ⊂ L f .

Then f attains a minimum over X if and only if the optimal value inf x∈X f (x) is finite.

Proof. Assume that the optimal value is finite. Then X ∩dom( f ) �= ∅. Let d ∈ AX ∩ R f .
If d /∈ F f , then we must have limα→∞ f (x + αd) = −∞, for some x ∈ dom( f ) ∩ X .
Since d is a local horizon direction of X , we have x + αd ∈ X for all x ∈ X and
sufficiently large α. It follows that inf x∈X f (x) = −∞, a contradiction. Therefore, we
must have AX ∩ F f = AX ∩ R f , so using the hypothesis, we obtain AX ∩ R f ⊂ L f .
From Proposition 10, it follows that there exists at least one minimizing point. ��

1 If d satisfies Eq. (2), then Eq. (12) cannot hold, so Eq. (13) must hold for some µ j ∈ IR. Then
limα→∞ f j (x + αd)/α = µ j so Eq. (2) implies µ j = 0 and Eq. (13) yields d ∈ L f j . Conversely, if
d ∈ L f j , then Eq. (13) holds with µ j = 0, and Eq. (2) follows.
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The following proposition extends a classical result, known as the Frank-Wolfe
Theorem [16], which states that every (possibly nonconvex) quadratic programming
problem has an optimal solution if and only if it has finite optimal value. Alternative
proofs of this result are given in [12, 15], and various extensions are given in [8, 10, 19,
21, 24]. The following proposition becomes the Frank–Wolfe Theorem in the special
case where f is a quadratic function and the constraint set X is a polyhedral set.

Proposition 13 (Extended Frank–Wolfe Theorem). Let f : IRn �→ (−∞,∞] be a
closed proper function, and let X be a closed set such that X ∩ dom( f ) �= ∅. Assume
that:

(1) All the asymptotic directions of X are retractive local horizon directions.
(2) For every decreasing scalar sequence {γk} such that the sets

Sk = X ∩ {x | f (x) ≤ γk} , k = 0, 1, . . . ,

are nonempty, for every asymptotic direction d of {Sk}, and for each x ∈ X, we
either have limα→∞ f (x + αd) = −∞, or else f (x − d) ≤ f (x).

Then f attains a minimum over X if and only if the optimal value infx∈X f (x) is finite.

Proof. Assume that f ∗ = infx∈X f (x), the optimal value, is finite. Let {γk} be a scalar
sequence with γk ↓ f ∗, and denote

Vk = {x | f (x) ≤ γk} ,

so that Sk = X ∩ Vk . It will suffice to show that each asymptotic direction d of {Sk} is
retractive for {Vk} (since d is also retractive for X by assumption, this shows that d is
retractive for {Sk}, and Proposition 1 applies).

Indeed, if d is an asymptotic direction of {Sk}, then d is a local horizon direction
of X , so that for each x ∈ X and all α sufficiently large, x + αd ∈ X and hence
f (x + αd) ≥ f ∗. Thus, we cannot have limα→∞ f (x + αd) = −∞, and from our
assumptions, it follows that f (x − d) ≤ f (x) for all x ∈ X .

Now consider the asymptotic sequence {xk} corresponding to the asymptotic direc-
tion d of {Sk}. For all k, f (xk − d) ≤ f (xk). Since xk ∈ Vk , this shows that xk − d ∈ Vk

and hence d is retractive for {Vk}. Since d is also an asymptotic direction of X and hence
is retractive for X , it follows that d is retractive for {Sk}. ��

The preceding proof can be used to show the result under a slightly weaker assump-
tion: one may assume that only those asymptotic directions of X that are also asymptotic
directions of some level set of f (rather than all asymptotic directions of X ) are retractive
local horizon directions of X .

The assumption (2) in Proposition 13 is satisfied if f is a real-valued concave func-
tion, as is easily verified. It is also satisfied if f is a quadratic function

f (x) = x ′Qx + c′x, ∀x ∈ IRn,

where Q is a real symmetric n × n matrix, and c is a vector in IRn . Indeed, every
asymptotic direction d of {x | f (x) ≤ γk}, where {γk} is a decreasing scalar sequence,
satisfies

d ′Qd ≤ 0.
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Thus, for each x ∈ IRn , either (c + 2Qx)′d < 0, in which case

f (x + αd) = f (x) + α(c + 2Qx)′d + α2d ′Qd → −∞ as α → ∞,

or else (c + 2Qx)′d ≥ 0, in which case

f (x − d) = f (x) − (c + 2Qx)′d + d ′Qd ≤ f (x).

In the case where X = X1 ∩ X2 ∩ · · · ∩ Xm , with each Xi being the vector sum of a
compact set and a polyhedral cone Ni (e.g. when X is a polyhedral set), all asymptotic
directions of X are retractive local horizon directions (see Example 3). Thus, the assump-
tion on X of the preceding proposition is satisfied, and there exists an optimal solution
when the optimal value is finite. This extended version of the Frank–Wolfe Theorem is
credited to Kummer [19] by Belousov and Klatte [10] for the case of quadratic f , and to
Belousov [8] by a referee for the case of concave f . A different extension was given by
Perold [24], where X is a polyhedral set and f belongs to a class G which generalizes
quadratic functions, concave functions, and coercive functions. The extended Frank–
Wolfe Theorem given here is, of course, more general. For example, it applies to some
situations where the constraint set is defined by concave inequalities (see Proposition 4,
Example 7). In particular, a concave or a quadratic cost function attains a minimum over
a set X defined by linear or strictly concave quadratic inequalities:

X =
{

x | x ′Q j x + c′
j x + b j ≤ 0, j = 1, . . . , r

}
,

where each matrix Q j is either equal to 0 or is a negative definite matrix (see
Example 7).

Besides concave and quadratic functions, there are other functions that satisfy
assumption (2) of Proposition 13, which do not seem to have been considered previously.
One such function is of the form

f (x) = p(x ′Qx) + c′x + b,

where Q is a positive semidefinite matrix, c is a vector, b is scalar, and p(·) is a polyno-
mial. Indeed, assumption (2) clearly holds if p is a constant. If p is not a constant, for any
asymptotic direction d of {Sk}, there are two cases: (1) Qd �= 0, in which case the highest
degree term in p(·) has a negative coefficient and hence limα→∞ f (x + αd) = −∞;
(2) Qd = 0, in which case either limα→∞ f (x + αd) = −∞ or f (x + αd) is a non-
decreasing function of α, depending on whether c′d < 0 or c′d ≥ 0. Thus, assumption
(2) again holds.

Another example is a polynomial function f that is quasiconvex over X , i.e. the
intersection of X with each level set of f is convex. Indeed, for any asymptotic direction
d of {Sk} and each x ∈ X , we have that x ∈ S and {xk} ⊂ S, where Sk is defined as in
assumption (2), {xk} is any asymptotic sequence corresponding to d, and

S = X ∩ {y | f (y) ≤ max{ f (x), γ0}} .

Since S is convex by our assumption, d is a recession direction of S, so that x +αd ∈ S
for all α > 0. Then f (x + αd) ≤ max{ f (x), γ0} for all α > 0. Since f (x + αd) is a
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polynomial function of α, this implies that either limα→∞ f (x + αd) = −∞ or else
f (x + αd) is a constant function of α. Thus, assumption (2) holds.

A referee remarked that an extension of the Frank–Wolfe Theorem was proved in
[9] for the problem of minimizing a cubic function over a polyhedral set (also see the
discussion in [10], page 38). The same referee noted another extension of the Frank–
Wolfe Theorem, given in Theorem. 4.5.4 of [5] and also in Theorem. 2.2 of [6], whereby
the Hessian of the quadratic function and the left-hand constraint matrix are rational
and some of the variables are constrained to be integer-valued. A weaker version of this
result that assumes all problem data are rational was proved earlier by Mandel [22]. Can
related results be proved by using the ideas in this paper? We leave this as a topic for
future research.
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