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Chess and Backgammon - Off-Line Training and On-Line Play

Current Position and Dice Roll
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Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
@ Off-line training of value and/or policy neural network approximations
@ On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
@ We are aiming to understand this methodology, so it applies far more generally

@ We focus on connections with control system design (MPC and adaptive control),
and on discrete optimization
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On-Line Play in AlphaZero/AlphaGo/TD-Gammon: Approximation in

Value Space (Also Called “On-Line Tree Search")
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@ On-line play uses the results of off-line training, which are: A position evaluator
and a base player
@ |t aims to improve the base player by:

Searching forward for several moves through the lookahead tree

Simulating the base player for some more moves at the tree leaves

Approximating the effect of future moves by using the terminal position evaluation
Calculating the “values" of the available moves at the root and playing the best move

@ Similarities with Model Predictive Control (MPC) architecture

v
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Off-Line Training in AlphaZero: Approximate Policy lteration (Pl) Using

Self-Generated Data
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Self-Learning /Policy Iteration

@ The current player is used to train an improved player, and the process is repeated
@ The current player is “evaluated" by playing many games
@ lts evaluation function is represented by a value neural net through training

@ The current player is “improved" by using a form of approximate multistep
lookahead minimization, called Monte-Carlo Tree Search (MCTS)

@ The “improved player" is represented by a policy neural net through training

@ TD-Gammon uses similar Pl algorithm for off-line training of a value network (does
not use MCTS and does not use a policy network)

v
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Some Major Empirical Observations
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The AlphaZero on-line player plays much better
than the off-line-trained player

TD-Gammon plays much better with truncated rollout
than without rollout (Tesauro, 1996)

We will aim for explanations, insights, and generalizations through abstract
Bellman operators, visualization, and the

central role of Newton’s method

Lessons from AlphaZero
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Principal Viewpoints of this Talk

@ On-line play is a single step of Newton’s method for solving the Bellman equation
(or Newton-SOR in case of multistep lookahead and/or truncated rollout)

@ Off-line training provides the start point for the Newton step

@ On-line play is the real workhorse ... off-line training plays a secondary role.
A major reason: On-line play is an exact Newton step. It is not degraded by NN
approximations

@ Imperfections/differences in off-line training affect the start point, but are washed
out by the (superlinear) Newton step

@ A cultural difference that we will aim to bridge:
Reinforcement Learning/Al research is focused largely on off-line training issues
(except in the special case of armed bandit problems)
Model Predictive Control research is focused largely on on-line play and stability issues
@ Application to adaptive control (changing system parameters): It’s still an exact
Newton step applied to an on-line estimated Bellman equation

@ All of this applies in great generality through the power of abstract DP (arbitrary
state and control spaces, stochastic, deterministic, hybrid systems, multiagent
systems, minimax, finite and infinite horizon, discrete optimization)

i
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@ Discounted and undiscounted infinite horizon problems

e Abstract DP concepts: Bellman operators and Bellman equations
e Visualization of on-line play as a Newton step

0 Region of stability and its visualization

e Rollout and policy iteration visualizations

e Adaptive control approaches - An application to Wordle

e Discrete Optimization - Integer Programming
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Infinite Horizon Problems

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizc

Random Cost

akg(zy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wx) with state, control, and random disturbance
@ Stationary policies x — u(x) satisfying a control constraint p(x) € U(x) for all x
@ Cost of stage k: a"g(xk,u(xk), wk); 0 < a < 1is the discount factor
@ Cost of a policy u: The limit as N — oo of the N-stage costs

JM(XO) = I\I||—>moo EWk {2:1 akg(Xk7 M(Xk)7 Wk)}

k=0
@ Optimal cost function J*(xo) = min, J.(xo)
@ Discounted problems: a < 1 and g is bounded (the “nice" case)
@ Stochastic shortest path problems: a = 1 and special cost-free termination state ¢
@ Control/MPC-type problems: Deterministic, g > 0, termination state is t = 0

v
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Infinite Horizon Problems - Main (Exact DP) Theory

J* satisfies Bellman’s equation:

J(x) = mJ?) Ew{g(x, u,w) + aJ* (f(x,u,w)) }, for all states x (uniquely ??)
ueU(x

Optimality condition: If 4*(x) attain the min in the Bellman equation for every
X, the policy p* is optimal (??)

Value iteration (VI): Generates cost function sequence {Jj}

Jk(x) = urEnJB() Ew{g(x, u, w) + adk—1(f(x, u, w)) }, Jo is “arbitrary" (??)

Policy Iteration (P1): Generates sequences of policies {14} and their cost
functions {J,«}; u° is “arbitrary” (??)
The typical iteration starts with a policy ;. and generates a new policy /i in two steps:
@ Policy evaluation step: Computes the cost function J,, (possibly w/ approximations)
@ Policy improvement step: Computes the improved policy /i using

fi(x) € arg min_ Ew{g(x, u, w) + ady (f(x, u, W))}
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On-Line Approximation in Value Space

@ Replace J* with an approximation J in Bellman’s equation
First Step  “Future”

At minueU(z)E{g(x,u,w) +aj(f(x,u,w))}

One-Step Lookahead

First ¢ Steps “Future”

kt0—1
min E < g, ug,wy) + Z ai=kg (@, pi(@s), ws) + ol J(zpre)
Uk s k4150025 Hkte—1 imht1
Multistep Lookahead

@ Defines a lookahead/“greedy" policy fi with fi(xx) the minimizing ux above

v

KEY NEW FACT: J; is the result of a Newton step to solve Bellman Eq. starting from J
(Newton-SOR step for multistep lookahead ¢ > 1). The error decreases

SUPERLINEARLY E .
A & -0 asd—J*
J—J*

v
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An Abstract DP Viewpoint: Bellman Operators and Bellman Equations

(Abstract DP Book, 3rd ed., 2022)

(Tu)(x) = Ew{g(x, 1(x), w) + @ (Fx, u(x), w)) }
(T)(x) = min. Ew{g(x, u, w) + ad (f(x, u, w))} = min (T,.J)(x)
They define the Bellman equations J,, = T, J,,, J" = TJ*

T, and T transform real-valued functions J into functions T,J and TJ
(assumed real-valued for this talk)
@ For each fixed x, (T.J)(x) and (TJ)(x) are functions of J
@ T, is monotone and linear
@ T is monotone and “concave", i.e., (TJ)(x) is a concave function of J for each
fixed x
@ Example: For a 2-state system, (TJ)(1) and (TJ)(2) are real-valued functions of
the vector J = (J(1),J(2)) € ®?
@ For infinite-dimensional state space, T, and T are infinite-dimensional operators
(map infinite dimensional function space to itself)

@ Our approach: Use visualization along 1-D slices of the graphs of the operators;
verify/generalize the results of the visualization with math analysis

v
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p-Bellman Operator in One Dimension Through J,,

(TJ)(x) = Ew{g(x, w(x), w) + ad(f(x, u(x), W))} (linear monotone)
u-Bellman equation: J, = T, J, J
A
T

Generic Policy p

I
I
I
J

\ |
I
/ ‘
I
|
I
\ I
45°Line ‘

Ontimal Cost of p

timal cost
ptima. (\o\s‘ l y J“j A
0 - J g

Bertsekas Lessons from AlphaZero October 2022 14/37



Min-Bellman Operator in One Dimension Through J*

(T)(x) = Ugﬂg) Ew{g(x, u, w)+ad(f(x, u, w))} = mMin (T.J)(x) (concave monotone)

Min-Bellman equation: J* = TJ*
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Visualization of Value Iteration: Jyx 1 = Tk

Value Iterations

ptimal cost
Jr=TJ*

Convergence Jx — J* depends on J, and the “slope" of T (e.g., whether T is a
contraction) J
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Newton’s Method for Solving Generic Fixed Point Equation J = TJ

Linearization T}k J

Result of
'Newton step from Jy
: for solving J =T'J

0 Ji Jt1 J

It is an iterative method that generates a sequence {Jx}. The typical iteration:

@ Given J, “linearize" T at Ji: Replace TJ by the linearization T J

@ Solve the linearized fixed point problem J = T J

@ The solution of the linearized fixed point problem is the next iterate Jx.1
@ Do we need differentiability of T? Answer: NO (concavity of T is enough)
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Back to DP: One-Step Lookahead - Newton Step Interpretation

A
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(TI)(x) = mJn (T.J)(x) = (TaJ)(x) (linearization of T at J yields “greedy” /i)

@ This is a key new insight with important ramifications:
@ The Newton step smooths out starting point variations (lots of empirical evidence)
@ Local error decreases superlinearly (much better than current theory suggests)
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Multistep Lookahead - Newton-SOR Step Interpretation

Tod
\

“Multistep Greedy”
policy at J

|1
TZJ\‘ Newton step

ol \ / \ J
) . Jx=TJ* Ji=TuJg
Cost Approximation Optimal cost  “Multistep Greedy” Cost

(TEd)(x) = min (T, T ' 0)(x) = (Ta T 'J)(x) (linearization of T at T*~'J yields /i)
1

Solution of the linearized equation J = T;J yields the cost function J; of ji

Newton-SOR converges faster than pure Newton, but is more time-consuming J

Bertsekas Lessons from AlphaZero October 2022 20/37



Stability: How do we Know that the “Greedy" Policy is Stable?
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A policy p is called stable if J,(x) < oo for all x (a very general definition)
True if T, has “slope" <1 (i.e., T, is a contraction)
Region of stability: The set of J for which the “greedy" policy /i is stable
@ Depends on the length of lookahead - longer lookahead promotes stability
@ It makes sense to try to push J towards some J,, with x stable (rollout idea)
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Rollout: A Newton Step Starting from J = J,., where 1 is a Stable Policy

L\

Policy Evaluation
of Base Policy p

Policy Improvement
Yields Rollout Policy i

Optimal cost
J* =TJ* \‘ m
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Cost of Rollout Policy ji  Cost of Base Policy u

Rollout with a stable policy u yields a (better) stable policy /i

J
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Policy lteration is Repeated Rollout - Starting from a Stable Policy it

Produces a Sequence of Stable Policies {1}

Linearized Bellman Eq.
tat Jx
|
|
|

Newtor‘} step

Optimal cost
Jr=TJ* [

N ¢ >
| J

/
Cost of pk+1 Cost of pk
Juk+1 = Trulc+1:]#lc+1 Juk = TukJ#k

@ Pure form of Pl is Newton’s method (known for special cases, Kleinman 1968 ++) )
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Rollout with Approximate Policy Evaluation (Truncated Rollout - A

Single “Optimistic" Pl)

Truncated Rollout Policy f
Defined by

|
Ly
[
// | : ‘ Ta(TirT) = T(TJ)
|
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| m=4
| \J I
| [ |
|
| ' Newton step
| Optimal cost! | |
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. \;m .
J g J

N

Cost of Truncated
Rollout Policy f

Truncated rollout with ¢ > 1-step lookahead min is similar; ¢/ + m is what matters

J

Truncated rollout is an economical substitute for multistep lookahead (e.g., TD-Gammon)J
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Linear Quadratic Problems: Riccati Instead of Bellman Operators

2
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Riccati operator F is the restriction of the Bellman operator to the subspace of quadratiCSJ

Linear system xx,1 = axx + buk. Cost g(x,u) = gx®> + rv?, g,r >0, a = 1
@ J*(x) = K*x?; K* solves the Riccati Eq. K = F(K)
@ Riccati Eg. has K™ as its unique positive solution
@ Visualizations extend - LQ problems are useful for experimentation and insights
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A Common Question: Why Not Use Approximation in Policy Space?

(Just Train a Policy Network to Emulate the On-Line Player)

Pure approx. in policy space (policy gradient, random search, etc) is flawed

It lacks the exact Newton step, which corrects (superlinearly) the errors
of off-line training

Without the Newton Step

|

\\ |
\ /
/| With the Newton Step
/ Optimal
0>| -0.8 -0.6 -0.4 -0.2

0

~

L
Linear policy parameter

A one-dimensional linear quadratic example (with known and fixed model)

Compare a parametrized suboptimal linear policy u(x) = Lx with and without one-step
lookahead/Newton step
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Adaptive Control - Changing System, On-line System Identification

Data
> System ;
State
- Adaptive
Con{rol Controller
Model
Estimation

Classical indirect adaptive control (1960s+, extensive book literature)

Simply reoptimizes the controller, when the estimated model changes ... but this may
be a difficult/time-consuming reoptimization

Faster alternative: Indirect adaptive control by rollout with a (robust) policy

@ Use rollout in place of reoptimization - this is simpler (use the current model
estimate for lookahead minimization and a nominal/robust base policy for rollout)

@ Capitalizes on the fast convergence of the Newton step

v
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Adaptive Control by Rollout: A Linear Quadratic Example

2-4\,
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Xk+1 = Xk + DU, g(x,u) = x* + 0.50°

@ We use one-step lookahead and rollout with the base policy that is optimal for the
nominal value b = 2

@ We change the system parameter b in the range [0.6,2.4]

@ Using a “robust" controller without the Newton step is often flawed

@ Using a “robust" controller as base policy with the Newton step corrects the flaw

v
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An Alternative Adaptive Control Formulation: A POMDP Approach from

the 70s-80s

Deterministic system xx,1 = f(xk, 0, ux), 6 € {0',...,0™}: unknown parameter
@ View 0 as part of an augmented state (xx, #) that is partially observed
@ Belief state: b = P{0 = 0" | xo,. .. JXe}h, i =1,...,m, (estimated on-line)
@ Bellman equation for optimal cost function J;:

m
i (0, %) = min > bii(g0x, 0, Uk) + it (X0, - X, F(Xk, 0, )
i=1

@ Approximation in value space: Use approximation J’(f(xk, o', ux)) in place of
Jiv1(Xo, -, Xk, f(xk, 0", uk)). Minimize over ux to obtain “greedy” policy

@ Example 1: J' is the cost function of the optimal policy corresponding to 6’

@ Example 2: J' is the cost function of a known policy assuming 6 = ¢’ (this is rollout)

v

An example: The popular Wordle puzzle
@ Try to find a mystery word 6 using successive 5-letter guess words
@ View 0 as part of an augmented state (xk, 6) that is partially observed
@ Joint work in preparation with S. Bhambri and A. Bhattacharjee (ASU)

v
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Rollout Results for Wordle with Three Different Base Policies
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Opening Words

Rollout Performance = 3.5231 vs the Optimal = 3.5084 average # of guesses
Within < 0.5% more guesses from the optimal policy - On-line answer within 1-3 secs
IT SCALES WITH PROBEM SIZE

The Newton step washes out the performance differences of the base policies J
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Generality - Approximation in Value Space Applies to Continuous and

Discrete Spaces/Integer Programming

Stage 2 Stage 3 e Stage N
Stage 1 —
s O~ — A .
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H / :
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1,42 (u17u27u3) u:(ul,...,uN)

Minimizing G(u) over u = (us, ..., un) € U, where u; are discrete components
@ It admits a (continuous space) Bellman equation and a Newton step interpretation
@ Approximation in value space applies; e.g., J(u1, . . . , ux) is cost of a heuristic

applied after vy, . .., ux have been chosen
@ Rollout approach is simple and very successful in practice
@ Off-line training with data is possible
v
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Concluding Remarks

@ There is much to be gained by using on-line play on top of off-line training
@ Using just off-line training without on-line play may not work well

On-line play uses an exact Newton step (not subject to training errors), and can deal
with changing system parameters

@ Using just on-line play without off-line training misses out on performance
Off-line training can produce good starting points for the Newton step

@ The role of Newton’s method is central - this is a new insight that can guide both
analysis and algorithmic design

@ The Newton step is exact ... all the approximation goes into the starting point for
the Newton step (which washes out training method differences and errors)

@ The cultural divide between RL/Al and control can be bridged by combining
off-line training and on-line play

@ MPC uses a very similar architecture to AlphaZero; can benefit from RL/Al ideas

@ We can approach adaptive control through rollout

@ Generality: Arbitrary state and control spaces, discrete optimization applications,
multiagent versions (see the 2020 rollout/distributed RL book)

@ There are exceptional behaviors waiting for clarification by analysis
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Some Words of Optimism

@ The successes of RL and of MPC are solid reasons for optimism

@ More success can be expected by combining ideas from both RL/Al and
MPC/adaptive control cultures

@ On-line long lookahead/rollout can be a computational bottleneck ...

@ But massive computational power and distributed computation can mitigate the
bottleneck, and allow more sophisticated on-line play strategies

@ There is an exciting journey ahead!

Thank you!
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