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Chess and Backgammon - Off-Line Training and On-Line Play

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk
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ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N
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ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N
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Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
Off-line training of value and/or policy neural network approximations

On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
We are aiming to understand this methodology, so it applies far more generally

We focus on connections with control system design (MPC and adaptive control),
and on discrete optimization
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On-Line Play in AlphaZero/AlphaGo/TD-Gammon: Approximation in
Value Space (Also Called “On-Line Tree Search")
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Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π
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On-line play uses the results of off-line training, which are: A position evaluator
and a base player
It aims to improve the base player by:

I Searching forward for several moves through the lookahead tree
I Simulating the base player for some more moves at the tree leaves
I Approximating the effect of future moves by using the terminal position evaluation
I Calculating the “values" of the available moves at the root and playing the best move

Similarities with Model Predictive Control (MPC) architecture
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Off-Line Training in AlphaZero: Approximate Policy Iteration (PI) Using
Self-Generated Data
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ℓ=1 Fℓ(i, v)rℓ

r = (r1, . . . , rs)

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

Cost = 2αϵ rk+1 = arg min
r∈ℜs

m∑

t=1

Nt−1∑

τ=0

(
φ(iτ,t)′r − cτ,t(rk)

)2

µℓ

µ
1 − µℓ

µ

1

Neural Net Policy Evaluation Improvement of Current Policy µ by
Lookahead Min

States xk+1 States xk+2 xk Heuristic/ Suboptimal Base Policy
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: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)
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ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs
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ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π
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Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)
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Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem
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1

The current player is used to train an improved player, and the process is repeated

The current player is “evaluated" by playing many games

Its evaluation function is represented by a value neural net through training

The current player is “improved" by using a form of approximate multistep
lookahead minimization, called Monte-Carlo Tree Search (MCTS)

The “improved player" is represented by a policy neural net through training

TD-Gammon uses similar PI algorithm for off-line training of a value network (does
not use MCTS and does not use a policy network)
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Some Major Empirical Observations

Truncated
Rollout

. . . xk

ON-LINE
PLAY

OFF-LINE
TRAININGStates xk+1

States xk+2

NEWTON
STEP

for Bellman Eq.

Minimization

Off-Line Obtained
Base Policy

Cost Function
Approximation J̃

Enhancements to the Starting Point
of Newton Step

� − 1 Lookahead Minimization Steps
m Steps of Rollout

�-Step Lookahead

m Steps

The AlphaZero on-line player plays much better
than the off-line-trained player

TD-Gammon plays much better with truncated rollout
than without rollout (Tesauro, 1996)

We will aim for explanations, insights, and generalizations through abstract
Bellman operators, visualization, and the

central role of Newton’s method
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Principal Viewpoints of this Talk

On-line play is a single step of Newton’s method for solving the Bellman equation
(or Newton-SOR in case of multistep lookahead and/or truncated rollout)

Off-line training provides the start point for the Newton step

On-line play is the real workhorse ... off-line training plays a secondary role.
A major reason: On-line play is an exact Newton step. It is not degraded by NN
approximations

Imperfections/differences in off-line training affect the start point, but are washed
out by the (superlinear) Newton step

A cultural difference that we will aim to bridge:
I Reinforcement Learning/AI research is focused largely on off-line training issues

(except in the special case of armed bandit problems)
I Model Predictive Control research is focused largely on on-line play and stability issues

Application to adaptive control (changing system parameters): It’s still an exact
Newton step applied to an on-line estimated Bellman equation

All of this applies in great generality through the power of abstract DP (arbitrary
state and control spaces, stochastic, deterministic, hybrid systems, multiagent
systems, minimax, finite and infinite horizon, discrete optimization)
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Outline

1 Discounted and undiscounted infinite horizon problems

2 Abstract DP concepts: Bellman operators and Bellman equations

3 Visualization of on-line play as a Newton step

4 Region of stability and its visualization

5 Rollout and policy iteration visualizations

6 Adaptive control approaches - An application to Wordle

7 Discrete Optimization - Integer Programming
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Infinite Horizon Problems

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution
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Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)
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Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u
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�
c, a + J(2)
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Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)
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x0 xk x1
k+1 x2

k+1 x3
k+1 x4
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Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
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c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost

System xk+1 = f (xk , uk ,wk ) with state, control, and random disturbance

Stationary policies x 7→ µ(x) satisfying a control constraint µ(x) ∈ U(x) for all x

Cost of stage k : αk g
(
xk , µ(xk ),wk

)
; 0 < α ≤ 1 is the discount factor

Cost of a policy µ: The limit as N →∞ of the N-stage costs

Jµ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µ(xk ),wk

)}

Optimal cost function J∗(x0) = minµ Jµ(x0)

Discounted problems: α < 1 and g is bounded (the “nice" case)

Stochastic shortest path problems: α = 1 and special cost-free termination state t

Control/MPC-type problems: Deterministic, g ≥ 0, termination state is t = 0
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Infinite Horizon Problems - Main (Exact DP) Theory

J∗ satisfies Bellman’s equation:

J∗(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ∗

(
f (x , u,w)

)}
, for all states x (uniquely ??)

Optimality condition: If µ∗(x) attain the min in the Bellman equation for every
x , the policy µ∗ is optimal (??)

Value iteration (VI): Generates cost function sequence {Jk}

Jk (x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJk−1

(
f (x , u,w)

)}
, J0 is “arbitrary" (??)

Policy Iteration (PI): Generates sequences of policies {µk} and their cost
functions {Jµk }; µ0 is “arbitrary" (??)

The typical iteration starts with a policy µ and generates a new policy µ̃ in two steps:

Policy evaluation step: Computes the cost function Jµ (possibly w/ approximations)

Policy improvement step: Computes the improved policy µ̃ using

µ̃(x) ∈ arg min
u∈U(x)

Ew

{
g(x , u,w) + αJµ

(
f (x , u,w)

)}
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On-Line Approximation in Value Space

Replace J∗ with an approximation J̃ in Bellman’s equation
min

u∈U(x)
E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}
Representative Features States dfi f f̄ with Aggregation Problem

Optimization

Current Policy µ Approximately Improved Policy µ̂ µ̃

Tµ�r �r = ⇧Tµ�r

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {�r | s 2 <s} Ps
`=1 F`(i, v)r`

r = (r1, . . . , rs) Direct Method: Projecting the

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

min
uk,µk+1,...,µk+`�1

E

(
g(xk, uk, wk) +

k+`�1X

i=k+1

↵i�kg
�
xi, µi(xi), wi

�
+ ↵`J̃(xk+`)

)

5

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
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�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
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�
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⇢
1 if j 2 If̄

0 if j /2 If̄
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nX

i=1

dfi
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ĝ(f, u) =
nX
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dfi
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pij(u)g(i, u, j)

Representative Feature States Feature Space F F (j) �jf1 �jf2 �jf3
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i1 i2 i` r⇤1 r⇤q r⇤` . . . iq

Disaggregation Sets If Aggregate Optimization Feature States

Neural Network Features Approximate Cost J̃µ Policy Improvement
Sampling
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�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

One-Step Lookahead Multistep Lookahead

d`i = 0 if i /2 I`

�j ¯̀ = 1 if j 2 I¯̀

p̂ff̄ (u) =

nX

i=1

dfi

nX

j=1

pij(u)�jf̄
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Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃
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b2 + q q F (K) = a2rK
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F (K) =
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Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”
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TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION minu∈U(x) E
{
g(x, u, w)+

αJ̃
(
f(x, u, w)

)}

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

Defines a lookahead/“greedy" policy µ̃ with µ̃(xk ) the minimizing uk above

KEY NEW FACT: Jµ̃ is the result of a Newton step to solve Bellman Eq. starting from J̃
(Newton-SOR step for multistep lookahead ` > 1). The error decreases
SUPERLINEARLY

Jµ̃ − J∗

J̃ − J∗
→ 0 as J̃ → J∗

Bertsekas Lessons from AlphaZero October 2022 11 / 37



An Abstract DP Viewpoint: Bellman Operators and Bellman Equations
(Abstract DP Book, 3rd ed., 2022)

(TµJ)(x) = Ew

{
g
(
x , µ(x),w

)
+ αJ

(
f (x , µ(x),w)

)}
(TJ)(x) = min

u∈U(x)
Ew

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
= min

µ
(TµJ)(x)

They define the Bellman equations Jµ = TµJµ, J∗ = TJ∗

Tµ and T transform real-valued functions J into functions TµJ and TJ
(assumed real-valued for this talk)

For each fixed x , (TµJ)(x) and (TJ)(x) are functions of J

Tµ is monotone and linear

T is monotone and “concave", i.e., (TJ)(x) is a concave function of J for each
fixed x

Example: For a 2-state system, (TJ)(1) and (TJ)(2) are real-valued functions of
the vector J =

(
J(1), J(2)

)
∈ <2

For infinite-dimensional state space, Tµ and T are infinite-dimensional operators
(map infinite dimensional function space to itself)

Our approach: Use visualization along 1-D slices of the graphs of the operators;
verify/generalize the results of the visualization with math analysis
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µ-Bellman Operator in One Dimension Through Jµ

(TµJ)(x) = Ew

{
g
(
x , µ(x),w

)
+ αJ

(
f (x , µ(x),w)

)}
(linear monotone)

µ-Bellman equation: Jµ = TµJµ

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u,w) | there exists x ⇧ X

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ

Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J ]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ Cost of µ

Jµ Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J ]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

One-step lookahead Generic policy µ

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1
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Min-Bellman Operator in One Dimension Through J∗

(TJ)(x) = min
u∈U(x)

Ew

{
g(x , u,w)+αJ

(
f (x , u,w)

)}
= min

µ
(TµJ)(x) (concave monotone)

Min-Bellman equation: J∗ = TJ∗

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

 

M =
�
(u, w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α
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αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
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}
Cost E

{
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}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation
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Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +
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gi

(
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)
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xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P ) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation Value Iterations

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ Cost of µ

Jµ Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J ]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Convergence Jk → J∗ depends on J0 and the “slope" of T (e.g., whether T is a
contraction)
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Newton’s Method for Solving Generic Fixed Point Equation J = TJ

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)
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k (⇥)

�
(g(x), f(x)) | x ⇧ X
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�
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Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P
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,
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�
rµ = 0
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k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
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�
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M =
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(u, w) | there exists x ⇧ X
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J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction
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Monte Carlo Tree Search ‘

min
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E
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gk(xk, uk, wk) +
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gi

(
xi, µi(xi), wi

)
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}
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Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line
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Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem
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T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator Newton step from Jk

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃
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minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ

Linearization T ′
Jk

J Result of Newton step from Jk for solving J = TJ

“Greedy” policy at J̃

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states) Cost

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

1

It is an iterative method that generates a sequence {Jk}. The typical iteration:

Given Jk , “linearize" T at Jk : Replace TJ by the linearization T ′Jk
J

Solve the linearized fixed point problem J = T ′Jk
J

The solution of the linearized fixed point problem is the next iterate Jk+1

Do we need differentiability of T ? Answer: NO (concavity of T is enough)
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(T J̃)(x) = min
µ

(TµJ̃)(x) = (Tµ̃J̃)(x) (linearization of T at J̃ yields “greedy" µ̃)

This is a key new insight with important ramifications:

The Newton step smooths out starting point variations (lots of empirical evidence)

Local error decreases superlinearly (much better than current theory suggests)
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Solution of the linearized equation J = Tµ̃J yields the cost function Jµ̃ of µ̃

Newton-SOR converges faster than pure Newton, but is more time-consuming
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Stability: How do we Know that the “Greedy" Policy is Stable?
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NEWTON STEP INTERPRETATION
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A policy µ is called stable if Jµ(x) <∞ for all x (a very general definition)
True if Tµ has “slope" < 1 (i.e., Tµ is a contraction)

Region of stability: The set of J̃ for which the “greedy" policy µ̃ is stable
Depends on the length of lookahead - longer lookahead promotes stability

It makes sense to try to push J̃ towards some Jµ with µ stable (rollout idea)
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Rollout: A Newton Step Starting from J̃ = Jµ, where µ is a Stable Policy
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3 ũ1 x̃2 ũ2 x̃3
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Rollout with a stable policy µ yields a (better) stable policy µ̃
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Pure form of PI is Newton’s method (known for special cases, Kleinman 1968 ++)
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Rollout with Approximate Policy Evaluation (Truncated Rollout - A
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Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem
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Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
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Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ

Linearization T ′
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J Result of Newton step from Jk for solving J = TJ

“Greedy” policy at J̃

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states) Cost
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of i ≈ Jµ(i) Jµ(i) Feature

Map
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)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
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Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

1

Truncated rollout with ` > 1-step lookahead min is similar; `+ m is what matters

Truncated rollout is an economical substitute for multistep lookahead (e.g., TD-Gammon)
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Linear Quadratic Problems: Riccati Instead of Bellman Operators
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min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation
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ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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L̃ = −r + ab2K̃
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K1 L̃ = −r + ab2K1
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Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

1

Riccati operator F is the restriction of the Bellman operator to the subspace of quadratics

Linear system xk+1 = axk + buk . Cost g(x ,u) = qx2 + ru2, q, r > 0, α = 1

J∗(x) = K ∗x2; K ∗ solves the Riccati Eq. K = F (K )

Riccati Eq. has K ∗ as its unique positive solution

Visualizations extend - LQ problems are useful for experimentation and insights
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A Common Question: Why Not Use Approximation in Policy Space?
(Just Train a Policy Network to Emulate the On-Line Player)

Pure approx. in policy space (policy gradient, random search, etc) is flawed

It lacks the exact Newton step, which corrects (superlinearly) the errors
of off-line training
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A one-dimensional linear quadratic example (with known and fixed model)
Compare a parametrized suboptimal linear policy µ(x) = Lx with and without one-step
lookahead/Newton step
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Adaptive Control - Changing System, On-line System Identification
Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1
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Classical indirect adaptive control (1960s+, extensive book literature)
Simply reoptimizes the controller, when the estimated model changes ... but this may
be a difficult/time-consuming reoptimization

Faster alternative: Indirect adaptive control by rollout with a (robust) policy
Use rollout in place of reoptimization - this is simpler (use the current model
estimate for lookahead minimization and a nominal/robust base policy for rollout)

Capitalizes on the fast convergence of the Newton step
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Adaptive Control by Rollout: A Linear Quadratic Example
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xk+1 = xk + buk , g(x , u) = x2 + 0.5u2

We use one-step lookahead and rollout with the base policy that is optimal for the
nominal value b = 2

We change the system parameter b in the range [0.6, 2.4]

Using a “robust" controller without the Newton step is often flawed

Using a “robust" controller as base policy with the Newton step corrects the flaw
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An Alternative Adaptive Control Formulation: A POMDP Approach from
the 70s-80s

Deterministic system xk+1 = f (xk , θ,uk ), θ ∈ {θ1, . . . , θm}: unknown parameter

View θ as part of an augmented state (xk , θ) that is partially observed

Belief state: bk,i = P{θ = θi | x0, . . . , xk}, i = 1, . . . ,m, (estimated on-line)

Bellman equation for optimal cost function J∗k :

J∗k (x0, . . . , xk ) = min
uk

m∑
i=1

bk,i
(
g(xk , θ

i , uk ) + J∗k+1
(
x0, . . . , xk , f (xk , θ

i , uk )
)

Approximation in value space: Use approximation J̃ i(f (xk , θ
i , uk )

)
in place of

J∗k+1
(
x0, . . . , xk , f (xk , θ

i , uk )
)
. Minimize over uk to obtain “greedy" policy

Example 1: J̃ i is the cost function of the optimal policy corresponding to θi

Example 2: J̃ i is the cost function of a known policy assuming θ = θi (this is rollout)

An example: The popular Wordle puzzle
Try to find a mystery word θ using successive 5-letter guess words

View θ as part of an augmented state (xk , θ) that is partially observed

Joint work in preparation with S. Bhambri and A. Bhattacharjee (ASU)
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Rollout Results for Wordle with Three Different Base Policies

Rollout Performance = 3.5231 vs the Optimal = 3.5084 average # of guesses
Within < 0.5% more guesses from the optimal policy - On-line answer within 1-3 secs

IT SCALES WITH PROBEM SIZE

The Newton step washes out the performance differences of the base policies
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Generality - Approximation in Value Space Applies to Continuous and
Discrete Spaces/Integer Programming
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(
F (i)

)

R1 R2 R3 R! Rq−1 Rq r∗
2 r∗

3 Cost Ĵµ
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ĝ(f, u) =

n∑

i=1

dfi

n∑

j=1

pij(u)g(i, u, j)

Representative Feature States Feature Space F F (j) φjf1 φjf2 φjf3

φjf4

i1 i2 i! r∗
1 r∗

q r∗
! . . . iq

Disaggregation Sets If Aggregate Optimization Feature States

Neural Network Features Approximate Cost J̃µ Policy Improvement
Sampling

Neural Network Features Approximate Cost J̃µ Policy Improvement

1

Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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ĝ

k (b
k ,u

k )
A

p
p
rox

im
ate

..

S
C

`
S
tages

R
iccati

E
q
u
ation

Iterates
P

P
0

P
1

P
2

�
2�

1
�
2
P

P
+

1

C
ost

of
P
erio

d
k

S
to

ck
O

rd
ered

at
P
erio

d
k

In
ven

tory
S
y
stem

r(u
k )

+
cu

k
x

k
+

1
=

x
k

+
u

+
k�

w
k

S
p
id

er
1

S
p
id

er
2

F
ly

1
F
ly

2
n
�

1
n

n
+

1
n
�

2
0

1
2

S
to

ck
at

P
erio

d
k

+
1

In
itial

S
tate

A
C

A
B

A
C

C
A

C
D

A
B

C

A
C

B
A

C
D

C
A

B
C

A
D

C
D

A

S
A

S
B

C
A

B
C

A
C

C
C

A
C

C
D

C
B

C
C

C
B

C
C

D

C
A

B
C

A
D

C
D

A
C

C
D

C
B

D
C

D
B

C
A

B

D
o

n
ot

R
ep

air
R

ep
air

1
2

n�
1

n
p
1
1

p
1
2

p
1
n

p
1
(n�

1
)

p
2
(n�

1
)

...

p
2
2

p
2
n

p
2
(n�

1
)

p
2
(n�

1
)

p
(n�

1
)(n�

1
)

p
(n�

1
)n

p
n

n

2n
d

G
am

e
/

T
im

id
P

lay
2n

d
G

am
e
/

B
old

P
lay

1st
G

am
e
/

T
im

id
P

lay
1st

G
am

e
/

B
old

P
lay

p
d

1�
p

d
p

w
1�

p
w

0�
0

1�
0

0�
1

1.5�
0.5

1�
1

0.5�
1
.5

0�
2

S
y
stem

x
k
+

1
=

f
k (x

k ,u
k ,w

k )
u

k
=

µ
k (x

k )
µ

k
w

k
x

k

3
5

2
4

6
2

1
0

5
7

8
3

9
6

1
2

O
p
tim

al
C

ost
A

p
p
rox

im
ation

In
itial

T
em

p
eratu

re
x

0
u

0
u

1
x

1
O

ven
1

O
v
en

2
F
in

al
T
em

p
eratu

re
x

2

1

z
k
+

1
b
k
+

1
=

F
k (b

k ,u
k ,z

k
+

1 )
C

ost
ĝ
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1

Minimizing G(u) over u = (u1, . . . ,uN) ∈ U, where ui are discrete components

It admits a (continuous space) Bellman equation and a Newton step interpretation

Approximation in value space applies; e.g., J̃(u1, . . . , uk ) is cost of a heuristic
applied after u1, . . . , uk have been chosen

Rollout approach is simple and very successful in practice

Off-line training with data is possible
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Concluding Remarks

There is much to be gained by using on-line play on top of off-line training
Using just off-line training without on-line play may not work well

I On-line play uses an exact Newton step (not subject to training errors), and can deal
with changing system parameters

Using just on-line play without off-line training misses out on performance
I Off-line training can produce good starting points for the Newton step

The role of Newton’s method is central - this is a new insight that can guide both
analysis and algorithmic design

The Newton step is exact ... all the approximation goes into the starting point for
the Newton step (which washes out training method differences and errors)

The cultural divide between RL/AI and control can be bridged by combining
off-line training and on-line play

MPC uses a very similar architecture to AlphaZero; can benefit from RL/AI ideas

We can approach adaptive control through rollout

Generality: Arbitrary state and control spaces, discrete optimization applications,
multiagent versions (see the 2020 rollout/distributed RL book)

There are exceptional behaviors waiting for clarification by analysis
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Some Words of Optimism

The successes of RL and of MPC are solid reasons for optimism

More success can be expected by combining ideas from both RL/AI and
MPC/adaptive control cultures

On-line long lookahead/rollout can be a computational bottleneck ...

But massive computational power and distributed computation can mitigate the
bottleneck, and allow more sophisticated on-line play strategies

There is an exciting journey ahead!

Thank you!
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