
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2018 Society for Industrial and Applied Mathematics
Vol. 56, No. 1, pp. 231–252
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Abstract. We consider discrete-time infinite horizon deterministic optimal control problems
with nonnegative cost per stage, and a destination that is cost free and absorbing. The classical
linear-quadratic regulator problem is a special case. Our assumptions are very general, and allow
the possibility that the optimal policy may not be stabilizing the system, e.g., may not reach the
destination either asymptotically or in a finite number of steps. We introduce a new unifying notion
of stable feedback policy, based on perturbation of the cost per stage, which in addition to implying
convergence of the generated states to the destination, quantifies the speed of convergence. We
consider the properties of two distinct cost functions: J∗, the overall optimal, and Ĵ , the restricted
optimal over just the stable policies. Different classes of stable policies (with different speeds of
convergence) may yield different values of Ĵ . We show that for any class of stable policies, Ĵ is a
solution of Bellman’s equation, and we characterize the smallest and the largest solutions: they are
J∗, and J+, the restricted optimal cost function over the class of (finitely) terminating policies. We
also characterize the regions of convergence of various modified versions of value and policy iteration
algorithms, as substitutes for the standard algorithms, which may not work in general.
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1. Introduction. In this paper we consider a deterministic discrete-time infinite
horizon optimal control problem involving the system

(1.1) xk+1 = f(xk, uk), k = 0, 1, . . . ,

where xk and uk are the state and control at stage k, which belong to sets X and U ,
referred to as the state and control spaces, respectively, and f : X ×U �→ X is a given
function. The control uk must be chosen from a nonempty constraint set U(xk) ⊂ U
that may depend on the current state xk. The cost for the kth stage, g(xk, uk), is
assumed nonnegative and possibly extended real valued:

(1.2) 0 ≤ g(xk, uk) ≤ ∞ ∀ xk ∈ X, uk ∈ U(xk), k = 0, 1, . . . .

A cost per stage that is extended real valued may be useful in modeling conveniently
additional state and control constraints. We assume that X contains a special state,
denoted t, which is referred to as the destination, and is cost free and absorbing:

(1.3) f(t, u) = t, g(t, u) = 0 ∀ u ∈ U(t).

Our terminology aims to emphasize the connection with classical problems of
control where X and U are the finite-dimensional Euclidean spaces X = 	n, U = 	m,
and the destination is identified with the origin of 	n. There the essence of the
problem is to reach or asymptotically approach the origin at minimum cost. A special
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232 DIMITRI P. BERTSEKAS

case is the classical infinite horizon linear-quadratic regulator problem. However, our
formulation also includes shortest path problems with continuous as well as discrete
spaces; for example, the classical shortest path problem, where X consists of the nodes
of a directed graph, and the problem is to reach the destination from every other node
with a minimum length path.

We are interested in feedback policies of the form π = {μ0, μ1, . . .}, where each
μk is a function mapping x ∈ X into the control μk(x) ∈ U(x). The set of all policies
is denoted by Π. Policies of the form π = {μ, μ, . . .} are called stationary, and will be
denoted by μ, when confusion cannot arise.

Given an initial state x0, a policy π = {μ0, μ1, . . .} when applied to the system
(1.1), generates a unique sequence of state-control pairs (xk, μk(xk)), k = 0, 1, . . . ,
with cost

Jπ(x0) =
∞∑

k=0

g (xk, μk(xk)) , x0 ∈ X

[the series converges to some number in [0, ∞] thanks to the nonnegativity assumption
(1.2)]. We view Jπ as a function over X , and we refer to it as the cost function of
π. For a stationary policy μ, the corresponding cost function is denoted by Jμ. The
optimal cost function is defined as

J∗(x) = inf
π∈Π

Jπ(x), x ∈ X,

and a policy π∗ is said to be optimal if Jπ∗(x) = J∗(x) for all x ∈ X.
We denote by E+(X) the set of functions J : X �→ [0, ∞]. All equations, inequal-

ities, limit and minimization operations involving functions from this set are meant
to be pointwise. In our analysis, we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost free and absorbing, this set contains Jπ of all π ∈ Π, as well as J∗.
It is well known that under the cost nonnegativity assumption (1.2), J∗ satisfies

Bellman’s equation:

J∗(x) = inf
u∈U(x)

{
g(x, u) + J∗(f(x, u)

)}
, x ∈ X,

and that an optimal stationary policy (if it exists) may be obtained through the
minimization in the right side of this equation (cf. Proposition 2.1 in the next section).
One also hopes to obtain J∗ by means of value iteration (VI for short), which starting
from some function J0 ∈ J , generates a sequence of functions {Jk} ⊂ J according to

(1.4) Jk+1(x) = inf
u∈U(x)

{
g(x, u) + Jk

(
f(x, u)

)}
, x ∈ X, k = 0, 1, . . . .

However, {Jk} may not always converge to J∗ because, among other reasons, Bell-
man’s equation may have multiple solutions within J .

Another possibility to obtain J∗ and an optimal policy is through policy iteration
(PI for short), which starting from a stationary policy μ0, generates a sequence of
stationary policies {μk} via a sequence of policy evaluations to obtain Jμk from the
equation

(1.5) Jμk(x) = g
(
x, μk(x)

)
+ Jμk

(
f
(
x, μk(x)

))
, x ∈ X,
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STABLE OPTIMAL CONTROL 233

interleaved with policy improvements to obtain μk+1 from Jμk according to

(1.6) μk+1(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jμk

(
f(x, u)

)}
, x ∈ X.

We note that Jμk satisfies (1.5) (cf. Proposition 2.1 in the next section). Moreover,
when referring to PI, we assume that the minimum in (1.6) is attained for all x ∈ X ,
which is true under some compactness condition on U(x) or the level sets of the
function g(x, ·) + Jk(f(x, ·)), or both (see, e.g., [Ber12, Chap. 4]).

The uniqueness of solution of Bellman’s equation within J , and the convergence
of VI to J∗ and of PI to an optimal policy have been investigated in a recent paper
by the author [Ber15a] under conditions guaranteeing that J∗ is the unique solution
of Bellman’s equation within J . This paper also gives many references from the
field of adaptive dynamic programming, where the continuous-spaces version of our
problem is often used as the starting point for analysis and algorithmic development;
see, e.g., the book [VVL13], the papers [JiJ14, LiW13], the survey papers in the
edited volumes [SBP04] and [LeL13], and the special issue [LLL08]. Our purpose
here is to consider the problem under weaker conditions and to make the connection
with notions of stability. This is a more complicated case, where Bellman’s equation
need not have a unique solution within J , while the VI and PI algorithms may be
unreliable. However, several of the favorable results of [Ber15a] will be obtained as
special cases of the results of this paper; see section 3. The type of behavior that we
are trying to quantify is described in the following example.1

Example 1.1 (linear-quadratic problem). Consider a linear system and a quadratic
cost:

xk+1 = Axk + Buk, g(xk, uk) = x′
kQxk + u′

kRuk,

where X = 	n, U = 	m, A, B, Q, and R are given matrices with Q being positive
semidefinite symmetric and R being positive definite symmetric. The classical results
for this problem assume the following:

(a) The pair (A, B) is stabilizable [i.e., there exists a linear policy μ(x) = Lx such
that the closed-loop system xk+1 = (A + BL)xk is asymptotically stable].

(b) The pair (A, C), where Q = C′C, is detectable (i.e., if uk → 0 and Cxk → 0
then it follows that xk → 0).

Under these assumptions, it is well known (see, e.g., optimal control and estimation
textbooks such as Anderson and Moore [AnM07], or the author’s [Ber17, section 3.1])
that J∗ has the form J∗(x) = x′Px, where P is the unique positive semidefinite
solution of the algebraic Riccati equation

(1.7) P = A′ (P − PB(B′PB + R)−1B′P
)
A + Q.

Furthermore the VI algorithm converges to J∗ starting from any positive semidefinite
quadratic function. Moreover the PI algorithm, starting from a linear stable policy,
yields J∗ and a linear stable optimal policy in the limit as first shown by Kleinman
[Kle68].

To see what may happen when the preceding detectability condition is not satis-
fied, consider the scalar system

xk+1 = γxk + uk,

1In this example and later, our standard notational convention is that all vectors in �n are
viewed as column vectors. The real line is denoted by �. A prime denotes transposition, so the inner
product of two vectors x and y is defined by x′y, and the norm is ‖x‖ =

√
x′x.
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234 DIMITRI P. BERTSEKAS

Riccati Equation Iterates

γ2P
P+1

P0 PP1 P245◦

Quadratic cost functions

J(x) = Px2

P ∗ = 0 P̂ = γ2 − 1

Fig. 1. Illustration of the behavior of the Riccati equation for the linear-quadratic problem of
Example 1.1, where the detectability assumption is not satisfied. The solutions of the Riccati equation
are P = 0 (corresponding to the optimal cost) and P̂ = γ2 − 1 (corresponding to the optimal cost
that can be achieved with linear stable control laws).

where γ > 1 and the cost per stage is g(x, u) = u2. Here we have J∗(x) ≡ 0, while
the policy μ∗(x) ≡ 0 is optimal. This policy is not stable (for any sensible definition
of stability), which is not inconsistent with optimality, since nonzero states are not
penalized in this problem. The algebraic Riccati equation (1.7) for this case is

P =
γ2P

P + 1
,

and has two nonnegative solutions : P ∗ = 0 and P̂ = γ2 − 1 (see Figure 1). It turns
out that P̂ has an interesting interpretation: Ĵ(x) = P̂ x2 is the optimal cost that
can be achieved using a linear stable control law, starting from x (see the analysis of
[Ber17, Example 3.1.1]). Moreover the VI algorithm, which generates the sequence
Jk(x) = Pkx2 with Pk obtained by the Riccati equation iteration

Pk+1 =
γ2Pk

Pk + 1
,

converges to Ĵ when started from any P0 > 0, and stays at the zero function J∗

when started from P0 = 0 (see Figure 1). Another interesting fact is that the PI
algorithm, when started from a linear stable policy, yields in the limit Ĵ (not J∗) and
the policy that is optimal within the class of linear stable policies (which turns out to
be μ̂(x) = 1−γ2

γ x); see [Ber17, section 3.1] for a verification, and Example 3.1 for an
analysis of the multidimensional case.2

2As an example of what may happen without stabilizability, consider the case when the system
is instead xk+1 = γxk. Then the Riccati equation becomes P = γ2P and has P ∗ = 0 as its unique
solution. However, the Riccati equation iteration Pk+1 = γ2Pk diverges to ∞ starting from any
P0 > 0. Also, qualitatively similar behavior is obtained when there is a discount factor α ∈ (0, 1).
The Riccati equation takes the form P = A′(αP − α2PB(αB′PB + R)−1B′P )A + Q, and for the
given system and cost per stage, it has two solutions, P ∗ = 0 and P̂ = αγ2−1

α
. The VI algorithm

converges to P̂ starting from any P > 0. While the line of analysis of the present paper does not
apply to discounted problems, a related analysis is given in the paper [Ber15b], using the idea of a
regular policy.
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STABLE OPTIMAL CONTROL 235

We note that the set of solutions of the Riccati equation has been extensively
investigated starting with the papers by Willems [Wil71] and Kucera [Kuc72, Kuc73],
which were followed up by several other works (see the book by Lancaster and Rodman
[LaR95] for a comprehensive treatment). In these works, the “largest” solution of
the Riccati equation is referred to as the “stabilizing” solution, and the stability of
the corresponding policy is shown, although the author could not find an explicit
statement regarding the optimality of this policy within the class of all linear stable
policies. Also the lines of analysis of these works are tied to the structure of the
linear-quadratic problem and are unrelated to the analysis of the present paper.

There are also other interesting deterministic optimal control examples where
Bellman’s equation, and the VI and PI algorithms exhibit unusual behavior, including
several types of shortest path problems (see, e.g., [Ber14, Ber15a, BeY16], and the
subsequent Example 4.1). This is typical of semicontractive dynamic programming
(DP) theory, which is a central focal point of the author’s abstract DP monograph
[Ber13], and follow-up work [Ber15b]. The present paper is inspired by the analytical
methods of this theory. In semicontractive models, roughly speaking, policies are
divided into those that are “regular” in the sense that they are “well-behaved” with
respect to the VI algorithm, and those that are “irregular”. The optimal cost function
over the regular policies (under suitable conditions) is a solution of Bellman’s equation,
and can be found by the VI and PI algorithm, even under conditions where these
algorithms may fail to find the optimal cost function J∗. Regularity in the sense of
semicontractive DP corresponds to stability in the specialized context of deterministic
optimal control considered here.

In this paper we address the phenomena illustrated by the linear-quadratic Ex-
ample 1.1 in the more general setting where the system may be nonlinear and the
cost function may be nonquadratic. Our method of analysis is to introduce a cost
perturbation that involves a penalty for excursions of the state from the destination,
thus resulting in a better-behaved problem. The type of perturbation used determines
in turn the class of stable policies. A key aspect of our definition of a stable policy (as
given in the next section) is that in addition to implying convergence of the generated
states to the destination, it quantifies the speed of convergence.

A simpler approach, which involves perturbation by a constant function, has
been used in the monograph [Ber13], and also in the paper by Bertsekas and Yu
[BeY16]. The latter paper analyzes similarly unusual behavior in finite-state finite-
control stochastic shortest path problems, where the cost per stage can take both
positive and negative values (for such problems the anomalies are even more acute,
including the possibility that J∗ may not solve Bellman’s equation).

In the analysis of the present paper, the optimal policies of the perturbed problem
are stable policies, and in the limit as the perturbation diminishes to 0, the corre-
sponding optimal cost function converges to Ĵ , the optimal cost function over stable
policies (not to J∗). Our central result is that Ĵ is the unique solution of Bellman’s
equation within a set of functions in J that majorize Ĵ . Moreover, the VI algorithm
converges to Ĵ when started from within this set. In addition, if J+, the optimal cost
function over the class of (finitely) terminating policies belongs to J , then J+ is the
largest solution of Bellman’s equation within J . These facts are shown in section 3,
including a treatment of the multidimensional version of the linear-quadratic prob-
lem of Example 1.1. In section 3, we also consider the favorable special case where
J∗ = J+, and we develop the convergence properties of VI for this case. In section 4
we consider PI algorithms, including a perturbed version (section 4.2).

D
ow

nl
oa

de
d 

06
/2

8/
19

 to
 1

73
.4

8.
19

7.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

236 DIMITRI P. BERTSEKAS

2. Stable policies. In this section, we will lay the groundwork for our analysis
and introduce the notion of a stable policy. To this end, we will use some classical
results for optimal control with nonnegative cost per stage, which stem from the
original work of Strauch [Str66]. For textbook accounts we refer to [BeS78, Put94,
Ber12], and for a more abstract development, we refer to the monograph [Ber13].

The following proposition gives the results that we will need (see [BeS78, Props. 5.2,
5.4, and 5.10], [Ber12, Props. 4.1.1, 4.1.3, 4.1.5, 4.1.9], or [Ber13, Props. 4.3.3, 4.3.9,
and 4.3.14]). Actually, these results hold for stochastic infinite horizon DP problems
with nonnegative cost per stage, and do not depend on the favorable structure of this
paper (a deterministic problem with a cost-free and absorbing destination).

Proposition 2.1. The following hold:
(a) J∗ is a solution of Bellman’s equation and if J ∈ E+(X) is another solution,

i.e., J satisfies

(2.1) J(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)} ∀ x ∈ X,

then J∗ ≤ J .
(b) For all stationary policies μ, Jμ is a solution of the equation

J(x) = g
(
x, μ(x)

)
+ J

(
f
(
x, μ(x)

)) ∀ x ∈ X,

and if J ∈ E+(X) is another solution, then Jμ ≤ J .
(c) A stationary policy μ∗ is optimal if and only if

μ∗(x) ∈ arg min
u∈U(x)

{
g(x, u) + J∗(f(x, u)

)} ∀ x ∈ X.

(d) Let {J̄k} be the sequence generated by the VI algorithm (1.4) starting from
the zero function J̄0(x) ≡ 0. If U is a metric space and the sets

(2.2) Uk(x, λ) =
{
u ∈ U(x)

∣∣ g(x, u) + J̄k

(
f(x, u)

) ≤ λ
}

are compact for all x ∈ X, λ ∈ 	, and k ≥ 0, then there exists at least one
optimal stationary policy, and we have Jk → J∗ for every sequence generated
by VI starting from a function J0 ∈ E+(X) with J0 ≤ J∗.

(e) For every ε > 0 there exists an ε-optimal policy, i.e., a policy πε such that

Jπε(x) ≤ J∗(x) + ε ∀ x ∈ X.

We introduce a forcing function p : X �→ [0, ∞) such that

p(t) = 0, p(x) > 0 ∀ x �= t,

and the p-δ-perturbed optimal control problem, where δ > 0 is a given scalar. This is
the same problem as the original, except that the cost per stage is changed to

g(x, u) + δp(x).

We denote by Jπ,p,δ the cost function of a policy π ∈ Π in the p-δ-perturbed problem:

(2.3) Jπ,p,δ(x0) = Jπ(x0) + δ

∞∑
k=0

p(xk),

where {xk} is the sequence generated starting from x0 and using π. We also denote
by Ĵp,δ, the corresponding optimal cost function, Ĵp,δ = infπ∈Π Jπ,p,δ. We introduce
a notion of stability involving the p-δ-perturbed problem.
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Definition 2.1. Let p be a given forcing function. For a state x ∈ X, we say
that a policy π is p-stable from x if for all δ > 0 we have

Jπ,p,δ(x) < ∞.

The set of all such policies is denoted by Πp,x. We define the restricted optimal cost
function over Πp,x by

(2.4) Ĵp(x) = inf
π∈Πp,x

Jπ(x), x ∈ X.

We say that π is p-stable if π ∈ Πp,x simultaneously from all x ∈ X such that Πp,x �= ∅.
The set of all p-stable policies is denoted by Πp.

The preceding definition of a p-stable policy is novel within the general context of
this paper, and is inspired from a notion of regularity, which is central in the theory
of semicontractive DP; see [Ber13] and the related subsequent papers [Ber14, Ber15b,
Ber16]. Note that the set Πp,x depends on the forcing function p. As an example, let
X = 	n and

p(x) = ‖x‖ρ,

where ρ > 0 is a scalar. Then roughly speaking, ρ quantifies the rate at which
the destination is approached using the p-stable policies. In particular, the policies
π ∈ Πp,x0 are the ones that force xk towards 0 at a rate faster than O(1/kρ), so slower
policies would be excluded from Πp,x0 .

Let us make some observations regarding p-stability:
(a) Equivalent definition of p-stability: Given any policy π and state x0 ∈ X ,

from (2.3) it follows that

(2.5) π ∈ Πp,x0 if and only if Jπ(x0) < ∞ and
∞∑

k=0

p(xk) < ∞,

where {xk} is the sequence generated starting from x0 and using π. Since
the right-hand side of the preceding relation does not depend on δ, it also
follows that an equivalent definition of a policy π that is p-stable from x is
that Jπ,p,δ(x) < ∞ for some δ > 0 (rather than all δ > 0).

(b) Approximation property of Jπ,p,δ(x): Consider a pair (π, x0) with π ∈ Πp,x0 .
By taking the limit as k → ∞ in the expression

Jπ,p,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk),

[cf. (2.3)] and by using (2.5), it follows that

(2.6) lim
δ↓0

Jπ,p,δ(x0) = Jπ(x0) ∀ pairs (π, x0) with π ∈ Πp,x0 .

From this equation, we have that if π ∈ Πp,x, then Jπ,p,δ(x) is finite and
differs from Jπ(x) by O(δ). By contrast, if π /∈ Πp,x, then Jπ,p,δ(x) = ∞ by
the definition of p-stability.

(c) Limiting property of Ĵp(xk): Consider a pair (π, x0) with π ∈ Πp,x0 . By
breaking down Jπ,p,δ(x0) into the sum of the costs of the first k stages and
the remaining stages, we have
(2.7)

Jπ,p,δ(x0) =
k−1∑
m=0

g
(
xm, μm(xm)

)
+δ

k−1∑
m=0

p(xm)+Jπk,p,δ(xk) ∀ δ > 0, k > 0,
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where {xk} is the sequence generated starting from x0 and using π, and πk

is the policy {μk, μk+1, . . .}. By taking the limit as k → ∞ and using (2.3),
it follows that

(2.8) lim
k→∞

Jπk,p,δ(xk) = 0 ∀ pairs (π, x0) with π ∈ Πp,x0 , δ > 0.

Also, since Ĵp(xk) ≤ Ĵp,δ(xk) ≤ Jπk,p,δ(xk), it follows that

(2.9)
lim

k→∞
Jp,δ(xk) = 0, lim

k→∞
Ĵp(xk) = 0

∀ (π, x0) with x0 ∈ X and π ∈ Πp,x0 , δ > 0.

Terminating policies and controllability. An important special case is when
p is equal to the function

(2.10) p+(x) =

{
0 if x = t,

1 if x �= t.

For p = p+, a policy π is p+-stable from x if and only if it is terminating from x, i.e.,
reaches t in a finite number of steps starting from x [cf. (2.5)]. The set of terminating
policies from x is denoted by Π+

x and it is contained within every other set of p-stable
policies Πp,x, as can be seen from (2.5). As a result, the restricted optimal cost
function over Π+

x ,

J+(x) = inf
π∈Π+

x

Jπ(x), x ∈ X,

satisfies J∗(x) ≤ Ĵp(x) ≤ J+(x) for all x ∈ X. A policy π is said to be terminating
if it is simultaneously terminating from all x ∈ X such that Π+

x �= ∅. The set of all
terminating policies is denoted by Π+.

Note that if the state space X is finite, we have for every forcing function p

β p+(x) ≤ p(x) ≤ β̄ p+(x) ∀ x ∈ X

for some scalars β, β̄ > 0. As a result it can be seen that Πp,x = Π+
x and Ĵp = J+, so

in effect the case where p = p+ is the only case of interest for finite-state problems.
The notion of a terminating policy is related to the notion of controllability. In

classical control theory terms, the system xk+1 = f(xk, uk) is said to be completely
controllable if for every x0 ∈ X , there exists a policy that drives the state xk to the
destination in a finite number of steps. This notion of controllability is equivalent to
the existence of a terminating policy from each x ∈ X .

One of our main results, to be shown in the next section, is that J∗, Ĵp, and J+ are
solutions of Bellman’s equation, with J∗ being the “smallest” solution and J+ being
the largest solution within J . The most favorable situation arises when J∗ = J+, in
which case J∗ is the unique solution of Bellman’s equation within J . Moreover, in
this case it will be shown that the VI algorithm converges to J∗ starting with any
J0 ∈ J with J0 ≥ J∗ (see the subsequent Proposition 3.5), and the PI algorithm
converges to J∗ as well (see section 4.1). This special case has been discussed in the
paper [Ber15a].
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STABLE OPTIMAL CONTROL 239

3. Restricted optimization over stable policies. For a given forcing func-
tion p, we denote by X̂p the effective domain of Ĵp, the set of all x where Ĵp is finite,

X̂p =
{
x ∈ X | Ĵp(x) < ∞}

.

Since Ĵp(x) < ∞ if and only if Πp,x �= ∅ [cf. (2.4) and (2.5)] or, equivalently, Jπ,p,δ(x) <

∞ for some π and all δ > 0, it follows that X̂p is also the effective domain of Ĵp,δ,

X̂p =
{
x ∈ X | Πp,x �= ∅} =

{
x ∈ X | Ĵp,δ(x) < ∞} ∀ δ > 0.

Note that X̂p may be a strict subset of the effective domain of J∗, which is denoted
by

X∗ =
{
x ∈ X | J∗(x) < ∞}

.

The reason is that there may exist a policy π such that Jπ(x) < ∞, even when there
is no p-stable policy from x.

Our first objective is to show that as δ ↓ 0, the p-δ-perturbed optimal cost function
Ĵp,δ converges to the restricted optimal cost function Ĵp.

Proposition 3.1 (approximation property of Ĵp,δ). Let p be a given forcing
function and δ > 0.

(a) We have

(3.1) Jπ,p,δ(x) = Jπ(x) + wπ,p,δ(x) ∀ x ∈ X, π ∈ Πp,x,

where wπ,p,δ is a function such that limδ↓0 wπ,p,δ(x) = 0 for all x ∈ X.
(b) We have

lim
δ↓0

Ĵp,δ(x) = Ĵp(x) ∀ x ∈ X.

Proof. (a) Follows by using (2.6) for x ∈ X̂p, and by taking wp,δ(x) = 0 for
x /∈ X̂p.

(b) By Proposition 2.1(e), there exists an ε-optimal policy πε for the p-δ-perturbed
problem, i.e., Jπε,p,δ(x) ≤ Ĵp,δ(x) + ε for all x ∈ X . Moreover, for x ∈ X̂p we have
Ĵp,δ(x) < ∞, so Jπε,p,δ(x) < ∞. Hence πε is p-stable from all x ∈ X̂p, and we have
Ĵp ≤ Jπε . Using also (3.1), we have for all δ > 0, ε > 0, x ∈ X , and π ∈ Πp,x,

Ĵp(x) − ε ≤ Jπε(x) − ε ≤ Jπε,p,δ(x) − ε ≤ Ĵp,δ(x) ≤ Jπ,p,δ(x) = Jπ(x) + wπ,p,δ(x),

where limδ↓0 wπ,p,δ(x) = 0 for all x ∈ X . By taking the limit as ε ↓ 0, we obtain for
all δ > 0 and π ∈ Πp,x,

Ĵp(x) ≤ Ĵp,δ(x) ≤ Jπ(x) + wπ,p,δ(x) ∀ x ∈ X.

By taking the limit as δ ↓ 0 and then the infimum over all π ∈ Πp,x, we have

Ĵp(x) ≤ lim
δ↓0

Ĵp,δ(x) ≤ inf
π∈Πp,x

Jπ(x) = Ĵp(x) ∀ x ∈ X,

from which the result follows.
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240 DIMITRI P. BERTSEKAS

We now consider approximately optimal policies. Given any ε > 0, by Propo-
sition 2.1(e), there exists an ε-optimal policy for the p-δ-perturbed problem, i.e., a
policy π such that Jπ(x) ≤ Ĵp,δ(x)+ε for all x ∈ X . We address the question whether
there exists a p-stable policy π that is ε-optimal for the restricted optimization over
p-stable policies, i.e., a policy π that is p-stable simultaneously from all x ∈ Xp (i.e.,
π ∈ Πp) and satisfies

Jπ(x) ≤ Ĵp(x) + ε ∀ x ∈ X.

We refer to such a policy as a p-ε-optimal policy.

Proposition 3.2 (existence of p-ε-optimal policy). Let p be a given forcing
function and δ > 0. For every ε > 0, a policy π that is ε-optimal for the p-δ-perturbed
problem is p-ε-optimal and, hence, belongs to Πp.

Proof. For any ε-optimal policy πε for the p-δ-perturbed problem, we have

Jπε,p,δ(x) ≤ Ĵp,δ(x) + ε < ∞ ∀ x ∈ X̂p.

This implies that πε ∈ Πp. Moreover, for all sequences {xk} generated from initial
state-policy pairs (π, x0) with x0 ∈ X̂p and π ∈ Πp,x0 , we have

Jπε(x0) ≤ Jπε,p,δ(x0) ≤ Ĵp,δ(x0) + ε ≤ Jπ(x0) + δ

∞∑
k=0

p(xk) + ε.

Taking the limit as δ ↓ 0 and using the fact
∑∞

k=0 p(xk) < ∞ (since π ∈ Πp,x0), we
obtain

Jπε(x0) ≤ Jπ(x0) + ε ∀ x0 ∈ X̂p, π ∈ Πp,x0 .

By taking the infimum over π ∈ Πp,x0 , it follows that

Jπε(x0) ≤ Ĵp(x0) + ε ∀ x0 ∈ X̂p,

which in view of the fact Jπε(x0) = Ĵp(x0) = ∞ for x0 /∈ X̂p, implies that πε is
p-ε-optimal.

Note that the preceding proposition implies that

(3.2) Ĵp(x) = inf
π∈Πp

Jπ(x) ∀ x ∈ X,

which is a stronger statement than the definition Ĵp(x) = infπ∈Πp,x Jπ(x) for all x ∈ X .
However, it can be shown through examples that there may not exist a restricted-
optimal p-stable policy, i.e., a π ∈ Πp such that Jπ = Ĵp, even if there exists an
optimal policy for the original problem. One such example is the one-dimensional
linear-quadratic problem of Example 1.1 for the case where p = p+. Then, there
exists a unique linear stable policy that attains the restricted optimal cost J+(x) for
all x (cf. Figure 1), but this policy is not terminating. Note also that there may
not exist a stationary p-ε-optimal policy, since generally in undiscounted nonnegative
optimal control problems there may not exist a stationary ε-optimal policy, as is well
known (for an example, see [Ber13, following Prop. 4.3.2]).

Our next proposition is preliminary for our main result. It involves the set of
functions Sp given by

(3.3) Sp =
{
J ∈ J ∣∣ J(xk) → 0 for all sequences {xk} generated from

initial state-policy pairs (π, x0) with x0 ∈ X and π ∈ Πp,x0

}
.
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STABLE OPTIMAL CONTROL 241

In words, Sp is the set of functions in J whose value is asymptotically driven to 0
by all the policies that are p-stable starting from some x0 ∈ X (and thus have the
character of Lyapunov functions for these policies).

Note that Sp contains Ĵp and Ĵp,δ for all δ > 0 [cf. (2.9)]. Moreover, Sp contains
all functions J such that 0 ≤ J ≤ h(Ĵp,δ) for some δ > 0 and function h : X �→ X

such that h(J) → 0 as J → 0. For example Sp contains all J such that 0 ≤ J ≤ c Ĵp,δ

for some c > 0 and δ > 0.
We summarize the preceding discussion in the following proposition, which also

shows uniqueness of the solution (within Sp) of Bellman’s equation for the p-δ-
perturbed problem. The significance of this is that the p-δ-perturbed problem, which
can be solved more reliably than the original problem (including by VI methods), can
yield a close approximation to Ĵp for sufficiently small δ [cf. Proposition 3.1(b)].

Proposition 3.3. Let p be a forcing function and δ > 0. The function Ĵp,δ

belongs to the set Sp, and is the unique solution within Sp of Bellman’s equation for
the p-δ-perturbed problem,

(3.4) Ĵp,δ(x) = inf
u∈U(x)

{
g(x, u) + δp(x) + Ĵp,δ

(
f(x, u)

)}
, x ∈ X.

Moreover, Sp contains Ĵp and all functions J satisfying

0 ≤ J ≤ h(Ĵp,δ)

for some h : X �→ X with h(J) → 0 as J → 0.

Proof. We have Ĵp,δ ∈ Sp and Ĵp ∈ Sp by the argument given following (3.3). We
also have that Ĵp,δ is a solution of Bellman’s equation (3.4) by Proposition 2.1(a). To
show that Ĵp,δ is the unique solution within Sp, let J̃ ∈ Sp be another solution, so
that using also Proposition 2.1(a), we have

(3.5) Ĵp,δ(x) ≤ J̃(x) ≤ g(x, u) + δp(x) + J̃
(
f(x, u)

) ∀ x ∈ X, u ∈ U(x).

Fix ε > 0, and let π = {μ0, μ1, . . .} be an ε-optimal policy for the p-δ-perturbed
problem. By repeatedly applying the preceding relation, we have for any x0 ∈ X̂p,

(3.6) Ĵp,δ(x0) ≤ J̃(x0) ≤ J̃(xk) + δ

k−1∑
m=0

p(xm) +
k−1∑
m=0

g
(
xm, μm(xm)

) ∀ k ≥ 1,

where {xk} is the state sequence generated starting from x0 and using π. We have
J̃(xk) → 0 (since J̃ ∈ Sp and π ∈ Πp by Proposition 3.2), so that

(3.7) lim
k→∞

{
J̃(xk) + δ

k−1∑
m=0

p(xm) +
k−1∑
m=0

g
(
xm, μm(xm)

)}
= Jπ,δ(x0) ≤ Ĵp,δ(x0)+ ε.

By combining (3.6) and (3.7), we obtain

Ĵp,δ(x0) ≤ J̃(x0) ≤ Ĵp,δ(x0) + ε ∀ x0 ∈ X̂p.

By letting ε → 0, it follows that Ĵp,δ(x0) = J̃(x0) for all x0 ∈ X̂p. Also for x0 /∈ X̂p, we
have Ĵp,δ(x0) = J̃(x0) = ∞ [since Ĵp,δ(x0) = ∞ for x0 /∈ X̂p and Ĵp,δ ≤ J̃ ; cf. (3.5)].
Thus Ĵp,δ = J̃ , proving that Ĵp,δ is the unique solution of the Bellman equation (3.4)
within Sp.
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We next show that Ĵp is the unique solution of Bellman’s equation within the set
of functions

(3.8) Wp = {J ∈ Sp | Ĵp ≤ J},

and that the VI algorithm yields Ĵp in the limit for any initial J0 ∈ Wp.

Proposition 3.4. Let p be a given forcing function. Then
(a) Ĵp is the unique solution of Bellman’s equation

(3.9) J(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X,

within the set Wp of (3.8);
(b) (VI convergence) If {Jk} is the sequence generated by the VI algorithm (1.4)

starting with some J0 ∈ Wp, then Jk → Ĵp;
(c) (optimality condition) If μ̂ is a p-stable stationary policy and

(3.10) μ̂(x) ∈ argmin
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)} ∀ x ∈ X,

then μ̂ is optimal over the set of p-stable policies. Conversely, if μ̂ is optimal
within the set of p-stable policies, then it satisfies the preceding condition
(3.10).

Proof. (a), (b) We first show that Ĵp is a solution of Bellman’s equation. Since
Ĵp,δ is a solution [cf. Proposition 3.3] and Ĵp,δ ≥ Ĵp [cf. Proposition 3.1(b)], we have
for all δ > 0,

Ĵp,δ(x) = inf
u∈U(x)

{
g(x, u) + δp(x) + Ĵp,δ

(
f(x, u)

)}
≥ inf

u∈U(x)

{
g(x, u) + Ĵp,δ

(
f(x, u)

)}
≥ inf

u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
.

By taking the limit as δ ↓ 0 and using the fact limδ↓0 Ĵp,δ = Ĵp [cf. Proposition 3.1(b)],
we obtain

(3.11) Ĵp(x) ≥ inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)} ∀ x ∈ X.

For the reverse inequality, let {δm} be a sequence with δm ↓ 0. From Proposi-
tion 3.3, we have for all m, x ∈ X , and u ∈ U(x),

g(x, u)+δmp(x)+Ĵp,δm

(
f(x, u)

) ≥ inf
v∈U(x)

{
g(x, v)+δmp(x)+Ĵp,δm

(
f(x, v)

)}
= Ĵp,δm(x).

Taking the limit as m → ∞, and using the fact limδm↓0 Ĵp,δm = Ĵp [cf. Proposi-
tion 3.1(b)], we have

g(x, u) + Ĵp

(
f(x, u)

) ≥ Ĵp(x) ∀ x ∈ X, u ∈ U(x),

so that

(3.12) inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)} ≥ Ĵp(x) ∀ x ∈ X.
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By combining (3.11) and (3.12), we see that Ĵp is a solution of Bellman’s equation.
We also have Ĵp ∈ Sp by Proposition 3.3, implying that Ĵp ∈ Wp and proving part
(a) except for the uniqueness assertion.

We will now prove part (b). Let π = {μ0, μ1, . . .} ∈ Πp [which is nonempty by
Proposition 3.2], and for x0 ∈ X̂p, let {xk} be the generated sequence starting from
x0 and using π. We have J0(xk) → 0 since J0 ∈ Sp. Since from the definition of the
VI sequence {Jk}, we have

Jk(x) ≤ g(x, u) + Jk−1
(
f(x, u)

) ∀ x ∈ X, u ∈ U(x), k = 1, 2, . . . ,

it follows that

Jk(x0) ≤ J0(xk) +
k−1∑
m=0

g
(
xm, μm(xm)

)
.

By taking the limit as k → ∞ and using the fact J0(xk) → 0, it follows that
lim supk→∞ Jk(x0) ≤ Jπ(x0). By taking the infimum over all π ∈ Πp, we obtain
lim supk→∞ Jk(x0) ≤ Ĵp(x0). Conversely, since Ĵp ≤ J0 and Ĵp is a solution of Bell-
man’s equation (as shown earlier), it follows by induction that Ĵp ≤ Jk for all k. Thus
Ĵp(x0) ≤ lim infk→∞ Jk(x0), implying that Jk(x0) → Ĵp(x0) for all x0 ∈ X̂p. We also
have Ĵp ≤ Jk for all k, so that Ĵp(x0) = Jk(x0) = ∞ for all x0 /∈ X̂p. This com-
pletes the proof of part (b). Finally, since Ĵp ∈ Wp and Ĵp is a solution of Bellman’s
equation, part (b) implies the uniqueness assertion of part (a).

(c) If μ is p-stable and (3.10) holds, then

Ĵp(x) = g
(
x, μ(x)

)
+ Ĵp

(
f(x, μ(x))

)
, x ∈ X.

By Proposition 2.1(b), this implies that Jμ ≤ Ĵp, so μ is optimal over the set of
p-stable policies. Conversely, assume that μ is p-stable and Jμ = Ĵp. Then by Propo-
sition 2.1(b), we have

Ĵp(x) = g
(
x, μ(x)

)
+ Ĵp

(
f(x, μ(x))

)
, x ∈ X,

and since [by part (a)] Ĵp is a solution of Bellman’s equation,

Ĵp(x) = inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, x ∈ X.

Combining the last two relations, we obtain (3.10).

We now consider the special case where p is equal to the function p+(x) = 1 for
all x �= t [cf. (2.10)]. The set of p+-stable policies from x is Π+

x , the set of terminating
policies from x, and J+(x) is the corresponding restricted optimal cost,

J+(x) = Ĵp+(x) = inf
π∈Π+

x

Jπ(x) = inf
π∈Π+

Jπ(x), x ∈ X

[the last equality follows from (3.2)]. In this case, the set Sp+ of (3.3) is the entire set
J , since for all J ∈ J and all sequences {xk} generated from initial state-policy pairs
(π, x0) with x0 ∈ X and π terminating from x0, we have J(xk) = 0 for k sufficiently
large. Thus, the set Wp+ of (3.8) is

(3.13) Wp+ = {J ∈ J | J+ ≤ J}.
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By specializing to the case p = p+ the result of Proposition 3.4, we obtain the following
proposition, which makes a stronger assertion than Proposition 3.4(a), namely, that
J+ is the largest solution of Bellman’s equation within J (rather than the smallest
solution within Wp+).

Proposition 3.5.
(a) J+ is the largest solution of the Bellman equation (3.9) within J , i.e., if

J̃ ∈ J is a solution of Bellman’s equation, then J̃ ≤ J+.
(b) (VI convergence) If {Jk} is the sequence generated by the VI algorithm (1.4)

starting with some J0 ∈ J with J0 ≥ J+, then Jk → J+.
(c) (optimality condition) If μ+ is a terminating stationary policy and

(3.14) μ+(x) ∈ arg min
u∈U(x)

{
g(x, u) + J+(

f(x, u)
)} ∀ x ∈ X,

then μ+ is optimal over the set of terminating policies. Conversely, if μ+ is
optimal within the set of terminating policies, then it satisfies the preceding
condition (3.14).

Proof. In view of Proposition 3.4 and the expression (3.13) for Wp+ , we only need
to show that J̃ ≤ J+ for every solution J̃ ∈ J of Bellman’s equation. Indeed, let J̃
be such a solution. We have J̃(x0) ≤ J+(x0) for all x0 with J+(x0) = ∞, so in order
to show that J̃ ≤ J+, it will suffice to show that for every (π, x0) with π ∈ Π+

x0
, we

have J̃(x0) ≤ Jπ(x0). Indeed, consider (π, x0) with π ∈ Π+
x0

, and let {x0, . . . , xk, t}
be the terminating state sequence generated starting from x0 and using π. Since J̃
solves Bellman’s equation, we have

J̃(xm) ≤ g
(
xm, μm(xm)

)
+ J̃(xm+1), m = 0, . . . , k − 1,

J̃(xk) ≤ g
(
xk, μk(xk)

)
.

By adding these relations, we obtain

J̃(x0) ≤
k∑

m=0

g
(
xm, μm(xm)

)
= Jπ(x0) ∀ (π, x0) with π ∈ Π+

x0
,

and by taking the infimum of the right side over π ∈ Π+
x0

, we obtain J̃(x0) ≤
J+(x0).

Note that Proposition 3.5(b) implies that the VI converges to J+ starting from
the particular initial condition

(3.15) J0(x) =

{
0 if x = t,

∞ if x �= t.

For this choice of J0, the value Jk(x) generated by VI is the optimal cost that can be
achieved starting from x subject to the constraint that t is reached in k steps or less.

Suppose now that the set of terminating policies is sufficient in the sense that it
can achieve the same optimal cost as the set of all policies, i.e., J+ = J∗. Then, from
Proposition 3.5, it follows that J∗ is the unique solution of Bellman’s equation within
J , and the VI algorithm converges to J∗ from above, i.e., starting from any J0 ∈ J
with J0 ≥ J∗. Under additional conditions, such as finiteness of U(x) for all x ∈ X
[cf. Proposition 2.1(d)], the VI converges to J∗ starting from any J0 ∈ J .
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Examples of problems where terminating policies are sufficient include linear-
quadratic problems under the classical conditions of controllability and observability
(cf. Example 1.1), and finite-node deterministic shortest path problems with all cycles
having positive length. Note that in the former case, despite the fact J+ = J∗, there
is no optimal terminating policy, since the only optimal policy is a linear policy that
drives the system to the origin asymptotically, but not in finite time.

Let us illustrate the results of this section with two examples.

Example 3.1 (minimum energy stable control of linear systems). Consider the
linear-quadratic problem of Example 1.1. We assume that the pair (A, B) is stabi-
lizable. However, we are making no assumptions on the state weighting matrix Q
other than positive semidefiniteness, so the detectability assumption may not be sat-
isfied. This includes the case Q = 0, when J∗(x) ≡ 0. In this case an optimal policy
is μ∗(x) ≡ 0, which may not be stable, yet the problem of finding a stable policy
that minimizes the “control energy” (a cost that is quadratic on the control with no
penalty on the state) among all stable policies is meaningful.

We consider the forcing function

p(x) = ‖x‖2,

so the p-δ-perturbed problem satisfies the detectability condition and from classical
results, J∗

p,δ is a positive definite quadratic function x′Pδx, where Pδ is the unique
solution of the p-δ-perturbed Riccati equation

(3.16) Pδ = A′ (Pδ − PδB(B′PδB + R)−1B′Pδ

)
A + Q + δI

within the class of positive semidefinite matrices. By Proposition 3.1, we have Ĵp(x) =
x′P̂ x, where P̂ = limδ↓0 Pδ is positive semidefinite, and solves the (unperturbed)
Riccati equation

P = A′ (P − PB(B′PB + R)−1B′P
)
A + Q.

Moreover, by Proposition 3.4(a), P̂ is the largest solution among positive semidefinite
matrices, since all positive semidefinite quadratic functions belong to the set Sp of
(3.3). By Proposition 3.4(c), any stable stationary policy μ̂ that is optimal among
the set of stable policies must satisfy the optimality condition

μ̂(x) ∈ arg min
u∈	m

{
u′Ru + (Ax + Bu)′P̂ (Ax + Bu)

} ∀ x ∈ 	n

[cf. (3.10)] or, equivalently, by setting the gradient of the minimized expression to 0,

(3.17) (R + B′P̂B)μ̂(x) = −B′P̂Ax.

We may solve (3.17), and check if any of its solutions μ̂ is p-stable; if this is so, μ̂
is optimal within the class of p-stable policies. Note, however, that in the absence
of additional conditions, it is possible that some policies μ̂ that solve (3.17) are p-
unstable.

In the case where the pair (A, B) is not stabilizable, the p-δ-perturbed cost func-
tion Ĵp,δ need not be real valued, and the δ-perturbed Riccatti equation (3.16) may
not have any solution (consider, for example, the case where n = 1, A = 2, B = 0,
and Q = R = 1). Then, Proposition 3.5 still applies, but the preceding analytical
approach needs to be modified.
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As noted earlier, the Bellman equation may have multiple solutions corresponding
to different forcing functions p, with each solution being unique within the correspond-
ing set Wp of (3.8), consistent with Proposition 3.4(a). The following is an illustrative
example.

Example 3.2 (an optimal stopping problem). Consider an optimal stopping prob-
lem where the state space X is 	n. We identify the destination with the origin of 	n,
i.e., t = 0. At each x �= 0, we may either stop (move to the origin) at a cost c > 0, or
move to state γx at cost ‖x‖, where γ is a scalar with 0 < γ < 1.3 Thus the Bellman
equation has the form

(3.18) J(x) =

{
min

{
c, ‖x‖ + J(γx)

}
if x �= 0,

0 if x = 0.

Let us consider first the forcing function

p(x) = ‖x‖.

Then it can be verified that all policies are p-stable. We have

J∗(x) = Ĵp(x) = min
{

c,
1

1 − γ
‖x‖

}
∀ x ∈ 	n,

and the optimal cost function of the corresponding p-δ-perturbed problem is

Ĵp,δ(x) = min
{

c + δ‖x‖,
1 + δ

1 − γ
‖x‖

}
∀ x ∈ 	n.

Here the set Sp of (3.3) is given by

Sp =
{
J ∈ J | lim

x→0
J(x) = 0

}
,

and the corresponding set Wp of (3.8) is given by

Wp =
{

J ∈ J | J∗ ≤ J, lim
x→0

J(x) = 0
}
.

Let us consider next the forcing function

p+(x) =

{
1 if x �= 0,

0 if x = 0.

Then the p+-stable policies are the terminating policies. Since stopping at some time
and incurring the cost c is a requirement for a terminating policy, it follows that the
optimal p+-stable policy is to stop as soon as possible, i.e., stop at every state. The
corresponding restricted optimal cost function is

J+(x) =

{
c if x �= 0,

0 if x = 0.

3In this example, the salient feature of the policy that never stops is that it drives the system
asymptotically to the destination according to an equation of the form xk+1 = f(xk), where f is a
contraction mapping. The example admits generalization to the broader class of optimal stopping
problems where the policy that never stops has this property. For simplicity in illustrating our main
point, we consider here the special case where f(x) = γx with γ ∈ (0, 1).
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The optimal cost function of the corresponding p+-δ-perturbed problem is

Ĵp+,δ(x) =

{
c + δ if x �= 0,

0 if x = 0,

since in the p+-δ-perturbed problem it is again optimal to stop as soon as possible,
at cost c + δ. Here the set Sp+ is equal to J , and the corresponding set Wp+ is equal
to {J ∈ J | J+ ≤ J}.

However, there are additional solutions of Bellman’s equation between the largest
and smallest solutions J∗ and J+. In fact, when n > 1, it can be shown that there are
infinitely many such solutions: for example, functions J ∈ J such that J(x) = J∗(x)
for x in some cone and J(x) = J+(x) for x in the complementary cone.

4. Policy iteration methods. Generally, the standard PI algorithm (1.5), (1.6)
produces unclear results under our assumptions. As an illustration, in the stopping
problem of Example 3.2, if the PI is started with the policy that stops at every state,
it repeats that policy, and this policy is not optimal even within the class of p-stable
policies with respect to the forcing function p(x) = ‖x‖. The following example
provides an instance where the PI algorithm may converge to either an optimal or a
strictly suboptimal policy.

Example 4.1 (counterexample for PI). Consider the case X = {0, 1}, U(0) =
U(1) = {0, 1}, and the destination is t = 0. Let also

f(x, u) =

{
0 if u = 0,

x if u = 1,
g(x, u) =

{
1 if u = 0, x = 1,

0 if u = 1 or x = 0.

This is a shortest path problem where the control u = 0 moves the state from x = 1 to
x = 0 (the destination) at cost 1, while the control u = 1 keeps the state unchanged
at cost 0. The policy μ∗ that keeps the state unchanged is the only optimal policy,
with Jμ∗(x) = J∗(x) = 0 for both states x. However, under any forcing function p
with p(1) > 0, the policy μ̂, which moves from state 1 to 0, is the only p-stable policy,
and we have Jμ̂(1) = Ĵp(1) = 1. The standard PI algorithm (1.5), (1.6) if started
with μ∗ will repeat μ∗. If this algorithm is started with μ̂, it may generate μ∗ or it
may repeat μ̂, depending on how the policy improvement iteration is implemented.
The reason is that for both x’s we have

μ̂(x) ∈ arg min
u∈{0,1}

{
g(x, u) + Ĵp

(
f(x, u)

)}
,

as can be verified with a straightforward calculation. Thus a rule for breaking a tie
in the policy improvement operation is needed, but such a rule may not be obvious
in general.

Motivated by the preceding example, we consider several types of PI methods
that bypass the difficulty above either through assumptions or through modifications.
We first consider a case where the PI algorithm is reliable. This is the case where the
terminating policies are sufficient, in the sense that J+ = J∗.

4.1. Policy iteration for the case J∗ = J+. The PI algorithm starts with
a stationary policy μ0, and generates a sequence of stationary policies {μk} via a
sequence of policy evaluations to obtain Jμk from the equation

(4.1) Jμk(x) = g
(
x, μk(x)

)
+ Jμk

(
f
(
x, μk(x)

))
, x ∈ X,
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interleaved with policy improvements to obtain μk+1 from Jμk according to

(4.2) μk+1(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jμk

(
f(x, u)

)}
, x ∈ X.

We implicitly assume here that the minimum in (4.2) is attained for each x ∈ X ,
which is true under some compactness condition on either U(x) or the level sets of
the function g(x, ·) + Jk(f(x, ·)), or both.

Proposition 4.1 (convergence of PI). Assume that J∗ = J+. Then the sequence
{Jμk} generated by the PI algorithm (4.1), (4.2), satisfies Jμk(x) ↓ J∗(x) for all
x ∈ X.

Proof. If μ is a stationary policy and μ̄ satisfies the policy improvement equation

μ̄(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jμ

(
f(x, u)

)}
, x ∈ X,

[cf. (4.2)], we have for all x ∈ X ,

Jμ(x) = g
(
x, μ(x)

)
+ Jμ

(
f
(
x, μ(x)

)) ≥ min
u∈U(x)

{
g(x, u) + Jμ

(
f(x, u)

)}
(4.3)

= g
(
x, μ̄(x)

)
+ Jμ

(
f
(
x, μ̄(x)

))
,

where the first equality follows from Proposition 2.1(b), and the second equality fol-
lows from the definition of μ̄. Repeatedly applying this relation, we see that the
sequence {J̃k(x0)} defined by

J̃k(x0) = Jμ(xk) +
k−1∑
m=0

g
(
xm, μ̄(xm)

)
, k = 1, 2, . . . ,

is monotonically nonincreasing, where {xk} is the sequence generated starting from
x0 and using μ. Moreover, from (4.4) we have

Jμ(x0) ≥ min
u∈U(x0)

{
g(x, u) + Jμ

(
f(x, u)

)}
= J̃1(x0) ≥ J̃k(x0)

for all k. This implies that

Jμ(x0) ≥ min
u∈U(x0)

{
g(x, u) + Jμ

(
f(x, u)

)} ≥ lim
k→∞

J̃k(x0) ≥ lim
k→∞

k−1∑
m=0

g
(
xm, μ̄(xm)

)
= Jμ̄(x0),

where the last inequality follows since Jμ ≥ 0. In conclusion, we have

(4.4) Jμ(x) ≥ inf
u∈U(x)

{
g(x, u) + Jμ

(
f(x, u)

)} ≥ Jμ̄(x), x ∈ X.

Using μk and μk+1 in place of μ and μ̄, we see that the sequence {Jμk} generated by
PI converges monotonically to some function J∞ ∈ E+(X), i.e., Jμk ↓ J∞. Moreover,
from (4.4) we have

J∞(x) ≥ inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
, x ∈ X,
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as well as
g(x, u) + Jμk

(
f(x, u)

) ≥ J∞(x), x ∈ X, u ∈ U(x).

We now take the limit in the second relation as k → ∞, then the infimum over
u ∈ U(x), and then combine with the first relation, to obtain

J∞(x) = inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
, x ∈ X.

Thus J∞ is a solution of Bellman’s equation, satisfying J∞ ≥ J∗ (since Jμk ≥ J∗

for all k) and J∞ ∈ J (since Jμk ∈ J ), so by Proposition 3.5(a), it must satisfy
J∞ = J∗.

4.2. A perturbed version of policy iteration. We now consider a PI algo-
rithm that does not require the condition J∗ = J+. We will provide a version of
the PI algorithm that uses the forcing function p and generates a sequence {μk} of
p-stable policies such that Jμk → Ĵp. In this section, the forcing function p is kept
fixed, and to simplify notation, we abbreviate Jμ,p,δ with Jμ,δ. The following assump-
tion requires that the algorithm generates p-stable policies exclusively, which can be
quite restrictive. For example it is not satisfied for the problem of Example 4.1.

Assumption 4.1. For each δ > 0 there exists at least one p-stable stationary policy
μ such that Jμ,δ ∈ Sp. Moreover, given a p-stable stationary policy μ and a scalar
δ > 0, every stationary policy μ such that

(4.5) μ(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jμ,δ

(
f(x, u)

)} ∀ x ∈ X

is p-stable, and at least one such policy exists.

The perturbed version of the PI algorithm is defined as follows. Let {δk} be a
positive sequence with δk ↓ 0, and let μ0 be a p-stable policy that satisfies Jμ0,δ0 ∈ Sp.
One possibility is that μ0 is an optimal policy for the δ0-perturbed problem (cf. the
discussion preceding Proposition 3.3). At iteration k, we have a p-stable policy μk,
and we generate a p-stable policy μk+1 according to

(4.6) μk+1(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jμk,δk

(
f(x, u)

)}
, x ∈ X.

Note that under Assumption 4.1, the algorithm is well-defined, and is guaranteed to
generate a sequence of p-stable stationary policies.

We will use, for all policies μ and scalars δ > 0, the mappings Tμ : E+(X) �→
E+(X) and Tμ,δ : E+(X) �→ E+(X) given by

(TμJ)(x) = g
(
x, μ(x)

)
+ J

(
f(x, μ(x))

)
, x ∈ X,

(Tμ,δJ)(x) = g
(
x, μ(x)

)
+ δp(x) + J

(
f(x, μ(x))

)
, x ∈ X,

and the mapping T : E+(X) �→ E+(X) given by

(TJ)(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X.

For any integer m ≥ 1, we denote by T m
μ and T m

μ,δ the m-fold compositions of the
mappings Tμ and Tμ,δ, respectively. We have the following proposition.

Proposition 4.2. Let Assumption 4.1 hold. Then for a sequence of p-stable poli-
cies {μk} generated by the perturbed PI algorithm (4.6), we have Jμk,δk

↓ Ĵp and
Jμk → Ĵp.
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Proof. The algorithm definition (4.6) implies that for all integer m ≥ 1 we have
for all x0 ∈ X ,

Jμk,p,δk
(x0) ≥ (TJμk,δk

)(x0) + δkp(x0) = (Tμk+1,δk
Jμk,δk

)(x0)
≥ (T m

μk+1,δk
Jμk,δk

)(x0) ≥ (T m
μk+1,δk

J̄)(x0),

where J̄ is the identically zero function [J̄(x) ≡ 0]. From this relation we obtain

Jμk,δk
(x0) ≥ lim

m→∞(T m
μk+1,δk

J̄)(x0) = lim
m→∞

{
m−1∑
�=0

(
g(x�, μ

k+1(x�)) + δkp(x�)
)}

≥ Jμk+1,δk+1
(x0),

as well as
Jμk,δk

(x0) ≥ (TJμk,δk
)(x0) + δkp(x0) ≥ Jμk+1,δk+1

(x0).

It follows that {Jμk,δk
} is monotonically nonincreasing, so that Jμk,δk

↓ J∞ for some
J∞, and

(4.7) lim
k→∞

TJμk,δk
= J∞.

We also have, using the fact J∞ ≤ Jμk,δk
,

inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)} ≤ lim
k→∞

inf
u∈U(x)

{
g(x, u) + Jμk,δk

(
f(x, u)

)}
≤ inf

u∈U(x)
lim

k→∞
{
g(x, u) + Jμk,δk

(
f(x, u)

)}
= inf

u∈U(x)

{
g(x, u) + lim

k→∞
Jμk,δk

(
f(x, u)

)}
= inf

u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
.

Thus equality holds throughout above, so that

lim
k→∞

TJμk,δk
= TJ∞.

Combining this with (4.7), we obtain J∞ = TJ∞, i.e., J∞ solves Bellman’s equation.
We also note that J∞ ≤ Jμ0,δ0 and that Jμ0,δ0 ∈ Sp by assumption, so that J∞ ∈ Sp.
By Proposition 3.4(a), J∞ = Ĵp.

Note that despite the fact Jμk → Ĵp, the generated sequence {μk} may exhibit
some serious pathologies in the limit. In particular, if U is a metric space and {μk}K
is a subsequence of policies that converges to some μ̄, in the sense that

lim
k→∞, k∈K

μk(x) = μ̄(x) ∀ x ∈ X,

it does not follow that μ̄ is p-stable. In fact it is possible to construct examples where
the generated sequence of p-stable policies {μk} satisfies limk→∞ Jμk = Ĵp = J∗, yet
{μk} may converge to a p-unstable policy whose cost function is strictly larger than
Ĵp. Example 2.1 of the paper [BeY16] provides an instance of a stochastic shortest
path problem with two states, in addition to the termination state, where this occurs.
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5. Concluding remarks. We have considered deterministic optimal control
with a cost-free and absorbing destination under general assumptions, which include
arbitrary state and control spaces, and a Bellman’s equation with multiple solutions.
Within this context, we have used perturbations of the cost per stage and the ideas of
semicontractive DP as a means to connect classical issues of stability and optimiza-
tion. In particular, we have shown that the restricted optimal cost function over just
the stable policies is a solution of Bellman’s equation, and that versions of the VI and
PI algorithms are attracted to it. Moreover, the restricted optimal cost function J+

over the “fastest” policies (the ones that terminate) is the largest solution of Bellman’s
equation. The generality of our framework makes our results a convenient starting
point for analysis of related problems and methods, involving additional assumptions,
and/or cost function approximation and state space discretization.

An interesting open question is how to discretize continuous-spaces problems to
solve Bellman’s equation numerically. As an example, consider the linear-quadratic
problem of Example 3.1. Any reasonable discretization of this problem is a finite-
state (deterministic or stochastic) shortest path problem, whose Bellman equation
has a unique solution that approximates the solution J∗ of the continuous-spaces
problem, while missing entirely the solution J+. The same is true for the optimal
stopping problem of Example 3.2. In such cases, one may discretize a p-δ-perturbed
version of the problem, which is better behaved, and use a small value of δ to obtain
an approximation to J+. However, the limiting issues as δ ↓ 0 remain to be explored.
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