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Abstract. We consider convex optimization problems with structures that are suitable for
sequential treatment or online sampling. In particular, we focus on problems where the objective
function is an expected value, and the constraint set is the intersection of a large number of simpler
sets. We propose an algorithmic framework for stochastic first-order methods using random projec-
tion/proximal updates and random constraint updates, which contain as special cases several known
algorithms as well as many new algorithms. To analyze the convergence of these algorithms in a
unified manner, we prove a general coupled convergence theorem. It states that the convergence is
obtained from an interplay between two coupled processes: progress toward feasibility and progress
toward optimality. Under suitable stepsize assumptions, we show that the optimality error decreases
at a rate of O(1/

√
k) and the feasibility error decreases at a rate of O(log k/k). We also consider a

number of typical sampling processes for generating stochastic first-order information and random
constraints, which are common in data-intensive applications, online learning, and simulation op-
timization. By using the coupled convergence theorem as a modular architecture, we are able to
analyze the convergence of stochastic algorithms that use arbitrary combinations of these sampling
processes.
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1. Introduction. Consider the convex optimization problem

(1) min
x∈X

f(x),

where f : �n �→ � is a convex function (not necessarily differentiable), and X is a
nonempty, closed, and convex set in �n. We are interested in problems of this form
where the constraint set X is the intersection of a finite number of sets, i.e.,

(2) X = ∩m
i=1Xi,

with each Xi being a closed and convex subset of �n. We also allow the objective
function f to be the sum of a large number of component functions, or more generally
to be expressed as the expected value

(3) f(x) = E
[
fv(x)

]
,

where fv : �n �→ � is a function of x involving a random variable v.
Two classical methods for solution of problem (1) are the subgradient projection

method (or projection method for short) and the proximal method. The projection
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682 MENGDI WANG AND DIMITRI P. BERTSEKAS

method has the form

xk+1 = Π
[
xk − αk∇̃f(xk)

]
,

where Π denotes the Euclidean orthogonal projection onto X , {αk} is a sequence of
constant or diminishing positive scalars, and ∇̃f(xk) is a subgradient of f at xk (a
vector g is a subgradient of f at x if g′(y − x) ≤ f(y) − f(x) for any y ∈ �n). The
proximal method has the form

xk+1 = argminx∈X

[
f(x) +

1

2αk
‖x− xk‖2

]

and can be equivalently written as

xk+1 = Π
[
xk − αk∇̃f(xk+1)

]
for some subgradient ∇̃f(xk+1) of f at xk+1 (see [Ber11, Proposition 1]). In this way,
the proximal method has a form similar to that of the projection method. This enables
us to analyze these two methods and their mixed versions with a unified analysis.

In practice, these methods are often difficult to use, especially when the constraint
set X is complicated (cf. (2)). At every iteration, the projection method requires the
computation of the Euclidean projection, and the proximal method requires solving a
constrained minimization, both of which can be time-consuming (or even impossible
with limited memory space). In the case where X is the intersection of a large number
of simpler sets Xi, it is possible to improve the efficiency of a single iteration for these
methods, by operating with a single set Xi at a time.

Another difficulty arises when f either is the sum of a large number of component
functions, f(x) =

∑
i fi(x) or, more generally, is an expected value, i.e., f(x) =

E
[
fv(x)

]
. Then the exact computation of a subgradient ∇̃f(xk) can be either very

expensive or impossible due to noise. To address this difficulty, we may use in place of
∇̃f(xk) in the projection method a stochastic sample subgradient g(xk, vk). Similarly,
we may use in place of f(x) in the proximal method a sample component function
fvk(x).

In this paper, we propose to modify and combine the projection and proximal
methods, in order to process the constraints Xi and the component functions fv(·)
sequentially or “online.” The purpose of this paper is to present a unified analytical
framework for these methods and their extensions. In particular, we focus on the
class of methods that interact with a probabilistic process that generates stochastic
first-order information and randomized constraints.

Suppose that we have access to a sampling oracle (SO) such that
• given a vector x ∈ �n, it returns a random subgradient vector g(x, v) or a
random function fv(·);

• given a vector z ∈ �n, it returns a random projection Πwk
z.

Here Πwk
denotes the Euclidean projection onto a set Xwk

, {wk} is a sequence of ran-
dom variables taking values in {1, . . . ,m}, and {vk} is a sequence of random variables
generated by some probabilistic process. The sampling oracle is a model that is widely
used in stochastic and online optimization. In particular, optimization problems aris-
ing from statistical estimation and machine learning problems are often driven by
large data sets or even streaming data. These applications naturally come with a
sampling oracle, i.e., the oracle that accesses the data points. We will state a variety
of assumptions on the stochastic sampling process {(vk, wk)} in subsequent analysis.
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 683

Algorithm 1. Stochastic first-order method with random constraint projection.

Input: x0, z0 ∈ �n, SO, {αk}, {βk}.
1: for k = 0, 1, 2, . . . do
2: Query the SO at xk and obtain either g(xk, vk) or fvk(·).
3: Perform either a stochastic gradient descent step,

xk+1 = Πwk

[
xk − αkg(xk, vk)

]
,

or a stochastic proximal step,

xk+1 = argminx∈Xwk

[
fvk(x) +

1

2αk
‖x− xk‖2

]
.

4: Query the SO at zk and obtain a random projection Πwk
zk.

5: Update the iterate as

xk+1 = zk − βk (zk −Πwk
zk) .

6: end for

We propose an algorithmic framework that involves random optimality updates
and random feasibility updates, which are summarized in Algorithm 1. Algorithm 1
updates the iterates by interacting closely with the SO. It is a mixed version of the
gradient projection and the proximal methods. In the case where only stochastic
gradients are available and βk = 1, Algorithm 1 becomes the random projection
algorithm given by

xk+1 = Πwk

[
xk − αkg(xk, vk)

]
,

and a special case of this algorithm using exact gradient has been considered by
Nedić [Ned11]. In the other case where only proximal steps are used and βk = 1, the
corresponding iteration becomes a random constraint proximal algorithm, given by

(4) xk+1 = argminx∈Xwk

[
fvk(x) +

1

2αk
‖x− xk‖2

]
= Πwk

[
xk − αkg(xk+1, vk)

]
,

which, to the best of our knowledge, has never been considered in the literature.
Another interesting case is when f has the form

f(x) =
N∑
i=1

hi(x) +
N∑
i=1

ĥi(x),

where hi are functions whose subgradients are easy to compute, ĥi are functions
that are suitable for the proximal iteration, and a sample component function fv
may belong to either {hi} or {ĥi}. In this case, our algorithm can adaptively choose
between a projection step and a proximal step, based on the current sample component
function.

We notice from (4) that the proximal step is very similar to a gradient update.
This allows us to analyze the projection and proximal algorithms together under the
same framework. In fact, the iteration of Algorithm 1 is equivalent to

(5) zk = xk − αkg(x̄k, vk), xk+1 = zk − βk (zk −Πwk
zk) ,
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684 MENGDI WANG AND DIMITRI P. BERTSEKAS

where x̄k can take either of the following values:

(6) x̄k = xk, or x̄k = xk+1.

Note that although (5) may involve xk+1, its implementation given by Algorithm 1
does not look ahead into the future. In our analysis, we focus on iteration (5). To
make the algorithm as general as possible, we have left open the formal definition of
g(·, vk) and simply regarded it as a noisy evaluation of some subgradient. More details
will be specified in section 5 when we revisit the SO for first-order information.

A major contribution of this work is to propose a unified algorithmic and analyt-
ical framework for stochastic first-order methods with constraint randomization. Our
Algorithm 1 (which is equivalent to (5)–(6)) can be viewed as alternating between
two types of iterations with different objectives: to approach the feasible set and to
approach the set of optimal solutions. We will provide a coupled supermartingale
convergence lemma (Lemma 7) for the first time, which establishes the convergence
of two entangled supermartingales. Then we will provide a coupled convergence the-
orem (Theorem 1) which requires that the algorithm operate on two different time
scales: the convergence to the feasible set, which is controlled by βk, should have a
smaller modulus of contraction than the convergence to the optimal solution, which
is controlled by αk. This coupled improvement mechanism is the key to the almost
sure convergence of optimization methods involving randomness in both feasibility
and optimality updates. It also provides a modular architecture that can be used to
analyze new variants of the algorithms or new assumptions about the SO.

A second contribution of this work is the convergence rate analysis (Theorem 2).
Under suitable stepsize assumptions, we prove that the optimality error diminishes
to zero at a rate of O(1/

√
k), while the feasibility error diminishes to zero at a rate

of O(log k/k). This is consistent with our theory that the convergence has two time
scales. More importantly, the convergence rate O(1/

√
k) is nonimprovable in terms of

sample-error complexity. As long as we want to optimize a convex function using noisy
first-order information, the error bound O(1/

√
k) is already optimal with respect to

the sample size. This suggests that randomizing the constraint projection does not
slow down the stochastic convergence (up to a constant).

Another contribution of our analysis relates to the SO for obtaining the samples
vk and wk. For example, a common situation arises from applications based on large
data sets. Then each component f(·, v) and constraint Xw may relate to a piece of
data, so that accessing all of them requires passing through the entire data set. This
forces the algorithm to process the components/constraints sequentially, according
to either a fixed order or by random sampling. There are also situations in which
the component functions or the constraints can be selected adaptively based on the
iterates’ history. In this work, we will consider several typical cases for generating the
random variables wk and vk, which we list below and define more precisely later:

• Sampling schemes for constraints Xwk
:

– The samples are nearly independent and all the constraint indexes are
visited sufficiently often.

– The samples are “cyclic,” e.g., are generated according to either a de-
terministic cyclic order or a random permutation of the indexes within
a cycle.

– The samples are selected to be the most distant constraint supersets to
the current iterates.

– The samples are generated according to an irreducible Markov chain
with an appropriate invariant distribution.
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 685

• Sampling schemes for subgradients g(·, vk) or component functions fvk:
– The samples are conditionally unbiased.
– The samples are “cyclically obtained” by either a fixed order or random

shuffling.
We will consider all combinations of the preceding sampling schemes and show that
our unified convergence analysis applies to all of them. While it is beyond our scope
to identify all possible sampling schemes that may be interesting, one of the goals of
the current paper is to propose a unified framework, both algorithmic and analytic,
that can be easily adapted to new sampling schemes and algorithms.

Related works. The proposed Algorithm 1 contains as special cases a number of
known methods from convex optimization, feasibility, and stochastic approximation.
In view of these connections, our analysis uses several ideas from the literature which
we will now summarize.

The feasibility update of Algorithm 1 is related to known methods for feasibility
problems. In particular, when f(x) = 0, g(x̄k, vk) = 0 and βk = 1, we obtain a suc-
cessive projection algorithm for finding some x ∈ X = ∩m

i=1Xi. Successive projection
methods have a long history, starting with von Neumann [vN50], followed by many
other authors: Halperin [Hal62], Gubin, Polyak, and Raik [GPR67], Tseng [Tse90],
Bauschke, Borwein, and Lewis [BBL97], Deutsch and Hundal [DH06a], [DH06b],
[DH08], Cegielski and Suchocka [CS08], Lewis and Malick [LM08], Leventhal and
Lewis [LL10], and Nedić [Ned10]. A survey of the work in this area up to 1996 is
given by Bauschke [Bau96].

The use of stochastic subgradients in Algorithm 1 is closely related to stochastic
approximation methods. In the case where X = Xwk

for all k, our method be-
comes a stochastic approximation method for optimization problems, which has been
well known in the literature. Similar to several sources on convergence analysis of
stochastic algorithms, we use a supermartingale convergence theorem (see, e.g., the
textbooks by Bertsekas and Tsitsiklis [BT89], by Kushner and Yin [KY03], and by
Borkar [Bor08]).

Algorithms using random constraint updates for optimization problems of the
form (1) were first considered by Nedić [Ned11]. This work proposed a projection
method that updates using exact subgradients and randomized selection of constraint
sets, which can be viewed as a special case of Algorithm 1 with x̄k = xk. The work of
[Ned11] is less general than the current work in that it does not consider the proximal
method, it does not use random samples of subgradients, and it considers only a
special case of constraint randomization.

Another closely related work is Bertsekas [Ber11]. It proposed an algorithmic
framework that alternates incrementally between subgradient and proximal iterations
for minimizing a cost function f =

∑m
i=1 fi, the sum of a large but finite number of

convex components fi, over a constraint set X . This can be viewed as a special case
of Algorithm 1 with Xwk

= X . The choice between random and cyclic selection of
the components fi for iteration is a major point of analysis of these methods, similar
to earlier works on incremental subgradient methods by Nedić and Bertsekas [NB00],
[NB01], [BNO03]. It is less general than the current work in that it does not consider
the randomization of constraints, and it requires the objective function to be Lipchitz
continuous.

Recently, the idea of constraint randomization has been extended to the solution
of variational inequalities, by Wang and Bertsekas in [WB12]. This work is by far the
most related to the current work but focuses on a different problem: finding x∗ such
that F (x∗)′(x−x∗) ≥ 0 for all x ∈ ∩m

i=1Xi, where F : �n �→ �n is a strongly monotone
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686 MENGDI WANG AND DIMITRI P. BERTSEKAS

mapping (i.e., (F (x) − F (y))′(x − y) ≥ σ‖x− y‖2 for some σ > 0 and all x, y ∈ �n).
The work of [WB12] modifies the projection method for variational inequalities to
use cyclic/random constraint projection and analyzes the convergence performances.
This work is related to the present paper in that it addresses a problem that contains
the minimization of a differentiable strongly convex function as a special case (whose
optimality condition is a strongly monotone variational inequality) and shares some
analytical ideas. However, the present paper proposes a substantially more general
framework that applies to convex nonsmooth optimization and is based on the new
coupled convergence theorem for two time-scale processes, which provides a modular
architecture for analyzing new algorithms as well as new sampling schemes.

Outline. Section 2 summarizes our basic assumptions and a few preliminary re-
sults. Section 3 proves the coupled convergence theorem and rate of convergence
theorem, which, assuming a feasibility improvement condition and an optimality im-
provement condition, establishes convergence of the general Algorithm 1. Section 4
considers sampling schemes for the constraint sets such that the feasibility improve-
ment condition is satisfied. Section 5 considers sampling schemes for the subgradients
or objective functions such that the optimality improvement condition is satisfied. Sec-
tion 6 collects various sets of conditions under which the convergence of the stochastic
algorithms can be achieved. Section 7 gives some numerical results, and section 8
summarizes the current work.

Notation. All vectors in the n-dimensional Euclidean space �n will be viewed as
column vectors. For x ∈ �n, we denote by x′ its transpose and by ‖x‖ its Euclidean
norm (i.e., ‖x‖ =

√
x′x). For two sequences of nonnegative scalars {yk} and {zk}, we

write yk = O(zk) if there exists a constant c > 0 such that yk ≤ czk for each k, and
we write yk = Θ(zk) if there exist constants c1 > c2 > 0 such that c2zk ≤ yk ≤ c1zk
for each k. We denote by ∂f(x) the subdifferential (the set of all subgradients)
of f at x, denote by X∗ the set of optimal solutions for problem (1), and denote

by f∗ = infx∈X f(x) the optimal value. The abbreviation “
a.s.−→” means “converges

almost surely to,” while the abbreviation “i.i.d.” means “independent and identically
distributed.”

2. Assumptions and preliminaries. To motivate our analysis, we first briefly
review the convergence mechanism of the deterministic subgradient projection method

(7) xk+1 = Π
[
xk − αk∇̃f(xk)

]
,

where Π denotes the Euclidean orthogonal projection on X . We assume for simplicity
that ‖∇̃f(x)‖ ≤ L for all x and that there exists at least one optimal solution x∗ of
problem (1). Then we have

‖xk+1 − x∗‖2 =
∥∥Π[xk − αk∇̃f(xk)

]− x∗∥∥2
≤ ∥∥(xk − αk∇̃f(xk)

)− x∗∥∥2
= ‖xk − x∗‖2 − 2αk∇̃f(xk)

′(xk − x∗) + α2
k

∥∥∇̃f(xk)
∥∥2

≤ ‖xk − x∗‖2 − 2αk

(
f(xk)− f∗)+ α2

kL
2,

(8)

where the first inequality uses the fact x∗ ∈ X and the nonexpansiveness of the
projection, i.e.,

‖Πx−Πy‖ ≤ ‖x− y‖ ∀ x, y ∈ �n,

and the second inequality uses the definition of the subgradient ∇̃f(x), i.e.,

∇̃f(x)′(y − x) ≤ f(y)− f(x) ∀ x, y ∈ �n.
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A key fact is that since xk ∈ X , the value
(
f(xk) − f∗) must be nonnegative. From

(8) by taking k → ∞, we have

lim sup
k→∞

‖xk+1 − x∗‖2 ≤ ‖x0 − x∗‖2 − 2

∞∑
k=0

αk

(
f(xk)− f∗)+ ∞∑

k=0

α2
kL

2.

Assuming that
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k < ∞, we can use a standard argument

to show that ‖xk − x∗‖ is convergent for all x∗ ∈ X∗ and

∞∑
k=0

αk

(
f(xk)− f∗) < ∞,

which implies that lim infk→∞ f(xk) = f∗. Finally, by using the continuity of f , we
can show that the iterates xk must converge to some optimal solution of problem (1).

Our proposed Algorithm 1, which is equivalent to
(9)
zk = xk −αkg(x̄k, vk), xk+1 = zk−βk (zk −Πwk

zk) , with x̄k = xk or x̄k = xk+1,

differs from the classical method (7) in a fundamental way: the iterates {xk} generated
by the algorithm (9) are not guaranteed to stay in X . Moreover, the projection Πwk

onto a random set Xwk
need not decrease the distance between xk and X at every

iteration. As a result, the analogue of the fundamental bound (8) now includes the
distance of xk from X , which need not decrease at each iteration. We will show that
{xk} approaches the feasible set X in a stochastic sense as k → ∞. This idea is also
implicit in the analyses of [Ned11] and [WB12].

To analyze the stochastic iteration (9), we denote by Fk the collection of random
variables

Fk = {v0, . . . , vk−1, w0, . . . , wk−1, z0, . . . , zk−1, x̄0, . . . , x̄k−1, x0, . . . , xk}.
Moreover, we denote by

d(x) = ‖x−Πx‖
the Euclidean distance of any x ∈ �n from X .

Let us outline the convergence proof for iteration (9) with i.i.d. random projection
and x̄k = xk. Similar to the classical projection method (7), our line of analysis starts
with a bound of the iteration error that has the form

(10) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk∇̃f(xk)
′(xk − x∗) + e(xk, αk, βk, wk, vk),

where e(xk, αk, βk, wk, vk) is a random variable. Under suitable assumptions, we will
bound each term on the right side of (10) and then take conditional expectation
on both sides. From this we will obtain that the iteration error is “stochastically
decreasing” in the following sense:

E
[‖xk+1 − x∗‖2 | Fk

] ≤ (1 + εk)‖xk − x∗‖2 − 2αk

(
f(Πxk)− f(x∗)

)
+O(βk) d

2(xk) + εk w.p.1,

where εk are positive errors such that
∑∞

k=0 εk < ∞. On the other hand, by using
properties of random projection, we will obtain that the feasibility error d2(xk) is
“stochastically decreasing” at a faster rate, according to

E
[
d2(xk+1) | Fk

] ≤ (1−O(βk)
)
d2(xk) + εk

(‖xk − x∗‖2 + 1
)

w.p.1.
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688 MENGDI WANG AND DIMITRI P. BERTSEKAS

Finally, based on the preceding two inequalities and through a series of intermediate
results, we will end up using the following supermartingale convergence lemma due
to Robbins and Siegmund [RS57] to prove an extension and a two-coupled-sequence
supermartingale convergence lemma, and then complete the convergence proof of our
algorithm.

Lemma 1. Let {ξk}, {uk}, {ηk}, and {μk} be sequences of nonnegative random
variables such that

E [ξk+1 | Gk] ≤ (1 + ηk)ξk − uk + μk ∀ k ≥ 0 w.p.1,

where Gk denotes the collection ξ0, . . . , ξk, u0, . . . , uk, η0, . . . , ηk, μ0, . . . , μk, and

∞∑
k=0

ηk < ∞,

∞∑
k=0

μk < ∞, w.p.1.

Then the sequence of random variables {ξk} converges almost surely to a nonnegative
random variable, and we have

∞∑
k=0

uk < ∞ w.p.1.

This line of analysis is shared with incremental subgradient and proximal methods
(see [NB00], [NB01], [Ber11]). However, here the technical details are more intricate
because there are two types of iterations, which involve the two different stepsizes αk

and βk. We will now introduce our assumptions and give a few preliminary results
that will be used in the subsequent analysis.

Our first assumption requires that the norm of any subgradient of f be bounded
from above by a linear function, which implies that f is bounded by a quadratic
function. It also requires that the random samples g(x, vk) satisfy bounds that involve
a multiple of ‖x‖.

Assumption 1. The set of optimal solutions X∗ of problem (1) is nonempty.
Moreover, there exists a constant L > 0 such that

(a) for any ∇̃f(x) ∈ ∂f(x),

∥∥∇̃f(x)
∥∥2 ≤ L2

(‖x‖2 + 1
) ∀ x ∈ �n,

(b)

‖g(x, vk)− g(y, vk)‖ ≤ L
(‖x− y‖+ 1

) ∀ x, y ∈ �n, k = 0, 1, 2, . . . , w.p.1,

(c)

(11) E
[∥∥g(x, vk)∥∥2 ∣∣ Fk

]
≤ L2

(‖x‖2 + 1
) ∀ x ∈ �n w.p.1.

Assumption 1 is very general. It contains as special cases a number of conditions
that have been frequently assumed in the literature. More specifically, it allows f
to be Lipchitz continuous or to have Lipchitz continuous gradient. It also allows
f to be nonsmooth and have bounded subgradients. Moreover, it allows f to be a
nonsmooth approximation of a smooth function with Lipchitz continuous gradient,
e.g., a piecewise linear approximation of a quadratic-like function. These assumptions
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 689

can be verified easily in many practical applications. Consider, for example, the
statistical estimation problems. In these problems, the objective is often the sum of
many loss functions, where each loss function is associated with a data point. The loss
function is often a negative log-likelihood function. With some knowledge about the
likelihood function and distribution of data points, it is usually quite straightforward
to verify Assumption 1.

The next assumption includes a standard stepsize condition on αk, widely used in
the literature of stochastic approximation. Moreover, it imposes a certain relationship
between the sequences {αk} and {βk}, which is the key to the coupled convergence
process of the proposed algorithm.

Assumption 2. The stepsize sequences {αk} and {βk} are deterministic and non-
increasing and satisfy αk ∈ (0, 1), βk ∈ (0, 2) for all k, limk→∞ βk/βk+1 = 1, and

∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞,

∞∑
k=0

βk = ∞,

∞∑
k=0

α2
k

βk
< ∞.

The condition
∑∞

k=0
α2

k

βk
< ∞ essentially restricts βk either to be a constant in

(0, 2) for all k or to decrease to 0 at a certain rate. Given that
∑∞

k=0 αk = ∞,
this condition implies that lim infk→∞ αk

βk
= 0. We will show that as a consequence,

the convergence to the feasible set has a better modulus of contraction than the
convergence to the optimal solution. This is necessary for the almost sure convergence
of the coupled process.

Let us now prove a few preliminary technical lemmas. The first one gives several
basic facts regarding projection and has been proved in [WB12, Lemma 1], but we
repeat it here for completeness.

Lemma 2. Let S be a closed convex subset of �n, and let ΠS denote orthogonal
projection onto S.

(a) For all x ∈ �n, y ∈ S, and β > 0,

∥∥x− β(x−ΠSx)− y
∥∥2 ≤ ‖x− y‖2 − β(2 − β)‖x−ΠSx‖2.

(b) For all x, y ∈ �n,

‖y −ΠSy‖2 ≤ 2‖x−ΠSx‖2 + 8‖x− y‖2.

The second lemma gives a decomposition of the iteration error (cf. (10)), which
will serve as the starting point of our analysis.

Lemma 3. For any ε > 0 and y ∈ X, the sequence {xk} generated by Algorithm 1
is such that

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αkg(x̄k, vk)
′(xk − y) + α2

k‖g(x̄k, vk)‖2
− βk(2− βk)‖Πwk

zk − zk‖2
≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2

k‖g(x̄k, vk)‖2
− βk(2− βk)‖Πwk

zk − zk‖2.
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Proof. From Lemma 2(a) and the relations xk+1 = zk − βk(zk − Πwk
zk), zk =

xk − αkg(x̄k, vk) (cf. (9)), we obtain

‖xk+1 − y‖2 ≤ ‖zk − y‖2 − βk(2− βk)‖Πwk
zk − zk‖2

= ‖xk − y − αkg(x̄k, vk)‖2 − βk(2 − βk)‖Πwk
zk − zk‖2

= ‖xk − y‖2 − 2αkg(x̄k, vk)
′(xk − y) + α2

k‖g(x̄k, vk)‖2
− βk(2− βk)‖Πwk

zk − zk‖2
≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2

k‖g(x̄k, vk)‖2
− βk(2− βk)‖Πwk

zk − zk‖2,
where the last inequality uses the fact 2a′b ≤ ε‖a‖2 + (1/ε)‖b‖2 for any a, b ∈ �n.

The third lemma gives several basic upper bounds on quantities relating to xk+1,
conditioned on the iterates’ history up to the kth sample.

Lemma 4. Let Assumptions 1 and 2 hold, let x∗ be a given optimal solution of
problem (1), and let {xk} be generated by Algorithm 1. Then for all k ≥ 0, with
probability 1,

(a) E
[‖xk+1 − x∗‖2 | Fk

] ≤ O (‖xk − x∗‖2 + α2
k

)
,

(b) E
[
d2(xk+1) | Fk

] ≤ O ( d2(xk) + α2
k‖xk − x∗‖2 + α2

k

)
,

(c) E
[‖g(x̄k, vk)‖2 | Fk

] ≤ O
(‖xk − x∗‖2 + 1

)
,

(d) E
[∥∥x̄k − xk

∥∥2 | Fk

]
≤ E

[∥∥xk+1 − xk

∥∥2 | Fk

]
≤ O(α2

k)
(‖xk − x∗‖2 + 1

)
+

O(β2
k) d

2(xk).

Proof. We will prove parts (c) and (d) first and prove parts (a) and (b) later.
(c), (d) By using the basic inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for a, b ∈ �n and

then applying Assumption 1, we have

E
[‖g(x̄k, vk)‖2 | Fk

] ≤ 2E
[‖g(xk, vk)‖2 | Fk

]
+ 2E

[‖g(x̄k, vk)− g(xk, vk)‖2 | Fk

]
≤ O

(‖xk − x∗‖2 + 1
)
+O (E [‖x̄k − xk‖2 | Fk

])
.

(12)

Since x̄k ∈ {xk, xk+1} and X ⊂ Xwk
, we use the equivalent form (9) of the algorithm

and obtain

‖x̄k−xk‖ ≤ ‖xk+1−xk

∥∥ ≤ αk‖g(x̄k, vk)‖+βk‖zk−Πwk
zk‖ ≤ αk‖g(x̄k, vk)‖+βk d(zk)

so that
‖x̄k − xk‖2 ≤ ‖xk+1 − xk

∥∥2 ≤ 2α2
k‖g(x̄k, vk)‖2 + 2β2

k d
2(zk).

Note that from Lemma 2(b) we have

d2(zk) ≤ 2 d2(xk) + 8‖xk − zk‖2 = 2d2(xk) + 8α2
k‖g(x̄k, vk)‖2.

Then it follows from the preceding two relations that

‖x̄k − xk‖2 ≤ ‖xk+1 − xk

∥∥2 ≤ O(α2
k)‖g(x̄k, vk)‖2 +O(β2

k) d
2(xk).(13)

By taking expectation on both sides of (13) and applying (12), we obtain

E
[‖x̄k − xk‖2 | Fk

] ≤ E
[‖xk+1 − xk‖2 | Fk

]
≤ O(α2

k)(‖xk − x∗‖2 + 1) +O(α2
k)E

[‖x̄k − xk‖2 | Fk

]
+O(β2

k) d
2(xk),

D
ow

nl
oa

de
d 

11
/0

5/
17

 to
 1

8.
9.

61
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FIRST-ORDER METHODS WITH RANDOM PROJECTION 691

and by rearranging terms in the preceding inequality, we obtain part (d). Finally, we
apply part (d) to (12) and obtain

E
[‖g(x̄k, vk)‖2 | Fk

] ≤ O(‖xk − x∗‖2 + 1) +O(α2
k)
(‖xk − x∗‖2 + 1

)
+O(β2

k) d
2(xk)

≤ O(‖xk − x∗‖2 + 1),

where the second inequality uses the fact βk ≤ 2 and d(xk) ≤ ‖xk − x∗‖. Thus we
have proved part (c).

(a), (b) Let y be an arbitrary vector in X , and let ε be a positive scalar. By using
Lemma 3 and part (c), we have

E
[‖xk+1 − y‖2 | Fk

] ≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2
kE
[‖g(x̄k, vk)‖2 | Fk

]
≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2

kO
(‖xk − x∗‖2 + 1

)
.

By letting y = x∗, we obtain (a). By letting y = Πxk and using d(xk+1) ≤ ‖xk+1 −
Πxk‖, we obtain (b).

The next lemma is an extension of Lemma 4. It gives the basic upper bounds
on quantities relating to xk+N , conditioned on the iterates’ history up to the kth
samples, with N being a fixed integer.

Lemma 5. Let Assumptions 1 and 2 hold, let x∗ be a given optimal solution of
problem (1), let {xk} be generated by by Algorithm 1, and let N be a given positive
integer. Then for all k ≥ 0, with probability 1,

(a) E
[‖xk+N − x∗‖2 | Fk

] ≤ O (‖xk − x∗‖2 + α2
k

)
,

(b) E
[
d2(xk+N ) | Fk

] ≤ O ( d2(xk) + α2
k‖xk − x∗‖2 + α2

k

)
,

(c) E
[‖g(x̄k+N , vk+N )‖2 | Fk

] ≤ O
(‖xk − x∗‖2 + 1

)
,

(d) E
[‖xk+N − xk‖2 | Fk

] ≤ O(N2α2
k)
(‖xk − x∗‖2 + 1

)
+O(N2β2

k) d
2(xk).

Proof. (a) The case where N = 1 has been given in Lemma 4(a). In the case
where N = 2, we have

E
[‖xk+2 − x∗‖2 | Fk

]
= E

[
E
[‖xk+2 − x∗‖2 | Fk+1

] ∣∣∣ Fk

]
= E

[
O
(‖xk+1 − x∗‖2 + α2

k+1

) | Fk

]
= O

(‖xk − x∗‖2 + α2
k

)
,

where the first equality uses iterated expectation, and the second and third inequalities
use Lemma 4(a) and the fact αk+1 ≤ αk. In the case where N > 2, the result follows
by applying the preceding argument inductively.

(b) The case where N = 1 has been given in Lemma 4(b). In the case where
N = 2, we have

E
[
d2(xk+2) | Fk

]
= E

[
E
[
d2(xk+2) | Fk+1

] ∣∣∣ Fk

]
≤ E

[
O ( d2(xk+1) + α2

k+1‖xk+1 − x∗‖2 + α2
k+1

) ∣∣∣ Fk

]
≤ O

(
d2(xk) + α2

k‖xk − x∗‖2 + α2
k

)
,

where the first equality uses iterated expectation, the second inequality uses
Lemma 4(b), and the third inequality uses Lemma 4(a), (b) and the fact αk+1 ≤ αk.
In the case where N > 2, the result follows by applying the preceding argument
inductively.
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692 MENGDI WANG AND DIMITRI P. BERTSEKAS

(c) This follows by applying Lemma 4(c) and part (a):

E
[∥∥g(x̄k+N , vk+N )

∥∥2 | Fk

]
= E

[
E
[‖g(x̄k+N , vk+N )‖2 | Fk+N

] ∣∣∣ Fk

]
≤ E

[
O
(‖xk+N − x∗‖2 + 1

) | Fk

]
≤ O

(‖xk − x∗‖2 + 1
)
.

(d) For any 	 ≥ k, we have

E
[∥∥x�+1 − x�

∥∥2 | Fk

]
= E

[
E
[∥∥x�+1 − x�

∥∥2 ∣∣ F�

] ∣∣ Fk

]
≤ E

[O(α2
� )(‖x� − x∗‖2 + 1) +O(β2

� ) d
2(x�) | Fk

]
≤ O(α2

k)
(‖xk − x∗‖2 + 1

)
+O(β2

k) d
2(xk),

where the first inequality applies Lemma 4(d) and the second equality uses the fact
αk+1 ≤ αk, as well as parts (a), (b) of the current lemma. Then we have

E
[∥∥xk+N − xk

∥∥2 | Fk

]
≤ N

k+N−1∑
�=k

E
[∥∥x�+1 − x�

∥∥2 | Fk

]
≤ O(N2α2

k)
(‖xk − x∗‖2 + 1

)
+O(N2β2

k) d
2(xk)

for all k ≥ 0, with probability 1.

Lemma 6. Let Assumptions 1 and 2 hold, let x∗ be a given optimal solution of
problem (1), let {xk} be generated by Algorithm 1, and let N be a given positive
integer. Then for all k ≥ 0 with probability 1,

(a) E [f(xk)− f(xk+N ) | Fk] ≤ O(αk)
(‖xk − x∗‖2 + 1

)
+O

(
β2
k

αk

)
d2(xk),

(b) f(Πxk)− f(xk) ≤ O
(
αk

βk

)(‖xk − x∗‖2 + 1
)
+O

(
βk

αk

)
d2(xk),

(c) f(Πxk)−E [f(xk+N ) | Fk] ≤ O
(
αk

βk

)(‖xk − x∗‖2 + 1
)
+O

(
βk

αk

)
d2(xk).

Proof. (a) By using the definition of subgradients, we have

f(xk)− f(xk+N ) ≤ −∇̃f(xk)
′(xk+N − xk) ≤

∥∥∇̃f(xk)
∥∥‖xk+N − xk‖

≤ αk

2
‖∇̃f(xk)‖2 + 2

αk
‖xk+N − xk‖2.

Taking expectation on both sides, using Assumption 1, and using Lemma 5(d), we
obtain

E [f(xk)− f(xk+N ) | Fk] ≤ αk

2
‖∇̃f(xk)‖2 + 2

αk
E
[‖xk+N − xk‖2 | Fk

]
≤ O(αk)

(‖xk − x∗‖2 + 1
)
+O

(
β2
k

αk

)
d2(xk).

(b) Similar to part (a), we use the definition of subgradients to obtain

f(Πxk)− f(xk) ≤ −∇̃f(Πxk)(xk −Πxk) ≤ αk

2βk

∥∥∥∇̃f(Πxk)
∥∥∥2 + 2βk

αk
‖xk −Πxk‖2.D
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Also from Assumption 1, we have

‖∇̃f(Πxk)‖2 ≤ L(‖Πxk‖2 + 1) ≤ O(‖Πxk − x∗‖2 + 1) ≤ O
(‖xk − x∗‖2 + 1

)
,

while
‖xk −Πxk‖ = d(xk).

We combine the preceding three relations and obtain (b).
(c) We sum the relations of (a) and (b) and obtain (c).

3. The coupled convergence theorem. In this section, we focus on the gen-
eral Algorithm 1 that alternates between an iteration of random optimality update
and an iteration of random feasibility update, i.e.,

zk = xk −αkg(x̄k, vk), xk+1 = zk−βk (zk −Πwk
zk) with x̄k = xk or x̄k = xk+1

(cf. (5), (9)), without specifying details regarding how the random variables wk and vk
are generated. We show that as long as both iterations make sufficient improvement
“on average,” the generic algorithm consisting of their combination is convergent to
an optimal solution. We also show that by using appropriate stepsizes, the optimality
error and the feasibility error decrease to zero at a rate of O(1/

√
k) and O(log k/k),

respectively. The first key result of the paper is stated as follows.

Theorem 1 (coupled convergence theorem). Let Assumptions 1 and 2 hold, let
x∗ be a given optimal solution of problem (1), and let {xk} be a sequence of random
variables generated by Algorithm 1. Assume that there exist positive integers M,N
such that

(i) with probability 1 for all k = 0, N, 2N, . . .,

E
[‖xk+N − x∗‖2 | Fk

] ≤ ‖xk − x∗‖2 − 2

(
k+N−1∑
�=k

α�

)(
f(xk)− f∗)

+O(α2
k)
(‖xk − x∗‖2 + 1

)
+O(β2

k) d
2(xk);

(ii) with probability 1 for all k ≥ 0,

E
[
d2(xk+M ) | Fk

] ≤ (1−Θ(βk)
)
d2(xk) +O

(
α2
k

βk

)(‖xk − x∗‖2 + 1
)
.

Then the sequence {xk} converges almost surely to a random point in the set
of optimal solutions of the convex optimization problem (1).

Before proving the theorem we provide some discussion. Let us first note that
in the preceding proposition, x∗ is an arbitrary but fixed optimal solution and that
the O(·) and Θ(·) terms in the conditions (i) and (ii) may depend on x∗, as well
as M and N . We refer to condition (i) as the optimality improvement condition
and refer to condition (ii) as the feasibility improvement condition. According to the
statement of Theorem 1, the recursions for optimality improvement and feasibility
improvement are allowed to be coupled with each other, in the sense that either
recursion involves iterates of the other one. This coupling is unavoidable due to the
design of Algorithm 1, which by itself is a combination of two types of iterations.
Despite being closely coupled, the two recursions are not necessarily coordinated with
each other, in the sense that their cycles’ lengths M and N may not be equal. This
makes the proof more challenging.
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We prove an important preliminary result for our purpose: the coupled super-
martingale convergence lemma. It states that by combining the two improvement
processes appropriately, a supermartingale convergence argument applies and both
processes can be shown to be convergent. Moreover for the case where M = 1 and
N = 1, the lemma yields “easily” the convergence proof of Theorem 1. To the best
knowledge of the authors, there has been no coupled supermartingale convergence
result in prior literature.

Lemma 7 (coupled supermartingale convergence lemma). Let {ξt}, {ζt}, {ut},
{ūt}, {ηt}, {θt}, {εt}, {μt}, and {νt} be sequences of nonnegative random variables
such that

E [ξt+1 | Gk] ≤ (1 + ηt)ξt − ut + cθtζt + μt,

E [ζt+1 | Gk] ≤ (1− θt)ζt − ūt + εtξt + νt,

where Gk denotes the collection ξ0, . . . , ξt, ζ0, . . . , ζt, u0, . . . , ut, ū0, . . . , ūt, η0, . . . , ηt,
θ0, . . . , θt, ε0, . . . , εt, μ0, . . . , μt, ν0, . . . , νt, and c is a positive scalar. Also, assume
that

∞∑
t=0

ηt < ∞,

∞∑
t=0

εt < ∞,

∞∑
t=0

μt < ∞,

∞∑
t=0

νt < ∞, w.p.1.

Then ξt and ζt converge almost surely to nonnegative random variables, and we have

∞∑
t=0

ut < ∞,

∞∑
t=0

ūt < ∞,

∞∑
t=0

θtζt < ∞, w.p.1.

Moreover, if ηt, εt, μt, and νt are deterministic scalars, the sequences
{
E [ξt]

}
and{

E [ζt]
}
are bounded, and

∑∞
t=0 E [θtζt] < ∞.

Proof. We define Jt to be the random variable

Jt = ξt + cζt.

By combining the given inequalities, we obtain

E [Jt+1 | Gk] = E [ξt+1 | Gk] + c ·E [ζt+1 | Gk]

≤ (1 + ηt + cεt)ξt + cζt − (ut + cūt) + (μt + cνt)

≤ (1 + ηt + cεt)(ξt + cζt)− (ut + cūt) + (μt + cνt).

It follows from the definition of Jt that

(14) E [Jt+1 | Gk] ≤ (1+ηt+cεt)Jt−(ut+cūt)+(μt+cνt) ≤ (1+ηt+cεt)Jt+(μt+cνt).

Since
∑∞

t=0 ηt < ∞,
∑∞

t=0 εt < ∞,
∑∞

t=0 μt < ∞, and
∑∞

t=0 νt < ∞ with probability
1, the supermartingale convergence lemma (Lemma 1) applies to (14). Therefore Jt
converges almost surely to a nonnegative random variable, and

∞∑
t=0

ut < ∞,

∞∑
t=0

ūt < ∞, w.p.1.

Since Jt converges almost surely, the sequence {Jt} must be bounded with probabil-
ity 1. Moreover, from the definition of Jt we have ξt ≤ Jt and ζt ≤ 1

cJt. Thus the
sequences {ξt} and {ζt} are also bounded with probability 1.
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 695

By using the relation
∑∞

t=0 εt < ∞ and the almost sure boundedness of {ξt}, we
obtain

(15)
∞∑
t=0

εtξt ≤
( ∞∑

t=0

εt

)(
sup
t≥0

ξt

)
< ∞ w.p.1.

From (15), we see that the supermartingale convergence lemma, Lemma 1, also applies
to the given inequality

(16) E [ζt+1 | Gk] ≤ (1− θt)ζt − ūt + εtξt + νt ≤ (1− θt)ζt + εtξt + νt.

Therefore ζt converges almost surely to a random variable, and

∞∑
t=0

θtζt < ∞ w.p.1.

Since both Jt = ξt + cζt and ζt are almost surely convergent, the random variable ξt
must also converge almost surely to a random variable.

Finally, let us assume that ηt, εt, μt, and νt are deterministic scalars. We take
expectation on both sides of (14) and obtain

(17) E [Jt+1] ≤ (1 + ηt + cεt)E [Jt] + (μt + cνt).

Since the scalars ηt, εt, μt, and νt are summable, we obtain that the sequence {E [Jt]}
is bounded (the supermartingale convergence lemma applies and shows that E [Jt]
converges). This further implies that the sequences {E [ξt]} and {E [ζt]} are bounded.

By taking expectation on both sides of (16), we obtain

E [ζt+1] ≤ E [ζt]−E [θtζt] + (εtE [ξt] + νt) .

By applying the preceding relation inductively and by taking the limit as k → ∞, we
have

0 ≤ lim
k→∞

E [ζt+1] ≤ E [ζ0]−
∞∑
t=0

E [θtζt] +

∞∑
t=0

(εtE [ξt] + νt) .

Therefore

∞∑
t=0

E [θtζt] ≤ E [ζ0]+

∞∑
t=0

(εtE [ξt] + νt) ≤ E [ζ0]+

( ∞∑
t=0

εt

)
sup
t≥0

(E [ξt])+

( ∞∑
t=0

νt

)
< ∞,

where the last relation uses the boundedness of
{
E [ξt]

}
.

We are tempted to directly apply the coupled supermartingale convergence lemma,
Lemma 7, to prove the results of Theorem 1. However, two issues remain to be ad-
dressed. First, the two improvement conditions of Theorem 1 are not fully coordinated
with each other. In particular, their cycle lengths, M and N , may be different. Sec-
ond, even if we let M = 1 and N = 1, we still cannot apply Lemma 7. The reason
is that the optimality improvement condition (i) involves the subtraction of the term
(f(xk) − f∗), which can be either nonnegative or negative. The following proof ad-
dresses these issues.

D
ow

nl
oa

de
d 

11
/0

5/
17

 to
 1

8.
9.

61
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

696 MENGDI WANG AND DIMITRI P. BERTSEKAS

Proof of the coupled convergence theorem, Theorem 1. Our proof consists of four
steps, and its main idea is to construct a meta-cycle of M×N iterations, where the tth
cycle of iterations maps from xtMN to x(t+1)MN . The purpose is to ensure that both
feasibility iterations and optimality iterations make reasonable progress within each
meta-cycle, which will be shown in the first and second steps of the proof. The third
step is to apply the preceding coupled supermartingale convergence lemma and show
that the end points of the meta-cycles, {XtMN}, form a subsequence that converges
almost surely to an optimal solution. Finally, the fourth step is to argue that the
maximum deviation of the iterates within a cycle decreases to 0 almost surely. From
this we will show that the entire sequence {xk} converges almost surely to a random
point in the set of optimal solutions.

Step 1 (derive the optimality improvement from xtMN to x(t+1)MN ). We apply
condition (i) repeatedly to obtain for any t > 0 that

E
[‖x(t+1)MN − x∗‖2 | FtMN

]
≤ ‖xtMN − x∗‖2 − 2

(t+1)M−1∑
�=tM

⎛
⎝(�+1)N−1∑

k=�N

αk

⎞
⎠(E [f(x�N ) | FtMN ]− f∗

)

+

(t+1)M−1∑
�=tM

O(α2
�N )
(
E
[‖x�N − x∗‖2 | FtMN

]
+ 1
)

+

(t+1)M−1∑
�=tM

O(β2
�N )E

[
d2(x�N ) | FtMN

]
w.p.1.

(18)

From Lemma 5(a) and the nonincreasing property of {αk} we obtain the bound

(t+1)M−1∑
�=tM

O(α2
�N )
(
E
[‖x�N − x∗‖2 | FtMN

]
+ 1
)
≤ O(α2

tMN )
(‖xtMN − x∗‖2 + 1

)
.

From Lemma 5(b) and the nonincreasing property of {βk} we obtain the bound

(t+1)M−1∑
�=tM

O(β2
�N )E

[
d2(x�N ) | FtMN

]
≤ O(β2

tMN ) d2(xtMN ) +O(α2
tMN )

(‖xtMN − x∗‖2 + 1
)
.

By using Lemma 6(c) we further obtain

−
(
E [f(x�N ) | FtMN ]− f∗

)
≤ −

(
f(ΠxtMN )− f∗

)
+
(
E [f(ΠxtMN )− f(x�N ) | FtMN ]

)
≤ −

(
f(ΠxtMN )− f∗

)
+O

(
αtMN

βtMN

)(‖xtMN − x∗‖2 + 1
)

+O
(
βtMN

αtMN

)
d2(xtMN ).D
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 697

We apply the preceding bounds to (18) and remove redundant scalars in the big O(·)
terms, yielding

E
[‖x(t+1)MN − x∗‖2 | FtMN

]
≤ ‖xtMN − x∗‖2 − 2

⎛
⎝(t+1)MN−1∑

k=tMN

αk

⎞
⎠ (f(ΠxtMN )− f∗)

+O
(
α2
tMN

βtMN

)(‖xtMN − x∗‖2 + 1
)
+O (βtMN ) d2(xtMN )

(19)

for all t ≥ 0 with probability 1. Note that the term f(Πxk)− f∗ is nonnegative. This
will allow us to treat (19) as one of the conditions of Lemma 7.

Step 2 (derive the feasibility improvement from xtMN to x(t+1)MN ). We apply
condition (ii) repeatedly to obtain for any t ≥ 0 that

E
[
d2(x(t+1)MN ) | FtMN

] ≤
⎛
⎝(t+1)N−1∏

�=tN

(
1−Θ(β�M )

)⎞⎠ d2(xtMN )

+

(t+1)N−1∑
�=tN

O
(
α2
�M

β�M

)(
E
[‖x�M − x∗‖2 | FtMN

]
+ 1
)

with probability 1. Then by using Lemma 5(a) to bound the terms E[‖x�M − x∗‖2 |
FtMN ], we obtain

E
[
d2(x(t+1)MN ) | FtMN

]
≤ (1−Θ(βtMN )

)
d2(xtMN ) +O

⎛
⎝(t+1)MN−1∑

k=tMN

α2
k

βk

⎞
⎠(‖xtMN − x∗‖2 + 1

)(20)

with probability 1.
Step 3 (apply the coupled supermartingale convergence lemma). Let εt =

O(
∑(t+1)MN−1

k=tMN
α2

k

βk
), so we have

∞∑
t=0

εt =

∞∑
k=0

O
(
α2
k

βk

)
< ∞.

Therefore the coupled supermartingale convergence lemma (cf. Lemma 7) applies to
inequalities (19) and (20). It follows that ‖xtMN − x∗‖2 and d2(xtMN ) converge
almost surely,

(21)
∞∑
t=0

Θ(βtMN ) d2(xtMN ) < ∞ w.p.1D
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698 MENGDI WANG AND DIMITRI P. BERTSEKAS

and

(22)

∞∑
t=0

⎛
⎝(t+1)MN−1∑

k=tMN

αk

⎞
⎠(f(ΠxtMN )− f∗) < ∞ w.p.1.

Moreover, from the last part of Lemma 7, it follows that the sequence
{E [‖xtMN − x∗‖2]} is bounded, and we have

(23)

∞∑
t=0

Θ(βtMN )E
[
d2(xtMN )

]
< ∞.

Since βk is nonincreasing, we have

∞∑
t=0

Θ(βtMN ) ≥
∞∑
t=0

1

MN

⎛
⎝(t+1)MN−1∑

k=tMN

Θ(βk)

⎞
⎠ =

1

MN

∞∑
k=0

βk = ∞.

This together with the almost sure convergence of d2(xtMN ) and relation (21) implies
that

d2(xtMN )
a.s.−→ 0 as t → ∞,

(if d2(xtMN ) converges to a positive scalar, then Θ(βtMN ) d2(xtMN ) would no longer
be summable). Following a similar analysis, the relation (22) together with the as-
sumption

∑∞
k=0 αk = ∞ implies that

lim inf
t→∞ f(ΠxtMN ) = f∗ w.p.1.

Now let us consider an arbitrary sample trajectory of the stochastic process
{(wk, vk)}, such that the associated sequence {‖xtMN − x∗‖} is convergent and is
thus bounded, d2(xtMN ) → 0, and lim inft→∞ f(ΠxtMN ) = f∗. These relations to-
gether with the continuity of f further imply that the sequence {xtMN} must have a
limit point x̄ ∈ X∗. Also, since ‖xtMN − x∗‖2 is convergent for arbitrary x∗ ∈ X∗,
the sequence ‖xtMN − x̄‖2 is convergent and has a limit point 0. If follows that
‖xtMN − x̄‖2 → 0, so that xtMN → x̄. Note that the set of all such sample trajecto-
ries has a probability measure equal to 1. Therefore the sequence of random variables
{xtMN} is convergent almost surely to a random point in X∗ as t → ∞.

Step 4 (prove that the entire sequence {xk} converges). Let ε > 0 be ar-
bitrary. By using the Markov inequality, Lemma 5(c), and the boundedness of{
E
[‖xtMN − x∗‖2] } (as shown in Step 3), we obtain

∞∑
k=0

P
(
αk‖g(x̄k, vk)‖ ≥ ε

) ≤ ∞∑
k=0

α2
kE
[‖g(x̄k, vk)‖2

]
ε2

<

∞∑
t=0

α2
tMNE

[O(‖xtMN − x∗‖2 + 1)
]

ε2
< ∞.

Similarly, by using the Markov inequality, Lemma 5(b), and (23), we obtain

∞∑
k=0

P
(
βk d(xk) ≥ ε

) ≤ ∞∑
k=0

β2
kE
[
d2(xk)

]
ε2

≤
∞∑
t=0

β2
tMNE

[O ( d2(xtMN ) + α2
tMN (‖xtMN − x∗‖2 + 1)

)]
ε2

< ∞.
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 699

Applying the Borel–Cantelli lemma to the preceding two inequalities and taking ε
arbitrarily small, we obtain

αk‖g(x̄k, vk)‖ a.s.−→ 0, βk d(xk)
a.s.−→ 0 as k → ∞.

For any integer t ≥ 0 we have

max
tMN≤k≤(t+1)MN−1

‖xk − xtMN‖

≤
(t+1)MN−1∑

�=tMN

‖x� − x�+1‖ (from the triangle inequality)

≤
(t+1)MN−1∑

�=tMN

O
(
α�‖g(x̄�, v�)‖ + β� d(x�)

)
(from (13))

a.s.−→ 0.

Therefore the maximum deviation within a cycle of length MN decreases to 0 almost
surely. To conclude, we have shown that xk converges almost surely to a random
point in X∗ as k → ∞.

Rate of convergence is an important issue related to the proposed two-timescale
stochastic algorithms. As noted earlier, the convergence of these algorithms involves
two improvement processes with two different corresponding stepsizes. This coupling
greatly complicates the convergence rate analysis. In the special case of minimizing a
strongly convex and differentiable function, the proposed algorithm is a special case
of an algorithm for strongly monotone variational inequalities given in [WB12]. For
this algorithm, convergence rates and finite-sample error bounds have been derived in
[WB12]. For minimization of general convex functions, convergence rate analysis is not
available in the existing literature, except in special cases which involve no constraint
sampling and/or more restrictive assumptions (see [NB00], [NB01], [Ber11], [Ned11],
[WB12]).

In what follows, we provide a unified convergence rate analysis for Algorithm 1.
Due to the coupling nature, the analysis differs substantially from conventional anal-
ysis of the stochastic gradient method (which either focuses on unconstrained prob-
lems or uses exact constraint projection every iteration). We emphasize that there
are two types of errors: feasibility error and optimality error. They need to be
analyzed separatedly. As predicted by the coupling convergence proof of Theorem
1, the two errors decrease to zero at different rates. This is verified in the next
theorem.

Theorem 2 (rate of coupled convergence). Let Assumption 1 and conditions (i),
(ii) of Theorem 1 hold, and let αk = Θ(1/

√
k), βk = Θ(1). If in addition the iterates

{xk} are bounded in a sufficiently large ball, we have

E

[
f

(
1

k

k∑
t=1

ΠXxt

)]
= f∗ +O

(
1√
k

)
, E

[
d2

(
1

k

k∑
t=1

xt

)]
= O

(
log(k + 1)

k

)
.

Proof. Let αk = 1/
√
k and βk = 1 for simplicity. Our analysis follows from the

analysis of Theorem 1. We take a weighted sum of (19) and (20). For some c1, c2 > 0,
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700 MENGDI WANG AND DIMITRI P. BERTSEKAS

we obtain

E
[‖x(t+1)MN − x∗‖2 + c1 d

2(x(t+1)MN )
]

≤ E
[‖xtMN − x∗‖2 + c1 d

2(xtMN )
]
+O

⎛
⎝(t+1)MN−1∑

k=tMN

α2
k

βk

⎞
⎠(E [‖xtMN − x∗‖2]+ 1

)

− 2

⎛
⎝(t+1)MN−1∑

k=tMN

αk

⎞
⎠E [f(ΠxtMN )− f∗]− c2βtMNE

[
d2(xtMN )

]
.

(24)

By using the stepsize assumptions, we have
∑(t+1)MN−1

k=tMN αk = Θ(1/
√
k),∑(t+1)MN−1

k=tMN
α2

k

βk
= Θ(1/k), and βtMN = 1. By using the bounded iterates assump-

tion, there exists R > 0 such that E
[‖xtMN − x∗‖2] ≤ R and E

[
d2(xtMN )

] ≤
E
[‖xtMN − x∗‖2] ≤ R for all t. We let

Jt = E
[‖xtMN − x∗‖2 + c1 d

2(xtMN )
]
,

so we have Jt ≤ D ≡ (1 + c1)R for all t. Then it follows from (24) that

(25) Jt+1 ≤ Jt +O
(
1

t

)
· (D+1)−Θ

(
1√
t

)
E [f(ΠxtMN )− f∗]− c2E

[
d2(xtMN )

]
.

First we analyze the feasibility error. By rearranging the terms in (25) and taking
the sum over t = 1, . . . , T , we have

c2

T∑
t=1

E
[
d2(xtMN )

] ≤ T∑
t=1

(
Jt − Jt+1 +O

(
1

t

)
(D + 1)

)

≤ J1 − JT+1 +

T∑
t=1

O
(
1

t

)
(D + 1)

≤ D +O
(

T∑
t=1

1

t

)
(D + 1)

= O (log(T + 1)) · (D + 1).

By using Lemma 5(b), we have for some c3 > 0 that

k∑
t=1

E
[
d2 (xt)

] ≤ c3

k∑
t=1

(
E
[
d2
(
x
t/MN�MN

)]
+ α2


t/MN�MN

)
≤ O(log(�k/MN�+ 1)) = O(log(k + 1)).

By using the convexity of the squared distance function, we have for all k = 1, 2, . . .

that E
[
d2
(

1
k

∑k
t=1 xt

)]
≤ 1

k

∑k
t=1 E

[
d2 (xt)

]
= O

(
log(k+1)

k

)
.
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Next we analyze the optimality error. By using a similar analysis, we can show
from (25) that for some c4, c5 > 0,

c4

T∑
t=1

E [f(ΠxtMN )− f∗] + c5

T∑
t=1

√
tE
[
d2(xtMN )

]

≤
T∑

t=1

√
t

(
Jt − Jt+1 +O

(
1

t

)
(D + 1)

)

≤ J1 +

T∑
t=2

(
√
t+ 1−√

t)Jt +

T∑
t=0

O
(

1√
t

)
(D + 1)

≤ D +

T∑
t=2

(
√
t+ 1−√

t)D +O
(

T∑
t=0

1√
t

)
· (D + 1)

≤
√
TD +O

(
T∑

t=2

1√
t

)
· (D + 1)

= O
(√

T
)
· (D + 1).

By the convexity of f and basic norm inequalities, we have for all tMN < k ≤
(t+ 1)MN and all t that

E [f(Πxk)− f∗]−E [f(ΠxtMN )− f∗] ≤ E
[
∇̃f(ΠxtMN )′(Πxk −ΠxtMN )

]
≤ σαkE

[
‖∇̃f(ΠxtMN )‖2

]
+

1

αkσ
E
[‖Πxk −ΠxtMN ‖2]

≤ O (σαk)L
2E
[‖xtMN‖2 + 1

]
+O

(
α2
tMN

αkσ

)

E
[‖ΠxtMN − x∗‖2 + 1

]
+O

(
β2
tMN

αkσ

)
E
[
d2(xtMN )

]

≤ O
(
σ + 1/σ√

k
+

√
k

σ
E
[
d2(xtMN )

])

≤ O
(

1√
k

)
+

c5/c4
√
k

MN
E
[
d2(xtMN )

]
,

where the second inequality holds for any σ > 0, the third inequality uses Assumption
1(a) and Lemma 5(d), the fourth inequality uses the boundedness of iterates, and the
last inequality holds for σ sufficiently large. It follows from the preceding inequalities
that

k∑
t=1

E [f (ΠXxt)]

≤
k∑

t=1

(
E
[
f
(
ΠXx
t/MN�MN

)]
+

c5/c4√
t

E
[
d2(x
t/MN�MN )

]
+O(1/

√
t)

)

= k · f∗ +O
(√

�k/MN�+
√
k
)

= k · f∗ +O(
√
k).
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Finally, by the convexity of f we have E
[
f( 1k

∑k
t=1 ΠXxt)

]
≤ 1

k

∑k
t=1 E [f (ΠXxt)] ≤

f∗ +O(1/
√
k).

In Theorem 2, we have picked a particular choice of stepsizes, which are known
to be optimal for stochastic gradient methods (up to a constant, suggested in [SZ12]).
For simplicity of analysis, we have also assumed that all iterates are bounded by a large
ball. This can be verified, for example, if all constraint supersets Xi are bounded by a
large ball. If the assumption cannot be verified, one may add an auxiliary constraint
(e.g., a very large ball that contains at least one optimal solution) and to project onto
it every iteration to keep the iterates bounded. We also note that the big O in the
convergence rates involves some constants. These constants relate to the sampling
schemes, variance of samples, properties of the objective function, properties of the
constraints, choices of the stepsizes, etc. Computing the constants exactly for all
possible cases is beyond the scope of the current paper. When analyzing a particular
algorithm, one may follow a similar line of analysis to obtain customized convergence
rates.

Theorem 2 says that the optimality error and feasibility error decrease on the
order of O(1/

√
k) and O(log k/k), respectively. Indeed, the feasibility error decreases

at a faster rate than the optimality error, so that the coupling convergence occurs. Let
us compare the convergence rate given in Theorem 2 with some known convergence
rate results:

• For finding a feasible point in the intersection of many sets, the random pro-
jection method converges at a linear rate (under a linear regularity condition
regarding the sets). In contrast, the optimality error of Algorithm 1 decreases
at a rate of O(log k/k). The reason is that the coupling with the optimality
improvement process slows down the convergence of the feasibility error.

• For minimization of convex functions, stochastic first-order methods (without
random projection) have a convergence rate O(1/

√
k) which is optimal with

respect to the sample size k (see [ABRW12] for an information-theoretical
lower bound). Our Algorithm 1, which uses both noisy first-order informa-
tion and random projection, achieves a convergence rate on the same order
O(1/

√
k). This implies that our convergence rate is nonimprovable with re-

spect to k, as long as noisy first-order information is used.
Surprisingly, using random projection in place of exact projection does not deteriorate
the optimization convergence rate (up to a constant). This is critical evidence that
supports the usage of random projection.

In this section, we have presented and proved the coupled convergence Theorems 1
and 2 that establish the convergence and the O(1/

√
k) convergence rate of the general

Algorithm 1. As a by-product of the analysis, we have proved an enhanced version of
the supermartingle convergence lemma, namely, the coupled supermartingale conver-
gence Lemma 7. It can be used to analyze two coupled sequences of random variables
that satisfy two improvement inequalities, respectively, at different time scales.

Theorems 1 and 2 do not specify how the random samples of first-order informa-
tion or constraints are generated. Instead, they establish the convergence and rate
of convergence of the general algorithm assuming two conditions: a feasibility im-
provement condition and an optimality improvement condition. More precisely, they
require that the feasibility update part of the algorithm makes sufficient progress to-
ward feasibility within a number of steps and that the optimality update part makes
sufficient progress toward optimality within a number of steps. On one hand, the two
improvement processes are coupled together because the algorithm alternates between
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 703

the two types of updates. On the other hand, the two improvement processes do not
need to synchronize or coordinate with each other, as long as either one meets the
sufficient improvement condition.

In what follows, we will consider a number of typical assumptions on the SO that
generate stochastic first-order information and random constraint projections. We
will show that all of them satisfy the optimality/feasibility improvement condition
required in Theorems 1 and 2. As a result, we may apply Theorems 1 and 2 in
conjunction with these sufficient improvement conditions and establish convergence
results for a broad variety of stochastic algorithms.

4. Sampling schemes for constraints. In this section, we focus on sampling
schemes used in the SO for the constraints Xwk

that satisfy the feasibility improve-
ment condition required by the coupled convergence theorem, i.e.,

E
[
d2(xk+M ) | Fk

] ≤ (1−Θ(βk)
)
d2(xk)+O

(
α2
k

βk

)(‖xk−x∗‖2+1
) ∀ k ≥ 0 w.p.1,

where M is a positive integer. To satisfy the preceding condition, it is necessary that
the distance between xk and X asymptotically decreases as a contraction in a stochas-
tic sense. We will consider several assumptions regarding the incremental projection
process {Πwk

}, including nearly independent sampling, most distant sampling, cyclic
order sampling, Markov Chain sampling, etc.

Throughout our analysis in this section, we will require that the collection {Xi}mi=1

possesses a linear regularity property. This property was originally introduced by
Bauschke [Bau96] in a more general Hilbert space setting; see also Bauschke and
Borwein [BB96, Definition 5.6, p. 40].

Assumption 3 (linear regularity). There exists a positive scalar η such that for
any x ∈ �n

‖x−Πx‖2 ≤ η max
{i=1,...,m}

‖x−ΠXix‖2.

Recently, the linear regularity property has been studied by Deutsch and Hundal
[DH08] in order to establish linear convergence of a cyclic projection method for
finding a common point of finitely many convex sets. Intuitively speaking, the linear
regularity condition is related to angles between the sets Xi. It requires that the sets
Xi behave like linear sets where they intersect with one another. This property is
automatically satisfied when X is a polyhedral set. The discussions in [Bau96] and
[DH08] identify several other situations where the linear regularity condition holds.
As indicated by these references, the linear regularity condition is a mild restriction
(in practice, it is rare to find examples that do not satisfy this condition.)

4.1. Nearly independent sample constraints. We start with the easy case
where the sample constraints are generated “nearly independently.” In this case, it is
necessary that each constraint is always sampled with sufficient probability, regardless
of the sample history. This is formulated as the following assumption.

Assumption 4. The random variables wk, k = 0, 1, . . ., are such that

inf
k≥0

P(Xwk
= Xi | Fk) ≥ ρ

m
, i = 1, . . . ,m,

with probability 1, where ρ ∈ (0, 1] is some scalar.
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704 MENGDI WANG AND DIMITRI P. BERTSEKAS

Under Assumptions 3 and 4, we claim that the expression

E
[‖x−Πwk

x‖2 | Fk

]
,

which may be viewed as the “average progress” of random projection at the kth
iteration, is bounded from below by a multiple of the distance between x and X .
Indeed, by Assumption 4, we have for any j = 1, . . . ,m,

E
[‖x−Πwk

x‖2 | Fk

]
=

m∑
i=1

P (wk = i | Fk) ‖x−Πix‖2 ≥ ρ

m
‖x−Πjx‖2.

By maximizing the right-hand side of this relation over j and by using Assumption 3,
we obtain

(26) E
[‖x−Πwk

x‖2 | Fk

] ≥ ρ

m
max

1≤j≤m
‖x−Πjx‖2 ≥ ρ

mη
‖x−Πx‖2 =

ρ

mη
d2(x)

for all x ∈ �n and k ≥ 0, with probability 1. This indicates that the average feasibility
progress of the nearly independent constraint sampling method is comparable to the
feasibility error, i.e., the distance from xk to X .

Now we are ready to show that the nearly independent constraint sampling scheme
satisfies the feasibility improvement condition of the coupled convergence theorem
(Theorem 1).

Proposition 1. Let Assumptions 1, 2, 3, and 4 hold, and let x∗ be a given opti-
mal solution of problem (1). Then Algorithm 1 generates a sequence {xk} such that

E
[
d2(xk+1) | Fk

] ≤ (1− ρ

mη
Θ(βk)

)
d2(xk) +O

(
mα2

k

βk

)(‖xk − x∗‖2 + 1
)

for all k ≥ 0 with probability 1.

Proof. Let ε be a positive scalar. By applying Lemma 3 with y = Πxk, we have

d2(xk+1) ≤ ‖xk+1 −Πxk‖2 ≤ (1 + ε)‖xk −Πxk‖2
+ (1 + 1/ε)α2

k‖g(x̄k, vk)‖2 − βk(2− βk)‖zk −Πwk
zk‖2.

By using the bound

‖xk −Πwk
xk‖2 ≤ 2‖zk−Πwk

zk‖2+8‖xk − zk‖2 = 2‖zk−Πwk
zk‖2+8α2

k‖g(x̄k, vk)‖2,
which is obtained from Lemma 2(b), we further obtain

d2(xk+1) ≤ (1 + ε)‖xk −Πxk‖2 +
(
1 + 1/ε+ 4βk(2− βk)

)
α2
k‖g(x̄k, vk)‖2

− βk(2− βk)

2
‖xk −Πwk

xk‖2

≤ (1 + ε) d2(xk) + (5 + 1/ε)α2
k‖g(x̄k, vk)‖2 −Θ(βk)‖xk −Πwk

xk‖2,
where the second relation uses the facts ‖xk − Πxk‖2 = d2(xk) and Θ(βk) ≤ βk(2 −
βk) ≤ 1. Taking conditional expectation of both sides and applying Lemma 4(c) and
(26), we obtain

E
[
d2(xk+1) | Fk

] ≤ (1 + ε) d2(xk) +O(1 + 1/ε)α2
k

(‖xk − x∗‖2 + 1
)

− ρ

mη
Θ(βk) d

2(xk)

≤
(
1− ρ

mη
Θ(βk)

)
d2(xk) +O(mα2

k/βk)
(‖xk − x∗‖2 + 1

)
,

where the second relation is obtained by letting ε � Θ(βk).
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FIRST-ORDER METHODS WITH RANDOM PROJECTION 705

We remark that the condition in Assumption 4 can be weakened to

inf
k≥0

P(Xwk
= Xi | Fk) ≥ ρk

m
, i = 1, . . . ,m,

where ρk is driven to 0 at a suitable rate. Then we would obtain results analogous
to the current one, where the modulus of contraction for the feasibility improvement
becomes 1−Θ(ρkβk

mη ). To achieve the overall convergence, we would need an additional
stepsize assumption that

∞∑
k=0

ρkβk = ∞.

In this way, we can adapt the entire analysis of Theorem 1 to apply to the case where
the constraint sampling distribution slowly varies.

4.2. Most distant sample constraint. Next we consider the case where we
select the constraint superset that is the most distant from the current iterate. This
yields an adaptive algorithm that selects the projection based on the iterates’ history.

Assumption 5. The random variable wk is the index of the most distant con-
straint superset, i.e.,

wk = argmaxi=1,...,m‖xk −ΠXixk‖, k = 0, 1, . . . .

By using Assumption 5 together with Assumption 3, we see that

(27) E
[‖xk −Πwk

xk‖2 | Fk

]
= max

i=1,...,m
‖xk −Πixk‖ ≥ 1

η
d2(xk) ∀ k ≥ 0 w.p.1.

Then by using an analysis similar to that of Proposition 1, we obtain the following
result.

Proposition 2. Let Assumptions 1, 2, 3, and 5 hold, and let x∗ be a given opti-
mal solution of problem (1). Then Algorithm 1 generates a sequence {xk} such that

E
[
d2(xk+1) | Fk

] ≤ (1−Θ

(
βk

η

))
d2(xk) +O

(
α2
k

βk

)(‖xk − x∗‖2 + 1
)

for all k ≥ 0, with probability 1.

Proof. The proof is almost identical to that of Proposition 1, except that we use
(27) in place of (26).

4.3. Sample constraints according to a cyclic order. Now let us consider
the case where the constraint supersets {Xwk

} are sampled in a cyclic manner, either
by random shuffling or according to a deterministic cyclic order.

Assumption 6. With probability 1, for all t ≥ 0, the sequence of constraint sets
of the tth cycle, i.e.,

{Xwk
}, where k = k, k + 1, . . . , k +M − 1,

is a permutation of {X1, . . . , Xm}.
Under Assumption 6, it is no longer true that the distance from xk to the feasible

set is “stochastically decreased” at every iteration. However, all the constraint sets
will be visited at least once within a cycle of m iterations. This suggests that the
distance to the feasible set is improved on average every m iterations. We first prove
a lemma regarding the progress toward feasibility over a number of iterations.
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706 MENGDI WANG AND DIMITRI P. BERTSEKAS

Lemma 8. Let Assumptions 1, 2, and 3 hold, and let {xk} be generated by
Algorithm 1. Assume that for given integers k > 0 and M > 0, any particular index
in {1, . . . ,m} will be visited at least once by the random variables {wk, . . . , wk+M−1}.
Then

1

2Mη
d2(xk) ≤ 4

k+M−1∑
�=k

‖z� −Πw�
z�‖2 +

k+M−1∑
�=k

α2
�

∥∥g(x̄�, v�)
∥∥2.

Proof. Let k∗ ∈ {k, . . . , k + M − 1} be the index that attains the maximum in
the linear regularity assumption for xk (cf. Assumption 3), so that

d2(xk) ≤ η max
i=1,...,m

‖xk −ΠXixk‖2 = η‖xk −Πwk∗xk‖2.

Such k∗ always exists, because it is assumed that any particular index will be visited
by the sequence {wk, . . . , wk+M−1}. We have

1√
η
d(xk) ≤ ‖xk −Πwk∗xk‖

≤ ‖xk −Πwk∗ zk∗‖
(by the definition of Πwk∗xk and the fact Πwk∗ zk∗ ∈ Xwk∗ )

=

∥∥∥∥xk − 1

βk∗
xk∗+1 +

1− βk∗

βk∗
zk∗

∥∥∥∥
(by xk∗+1 = zk∗ − βk∗(zk∗ −Πwk∗ zk∗); cf. (3))

=

∥∥∥∥∥
k∗−1∑
�=k

β� − 1

β�
(z� − x�+1) +

k∗∑
�=k

1

β�
(z� − x�+1)−

k∗∑
�=k

(z� − x�)

∥∥∥∥∥
≤

k∗−1∑
�=k

∣∣∣∣β� − 1

β�

∣∣∣∣ ‖z� − x�+1‖+
k∗∑
�=k

1

β�
‖z� − x�+1‖+

k∗∑
�=k

‖z� − x�‖

≤
k+M−2∑

�=k

∣∣∣∣β� − 1

β�

∣∣∣∣ ‖z� − x�+1‖+
k+M−1∑

�=k

1

β�
‖z� − x�+1‖+

k+M−1∑
�=k

‖z� − x�‖

≤
k+M−1∑

�=k

2

β�
‖z� − x�+1‖+

k+M−1∑
�=k

‖z� − x�‖ (since β� ∈ (0, 2))

= 2
k+M−1∑

�=k

‖z� −Πw�
z�‖+

k+M−1∑
�=k

α�

∥∥g(x̄�, v�)
∥∥

(by the definition of algorithm (3))

≤
√
2M

(
4

k+M−1∑
�=k

‖z� −Πw�
z�‖2 +

k+M−1∑
�=k

α2
�

∥∥g(x̄�, v�)
∥∥2)1/2

,

where the last step follows from the generic inequality (
∑M

i=1 ai +
∑M

i=1 bi)
2 ≤

2M(
∑M

i=1 a
2
i +

∑M
i=1 b

2
i ) for real numbers ai, bi. By rewriting the preceding relation

we complete the proof.

Now we are ready to prove that the feasibility improvement condition holds for
the cyclic order constraint sampling scheme.
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Proposition 3. Let Assumptions 1, 2, 3, and 6 hold, and let x∗ be a given opti-
mal solution of problem (1). Then Algorithm 1 generates a sequence {xk} such that

(28) E
[
d2(xk+2m) | Fk

] ≤ (1−Θ

(
βk

mη

))
d2(xk) +O

(
m2α2

k

βk

)(‖xk − x∗‖2 + 1
)

for all k ≥ 0 with probability 1.

Proof. Let ε > 0 be a scalar. By applying Lemma 3 with y = Πxk, we have

d2(xk+1) ≤ ‖xk+1 −Πxk‖2

≤ (1 + ε) d2(xk) + (1 + 1/ε)α2
k

∥∥g(x̄k, vk)
∥∥2 − βk(2− βk)‖zk −Πwk

zk‖2.
By applying the preceding relation inductively, we obtain

d2(xk+2m) ≤ (1 + ε)2m

(
d2(xk) + (1 + 1/ε)

k+M−1∑
�=k

α2
�

∥∥g(x̄�, v�)
∥∥2)

−
k+M−1∑

�=k

β�(2− β�)‖z� −Πw�
z�‖2

≤ (1 +O(ε)
)
d2(xk) +O(1 + 1/ε)

k+M−1∑
�=k

α2
�

∥∥g(x̄�, v�)
∥∥2

−Θ(βk)

k+M−1∑
�=k

‖z� −Πw�
z�‖2,

(29)

where the second inequality uses the facts that βk is nonincreasing and that βk/βk+1 →
1 to obtain

min
�=k,...,k+2m−1

β�(2− β�) ≥ Θ(βk).

We apply Lemma 8 with M = 2m (since according to Assumption 6, starting with any
k, any particular index will be visited in at most two cycles of samples) and obtain

d2(xk+2m) ≤ (1 +O(ε)) d2(xk) +O(1 + 1/ε)

k+M−1∑
�=k

α2
�‖g(x̄�, v�)‖2 − Θ(βk)

mη
d2(xk).

Let ε � 1
mηO(βk). Taking conditional expectation on both sides and applying

Lemma 4(c), we have

E
[
d2(xk+2m) | Fk

] ≤ (1− Θ(βk)

mη

)
d2(xk) +O

(
m2α2

k

βk

)(‖xk − x∗‖2 + 1
)

for all k ≥ 0 with probability 1.

4.4. Sample constraints according to a Markov chain. Finally, we consider
the case where the sample constraints Xwk

are generated through state transitions of
a Markov chain. To ensure that all constraints are sampled adequately, we assume
the following.

Assumption 7. The sequence {wk} is generated by an irreducible and aperiodic
Markov chain with states 1, . . . ,m.
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By using an analysis analogous to that of Proposition 3, we obtain the following
result.

Proposition 4. Let Assumptions 1, 2, 3, and 7 hold, let x∗ be a given optimal
solution of problem (1), and let the sequence {xk} be generated by Algorithm 1. Then
there exists a positive integer M such that

(30) E
[
d2(xk+M ) | Fk

] ≤ (1−Θ

(
βk

Mη

))
d2(xk) +O

(
M2α2

k

βk

)(‖xk − x∗‖2 + 1
)

for all k ≥ 0 with probability 1.

Proof. According to Assumption 7, the Markov chain is irreducible and aperiodic.
Therefore its invariant distribution, denoted by ξ ∈ �m, satisfies for some ε > 0

min
i=1,...,m

ξi > ε,

and moreover, there exist scalars ρ ∈ (0, 1) and c > 0 such that∣∣P(wk+� = Xi | Fk)− ξi
∣∣ ≤ c · ρ�, i = 1, . . . ,m, ∀ k ≥ 0, 	 ≥ 0, w.p.1.

We let M be a sufficiently large integer, such that

min
i=1,...,m

P(wk+M−1 = Xi | Fk) ≥ min
i=1,...,m

ξi − cρM ≥ Θ(ε) > 0 ∀ k ≥ 0 w.p.1.

This implies that, starting with any wk, there is a positive probability Θ(ε) to reach
any particular index in {1, . . . ,m} in the next M samples.

By using this fact together with Lemma 8, we obtain

P

(
1

2Mη
d2(xk) ≤ 4

k+M−1∑
�=k

‖z� −Πw�
z�‖2 +

k+M−1∑
�=k

α2
�‖g(x̄�, v�)‖2

∣∣∣∣∣ Fk

)
≥ Θ(ε).

It follows that

E

[
4

k+M−1∑
�=k

‖z� −Πw�
z�‖2 +

k+M−1∑
�=k

α2
�‖g(x̄�, v�)‖2

∣∣∣∣∣ Fk

]

≥ Θ(ε) · 1

2Mη
d2(xk) + (1−Θ(ε)) · 0.

By rewriting the preceding relation and applying Lemma 5(a), we obtain

(31) E

[
k+M−1∑

�=k

‖z� −Πw�
z�‖2

∣∣∣∣∣ Fk

]
≥ Θ(ε)

8Mη
d2(xk)−O(α2

k)
(‖xk − x∗‖2 + 1

)
.

The rest of the proof follows a line of analysis like the one of Proposition 3, with
2m replaced with M . Similar to (29), we have

d2(xk+M ) ≤ (1 +O(ε)) d2(xk) +O(1 + 1/ε)

k+M−1∑
�=k

α2
�

∥∥g(x̄�, v�)
∥∥2

−Θ(βk)
k+M−1∑

�=k

‖z� −Πw�
z�‖2.D
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Taking expectation on both sides, we obtain

E
[
d2(xk+M ) | Fk

] ≤ (1 +O(ε)
)
d2(xk) +O(1 + 1/ε)E

[
k+M−1∑

�=k

α2
�

∥∥g(x̄�, v�)
∥∥2 ∣∣∣ Fk

]

−Θ(βk)E

[
k+M−1∑

�=k

‖z� −Πw�
z�‖2

∣∣∣ Fk

]

≤ (1 +O(ε)) d2(xk) +O(1 + 1/ε)α2
k

(‖xk − x∗‖2 + 1
)

−Θ

(
βk

Mη

)
d2(xk)

≤
(
1−Θ

(
βk

Mη

))
d2(xk) +O

(
M2α2

k

βk

)
(‖xk − x∗‖2 + 1),

where the second relation uses (31) and Lemma 5(c), and the third relation holds by
letting ε ≤ Θ( βk

Mη ).

5. Sampling schemes for subgradients/component functions. In this sec-
tion, we focus on sampling schemes for the subgradients/component functions that
satisfy the optimality improvement condition required by the coupled convergence
theorem (Theorem 1), i.e.,

E
[‖xk+N − x∗‖2 | Fk

] ≤ ‖xk − x∗‖2 − 2

(
k+N−1∑
�=k

α�

)(
f(xk)− f∗)

+O(α2
k)
(‖xk − x∗‖2 + 1

)
+O(β2

k) d
2(xk)

with probability 1, where k = 0, N, 2N, . . ., and N is a positive integer.
In what follows, we consider the case of unbiased samples and the case of cyclic

samples. Either one of the following subgradient/function sampling schemes can be
combined with any one of the constraint sampling schemes in section 4 to yield a
convergent incremental algorithm.

5.1. Unbiased sample subgradients/component functions. We start
with the relatively simple case where the sample component functions chosen by the
algorithm are conditionally unbiased. We assume the following.

Assumption 8. Let each g(x, vk) be the subgradient of a random component func-
tion fvk : �n �→ � at x,

g(x, vk) ∈ ∂fvk(x) ∀ x ∈ �n,

and let the random variables vk, k = 0, 1, . . ., be such that

(32) E
[
fvk(x) | Fk

]
= f(x) ∀ x ∈ �n, k ≥ 0, w.p.1.

We use a standard line of argument for gradient descent to obtain the optimality
improvement inequality.

Proposition 5. Let Assumptions 1, 2, 3, and 8 hold, and let x∗ be a given opti-
mal solution of problem (1). Then Algorithm 1 generates a sequence {xk} such that

E
[‖xk+1 − x∗‖2 | Fk

] ≤ ‖xk − x∗‖2 − 2αk

(
f(xk)− f∗)

+O(α2
k)
(‖xk − x∗‖2 + 1

)
+O(β2

k) d
2(xk)

for all k ≥ 0 with probability 1.
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710 MENGDI WANG AND DIMITRI P. BERTSEKAS

Proof. By applying Lemma 3 with y = x∗, we obtain

(33) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αkg(x̄k, vk)
′(xk − x∗) + α2

k‖g(x̄k, vk)‖2.
Taking conditional expectation on both sides and applying Lemma 4(c) yields

E
[‖xk+1 − x∗‖2 | Fk

] ≤ ‖xk − x∗‖2
− 2αkE [g(x̄k, vk)

′(xk − x∗) | Fk] + α2
kO
(‖xk − x∗‖2 + 1

)
.

(34)

According to Assumption 8, since xk ∈ Fk, we have

E
[
g(x̄k, vk)

′(xk − x∗) | Fk

]
= E

[
g(x̄k, vk)

′(x̄k − x∗) | Fk

]
+E

[
g(x̄k, vk)

′(xk − x̄k) | Fk

]
≥ E

[
f(x̄k)− f∗ | Fk

]
+E

[
g(x̄k, vk)

′(xk − x̄k) | Fk

]
= f(xk)− f∗ +E

[
f(x̄k)− f(xk) | Fk

]
+E

[
g(x̄k, vk)

′(xk − x̄k) | Fk

]
≥ f(xk)− f∗ +E

[
g(xk, vk)

′(x̄k − xk) + g(x̄k, vk)
′(xk − x̄k) | Fk

]
≥ f(xk)− f∗ − αk

2
E
[‖g(xk, vk)‖2 + ‖g(x̄k, vk)‖2 | Fk

]− 1

αk
E
[‖x̄k − xk‖2 | Fk

]
≥ f(xk)− f∗ − αkO

(‖xk − x∗‖2 + 1
)− 1

αk

(
α2
kO
(‖xk − x∗‖2 + 1

)
+ β2

k d
2(xk)

)
≥ f(xk)− f∗ − αkO

(‖xk − x∗‖2 + 1
)− β2

k

αk
d2(xk),

where the first and second inequalities use the definition of subgradients, the third
inequality uses 2ab ≤ a2+ b2 for any a, b ∈ �, and the fourth inequality uses Assump-
tion 1 and Lemma 4(c), (d). Finally, we apply the preceding relation to (34) and
obtain

E
[‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2αk(f(xk)− f∗) +O(α2

k)
(‖xk − x∗‖2 + 1

)
+O(β2

k) d
2(xk)

for all k ≥ 0 with probability 1.

5.2. Cyclic sample subgradients/component functions. Now we consider
the analytically more challenging case, where the subgradients are sampled in a cyclic
manner. More specifically, we assume that the subgradient samples are associated
with a “cyclic” sequence of component functions.

Assumption 9. Each g(x, vk) is the subgradient of function fvk : �n �→ � at x,
i.e.,

g(x, vk) ∈ ∂fvk(x) ∀ x ∈ �n,

the random variables vk, k = 0, 1, . . ., are such that for some integer N > 0,

(35)
1

N

(t+1)N−1∑
�=tN

E
[
fv�(x) | FtN

]
= f(x) ∀ x ∈ �n, t ≥ 0, w.p.1.

In the next proposition, we show that the optimality improvement condition is
satisfied when we select the component functions and their subgradients according to
a cyclic order, either randomly or deterministically. The proof idea is to consider the
total optimality improvement with a cycle of N iterations.
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Proposition 6. Let Assumptions 1, 2, 3, and 9 hold, and let x∗ be a given opti-
mal solution of problem (1). Then Algorithm 1 generates a sequence {xk} such that

E
[‖xk+N − x∗‖2 | Fk

] ≤ ‖xk − x∗‖2 − 2

(
k+N−1∑
�=k

α�

)(
f(xk)− f∗)

+O(Nα2
k)
(‖xk − x∗‖2 + 1

)
+O(Nβ2

k) d
2(xk)

for all k = 0, N, 2N, . . . with probability 1.

Proof. Following the line of analysis of Proposition 5 and applying (33) repeatedly,
we obtain

‖xk+N − x∗‖2 ≤ ‖xk − x∗‖2 − 2

k+N−1∑
�=k

α�g(x̄�, v�)
′(x� − x∗) +

k+N−1∑
�=k

α2
�‖g(x̄�, v�)‖2.

By taking conditional expectation on both sides and by applying Lemma 5(c), we
further obtain

E
[‖xk+N − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2

k+N−1∑
�=k

α�E [g(x̄�, v�)
′(x� − x∗) | Fk] +O(Nα2

k)
(‖xk − x∗‖2 + 1

)
(36)

for all k = 0, N, 2N, . . . with probability 1.
For 	 = k, . . . , k +N − 1, we have

g(x̄�, v�)
′(x� − x∗) = g(x̄�, v�)

′(x̄� − x∗) + g(x̄�, v�)
′(x� − x̄�).

Since g(x, v�) ∈ ∂fv�(x) for all x, we apply the definition of subgradients and obtain

g(x̄�, v�)
′(x̄� − x∗) ≥ fv�(x̄�)− f∗ ≥ fv�(xk)− f∗ + g(xk, v�)

′(x̄� − xk).

Combining the preceding two relations, we obtain

g(x̄�, v�)
′(x� − x∗) ≥ fv�(xk)− f∗ + g(xk, v�)

′(x̄� − xk) + g(x̄�, v�)
′(x� − x̄�).

By taking expectation on both sides, we further obtain

E [g(x̄�, v�)
′(x� − x∗) | Fk]

≥ E [fv�(xk) | Fk]− f∗ +E [g(x̄�, v�)
′(x� − x̄�) + g(xk, v�)

′(x̄� − xk) | Fk]

≥ E [fv�(xk) | Fk]− f∗

−O(α�)E
[‖g(x̄�, v�)‖2 + ‖g(xk, v�)‖2 | Fk

]−O(1/α�)E
[‖x̄� − xk‖2 | Fk

]
≥ E [fv�(xk) | Fk]− f∗ −O(α�)

(‖xk − x∗‖2 + 1
)−O

(
β2
k

α�

)
d2(xk),

where the second inequality uses the basic fact 2a′b ≤ ‖a‖2 + ‖b‖2 for a, b ∈ �n, and
the last inequality uses Assumption 1 and Lemma 5(a), (d). Then from Assumption 9
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712 MENGDI WANG AND DIMITRI P. BERTSEKAS

we have

k+N−1∑
�=k

α�E [g(x̄�, v�)
′(x� − x∗) | Fk]

≥
k+N−1∑
�=k

α�

(
E [fv�(xk) | Fk]− f∗

)

−
k+N−1∑
�=k

O(αkα�)
(‖xk − x∗‖2 + 1

)−O (Nβ2
k

)
d2(xk)

=

k+N−1∑
�=k

α�

(
f(xk)− f∗)−O(Nα2

k)
(‖xk − x∗‖2 + 1

)−O (Nβ2
k

)
d2(xk)

with probability 1. Finally, we apply the preceding relation to (36) and complete the
proof.

6. Convergence of randomized constraint projection-proximal
algorithms. In sections 4 and 5, we have considered a number of sampling schemes
for both the constraints and component functions such that the feasibility and opti-
mality improvement conditions required by the coupled convergence theorems, Theo-
rems 1 and 2, are satisfied. Now we will combine the preceding results and apply the
coupled convergence theorems. The following theorem collects various combinations
of conditions under which our algorithm converges almost surely.

Theorem 3 (almost sure convergence and rate of convergence). Let Assump-
tions 1, 2, and 3 hold, and consider the incremental constraint projection-proximal
Algorithm 1. Assume that the constraint sampling scheme satisfies any one of the
following:
(i) The constraints are sampled randomly as in Assumption 4.
(ii) The constraints are sampled adaptively according to the most distant set criterion

as in Assumption 5.
(iii) The constraints are sampled cyclically as in Assumption 6.
(iv) The constraints are sampled using a Markov chain as in Assumption 7.
Assume further that the subgradient/component function sampling scheme satisfies
either of the following:
(i) The component samples are conditionally unbiased as in Assumption 8.
(ii) The component samples are unbiased over a cycle as in Assumption 9.

Then Algorithm 1 generates a sequence of random variables {xk} that converges almost
surely to a random point in the set of optimal solutions of the convex optimization
problem (1). In addition, if the stepsizes satisfy αk = Θ(1/

√
k), βk = Θ(1) instead of

Assumption 2, we have

E

[
f

(
1

k

k∑
t=1

ΠXxt

)]
≤ f∗ +O

(
1√
k

)
, E

[
d2

(
1

k

k∑
t=1

xt

)]
≤ O

(
log k

k

)
.

Proof. The proof is obtained by combining Propositions 1, 2, 3, and 4 and Propo-
sitions 5 and 6, in conjunction with Theorems 1 and 2.

7. Numerical experiments. In this section, we test Algorithm 1 on randomly
generated instances of problem (1) and study its performance in various settings. We
let the constraint be a system of M linear equalities, each generated randomly. We let

D
ow

nl
oa

de
d 

11
/0

5/
17

 to
 1

8.
9.

61
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FIRST-ORDER METHODS WITH RANDOM PROJECTION 713

Iteration k
0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

Mean Optimality Error F(Π xk)-F*

Mean Feasibility Error dist(xk,X)

Fig. 1. Convergence of Algorithm 1 (M = N = 50). We plot the mean and 90% confidence
intervals of the optimality error and feasibility error, for which 100 random trajectories are gener-
ated. They have been normalized to start at 1. We observe that the optimality error diminishes to 0
at a rate slower than the feasibility error. The feasibility error decreases nearly at a geometric rate
in the initial iterations.

the objective be the sum of N quadratic functions, each randomly generated. We
have conducted extensive experiments of the random projection method using various
sampling schemes and stepsizes. Some representative results are illustrated in Figures
1, 2, and 3. Figure 1 plots the convergence trajectories of the feasibility and optimality
errors (which are normalized to start at 1). The mean and 90% confidence intervals
of the errors based on 100 trial runs are illustrated in Figure 1. Figure 2 plots the
convergence of errors when different gradient sampling schemes are used. Figure 3
plots the convergence of errors when different constraint sampling schemes are used.

The numerical results validate the convergence rates predicted by the theory. Our
observations are summarized as follows:

1. The feasibility error converges much faster than the optimality error con-
verges. We have tested various choices of stepsizes. Regardless of the step-
sizes, the feasibility error always decreases at a faster rate as long as con-
vergence is ensured. This validates our analysis of the coupled convergence
process.

2. When picking stepsizes as suggested in Theorem 2 and 3, we observe that the
feasibility error is bounded by O(log k/k), while the optimality error seems
to be between O(1/k) and O(1/

√
k). This validates the rate of convergence

predicted in Theorems 2 and 3.
3. When taking βk to be a constant, the feasibility error decreases at a geo-

metric rate in the first few iterations. After a few projections, the iterates
become nearly feasible. This can be understood using the feasible improve-
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Iteration k
0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IID: Optimality Error
IID: Feasibility Error
Cyclic: Optimality Error
Cyclic: Feasibility Error

Fig. 2. Comparison of gradient sampling schemes. We apply Algorithm 1 using two gradient
sampling schemes: i.i.d. sampling and cyclic sampling. Both experiments use identical stepsizes and
initial point, as well as i.i.d. uniform samples of constraints. We have experimented with various
parameters and dimensions of the problem. We note that the trajectories are quite sensitive to
parameters other than the gradient sampling scheme. In all of our experiments, the independent
sampling schemes demonstrate more robust convergence of the optimality error compared to the
cyclic sampling schemes. In contrast, the feasibility error is somewhat insensitive to the choice of
gradient sampling schemes.

ment inequality given in Theorem 1, which is almost a contraction when the
feasibility error is large.

4. The algorithm with random gradient/constraint sampling has better worst-
case performance than the one with cyclic gradient/constraint sampling. The
likely reason is that random sampling may break an unfavorable order of
component functions/constraints that may slow down the convergence.

5. By sampling constraints adaptively, e.g., choosing the most distant set, the
algorithm achieves a substantially better convergence rate than algorithms
using other schemes. However, we remark that projecting to the most distant
set requires identifying the set, which is time-consuming or even impossible
in many practical contexts.

6. The performance of Markov constraint sampling is very sensitive to the mixing
rate and invariant distribution of the Markov chain. Indeed, both i.i.d. uni-
form sampling and cyclic sampling can be viewed as special cases of Markov
sampling. The general Algorithm 1 works with any Markov sampling scheme
that is recurrent. In particular applications, one may design a customized
Markov chain Monte Carlo method as the sampling oracle, in order to achieve
the best algorithm efficiency.

We note that the convergence properties of the algorithm also depend on other prob-
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Iteration k
0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2
Mean Optimality Error

IID
Cyclic
Markov
Max Distant

Iteration k
0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean Feasibility Error

IID
Cyclic
Markov
Max Distant

Fig. 3. Comparison of constraint sampling schemes. We study four constraint sampling
schemes: independent uniform sampling, cyclic sampling, Markov sampling, and using the most
distant set for projection. In all of our experiments, the most distant projection method outper-
forms the other three. The i.i.d. uniform sampling scheme is more robust than the cyclic sampling
scheme. Both the optimality error and the feasibility error are very sensitive to schemes of constraint
sampling.

lem parameters, e.g., N,M , the condition number, variance of sample gradients, and
variance of sample constraints. We also note that the sampling oracle is not to be
chosen in many practical contexts, e.g., applications that process streaming data.
There could be a large number of possible situations, depending on the application
areas. Thus it is beyond the scope of the current paper to provide a case-by-case
convergence rate analysis and numerical experiment. A in-depth customized analysis
and experiment addressing specific applications would be a direction for future work.

8. Conclusions. In this paper, we have proposed a class of stochastic algo-
rithms, based on subgradient projection and proximal methods, which alternate be-
tween random optimality updates and random feasibility updates. We characterized
the behavior of these algorithms in terms of two coupled improvement processes:
optimality improvement and feasibility improvement. We have provided a unified
convergence and rate of convergence framework, based on the coupled convergence
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716 MENGDI WANG AND DIMITRI P. BERTSEKAS

theorem, which serves as a modular architecture for convergence analysis and can
accommodate a broad variety of sampling schemes, such as independent sampling,
cyclic sampling, Markov chain sampling, etc. We show that the optimality error de-
creases on the order of O(1/

√
k) and the feasibility error decreases on the order of

O(log k/k). The convergence rate of optimality error is nonimprovable for stochastic
first-order methods, implying that using random projection does not deteriorate the
convergence rate up to a constant.

For future research, an important direction is to customize the convergence rate
analysis to specific applications. It is also interesting to consider modifications of
our algorithm involving finite memory and multiple recent samples. Related research
on this subject includes asynchronous algorithms using “delayed” subgradients with
applications in parallel computing (see, e.g., [ANaB01]). Another extension is to
analyze problems with an infinite number of constraints.
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