
Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Q-learning Algorithms for Optimal Stopping Based on Least
Squares

H. Yu1 D. P. Bertsekas2

1Department of Computer Science
University of Helsinki

2Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

European Control Conference, Kos, Greece, 2007



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Outline

Introduction
Optimal Stopping Problems
Preliminaries

Least Squares Q-Learning
Algorithm
Convergence
Convergence Rate

Variants with Reduced Computation
Motivation
First Variant
Second Variant



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Basic Problem and Bellman Equation

• An irreducible Markov chain with n states and transition matrix P
Action: stop or continue
Cost at state i : c(i) if stop; g(i) if continue
Minimize the expected discounted total cost till stop

• Bellman equations in vector notation1

J∗ = min{c, g + αPJ∗}, Q∗ = g + αP min{c, Q∗}

Optimal policy: stop as soon as the state hits the set

D = {i | c(i) ≤ Q∗(i)}

• Applications:
search, sequential hypothesis testing, finance

• Focus of this paper: Q-learning with linear function approximation2

1α: discount factor, J∗ : optimal cost, Q∗ : Q-factor for the continuation action (the cost of continuing for the first
stage and using an optimal stopping policy in the remaining stages)

2Q-learning aims to find the Q-factor for each action-state pair, i.e., the vector Q∗ (the Q-factor vector for the stop
action is c).



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Q-Learning with Function Approximation
(Tsitsiklis and Van Roy 1999)

Subspace Approximation3

[Φ]n×s =

24 · · ·
φ(i)′

· · ·

35 , Q = Φr or, Q(i, r) = φ(i)′r

Weighted Euclidean Projection

ΠQ = arg min
r∈<s

‖Q − Φr‖π , π = (π(1), . . . , π(n)) : invariant distribution of P

Key Fact: DP mapping F is ‖ · ‖π-contraction and so is ΠF , where

FQ
def
= g + αP min{c, Q}

Temporal Difference (TD) Learning solves Projected Bellman Equation:

Φr∗ = ΠF (Φr∗)

Suboptimal policy µ: stop as soon as the state hits the set {i | c(i) ≤ φ(i)′r∗}4

nX
i=1

π(i)
`
Jµ(i)− J∗(i)

´
≤

2

(1− α)
p

1− α2
‖ΠQ∗ − Q∗‖π

3Assume that Φ has linearly independent columns.
4Denote by Jµ the cost of this policy.



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Basis of Least Squares Methods I
Projected Value Iteration

Simulation: (x0, x1, . . .) unstopped state process; implicitly approximate ΠF with
increasing accuracy

Projected Value Iteration and LSPE (Bertsekas and Ioffe 1996):5

Φrt+1 = ΠF (Φrt ), Φrt+1 = bΠt
bFt (Φrt ) = ΠF (Φrt ) + εt

S: Subspace spanned by basis functions
0

Value Iterate

Projection
on S

Φrt+1

Simulation error

S: Subspace spanned by basis functions

Φrt
0

Φrt+1

Value Iterate

Projection
on S

Projected Value Iteration Least Squares Policy Evaluation (LSPE)

Φrt

F(Φrt)F(Φrt)

5Roughly speaking, bΠt
bFt → ΠF , εt → 0 as t →∞.



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Basis of Least Squares Methods II
Solving Approximate Projected Bellman Equation

LSTD (Bradtke and Barto 1996, Boyan 1999): find rt+1 solving an approximate
projected Bellman equation

Φrt+1 = bΠt
bFt (Φrt+1)

Not viable for optimal stopping because F is non-linear6

Comparison with Temporal Difference Learning Algorithm (Tsitsiklis and Van Roy
1999):7

rt+1 = rt + γt φ(xt )
`
g(xt , xt+1) + α min{c(xt+1), φ(xt+1)

′rt} − φ(xt )
′rt
´

• TD: use each sample state only once; averaging through long time interval,
approximately perform the mapping ΠF

• Least squares (LS) methods: use effectively the past information; no need to store
the past (in policy evaluation context)

6In the case of policy evaluation, this is a linear equation and can be solved efficiently.
7Abusing notation, we denote by g(i, j) the one-stage cost of transiting from state i to j under the continuation

action.



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Least Squares Q-Learning
The Algorithm

(x0, x1, . . .) unstopped state process, γ ∈ (0, 2
1+α

) constant stepsize

rt+1 = rt + γ(r̂t+1 − rt ) (1)

where r̂t+1 is the LS solution:

r̂t+1 = arg min
r∈<s

tX
k=0

“
φ(xk )′r − g(xk , xk+1)− α min

˘
c(xk+1), φ(xk+1)

′rt
¯”2

(2)

Can compute r̂t+1 almost recursively:

r̂t+1 =

 
tX

k=0

φ(xk )φ(xk )′

!−1 tX
k=0

φ(xk )
“

g(xk , xk+1) + α min
˘

c(xk+1), φ(xk+1)
′rt
¯”

except the calculation of min
˘

c(xk+1), φ(xk+1)
′rt
¯
, k ≤ t requires repartitioning past

states into stopping or continuation sets (a remedy will be discussed later)



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Convergence Analysis

Express LS solution in matrix notation as8

Φr̂t+1 = bΠt
bFt (Φrt ) = bΠt

“
ĝt + αP̃t min

˘
c, Φrt

¯”
(3)

With probability 1 (w.p.1), for all t sufficiently large,

• bΠt
bFt is ‖ · ‖π-contraction with modulus α̂ ∈ (α, 1)

• (1− γ)I + γbΠt
bFt is ‖ · ‖π-contraction for γ ∈ (0, 2

1+α
)

Proposition

For all γ ∈
„

0 ,
2

1 + α

«
, rt → r∗, as t →∞, w .p.1.

Note: Unit stepsize is in the convergence range

8Here bΠt , ĝt and P̃t are increasingly accurate simulation-based approximations of Π, g and P, respectively.



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Comparison to an LSTD Analogue

LS Q-learning: Φrt+1 = (1− γ)Φrt + γbΠt
bFt (Φrt ) (4)

LSTD analogue: Φr̃t+1 = bΠt
bFt (Φr̃t+1) (5)

Eq. (4) is one single fixed point iteration for solving Eq. (5). Yet, the LS Q-learning
algorithm and the idealized LSTD algorithm have the same convergence rate [two-time
scale argument, similar to a comparison analysis of LSPE/LSTD (Yu and Bertsekas
2006)]:9

Proposition

For all γ ∈
„

0 ,
2

1 + α

«
, t(Φrt − Φr̃t ) < ∞, w .p.1.

Implications: for all stepsize γ in the convergence range

• empirical phenomenon: rt “tracks” r̃t

• more precisely: rt − r̃t → 0 at the rate of O(t), faster than rt , r̃t → r∗ at the rate of
O(
√

t)

9A coarse explanation is as follows: r̃t+1 changes slowly at the rate of O(t) and can be viewed as if “frozen” for
iteration (4), which, being a contraction mapping, has geometric rate of convergence to the vicinity of the “fixed
point” r̃t+1.



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Variants with Reduced Computation
Motivation

LS solution

r̂t+1 =

 
tX

k=0

φ(xk )φ(xk )′

!−1 tX
k=0

φ(xk )
“

g(xk , xk+1) + α min
˘

c(xk+1), φ(xk+1)
′rt
¯”

requires extra overhead/repartition per iteration:

min
˘

c(xk+1), φ(xk+1)
′rt
¯
, k ≤ t

Introduce algorithms with limited repartition at the expense of likely worse asymptotic
convergence rate



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

First Variant: Forgo Repartition
With an Optimistic Policy Iteration Flavor

Set of past stopping decisions for state samples

K =
˘

k | c(xk+1) ≤ φ(xk+1)
′rk
¯

Replace the terms min
˘

c(xk+1), φ(xk+1)
′rt
¯
, k ≤ t by

q̃(xk+1, rt ) =

(
c(xk+1) if k ∈ K
φ(xk+1)

′rt if k /∈ K

Algorithm

rt+1 =

 
tX

k=0

φ(xk )φ(xk )′

!−1 tX
k=0

φ(xk )g(xk , xk+1)

+ α
X

k≤t, k∈K

φ(xk )c(xk+1) + α
X

k≤t, k /∈K

φ(xk )φ(xk+1)
′rt

!

Can compute recursively; LSTD approach is also applicable10

But we have no proof of convergence at present11

10This is because the r.h.s. above is linear in rt .
11Note that if the algorithm converges, it converges to the correct solution r∗ .



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Second Variant: Repartition within a Finite Window

Repartition at most m times per state sample, m ≥ 1: window size
Replace the terms min

˘
c(xk+1), φ(xk+1)

′rt
¯
, k ≤ t by

min
˘

c(xk+1), φ(xk+1)
′rlk,t

¯
, lk,t = min{k + m − 1, t}

Algorithm

rt+1 = arg min
r∈<s

tX
k=0

“
φ(xk )′r − g(xk , xk+1)− α min

˘
c(xk+1), φ(xk+1)

′rlk,t

¯”2
(6)

Special cases

• m →∞: LS Q-learning algorithm

• m = 1: the fixed point Kalman filter (TD with scaling), (Choi and Van Roy 2006)

rt+1 = rt +
1

t + 1
B−1

t φ(xt )
`
g(xt , xt+1) + α min{c(xt+1), φ(xt+1)

′rt} − φ(xt )
′rt
´



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Second Variant: Convergence

Proposition
For all m ≥ 1, rt defined by Eq. (6) converges to r∗ as t →∞, w.p.1.

About Proof

• Two proofs are given in the extended report (Yu and Bertsekas 2006): a proof
based on o.d.e. analysis (Borkar 2006, Borkar and Meyn 2001), and an alternative
“direct” proof. (A weaker result w/ a boundedness assumption is mentioned in the
ECC paper.)

Convergence Rate Comparison

• A simple example illustrates that

for LS Q-learning : tE{‖rt − r∗‖2} < ∞

for variant with m ≥ 1 : tE{‖rt − r∗‖2} = ∞

• Expect m > 1 to have practical (but not likely asymptotic) improvement of
convergence speed over m = 1



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Summary

New Q-learning Algorithm for Optimal Stopping

• Based on projected value iteration and least squares

• Convergence/convergence rate analysis

• Variants with reduced computation overhead

Future Work

• Convergence analysis of the first variant

• Empirical studies



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

References

For a detailed presentation and analysis see:

H. Yu and D. P. Bertsekas.
A Least Squares Q-Learning Algorithm for Optimal Stopping Problems.
LIDS report 2731, MIT, 2006; revised 2007.

H. Yu and D. P. Bertsekas.
Q-learning Algorithms for Optimal Stopping Based on Least Squares.
European Control Conference, 2007.

Available from

• Janey’s web site: http://cs.helsinki.fi/u/hyu/

• Dimitri’s web site: http://web.mit.edu/dimitrib/www/home.html


	Introduction
	Optimal Stopping Problems
	Preliminaries

	Least Squares Q-Learning
	Algorithm
	Convergence
	Convergence Rate

	Variants with Reduced Computation
	Motivation
	First Variant
	Second Variant

	Summary

