Q-learning Algorithms for Optimal Stopping Based on Least Squares

H. Yu ${ }^{1} \quad$ D. P. Bertsekas ${ }^{2}$
${ }^{1}$ Department of Computer Science
University of Helsinki
${ }^{2}$ Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Outline

Introduction
Optimal Stopping Problems Preliminaries

Least Squares Q-Learning
Algorithm
Convergence
Convergence Rate

Variants with Reduced Computation
Motivation
First Variant
Second Variant

Basic Problem and Bellman Equation

- An irreducible Markov chain with n states and transition matrix P

Action: stop or continue
Cost at state $i: c(i)$ if stop; $g(i)$ if continue
Minimize the expected discounted total cost till stop

- Bellman equations in vector notation ${ }^{1}$

$$
J^{*}=\min \left\{c, g+\alpha P J^{*}\right\}, \quad Q^{*}=g+\alpha P \min \left\{c, Q^{*}\right\}
$$

Optimal policy: stop as soon as the state hits the set

$$
\mathcal{D}=\left\{i \mid c(i) \leq Q^{*}(i)\right\}
$$

- Applications:
search, sequential hypothesis testing, finance
- Focus of this paper: Q-learning with linear function approximation ${ }^{2}$

[^0]
Q-Learning with Function Approximation

Subspace Approximation ${ }^{3}$
(Tsitsiklis and Van Roy 1999)

$$
[\Phi]_{n \times s}=\left[\begin{array}{c}
\cdots \\
\phi(i)^{\prime} \\
\cdots
\end{array}\right], \quad Q=\Phi r \text { or, } Q(i, r)=\phi(i)^{\prime} r
$$

Weighted Euclidean Projection

$$
\Pi Q=\underset{r \in \Re^{s}}{\arg \min }\|Q-\Phi r\|_{\pi}, \quad \pi=(\pi(1), \ldots, \pi(n)): \text { invariant distribution of } P
$$

Key Fact: DP mapping F is $\|\cdot\|_{\pi}$-contraction and so is ΠF, where

$$
F Q \stackrel{\text { def }}{=} g+\alpha P \min \{c, Q\}
$$

Temporal Difference (TD) Learning solves Projected Bellman Equation:

$$
\Phi r^{*}=\Pi F\left(\Phi r^{*}\right)
$$

Suboptimal policy μ : stop as soon as the state hits the set $\left\{i \mid c(i) \leq \phi(i)^{\prime} r^{*}\right\}^{4}$

$$
\sum_{i=1}^{n} \pi(i)\left(J_{\mu}(i)-J^{*}(i)\right) \leq \frac{2}{(1-\alpha) \sqrt{1-\alpha^{2}}}\left\|\Pi Q^{*}-Q^{*}\right\|_{\pi}
$$

[^1]
Basis of Least Squares Methods I

Projected Value Iteration
Simulation: $\left(x_{0}, x_{1}, \ldots\right)$ unstopped state process; implicitly approximate ΠF with increasing accuracy

Projected Value Iteration and LSPE (Bertsekas and loffe 1996): ${ }^{5}$

$$
\Phi r_{t+1}=\Pi F\left(\Phi r_{t}\right), \quad \Phi r_{t+1}=\widehat{\Pi}_{t} \widehat{F}_{t}\left(\Phi r_{t}\right)=\Pi F\left(\Phi r_{t}\right)+\epsilon_{t}
$$

S: Subspace spanned by basis functions

Projected Value Iteration

Least Squares Policy Evaluation (LSPE)

[^2]
Basis of Least Squares Methods II

LSTD (Bradtke and Barto 1996, Boyan 1999): find r_{t+1} solving an approximate projected Bellman equation

$$
\Phi r_{t+1}=\widehat{\Pi}_{t} \widehat{F}_{t}\left(\Phi r_{t+1}\right)
$$

Not viable for optimal stopping because F is non-linear ${ }^{6}$
Comparison with Temporal Difference Learning Algorithm (Tsitsiklis and Van Roy 1999): ${ }^{7}$

$$
r_{t+1}=r_{t}+\gamma_{t} \phi\left(x_{t}\right)\left(g\left(x_{t}, x_{t+1}\right)+\alpha \min \left\{c\left(x_{t+1}\right), \phi\left(x_{t+1}\right)^{\prime} r_{t}\right\}-\phi\left(x_{t}\right)^{\prime} r_{t}\right)
$$

- TD: use each sample state only once; averaging through long time interval, approximately perform the mapping ΠF
- Least squares (LS) methods: use effectively the past information; no need to store the past (in policy evaluation context)

[^3]
Least Squares Q-Learning

The Algorithm

$\left(x_{0}, x_{1}, \ldots\right)$ unstopped state process, $\gamma \in\left(0, \frac{2}{1+\alpha}\right)$ constant stepsize

$$
\begin{equation*}
r_{t+1}=r_{t}+\gamma\left(\hat{r}_{t+1}-r_{t}\right) \tag{1}
\end{equation*}
$$

where \hat{r}_{t+1} is the LS solution:

$$
\begin{equation*}
\hat{r}_{t+1}=\underset{r \in \Re^{s}}{\arg \min } \sum_{k=0}^{t}\left(\phi\left(x_{k}\right)^{\prime} r-g\left(x_{k}, x_{k+1}\right)-\alpha \min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}\right)^{2} \tag{2}
\end{equation*}
$$

Can compute \hat{r}_{t+1} almost recursively:

$$
\hat{r}_{t+1}=\left(\sum_{k=0}^{t} \phi\left(x_{k}\right) \phi\left(x_{k}\right)^{\prime}\right)^{-1} \sum_{k=0}^{t} \phi\left(x_{k}\right)\left(g\left(x_{k}, x_{k+1}\right)+\alpha \min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}\right)
$$

except the calculation of $\min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}, k \leq t$ requires repartitioning past states into stopping or continuation sets (a remedy will be discussed later)

Convergence Analysis

Express LS solution in matrix notation as ${ }^{8}$

$$
\begin{equation*}
\Phi \hat{r}_{t+1}=\widehat{\Pi}_{t} \widehat{F}_{t}\left(\Phi r_{t}\right)=\widehat{\Pi}_{t}\left(\hat{g}_{t}+\alpha \tilde{P}_{t} \min \left\{c, \Phi r_{t}\right\}\right) \tag{3}
\end{equation*}
$$

With probability 1 (w.p.1), for all t sufficiently large,

- $\widehat{\Pi}_{t} \widehat{F}_{t}$ is $\|\cdot\|_{\pi}$-contraction with modulus $\hat{\alpha} \in(\alpha, 1)$
- $(1-\gamma) I+\gamma \widehat{\Pi}_{t} \widehat{F}_{t}$ is $\|\cdot\|_{\pi}$-contraction for $\gamma \in\left(0, \frac{2}{1+\alpha}\right)$

Proposition

$$
\text { For all } \gamma \in\left(0, \frac{2}{1+\alpha}\right), \quad r_{t} \rightarrow r^{*}, \quad \text { as } t \rightarrow \infty, \text { w.p.1. }
$$

Note: Unit stepsize is in the convergence range

[^4]
Comparison to an LSTD Analogue

$$
\begin{align*}
\text { LS } Q \text {-learning: } & \Phi r_{t+1}=(1-\gamma) \Phi r_{t}+\gamma \widehat{\Pi}_{t} \widehat{F}_{t}\left(\Phi r_{t}\right) \tag{4}\\
\text { LSTD analogue: } & \Phi \tilde{r}_{t+1}=\widehat{\Pi}_{t} \widehat{F}_{t}\left(\Phi \tilde{r}_{t+1}\right) \tag{5}
\end{align*}
$$

Eq. (4) is one single fixed point iteration for solving Eq. (5). Yet, the LS Q-learning algorithm and the idealized LSTD algorithm have the same convergence rate [two-time scale argument, similar to a comparison analysis of LSPE/LSTD (Yu and Bertsekas 2006)]: ${ }^{9}$

Proposition

$$
\text { For all } \gamma \in\left(0, \frac{2}{1+\alpha}\right), \quad t\left(\Phi r_{t}-\Phi \tilde{r}_{t}\right)<\infty, \quad \text { w.p.1. }
$$

Implications: for all stepsize γ in the convergence range

- empirical phenomenon: r_{t} "tracks" \tilde{r}_{t}
- more precisely: $r_{t}-\tilde{r}_{t} \rightarrow 0$ at the rate of $O(t)$, faster than $r_{t}, \tilde{r}_{t} \rightarrow r^{*}$ at the rate of $O(\sqrt{t})$

[^5]
Variants with Reduced Computation

Motivation

LS solution

$$
\hat{r}_{t+1}=\left(\sum_{k=0}^{t} \phi\left(x_{k}\right) \phi\left(x_{k}\right)^{\prime}\right)^{-1} \sum_{k=0}^{t} \phi\left(x_{k}\right)\left(g\left(x_{k}, x_{k+1}\right)+\alpha \min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}\right)
$$

requires extra overhead/repartition per iteration:

$$
\min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}, \quad k \leq t
$$

Introduce algorithms with limited repartition at the expense of likely worse asymptotic convergence rate

First Variant: Forgo Repartition

With an Optimistic Policy Iteration Flavor
Set of past stopping decisions for state samples

$$
K=\left\{k \mid c\left(x_{k+1}\right) \leq \phi\left(x_{k+1}\right)^{\prime} r_{k}\right\}
$$

Replace the terms $\min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}, k \leq t$ by

$$
\tilde{q}\left(x_{k+1}, r_{t}\right)= \begin{cases}c\left(x_{k+1}\right) & \text { if } k \in K \\ \phi\left(x_{k+1}\right)^{\prime} r_{t} & \text { if } k \notin K\end{cases}
$$

Algorithm

$$
\begin{aligned}
& r_{t+1}=\left(\sum_{k=0}^{t} \phi\left(x_{k}\right) \phi\left(x_{k}\right)^{\prime}\right)^{-1}\left(\sum_{k=0}^{t} \phi\left(x_{k}\right) g\left(x_{k}, x_{k+1}\right)\right. \\
& \left.\quad+\alpha \sum_{k \leq t, k \in K} \phi\left(x_{k}\right) c\left(x_{k+1}\right)+\alpha \sum_{k \leq t, k \notin K} \phi\left(x_{k}\right) \phi\left(x_{k+1}\right)^{\prime} r_{t}\right)
\end{aligned}
$$

Can compute recursively; LSTD approach is also applicable ${ }^{10}$ But we have no proof of convergence at present ${ }^{11}$

[^6]
Second Variant: Repartition within a Finite Window

Repartition at most m times per state sample, $m \geq 1$: window size Replace the terms $\min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{t}\right\}, k \leq t$ by

$$
\min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{k, t}\right\}, \quad I_{k, t}=\min \{k+m-1, t\}
$$

Algorithm

$$
\begin{equation*}
r_{t+1}=\underset{r \in \Re^{s}}{\arg \min } \sum_{k=0}^{t}\left(\phi\left(x_{k}\right)^{\prime} r-g\left(x_{k}, x_{k+1}\right)-\alpha \min \left\{c\left(x_{k+1}\right), \phi\left(x_{k+1}\right)^{\prime} r_{k, t}\right\}\right)^{2} \tag{6}
\end{equation*}
$$

Special cases

- $m \rightarrow \infty$: LS Q-learning algorithm
- $m=1$: the fixed point Kalman filter (TD with scaling), (Choi and Van Roy 2006)

$$
r_{t+1}=r_{t}+\frac{1}{t+1} B_{t}^{-1} \phi\left(x_{t}\right)\left(g\left(x_{t}, x_{t+1}\right)+\alpha \min \left\{c\left(x_{t+1}\right), \phi\left(x_{t+1}\right)^{\prime} r_{t}\right\}-\phi\left(x_{t}\right)^{\prime} r_{t}\right)
$$

Second Variant: Convergence

Proposition

For all $m \geq 1, r_{t}$ defined by Eq. (6) converges to r^{*} as $t \rightarrow \infty$, w.p.1.
About Proof

- Two proofs are given in the extended report (Yu and Bertsekas 2006): a proof based on o.d.e. analysis (Borkar 2006, Borkar and Meyn 2001), and an alternative "direct" proof. (A weaker result w/ a boundedness assumption is mentioned in the ECC paper.)

Convergence Rate Comparison

- A simple example illustrates that

$$
\begin{aligned}
\text { for LS } Q \text {-learning : } & t E\left\{\left\|r_{t}-r^{*}\right\|^{2}\right\}<\infty \\
\text { for variant with } m \geq 1: & t E\left\{\left\|r_{t}-r^{*}\right\|^{2}\right\}=\infty
\end{aligned}
$$

- Expect $m>1$ to have practical (but not likely asymptotic) improvement of convergence speed over $m=1$

Summary

New Q-learning Algorithm for Optimal Stopping

- Based on projected value iteration and least squares
- Convergence/convergence rate analysis
- Variants with reduced computation overhead

Future Work

- Convergence analysis of the first variant
- Empirical studies

References

For a detailed presentation and analysis see:
H. Yu and D. P. Bertsekas.

A Least Squares Q-Learning Algorithm for Optimal Stopping Problems. LIDS report 2731, MIT, 2006; revised 2007.

H. Yu and D. P. Bertsekas.

Q-learning Algorithms for Optimal Stopping Based on Least Squares. European Control Conference, 2007.

Available from

- Janey's web site: http://cs.helsinki.fi/u/hyu/
- Dimitri's web site: http://web.mit.edu/dimitrib/www/home.html

[^0]: ${ }^{1} \alpha$: discount factor, J^{*} : optimal cost, Q^{*} : Q-factor for the continuation action (the cost of continuing for the first stage and using an optimal stopping policy in the remaining stages)
 ${ }^{2}$ Q-learning aims to find the Q-factor for each action-state pair, i.e., the vector Q^{*} (the Q-factor vector for the stop action is c).

[^1]: ${ }^{3}$ Assume that Φ has linearly independent columns.
 ${ }^{4}$ Denote by J_{μ} the cost of this policy.

[^2]: ${ }^{5}$ Roughly speaking, $\widehat{\Pi}_{t} \widehat{F}_{t} \rightarrow \Pi F, \epsilon_{t} \rightarrow 0$ as $t \rightarrow \infty$.

[^3]: ${ }^{6}$ In the case of policy evaluation, this is a linear equation and can be solved efficiently.
 ${ }^{7}$ Abusing notation, we denote by $g(i, j)$ the one-stage cost of transiting from state i to j under the continuation action.

[^4]: ${ }^{8}$ Here $\widehat{\Pi}_{t}, \hat{g}_{t}$ and \tilde{P}_{t} are increasingly accurate simulation-based approximations of Π, g and P, respectively.

[^5]: ${ }^{9} \mathrm{~A}$ coarse explanation is as follows: \tilde{r}_{t+1} changes slowly at the rate of $O(t)$ and can be viewed as if "frozen" for iteration (4), which, being a contraction mapping, has geometric rate of convergence to the vicinity of the "fixed point" \tilde{r}_{t+1}.

[^6]: ${ }^{10}$ This is because the r.h.s. above is linear in r_{t}.
 ${ }^{11}$ Note that if the algorithm converges, it converges to the correct solution r^{*}.

