
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 88, No. 2, pp, 297-320, FEBRUARY 1996

Parallel Asynchronous Label-Correcting
Methods for Shortest Paths 1'2

D. P. BERTSEKAS, 3 F. GUERRIERO, 4 AND R. MUSMANNO 5

Communicated by G. P. Papavassilopoulos

Abstract. We develop parallel asynchronous implementations of some
known and some new label-correcting methods for finding a shortest
path from a single origin to all the other nodes of a directed graph. We
compare these implementations on a shared-memory multiprocessor,
the Alliant FX/80, using several types of randomly generated problems.
Excellent (sometimes superlinear) speedup is achieved with some of the
methods, and it is found that the asynchronous versions of these
methods are substantially faster than their synchronous counterparts.

Key Words. Shortest path problems, parallel asynchronous algorithms,
shared memory multiprocessors, label-correcting methods.

1. Introduction

In this paper, we consider the problem of finding a path of minimum
length from an origin node to each of the other nodes in a directed graph
(N, A), where N is the set o f nodes and A is the set of arcs. The numbers
of nodes and arcs are denoted by n and m, respectively. For each arc (i,j)~A,
we are given a scalar length ao. For convenience, we assume that there is at

~The authors acknowledge the director and the staff of CERFACS, Toulouse, France for the
use of the Alliant FX/80.

2This research was supported by the National Science Foundation under Grants 9108058-CCR,
9221293-INT, and 9300494-DMI.

3Professor, Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts.

4Research Fellow, Dipartimento di Elettronica, Informatica e Sistemistica, UniversitY. della
Calabria, Rende, Italy.

5Assistant Professor, Dipartimento di Elettronica, Informatica e Sistemistica, UniversitY_ della
Calabria, Rende, Italy.

297
0022-3239/96/0200-0297509.50/0 �9 1996 Plenum Publishing Corporation

298 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

most one arc from a node i to a node j, so that we can unambiguously refer
to arc (i , j) . A path starting from a node i~ and ending at a node ik consists
of a sequence of forward arcs of the form (i~, i2), (/2, i3) , (ik-l, ik).
The length of such a path is defined to be the sum of the lengths of its arcs,

k - I

j = l

For each node j, we want to find a path of minimum length that starts
at node 1 and ends at j. Throughout this paper, we assume that all arc
lengths are nonnegative and that there exists at least one path from node 1
to each other node.

The shortest path problem is very common in practice, either by itself
or as a subroutine in algorithms for more complex problems. Its fast solution
is thus of great practical interest. In this paper, we focus attention on the
class of label-correcting methods. A recent computational study by Gallo
and Pallottino (Ref. 1) has shown that, for single-origin all-destinations
shortest path problems, the most efficient label-correcting methods are faster
than the most efficient label-setting methods in a serial computational
environment, particularly for sparse problems, that is, for problems involv-
ing graphs with a relatively small number of arcs. This conclusion agrees
with our own experience. The results of this paper strongly suggest that the
advantage of label-correcting methods for sparse all-destinations problems
carries over to a shared memory parallel computation setting.

The methods of this paper can be adapted to solve single-origin, few-
destinations problems. For such problems, however, label-correcting
methods have been outperformed by label-setting (Dijkstra) methods and
also by auction algorithms, as reported in Refs. 2-4. Parallel implementa-
tions of these methods for single-origin, single-destination problems have
been given in Refs. 4-5, and it is quite likely that for many problems of this
type, the two-sided Dijkstra and the two-sided auction methods of Refs. 4-
5, respectively, outperform the methods of the present paper in both a serial
and a parallel computing environment.

The prototype label-correcting algorithm, as given by Gallo and Pallot-
tino (Ref. 6), maintains a vector (dl, d2 dn) of labels and a candidate
list V of nodes. Initially, we have

dj=0, di=oe for i~1 ,

V={l}.

The algorithm terminates when V is empty; upon termination, each label d~
is the shortest distance to node i. Assuming that V is nonempty, a typical

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 299

iteration is as follows:

Remove from V a node i that is in V;
for each arc (i , j) e A , if dj> d;+a~, set
dj. := di + aij ,
and add j to V i f j does not already belong to V.

There are several different methods for selecting at each iteration the
node to be removed from the candidate list V. If the node exiting V is the
node with the minimum label, the Dijkstra method is obtained. In this case,
each node will enter and exit V exactly once. Label-correcting methods avoid
the overhead associated with finding the minimum label node at the expense
of multiple entrances of nodes into V.

The simplest label-correcting method, the Bellman-Ford method (Ref.
7), maintains V in a FIFO queue; nodes are removed from the top of the
queue and are inserted at the bottom. More sophisticated label-correcting
methods maintain V in one or in two queues and use more complex removal
and insertion strategies. The objective is to reduce the number of node
reentries in V. These methods are significantly faster than the Bellman-Ford
method, and will be discussed in the next two sections with an emphasis on
a general principle enunciated in Ref. 8 for the case where the arc lengths
are nonnegative. According to this principle, the number of node reentries
is reduced if nodes with relatively small label are removed from V; the
Dijkstra method, the threshold algorithm of Ref. 9, and the SLF (small
label first) method of Ref. 8 conform to this principle. A new method, the
LLL (large label last) method, which also conforms to this principle, will
be presented in the next section. Other methods can be obtained by combina-
tions of threshold, SLF, LLL, and also the D'Esopo-Pape method of Ref.
10. For a recent textbook discussion and analysis of other shortest path
methods, we refer the reader to Ref. 11.

Label-correcting methods can be parallelized in straightforward
fashion. Furthermore, they admit an asynchronous implementation, as first
shown in Ref. 12 in the broader context of dynamic programming. In such
an implementation, multiple nodes of the candidate list can be asynchron-
ously and independently chosen for iteration by different processors, and
the associated calculations may be done at the various processors with label
information that is potentially out-of-date because of intermediate label
updating operations by other processors; see also Ref. 13, p. 451. An exten-
sive reference on parallel asynchronous algorithms, including shortest path
methods, is Ref. 14, particularly Chapter 6. There is considerable computa-
tional evidence at present that asynchronous algorithms, when valid, can be
substantially faster than their synchronous counterparts, primarily because

300 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

they avoid the penalty associated with synchronizing the iterations at differ-
ent processors. We note that, with the exception of the auction algorithms
of Ref. 5, all earlier implementations of parallel shortest path algorithms
that we are aware of (Refs. 4, 15-16) are synchronous.

A major aim of this paper is to develop parallel synchronous and
asynchronous implementations of a variety of label-correcting methods, and
to evaluate their speedup over their serial versions in a shared memory
machine, the Alliant FX/80 with 8 processors. This is done in Sections 3
and 4. Our major findings are that: (a) with proper implementation, excellent
(close to linear) speedup can be obtained with some but not all label-correct-
ing methods; (b) asynchronous implementations are considerably faster than
their synchronous counterparts; and (c) the threshold method, which in
combination with the SLF and the LLL methods is the fastest serial method
in our experiments, does not lend itself to substantial speedup. As a result,
the pure SLF and SLF-LLL methods are the fastest in a parallel setting.

2. Label-Correcting Methods Based on the Small-Label Principle

In this section, we describe three methods motivated by a general princi-
ple given in Ref. 8 regarding the node selection policy of a label-correcting
method. According to this principle, for problems with nonnegative arc
lengths, the number of iterations of the method is strongly correlated with
the average rank of the node removed from V, where nodes are ranked in
terms of the size of their label (nodes with small labels have small rank).
Thus, one should make an effort to select nodes with relatively small label.
This was verified by extensive testing reported in Ref. 8 with two methods
based on this principle, the threshold and SLF methods, and their combina-
tions. We describe these two methods and we then propose a third new
method, which can also be combined with the first two.

In the threshold algorithm of Ref. 9, the candidate list V is partitioned
in two disjoint queues Q1 and Q2, on the basis of a threshold parameter s.
At each iteration, the node removed from V is the top node of Q1, while a
node entering V is added at the bottom of Q2 or Q1, depending on whether
its label is greater than s, or smaller or equal to s, respectively. In this way,
the queue Q1 contains only nodes whose labels are not larger than s. When
Q1 is exhausted, the entire list V is repartitioned in two queues according to
an appropriately adjusted threshold parameter.

To understand the main idea of the threshold algorithm, suppose that,
at time t, the threshold isset to a new value s, and that at some subsequent
time t' > t, the queue Q~ gets exhausted. Then at time t', all the nodes of the
candidate list have label greater than s. In view of the nonnegativity of the

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 301

arc lengths, this implies that all nodes with label less or equal to s will not
reenter the candidate list after time t'. In particular, all nodes that exited
the candidate list between times t and t' become permanently labeled at time
t' and never reenter the candidate list. We may thus interpret the threshold
algorithm as a block version of the Dijkstra method, whereby a whole subset
of nodes becomes permanently labeled when the queue Q~ gets exhausted.

However, when one tries to parallelize the threshold algorithm, it is
difficult to maintain the permanent labeling property described above. The
reason is that this property depends on using a uniform threshold value for
the entire candidate list. In particular, this property will not hold if the
candidate list is divided into multiple (partial) candidate lists, each operated
by a separate processor with its own independent threshold value. The alter-
native to maintaining multiple parallel lists with independent threshold
values is either to maintain a single list, which is accessed by all processors,
or to maintain a common threshold value across the independent lists of
the different processors. Both of these alternatives require considerable syn-
chronization between processors, and this is the reason why we were unable
to parallelize the threshold method as efficiently as other methods.

We also note that the performance of the threshold method is very
sensitive to the procedure used for adjusting the threshold parameter s. In
particular, if s is chosen too small, the method becomes equivalent to an
unsophisticated version of the Dijkstra algorithm, while if s is chosen too
large, the method is quite similar to the Bellman-Ford algorithm. The origi-
nal proposal of the threshold algorithm (Ref. 9) gives a heuristic method
for choosing the threshold that works remarkably well for many problems,
as also verified in Refs. 1, 8. However, it appears that choosing appropriate
threshold values becomes more complicated in a parallel setting.

In the Small Label First (SLF) algorithm, the candidate list V is main-
tained as a double-ended queue Q. At each iteration, the node removed is
the top node of Q. The rule for inserting new nodes is given below:

Let i be the top node of Q, and letj be a node that enters Q;
if dj< di, enterj at the top of Q;
if dj > dr, enterj at the bottom of Q.

The SLF method provides a rule for inserting nodes in the queue, but
always removes nodes from the top of Q. We now propose a more sophis-
ticated node removal strategy, which aims to remove from Q nodes with
small labels. In particular, we suggest that, at each iteration, when the node
at the top of Q has a larger label than the average node label in Q (defined
as the sum of the labels of the nodes in Q divided by the cardinality I QI of
Q), this node is not removed from Q, but rather it is repositioned to the

302 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

bottom of Q. We refer to this as the Large Label Last (LLL) strategy. The
LLL strategy for removing nodes from V can be summarized as follows:

Let i be the top node of Q, and let s = ~ dj/] Q[;
jEQ

if di > s, then move i at the bottom of Q;
repeat until a node i such that di___ s
is found and is removed from Q.

It is simple to combine the SLF queue insertion and the LLL node
selection strategies, thereby obtaining a method referred to as SLF-LLL.
We have found that the combined SLF-LLL method requires consistently
a smaller number of iterations than either SLF or LLL, although the gain
in number of iterations is sometimes more than offset by the extra overhead
per iteration.

The SLF and LLL strategies can also be combined with the threshold
algorithm. In particular, the LLL strategy is used when selecting a node to
exit the queue Q~ (the top node of Q1 is repositioned to the bottom of Q~
if its label is found smaller than the average label in Q~). Furthermore,
whenever a node enters the queue Q1, it is added to the bottom or the top
of Q1 depending on whether its label is greater than the label of the top
node of Q1 or not. The same policy is used when transferring to Q~ the
nodes of Q2 whose labels do not exceed the current threshold parameter.
Thus, the nodes of Q2 are transferred to Q~ one-by-one, and they are added
to the top or the bottom of Qt according to the SLF strategy. Finally, the
SLF strategy is also followed when a node enters the queue Q2.

It is also possible to combine the SLF and LLL strategies with the
D'Esopo-Pape method (Ref. 10), as has already been proposed (for the case
of the SLF strategy) in Ref. 17. In the D'Esopo-Pape method, the candidate
list V is maintained as a double-ended queue Q. At each iteration, the node
removed is the top node of Q, but a new node is inserted at the bottom of
Q if it has never entered Q before, and is inserted at the top of Q otherwise.
The rationale for this queue insertion strategy is somewhat unclear, but
the literature contains numerous reports of excellent performance of the
D'Esopo-Pape method. However, the results of Ref. 8 show that the
D'Esopo-Pape method is not consistently faster than the Bellman-Ford
algorithm and indeed in some cases it is dramatically slower. Following the
suggestion of Ref. 17, we have also experimented with serial implementations
of various combinations of the SLF and the SLF-LLL strategies with the
D'Esopo-Pape method. We have verified that the use of the SLF strategy
for nodes that enter Q for the first time reduces the number of iterations
and that the use of the LLL strategy, in addition to SLF, reduces the number
of iterations even further. However, we found that, in a serial environment,

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 303

the combinations of SLF and LLL with the threshold algorithm are much
faster than the corresponding combinations with the D'Esopo-Pape method.
We have not experimented with combinations of the D'Esopo-Pape method
with SLF and LLL in a parallel setting. We note, however, that parallel
asynchronous implementations of such combinations based on the ideas of
this paper are straightforward. It is plausible that these implementations will
prove effective for problems where the D'Esopo-Pape method is much faster
than the Bellman-Ford algorithm.

The results of Refs. 8 and 17 and the results of the present paper
demonstrate that, for problems with nonnegative arc lengths, the SLF and
LLL strategies improve consistently the performance of the Bellman-Ford,
threshold, and D'Esopo-Pape methods. Therefore, it is seen that SLF and
LLL are complementary to the other basic label-correcting methods and
improve their performance when combined with them. We will see in the
next two sections that the same is true in a parallel setting.

Regarding the theoretical worst-case performance of the SLF and the
combined SLF-LLL algorithms, it is not known at present whether these
algorithms have polynomial complexity. 6 However, extensive computational
experience has yielded no indication of nonpolynomial behavior. In any
case, it is possible to construct provably polynomial versions of these algo-
rithms as follows.

Suppose that there is a set of increasing iteration indices tl, t2 tn+l
such that t~ = 1, and for i = 1 n, all nodes that are in V at the start of
iteration t~ are removed from V at least once prior to iteration ti+~. Because
all arc lengths are nonnegative, this guarantees that the minimum label node
of V at the start of iteration t; will never reenter V after iteration ti+ 1. Thus,
the candidate list must have no more than n - i nodes at the start of iteration
t~+l, and must become empty prior to iteration tn+~. Thus, if the running
time of the algorithm between iterations tl and t~+ 1 is bounded by R, the
total running time of the algorithm will be bounded by nR; and, if R is
polynomially bounded, the running time of the algorithm will also be poly-
nomially bounded.

Assume now, in particular, that between iterations t~ and t / . l , each
node is inserted at the top of Q for a number of times that is bounded by
a constant and that (in the case of SLF-LLL) the total number of reposition-
ings is bounded by a constant multiple of m. Then, it can be seen that the
running time of the algorithm between iterations t~ and ti+l is O(m); there-
fore, the complexity of the algorithm is O(nm). To modify SLF or SLF-
LLL so that this result applies, it is sufficient that we fix an integer k > 1,

6Note Added in Proof: An instance of nonpolynomial complexity has been recently constructed
by Chen and Powell, who also propose a modification to make the algorithms polynomial.

304 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

and that we separate the iterations of the algorithm in successive blocks of
kn iterations each. We then impose an additional restriction that, within
each block of kn iterations, each node can be inserted at most k - 1 times
at the top of Q; that is, after the (k - 1)th insertion of a node to the top of
Q within a given block of kn iterations, all subsequent insertions of that
node within that block of kn iterations must be at the bottom of Q. In the
case of SLF-LLL, we also impose the additional restriction that the total
number of repositionings within each block of kn iterations should be at
most km; that is, once the maximum number of km repositionings is reached,
the top node of Q is removed from Q regardless of the value of its label.
The worst-case running time of the modified algorithms are then O(nm). In
practice, it should be highly unlikely that the restrictions introduced into
the algorithms to guarantee O(nm) complexity will be exercised if k is larger
than say 3 or 4.

3. Parallel Label-Correcting Methods

The general principle for paraUelizing the generic label-correcting
method is straightforward. The basic idea is that several nodes can be
removed simultaneously from the candidate list and the labels of the adjacent
nodes can be updated in parallel. In a shared memory machine, the label of
a node is maintained in a unique memory location, which can be accessed
by all processors. During the concurrent label updating, it is possible that
multiple processors will attempt to modify simultaneously the label of the
same node. For this reason, the label updating operation must be executed
with the use of a lock, which guarantees that only one processor at a time
can modify a given label.

Two important characteristics of a parallel shared memory implementa-
tion of a label-correcting method are whether: (a) the candidate list is organ-
ized in a single queue shared by all processors, or in multiple queues, that
is, a separate queue for each processor; (b) the label updating is synchronous
or asynchronous.

The issue of one versus multiple queues deals primarily with the tradeoff
between good load balancing among multiple processor queues and
increased contention for access to a single queue. We will see, however, that
multiple queues also enhance the effectiveness of the SLF and LLL strategies
because, with multiple queues, more nodes with small labels tend to rise to
the top of the queues.

Our implementation of the various queue strategies is as follows.

Parallel One-Queue Algorithm. We have a single queue Q shared
among all processors (in the case of the threshold algorithms, this queue is

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 305

partitioned as discussed earlier). Each processor removes the node at the
top of Q, updates the labels of its adjacent nodes, and adds these nodes (if
necessary) into Q, according to the insertion strategy used. The procedure
is repeated until Q is found empty. In the latter case, the processor switches
to an idle state and reawakens when Q becomes nonempty. The execution
is stopped when the idle condition is reached by all processors. This algo-
rithm suffers from substantial contention between the processors to access
the top node of Q and also to insert nodes into Q.

Parallel Multiple-Queue Algorithm. In this algorithm, each processor
uses a separate queue. It extracts nodes from the top of its queue, updates
the labels for adjacent nodes, and uses a heuristic procedure for choosing
the queue to insert a node that enters //". In particular, the queue chosen is
the one with minimum current value for the sum of the out-degrees of the
nodes assigned to the queue (the out-degree of a node i is the number of
outgoing arcs from i). This heuristic procedure is easy to implement and
ensures good load balancing among the processors. In our implementations,
a node can reside in at most one queue. In particular, a processor can check
whether a node is present in the candidate list (that is, in some queue) by
checking the value of a Boolean variable, which is updated each time a node
enters or exits the candidate list. In the case of the threshold algorithms,
the threshold setting policy of the corresponding serial method was used
independently for each of the queues.

For all the algorithms tested, we have found that the multiple-queue
versions were more efficient than their single-queue counterparts. The reason
is that, in the case of multiple queues, there is much less contention for
queue access than in the case of a single queue: with multiple queues, the
likelihood of multiple processors attempting simultaneously to insert a node
in the same queue is much smaller. For this reason, we concentrate in what
follows in the multiple-queue implementation.

The issue of synchronous versus asynchronous implementation is an
issue of tradeoff between orderliness of computation and penalty for syn-
chronization. In a synchronous implementation, the computation proceeds
in rounds of parallel iterations. During each round, each processor removes
a different node from the candidate list (if the number of processors is greater
than the number of nodes, some processors remain idle). The processors then
update in parallel the labels of the corresponding adjacent nodes. Finally, a
new round begins once all the label updating from the current round is
finished.

In an asynchronous algorithm, there is no notion of rounds, and a new
node may be removed from the candidate list by some processor while other
processors are still updating the labels of various nodes. A single-origin,

306 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

single-destination label-correcting method resembling the ones considered
here is given in p. 451 of Ref. 14. More formally, for t--0, 1 let dj(t)
denote the value of the label of node j at time t; this is the value of dj that
is kept in shared memory. In our mathematical model of the asynchronous
label-correcting algorithm, the label dj(t) is updated at a subset of times
T i c {0, 1 , . . . } by some processor that need not be specified further.

The updating formula is

Idi(~(t)) +ao., i fd i (~(t)) +ao.<4(t) and t 6 T j, 4(t+ 1)
(dj(t), otherwise. (1)

Here, g (t) is the time at which the label dl was read from shared memory
by the processor updating dj at time t. The asynchronism results from the
possibility that we may have ~ (t) < t and di(r{(t))#d~(t), because the label
di stored in shared memory may have been changed between the times

(t) and t by another processor. Note, however, that before the label dj can
be changed according to (1), the value d~(~(t))+a o. must be found smaller
than the current value dj(t). One way to accomplish this is to lock the
memory location storing dj after dj is read, to ensure that no other processor
can change dj while the test

di(z~(t)) + ao.<dj.(t) (2)

is conducted. The drawback of this method is that the memory location of
dj may be locked unnecessarily, while other processors are waiting to read
the value of dj.

An alternative method that we found to be much more efficient is to
first read dj(t') at some time t' and (without locking its value) compare it
to d~(r~(t'))+ a u. If dj is found smaller, its memory location is locked and
its current value dj(t) [which may have been changed by another processor
as the test (2) was being conducted] is read again. Depending on whether
the test (2) is passed, the new value dj (t + 1) is recorded according to (1) and
the corresponding memory location is unlocked. This memory management
method reduced significantly the number of locking operations and contri-
buted substantially in the speedup of the algorithms.

The convergence of the preceding algorithm to the correct shortest
distances d*, that is,

di(t)=d*, Vt>i , i = l , 2 , . . . , n , (3)

where ~ is some finite time, can be shown under very weak assumptions. In
particular, what is needed is that T j is an infinite set for each j # 1, that if
(i , j) is an arc, the node i is used in (1) for an infinite subset of T i, and that
~(t) ~ ~ as t ~ co. These are the minimal conditions for asynchronous con-
vergence, as discussed in Ref. 14, Chapter 6. Note that the computation can

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 307

be terminated once a time i such that (3) holds is found. In our shared
memory context, the time ~ where termination occurs as in (3) is recognized
as the time where the queue Q is empty and all processors are idle. The
proof of convergence resembles closely related proofs in Ref. 14 (Section
6.4), Ref. 11, Ref. 13 (Section 5.2.4), and will not be given here.

It has often been found empirically that asynchronous algorithms, when
valid, outperform their synchronous counterparts because they are not
delayed by synchronization requirements. Examples are given in Refs. 5, 18,
which give parallel asynchronous implementations of auction algorithms
that bear similarity with the implementations given here. However, to our
knowledge, the present paper is the first to address the implementation of
asynchronous label-correcting methods and to assess their performance.

The synchronous algorithms also use multiple queues, since we found
the single queue versions to be relatively inefficient. The insertion of nodes
in the queues is done similar to the corresponding asynchronous algorithms.
Our implementation is depicted in Fig. 1 and involves two synchronization
points, the first at the end of the label updating procedure and the second
at the conclusion of the iteration. Each processor stores temporarily the
values of the updated labels in a private memory area; in this way, the new
labels of nodes can be computed by a processor without locking their shared
memory locations, which would delay the reading of these labels by other
processors. Thus, at the end of the label updating task, the same node could
be stored into multiple private memory locations with different label values.
Following the label updating task, the updated labels are transferred to their
main (shared) memory locations, and the corresponding nodes are added
to V, if they are not already present in V. We have also tried the alternative
scheme where the node labels are updated directly at their shared memory
locations, but this approach turned out to be less efficient. In our implemen-
tation of the asynchronous algorithms, upon completing an iteration, a pro-
cessor does not wait for the completion of the iteration of the other
processors at any time but starts instead a new iteration (if V is not empty),
thereby avoiding the corresponding synchronization penalty.

4. Numerical Experiments

The SLF and SLF-LLL algorithms were implemented and tested using
an Alliant FX/80. This computer is based on a vector-parallel architecture
with 8 processors, each with 23 Mflops of peak performance, sharing a
common memory of 32 MBytes. The compiler used was FX/Fortran 4.2.
The vectorization capability of the processors was not used in our
experiments.

308 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

V={1}]
..-1

V empty .9

no

At most p nodes
in V are extracted

............... (,)

, , , i |

i ii I adjacent nodes to i 1 adjacent nodes to ip

I I
I

I ~176176176176176176176176176 osinV
I I]

Fig. 1. Parallel synchronous label-correcting algorithm.

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 309

In order to evaluate numerically the efficiency of the methods, we have
tested the following six codes, which evolved from the codes of Refs 1, 8:

(i) B-F: Bellman-Ford method;
(ii) SLF: small label first method;
(iii) SLF-LLL: small label first method, using in addition the large

label last strategy for node removal;
(iv) THRESH: threshold method; the method for setting the thresh-

old parameter is the same as the one that was recommended in
Ref. 9 and was also used in Ref. 8;

(v) SLF-THRESH: threshold method in combination with the SLF
method for the node insertion strategy;

(vi) SLF-LLL-THRESH: the preceding method, using in addition the
large label last strategy for node removal.

We used four different types of randomly generated test problems for
which all arc lengths were chosen according to a uniform distribution from
the range [1, 1000] (see Table 1).

Grid/Random Problems G1, G2, G3, G4. These are problems generated
by a modified version of the GRIDGEN generator of Ref. 11. The number
of arcs is 1,000,000 for all problems, and the nodes are arranged in a square
planar grid with the origin node 1 set in the southwest corner. Each pair of
adjacent grid nodes is connected in both directions. We can also have addi-
tional arcs with random starting and ending nodes. The number of nodes
was selected so that the total number of additional arcs is approximately 2,
3, 4, and 5 times the number of grid arcs.

Euclidean Grid/Random Problems El, E2, E3, E4. These problems are
generated similar to the preceding class. The only difference is that the length
of each nongrid arc from the grid node (i,j) to the grid node (h, k) is set
to r . eo.,hk, where eij,hk is the Euclidean distance of the nodes [the square
root of (i - h) 2 + (j - k) 2] and r is an integer chosen according to a uniform
distribution from the range [1, 1000].

Netgen Problems N1, N2, N3, N4. These are problems generated with
the public-domain program NETGEN (Ref. 19). The number of arcs is
1,000,000, whereas the number of nodes was chosen as 31,622 for N 1, 15,811
for N2, 11,952 for N3, and 10,000 for N4.

Fully Dense Problems C1, C2, C3, C4. In these problems, all the pos-
sible n (n - 1) arcs are present.

310 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

Road Networks R1, R2, R3, R4. These are the Manhattan, Waltham,
Boston, and Middlesex Country road networks from the TIGER/Line TM

Census Files, which were also tested in Ref. 17. We thank Dr. T. Dung for
providing these networks to us. In all our tests, node 0 was taken as the
origin.

5. Experimental Results and Discussion

We now discuss the experimental results. For each category of test prob-
lems, we give the sequential (one-processor) and the parallel (8-processor)
solution times for each algorithm. We also give the speedup for 4 and 8 proces-
sors. We measured speedup for a given problem and for a given algorithm as
the ratio of the one-processor time over the multiple-processor time required
by the algorithm. A more detailed accounting of the experimental results is
given in Ref. 20 and includes the number of iterations and the times required
by the synchronous and the asynchronous version of each algorithm on each
of the test problems. For the parallel algorithms, we report here results only
with the more efficient asynchronous multiple-queue versions.

Grid/Random Problems. Figure 2 gives the sequential execution times
and shows that the threshold methods are much faster than the others.

80

70

l 1 B-F
SLF

u

n THRESH
[] SLF-THRESH

60

50

40

30

20

10

Fig. 2.
G1 G2 G3 G4

Time (sec) required to solve grid/random problems with the sequential codes.

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 311

Table 1. List of test problems.

Test problem Nodes Arcs

GI, El 70756 1000000
G2, E2 50176 1000000
G3, E3 40804 1000000
G4, E4 35344 1000000

NI 31622 1000000
N2 15811 1000000
N3 11952 1000000
N4 10000 1000000

C 1 250 62250
C2 500 249500
C3 750 561750
C4 1000 999000

RI 4795 16458
R2 26347 64708
R3 102557 250616
R4 108324 271340

For these problems, the threshold methods require a very small number of
iterations, almost equal to the number of nodes, which is the lower bound
attained by the Dijkstra algorithm. The combinations with the SLF and
L L L strategies require consistently a smaller number of iterations than the
pure threshold method. However, since the threshold method works very
well for these problems, there is little or no further reduction in the serial
execution time as a result o f the combination; in some cases, there is a slight
time increase due to the extra overhead of the SLF and LLL strategies.
However, the SLF and LLL strategies are also very helpful in reducing the
number of iterations without a threshold, as can be inferred by comparing
the results of the SLF, SLF-LLL, and B-F methods.

The improvements due to parallelism are summarized in Table 2, where
the speedup values using 4 processors and 8 processors are reported for the

Table 2. Speedup values for the asynchronous parallel codes (4 processors/8
processors).

S L F - SLF-LLL-
Problem B-F SLF SLF-LLL THRESH THRESH THRESH

G1 2.67/4.28 2.81/5.21 2.51/4.48 1.17/1.43 1.16/1.58 1.11/1.59
G2 2.92/5.09 3.01/4.77 2.49/4.61 1.22/1.61 1.28/1.96 1.27/1.95
G3 2.98/4.71 2.97/5.48 2.52/4.75 0.96/1.46 1.29/1.72 1.32/1.81
G4 2 .03 /5 .25 3.21/6.25 2.75/5.47 0.92/1.36 1.19/1.83 1.28/1.81

312 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

Fig. 3.

li B-F [] "rnRESn I
SLF SLF-TnRESH I
SLF-LLL Q SLF-LLL-TttRESH I 14

12

10

8

6

G1 G2 G3 G4

Time (sec) required to solve grid/random problems with the parallel asynchronous
codes using 8 processors.

asynchronous parallel algorithms. Figure 3 gives the corresponding times
using 8 processors.

It can be seen from Table 2 that the performance of the parallel asyn-
chronous threshold methods is poor; a maximum speedup value of only
1.96 is obtained. This is due in part to the difficulty in parallelizing the
threshold methods, which involve operations, such as the threshold setting
and the transfer of nodes between the two queues, that are inherently sequen-
tial. Furthermore, with the use of multiple queues, the permanent labeling
property of the threshold method is lost, as discussed in Section 2. In addi-
tion, in the threshold methods, it is difficult to choose an appropriate thresh-
old, especially in the parallel case, when a threshold must be set for each
queue. The SLF and LLL strategies are very helpful in reducing the number
of iterations and are well suited for parallelization. An interesting result,
especially with SLF, is that the use of multiple queues reduces substantially
the number of iterations over the sequential version. This phenomenon was
also noted for the other test problems. One possible explanation is that, by
using multiple queues, the sorting process that places nodes with small labels
near the top of the queues is enhanced. The reduction in number of iterations

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 313

accounts for the particularly good speedup achieved with SLF (up to 6.25
with 8 processors) and also with SLF-LLL.

Euclidean Grid/Random Problems. These problems are more difficult
than the preceding ones because of the considerable difference between the
lengths of the grid arcs and the nongrid arcs. Here, THRESH requires a
substantially smaller number of iterations than B-F, but the number of
iterations of THRESH is quite large (two or three times larger than the
number of nodes). The SLF and LLL strategies reduce substantially the
number of iterations, as can be inferred from Fig. 4. Also in the parallel
case, we observe a large speedup with SLF and SLF-LLL (see Fig. 5 and
Table 3). In particular, with SLF we achieve a maximum speedup of around
6.82, whereas with the SLF-LLL version we achieve a maximum speedup
of 5.46. Again, our explanation is that the use of multiple queues enhances
the process of examining nodes with small labels first and results in a reduced
number of iterations.

Netgen Problems. These problems are substantially more dense than
the preceding ones; in the sequential case, the threshold algorithms are much
faster than the others (see Fig. 6). The improvement in execution time rela-
tive to B-F is due to the substantial reduction of the number of iterations.

120

100

80

I" I [

60

40

Fig. 4.

20

0

E1 E2' E3 FA

Time (sec) required to solve Euclidean grid/random problems with the sequential
codes.

314 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

30

28

26

24

22

20

18

16

14

12

10

8

Fig. 5.

' SLF

SLF-LLL

[] THRESH
I71 SLF-THRESH

[] SLF-LLL-THRESH

E1 E2 E3 E4
Time (sec) required to solve Euclidean grid/random problems with the parallel asyn-
chronous codes using 8 processors.

50

I-I SLF SLF-THRESH I
N ~ l l~'_T T l ~ ~T l~'_T l l _~l'~lt.u-"l~l,,,lr I

40

30

20

10

Fig. 6.

N1 N2 N3 N4
Time (sec) required to solve Netgen problems with the sequential codes.

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 315

I l l B-F I THRESH
SLF [] SLF-THRESH
SLF-LLL [] SLF-LLL-THRESH 12

10

8

6

4

N1 N2 N3 N4
Fig. 7.

40

35

30

25

20

15

10

5

0

Fig. 8.

Time (sec) required to solve Netgen problems with the parallel asynchronous codes
using 8 processors.

11 B-F ~ THRESH

~ T I ~ T T T "T~UI 'D12~IL /

C1 C2 C3 C4
Time (sec) required to solve fully dense problems with the sequential codes.

316 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

8

7

6

5

4

3

2

1

0

SLF
SLF-LLL

I THRESH [
[] SLF-THRJESH {
[] SLF-LLL-'ITqRESH [

C1 C2 C3

Fig. 9.

C4
Time (sec) required to solve fully dense problems with the parallel asynchronous codes
using 8 processors.

[] B-F U THRESH [
[] SLF [] SLF-'rrmEsa]
[] SLF-LLL [] SLF-LLL-THRESH I

3.s X 45 r 100o

35 800
2.5 30

1 300
10 200

0"50 ~ 100

0
R1 R2 R3

Fig. 10.

600

500

400

300

200

100

0
R4

Time (sec) required to solve road network problems with the sequential codes.

JOTA: VOL. 88, NO. 2, FEBRUARY 1996 317

In the parallel asynchronous case, using multiple queues in combination
with the SLF strategy works very well and results in fewer iterations (see
Fig. 7 and Table 4). The reduction in the number of iterations is so large
for one of the problems that the speedup is greater than 8 with 8 processors.
As a result, the SLF method outperforms all other parallel methods.

Fully Dense Problems. For fully dense problems, the results are quite
similar to those for the preceding problems, as can be seen from Figs. 8-9
and Table 5. The value of the speedup is larger for these problems, and the
parallel performance of the Bellman-Ford method is relatively better than
for the preceding problems.

Road Networks. For these problems, the SLF and LLL strategies are
remarkably effective. In a serial setting, they improve a great deal the per-
formance of the Bellman-Ford and the threshold algorithms, as can be seen
from Fig. 10. In a parallel setting, they exhibit excellent (often superlinear)
speedup, due to a greatly reduced number of iterations, as can be seen from
Table 6 and Fig. 11. The reduction in the number of iterations for the SLF
and LLL strategies must be attributed to the use of multiple queues and the
associated enhanced sorting that places nodes with small labels near the top
of the queues.

In Table 7 and Fig. 12, we summarize the performance of the various
methods and also show the advantage of the asynchronous implementations
versus their synchronous counterparts. In particular, we compare the
methods following an approach that is similar to the one proposed in Ref.
21, by giving to each method and for each test problem a score that is equal
to the ratio of the execution time of each method over the execution time
of the fastest method for the given problem. Thus, for each method, we
obtain an average score, which is the ratio of the sum of the scores of the
method over the number of test problems. This average score, given in Table
7, indicates how much a particular method has been slower on the average
than the most successful method.

In conclusion, the use of multiple queues seems to work very weU in
conjunction with the SLF and L L L strategies, and the asynchronous parallel
algorithms consistently outperform their synchronous counterparts. The
threshold method, which is robust and efficient for serial computers, is not
well suited for parallelization. Finally, the SLF and LLL strategies maintain
their efficiency when implemented in parallel, and when combined with other
methods, improve significantly their performance both in a serial and in a
parallel environment.

318 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

Table 3. Speedup values for the asynchronous parallel codes (4 processors/8
processors).

SLF- SLF-LLL-
Problem B-F SLF SLF-LLL THRESH THRESH THRESH

E1 2.65/4.69 2.83/5.49 2.28/4.54 1.40/2,32 1.40/2.70 1.13/2.12
E2 2.95/4.49 3.08/6.03 2.50/5.10 1.33/2,37 1.38/2.37 1.03/1.54
E3 3.13/5.50 3.36/6.82 2.78/5.46 1.17/1.97 1.15/2.30 0.89/1.82
E4 3.18/4.90 3.15/6.28 2.51/4.41 1.21,/2.15 0.89/2.28 0.95/1.97

Table 4. Speedup values for the asynchronous parallel codes (4 processors/8
processors).

SLF- SLF-LLL-
Problem B-F SLF SLF-LLL THRESH THRESH THRESH

NI 3.37/6.07 3.10/6.12 2,46/4.73 1.03/1.33 1.11/1.68 1.25/1.71
N2 3.37/6.37 4.46/8,56 2,60/6.31 0.81/1.44 1,06/1.85 1.10/2.01
N3 3.67/6.85 3.93/7.12 3.08/4.44 0.96/1.50 1.19/2.16 0.89/2.08
N4 3.47/6.76 4.51/8.45 2.65/5.35 0,80/1.48 1.06/2.04 1.01,/2.05

Table 5. Speed-up values for the asynchronous parallel codes (4 processors/8
processors).

SLF- SLF-LLL-
Problem B-F SLF SLF-LLL THRESH THRESH THRESH

Cl 3.96/7.26 3.38/7.52 2.97/5.72 1.90/3,18 1.85/2.84 1.57/2.72
C2 4.03/7.50 4.22/8.08 3.33/5.98 1.88/3.59 2.03/3.92 1.67/2.97
C3 4.10/7.73 4.20/8.23 3.09/5.80 2.32/2.96 2.08/3,87 1.70/3.32
C4 4.21/8.02 4.15/8.13 3.06/6.16 2.09/3.05 2.25/4.07 1.68/3.32

Table 6. Speed-up values for the asynchronous parallel codes (4 processors/8
processors).

SLF- SLF-LLL-
Problem B-F SLF SLF-LLL THRESH THRESH THRESH

R1 1.81/2.49 2.53/5.39 2,49/5.05 1.16/1.70 1.04/1.24 0.93/1.33
R2 1.94/3.35 3.88/5.08 4.17/7.12 0.69/1.20 0.69/0.90 0.72/1.05
R3 2.21/3.60 5.78/10.45 17.53/21.13 0,59/0.49 0.40/0.59 0.63/0.81
R4 1.84/2.43 7.37/12.66 11.33/18.38 0,64/1.24 0.77/1.23 0.64/0.76

Table 7. Average scores of all implemented methods.

Code Sequential Synchronous Asynchronous

BF 17.86 26.97 4.67
SLF 9.39 5.72 1.21
SLF-LLL 6.10 6.62 1.03
THRESH 8.50 10,14 4.41
SLF-THRESH 3.33 2.77 1.44
SLF-LLL-THRESH 2.63 2.23 1,33

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 11.

JOTA" VOL. 88, NO. 2, FEBRUARY 1996

m B-F [] ~ s H I
[] SLF SLF-THRESH I
[] SLF-LLL ~ SLF'LLL-THRESH]

14 T 350

12 i 300

10 I 250

6]] 1 [~ 1~

250 T

319

R 1 R2 R3 R4

Time (sec) required to solve road network problems with the parallel asynchronous
codes using 8 processors.

30

25

20

a s E Q ~
[] SYNCHRONOUS
[] ASYNCHRONOUS

15

10 �84

B-F SLF SLF-LLL THRESH SLF SLF-LLL
THRESH THRESH

Fig. 12. Plot of the average scores of all implemented methods as per Table 7.

R e f e r e n c e s

l. GALLO, G., and PALLOTTINO, S., Shortest Path Algorithms, Annals of Opera-
tions Research, Vol. 7, pp. 3-79, 1988.

2, BERTSEKAS, D. P., An Auction Algorithm for the Shortest Path Problem, Mathe-
matical Programming Study, Vol. 26, pp. 38-64, 1986.

3. BERTSEKAS, D. P., PALLOTTINO, S., and SCUTELLA', M. G., Polynomial Auction
Algorithms for Shortest Paths, Computational Optimization and Applications,
Vol. 4, pp. 99-125, 1995.

320 JOTA: VOL. 88, NO. 2, FEBRUARY 1996

4. HELGASON, R. V., and STEWART, D., One-to-One Shortest Path Problem: An
Empirical Analysis with the Two-Tree Dijkstra Algorithm, Computational Opti-
mization and Applications, Vol. 2, pp. 47-75, 1993.

5. POLYMENAKOS, L., and BERTSEKAS, D. P., Parallel Shortest Path Auction Algo-
rithms, Parallel Computing, Vol. 20, pp. 1221-1247, 1994.

6. GALLO, G., and PALLOa'rlNO, S., Shortest Path Methods: A Unified Approach,
Mathematical Programming Study, Vol. 26, pp. 38-64, 1986.

7. BELLMAN, R., Dynamic Programming, Princeton University Press, Princeton,
New Jersey, 1957.

8. BERTSEKAS, D. P., A Simple and Fast Label-Correcting Algorithm for Shortest
Paths, Networks, Vol. 23, pp. 703-709, 1993.

9. GLOVER, F., GLOVER, R., and KLINGMAN, D., The ThreshoM Shortest Path
Algorithm, Networks, Vol. 14, pp. 256-282, 1986.

10. PAPE, U., Implementation and Efficiency of Moore Algorithms for the Shortest
Path Problem, Mathematical Programming, Vol. 7, pp. 212-222, 1974.

11. BERTSEKAS, D. P., Linear Network Optimization: Algorithms and Codes, MIT
Press, Cambridge, Massachusetts, 1991.

12. BERTSEKAS, D. P., Distributed Dynamic Programming, IEEE Transactions on
Automatic Control, Vol. 27, pp. 610-616, 1982.

13. BERTSEKAS, D. P., and GALLAGER, R. G., Data Networks, 2nd Edition,
Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

14. BERTSEKAS, D. P., and TSITSIKLIS, J. N., Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

15. MOHR, T., and PASCHE, C., Parallel Shortest Path Algorithm, Computing,
Vol. 40, pp. 281-292, 1990.

16. TROVE, J. L., Precis: Distributed Shortest Path Algorithms, Proceedings of the
5th International PARLE Conference, Munich, Germany, 1993; Springer
Verlag, Berlin, Germany, pp. 720-723, 1993.

17. DUNG, T., HAO, J., and KOKUR, G., Label-Correcting Shortest Path Algorithms:
Analysis and Implementation, Unpublished Report, GTE Laboratories, Wal-
tham, Massachusetts, 1993.

18. BERTSEKAS, D. P., and CASTANON, D. A., Parallel Asynchronous Implementa-
tions of the Auction Algorithm, Parallel Computing, Vol. 1, pp. 707-732, 1991.

19. KLINGMAN, D., NAPIER, A., and STUTZ, J., NETGEN: A Program for Generat-
ing Large-Scale (Un) Capacitated Assignment, Transportation, and Minimum Cost
Flow Network Problems, Management Science, Vol. 20, pp. 814-822, 1974.

20. BERTSEKAS, D. P., GUERRIERO, F., and MUSMANNO, R., Parallel Asynchronous
Label-Correcting Methods for Shortest Paths, Report No. LIDS-P-2250, Massa-
chusetts Institute of Technology, 1992.

21. BROWN, A. A., and BARTIaOLOMEW-BIGGS, M. C., Some Effective Methods
for Unconstrained Optimization Based on the Solution of Systems of Ordinary
Differential Equations, Report No. 78, Numerical Optimisation Centre, Hatfield
Polytechnic, Hatfield, England, 1987.

