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Preface

Turning to the succor of modern computing machines, let us
renounce all analytic tools.

Richard Bellman [Bel57]

From a teleological point of view the particular numerical solution
of any particular set of equations is of far less importance than
the understanding of the nature of the solution.

Richard Bellman [Bel57]

In this book we consider large and challenging multistage decision problems,
which can be solved in principle by dynamic programming (DP for short),
but their exact solution is computationally intractable. We discuss solution
methods that rely on approximations to produce suboptimal policies with
adequate performance. These methods are collectively known by several
essentially equivalent names: reinforcement learning, approximate dynamic
programming , and neuro-dynamic programming. We will use primarily the
most popular name: reinforcement learning.

Our subject has benefited greatly from the interplay of ideas from
optimal control and from artificial intelligence. One of the aims of the
book is to explore the common boundary between these two fields and to
form a bridge that is accessible by workers with background in either field.
Another aim is to organize coherently the broad mosaic of methods that
have proved successful in practice while having a solid theoretical and/or
logical foundation. This may help researchers and practitioners to find
their way through the maze of competing ideas that constitute the current
state of the art.

There are two general approaches for DP-based suboptimal control.
The first is approximation in value space, where we approximate in some
way the optimal cost-to-go function with some other function. The ma-
jor alternative to approximation in value space is approximation in policy

ix



x Preface

space, whereby we select the policy by using optimization over a suitably
restricted class of policies, usually a parametric family of some form. In
some schemes these two types of approximation may be combined, aiming
to capitalize on the advantages of both. Generally, approximation in value
space is tied more closely to the central DP ideas of value and policy it-
eration than approximation in policy space, which relies on gradient-like
descent, a more broadly applicable optimization mechanism.

While we provide a substantial treatment of approximation in policy
space, most of the book is focused on approximation in value space. Here,
the control at each state is obtained by optimization of the cost over a
limited horizon, plus an approximation of the optimal future cost. The
latter cost, which we generally denote by J̃ , is a function of the state where
we may be. It may be computed by a variety of methods, possibly involving
simulation and/or some given or separately derived heuristic/suboptimal
policy. The use of simulation often allows for implementations that do not
require a mathematical model, a major idea that has allowed the use of DP
beyond its classical boundaries.

We discuss selectively four types of methods for obtaining J̃ :

(a) Problem approximation: Here J̃ is the optimal cost function of a re-
lated simpler problem, which is solved by exact DP. Certainty equiv-
alent control and enforced decomposition schemes are discussed in
some detail.

(b) Rollout and model predictive control : Here J̃ is the cost function of
some known heuristic policy. The needed cost values to implement a
rollout policy are often calculated by simulation. While this method
applies to stochastic problems, the reliance on simulation favors de-
terministic problems, including challenging combinatorial problems
for which heuristics may be readily implemented. Rollout may also
be combined with adaptive simulation and Monte Carlo tree search,
which have proved very effective in the context of games such as
backgammon, chess, Go, and others.

Model predictive control was originally developed for continuous-
space optimal control problems that involve some goal state, e.g.,
the origin in a classical control context. It can be viewed as a special-
ized rollout method that is based on a suboptimal optimization for
reaching a goal state.

(c) Parametric cost approximation: Here J̃ is chosen from within a para-
metric class of functions, including neural networks, with the param-
eters “optimized” or “trained” by using state-cost sample pairs and
some type of incremental least squares/regression algorithm. Ap-
proximate policy iteration and its variants are covered in some detail,
including several actor and critic schemes. These involve policy eval-
uation with simulation-based training methods, and policy improve-
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ment that may rely on approximation in policy space.

(d) Aggregation: Here J̃ is the optimal cost function of some approxi-
mation to the original problem, called aggregate problem, which has
fewer states. The aggregate problem can be formulated in a variety
of ways, and may be solved by using exact DP techniques. Its opti-
mal cost function is then used as J̃ in a limited horizon optimization
scheme. Aggregation may also be used to provide local improvements
to parametric approximation schemes that involve neural networks or
linear feature-based architectures.

We have adopted a gradual expository approach, which proceeds
along four directions:

(1) From exact DP to approximate DP : We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

(2) From finite horizon to infinite horizon problems : We first discuss fi-
nite horizon exact and approximate DP methodologies, which are in-
tuitive and mathematically simple in Chapters 1-3. We then progress
to infinite horizon problems in Chapters 4-6.

(3) From deterministic to stochastic models: We often discuss separately
deterministic and stochastic problems. The reason is that determinis-
tic problems are simpler and offer special advantages for some of our
methods.

(4) From model-based to model-free implementations: Reinforcement lear-
ning methods offer a major potential benefit over classical DP ap-
proaches, which were practiced exclusively up to the early 90s: they
can be implemented by using a simulator/computer model rather than
a mathematical model. In our presentation, we first discuss model-
based implementations, and then we identify schemes that can be
appropriately modified to work with a simulator.

After the first chapter, each new class of methods is introduced as a
more sophisticated or generalized version of a simpler method introduced
earlier. Moreover, we illustrate some of the methods by means of examples,
which should be helpful in providing insight into their use, but may also
be skipped selectively and without loss of continuity.

The mathematical style of this book is somewhat different from the
one of the author’s DP books [Ber12], [Ber17], [Ber18a], and the 1996
neuro-dynamic programming (NDP) research monograph, written jointly
with John Tsitsiklis [BeT96]. While we provide a rigorous, albeit short,
mathematical account of the theory of finite and infinite horizon DP, and
some fundamental approximation methods, we rely more on intuitive ex-
planations and less on proof-based insights. Moreover, our mathematical
requirements are quite modest: calculus, a minimal use of matrix-vector al-
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gebra, and elementary probability (mathematically complicated arguments
involving laws of large numbers and stochastic convergence are bypassed
in favor of intuitive explanations).

Still in our use of a more intuitive but less proof-oriented expository
style, we have followed a few basic principles. The most important of
these is to maintain rigor in the use of natural language. The reason is
that with fewer mathematical arguments and proofs, precise language is
essential to maintain a logically consistent exposition. In particular, we
have aimed to define terms unambiguously, and to avoid using multiple
terms with essentially identical meaning. Moreover, when circumstances
permitted, we have tried to provide enough explanation/intuition so that
a mathematician can find the development believable and even construct
the missing rigorous proofs.

We note that several of the methods that we present are often suc-
cessful in practice, but have less than solid performance properties. This
is a reflection of the state of the art in the field: there are no methods that
are guaranteed to work for all or even most problems, but there are enough
methods to try on a given problem with a reasonable chance of success in
the end.† To aid in this process, we place primary emphasis on developing
intuition into the inner workings of each type of method. Still, however, it is
important to have a foundational understanding of the analytical principles
of the field and of the mechanisms underlying the central computational
methods. To quote a statement from the preface of the NDP monograph
[BeT96]: “It is primarily through an understanding of the mathematical
structure of the NDP methodology that we will be able to identify promis-
ing or solid algorithms from the bewildering array of speculative proposals
and claims that can be found in the literature.”

Another statement from a recent NY Times article [Str18], in connec-
tion with DeepMind’s remarkable AlphaZero chess program, is also worth
quoting: “What is frustrating about machine learning, however, is that
the algorithms can’t articulate what they’re thinking. We don’t know why
they work, so we don’t know if they can be trusted. AlphaZero gives every
appearance of having discovered some important principles about chess,
but it can’t share that understanding with us. Not yet, at least. As human
beings, we want more than answers. We want insight. This is going to be

† While reinforcement learning rests on the mathematical principles of DP, it

also relies on multiple interacting approximations whose effects are hard to predict
and quantify in practice. It may be hoped that with further theoretical and

applications research, the state of the subject will improve and clarify. However,

it can be said that in its current form, reinforcement learning is an exploding
field, which is complicated, unclean, and somewhat confusing (something that

the front cover image of the book also tries to convey). Reinforcement learning is

not unique in this. One may think of other important optimization areas where
a similar state of the art has prevailed for a long time.
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a source of tension in our interactions with computers from now on.”† To
this we may add that human insight can only develop within some struc-
ture of human thought, and it appears that mathematical reasoning with
algorithmic models is the most suitable structure for this purpose.

I would like to express my appreciation to the many students and
colleagues that contributed directly or indirectly to the book. A special
thanks is due to my principal collaborators on the subject, over the last 25
years, particularly John Tsitsiklis, Janey (Huizhen) Yu, and Mengdi Wang.
Moreover, sharing insights with Ben Van Roy over the years has been im-
portant in shaping my thinking. Interactions with Ben Recht regarding
policy gradient methods were also very helpful. The projects that my stu-
dents worked on as part of DP courses I taught at MIT inspired many ideas
that indirectly found their way into the book. I want to express my thanks
to the many readers, who proofread parts of the book. In this respect I
would like to single out Yuchao Li who made many helpful comments, and
Thomas Stahlbuhk, who went through the entire book with great care, and
offered numerous insightful suggestions.

The book took shape while teaching a course on the subject at the
Arizona State University (ASU) during a two-month period starting in
January 2019. Videolectures and slides from this class are available from
my website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to the book.
The hospitable and stimulating environment at ASU contributed much
to my productivity during this period, and for this I am very thankful to
Stephanie Gil, as well as other colleagues from ASU, including Heni Ben
Amor, Esma Gel, Subbarao (Rao) Kambhampati, Angelia Nedic, Giulia
Pedrielli, Jennie Si, and Petr Sulc. Moreover, Stephanie together with her

† The two 1957 Bellman quotations at the beginning of this preface also

express this tension, although the first of these, while striking and widely cited,

is admittedly taken a little out of context (throughout his work on practical
applications, Bellman remained a mathematical analyst at heart). Bellman’s

fascinating autobiography [Bel84] contains a lot of information on the origins of

DP (and approximate DP as well!); selected quotations from this autobiography
have been compiled by his collaborator Dreyfus [Dre02]. Among others, Bellman

states that “In order to make any progress, it is necessary to think of approximate
techniques, and above all, of numerical algorithms. Finally, having devoted a

great deal of time and effort, mostly fruitless, to the analysis of many varieties

of simple models, I was prepared to face up to the challenge of using dynamic
programming as an effective tool for obtaining numerical answers to numerical

questions.” He goes on to attribute his motivation to work on numerical DP to

the emergence of the (then primitive) digital computer, which he calls “Sorcerer’s
Apprentice.”
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students, Sushmita Bhattacharya and Thomas Wheeler, collaborated with
me on research and implementation of various methods, contributed many
insights, and tested out several variations.

Dimitri P. Bertsekas

June 2019

NOTE ABOUT THE EBOOK EDITION

This 2021 ebook edition contains minor editorial changes to the 2019 orig-
inal version, which were prompted by the publication of my companion
research monograph

Rollout, Policy Iteration, and Distributed Reinforcement Learning,
Athena Scientific, 2020, ISBN 978-1-886529-07-6

This latter monograph focuses more closely on several topics related to
rollout, approximate policy iteration, multiagent problems, discrete and
Bayesian optimization, and distributed computation, which are either dis-
cussed in less detail or not covered at all in the present book. Moreover, the
monograph’s development follows somewhat more narrowly the AlphaZero
and TD-Gammon paradigms, and their off-line training/on-line play algo-
rithmic structure, which is the key to their success.

On the other hand, the present book provides a more comprehensive
coverage of reinforcement learning, and includes the development of topics
that are not covered at all in the 2020 book, such as approximation in policy
space, aggregation, and temporal difference methods. It also contains, in
Chapters 4 and 5, a proof-based development of some of the infinite horizon
exact and approximate DP theory.

My website

http://web.mit.edu/dimitrib/www/RLbook.html

contains class notes, and a series of videolectures and slides from my 2021
course, which address a selection of topics from both books. The videolec-
tures are also available at

https://www.youtube.com/playlist?list
=PLmH30BG15SIp79JRJ-MVF12uvB1qPtPzn

and at

https://space.bilibili.com/2036999141

Dimitri P. Bertsekas

July 2021



Neuro-Dynamic Programming

Dimitri P. Bertsekas and John N. Tsitsiklis

Athena Scientific, 1996, 512 pp., hardcover, ISBN 1-886529-10-8

This is the first textbook that fully explains the neuro-dynamic program-
ming/reinforcement learning methodology, which is a recent breakthrough in the
practical application of neural networks and dynamic programming to complex
problems of planning, optimal decision making, and intelligent control.

From the review by George Cybenko for IEEE Computational Science
and Engineering, May 1998:

“Neuro-Dynamic Programming is a remarkable monograph that integrates
a sweeping mathematical and computational landscape into a coherent body
of rigorous knowledge. The topics are current, the writing is clear and to the
point, the examples are comprehensive and the historical notes and comments
are scholarly.”

“In this monograph, Bertsekas and Tsitsiklis have performed a Herculean
task that will be studied and appreciated by generations to come. I strongly
recommend it to scientists and engineers eager to seriously understand the math-
ematics and computations behind modern behavioral machine learning.”

Among its special features, the book:

• Describes and unifies a large number of NDP methods, including several
that are new

• Describes new approaches to formulation and solution of important prob-
lems in stochastic optimal control, sequential decision making, and discrete
optimization

• Rigorously explains the mathematical principles behind NDP

• Illustrates through examples and case studies the practical application of
NDP to complex problems from optimal resource allocation, optimal feed-
back control, data communications, game playing, and combinatorial opti-
mization

• Presents extensive background and new research material on dynamic pro-
gramming and neural network training

Neuro-Dynamic Programming is the winner of the 1997 INFORMS

CSTS prize for research excellence in the interface between Operations

Research and Computer Science
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