Check for updates
Angewandte
International Edition
Chermie

Metal–Organic Frameworks Hot Paper

How to cite:

International Edition: doi.org/10.1002/anie.202015359 German Edition: doi.org/10.1002/ange.202015359

Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF-Supported Mononuclear Copper Site

Chenyue Sun, Luming Yang, Manuel A. Ortuño, Ashley M. Wright, Tianyang Chen, Ashley R. Head, Núria López, and Mircea Dincă*

Abstract: Dianionic hyponitrite $(N_2O_2^{2-})$ is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme-copper oxidases and nitric oxide reductases. In this work, we examine the gas-solid reaction of nitric oxide with the metal–organic framework Cu^1 - $ZrTpmC^*$ with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating $N_2O_2^{--}$ intermediate. These results highlight the advantage provided by site-isolation in metal–organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one-electron couple in these enzymes.

Introduction

The majority of naturally occurring nitrous oxide (N₂O) is produced by reductive homocoupling of nitric oxide (NO), $2NO + 2e^- + 2H^+ \rightarrow N_2O + H_2O$, catalyzed by various nitric oxide reductases (NORs) or heme-copper oxidases (HCOs).^[1-3] The orchestrated cleavage and formation of strong N=O and N=N bonds are mediated by sophisticated binuclear centers, such as Fe(heme)-Fe(His)₃(Glu) in cNOR,^[4] or Fe(heme)-Cu(His)₃ in HCO (Figure 1 a).^[5] Mechanistically, it is widely acknowledged that the N=N bond forms with influx of two electrons to give a hyponitrite (ON= NO²⁻) intermediate.^[6] However, we know little about the temporal order of electron transfer steps versus N-N coupling.^[7] Intriguingly, there are clues in favor of N-N coupling occurring at a 1e⁻-reduced bimetallic center, implying the formation of *monoanionic*, radical N₂O₂⁻⁻. One such clue is that the 2e⁻-reduced state is energetically highly unfavorable. Indeed, many studies find the heme in the

the author(s) of this article can be found under: https://doi.org/10.1002/anie.202015359.

Figure 1. a) The bimetallic active site in cbb_3 oxidase, the most active NO-reducing HCO (PDB 3MK7). b) Structure of Cu¹-ZrTpmC* (**A**) and close-up at the metalloligand. An ideal full metalation is shown for simplicity. Hydrogen atoms and tetrafluoroborate anions are omitted for clarity. (Structure reported in Ref. [30].)

bimetallic active site lying more than 200 mV below the standard reduction potential of the electron relay hemes and the non-heme metals (Fe_B or Cu_B).^[8-11] In the case of Cu_B this would entail a transformation from {CuNO}¹¹ to a radical monoanionic hyponitrite, Cu^{II}-N₂O₂⁻. To our knowledge, such an intermediate has not been observed yet, presumably due to its reactivity.

Molecular model systems often provide a fertile ground for understanding aspects of enzymatic mechanisms. In this case, much effort has been made to characterize the M-N₂O₂ unit in a biomimetic system.^[12,13] In cases where M-N₂O₂ adducts are sufficiently stable to allow isolation and crystallographic characterization, exclusively dianionic N₂O₂²⁻ species have been found (M = Cu,^[14-16] Fe,^[17] Co,^[18] Ni,^[19,20] or Pt^[21]). However, caution should be taken to not conflate crystallized products with true intermediates.^[18] The latter are arguably more directly identifiable through in situ spectroscopic methods. For this purpose, the stoichiometric disproportio-

Wiley Online Library

© 2021 Wiley-VCH GmbH

nation of NO ($M^{n+} + 3NO \rightarrow M^{(n+1)+}$ -NO₂ + N₂O) is often used as a surrogate reaction to reductive NO coupling, because formation of N₂O via disproportionation must also involve an [N₂O₂] intermediate.^[22–25] Earlier studies provided us with kinetic and, more recently, reactivity evidence that point to a monometallic 1e⁻-couple, suggestive of monoanionic hyponitrite.^[26–28] Herein we report comprehensive spectroscopic evidence of an isolable, mononuclear Cu^{II}-N₂O₂⁻⁻ intermediate, in the reaction between a MOF, Cu^I-ZrTpmC*, (**A**, Figure 1b) and NO.

Results and Discussion

We previously reported the synthesis of a ZrTpmC* MOF (Figure 1), wherein a NNN C_3 -symmetric Tpm* metalloligand supports a tetrahedral Cu^I center capped by an acetonitrile molecule (Scheme 1, **A**). The copper sites lie at the triangular faces of interconnected cuboctahedral cavities with open

Scheme 1. Evolution of the copper site in Cu^{l} -ZrTpmC* under a flow of dilute NO.

metal sites pointing into the channel of the MOF. Schneider et al. showed that electron-poor Cu^I trispyrazolylborate (CuTp) analogues exhibit slow and unsynchronized Cu^{II}-NO₂ formation and Cu^I depletion, suggesting the presence of a long-lived intermediate.^[29] Intrigued by these reports, we sought to identify such an intermediate by taking advantage of site-isolation of the similar Cu^I in **A**. Indeed, the ligand field of ZrTpmC* is similar to that of the electron deficient Tp^{CF₃,CH₃}, based on comparisons of v(C-O) in LCu(I)-CO complexes (2110 cm⁻¹ vs. 2109 cm⁻¹, respectively).^[29,30] In addition, the neutral NNN environment in **A** is similar to the His₃ environment of Cu_B in various HCOs. **A** therefore approximates the coordination environment of the enzymatic Cu_B center.

To test the NO disproportionation activity of A, we performed diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS) under a dilute stream of NO (25-500 ppm) in Ar at room temperature. The spectral changes can be divided into three stages (Figure 2; Figure S2 for ¹⁵Nlabeled DRIFTS). Immediately upon introduction of NO to A (Scheme 1), a band grows at 1757 cm^{-1} (B). This band shifts to 1728 cm^{-1} when ¹⁵NO is used (calc. 1725 cm^{-1}) and is consistent with the N–O stretch of {CuNO}¹¹. This value is considerably higher than that observed for the electron-rich Tp^{R,R'}Cu(NO) (1710–1720 cm⁻¹) but is similar to that for the electron-poor $Tp^{CF_3,CH_3}Cu(NO)$ (1753 cm⁻¹)^[29] and cationic $[Tpm^{tBu,iPr}Cu(NO)]^+$ (1742 cm⁻¹).^[31] The relatively high v(N-O) is indicative of the weak $d_{\pi}(Cu)$ - $\pi^*(NO)$ interaction and suggests that electron distribution in **B** can be regarded as largely pertaining to formal Cu^I and a neutral NO; similar to

Figure 2. DRIFTS evolution of **A** under a flow of NO in argon, showing sequential formation of **B** (top), **C** (middle), and **D** (bottom). Changes over full spectral range can be found in the Supporting Information.

the related Tp complexes.^[32] Under the dilute NO flow, the 1757 cm⁻¹ band quickly diminishes and the second stage is dominated by the gradual growth of a second set of bands (species C). Isotope sensitive bands are found at 1163 cm^{-1} $(^{15}N: 1148 \text{ cm}^{-1}, \text{ calc. } 1142 \text{ cm}^{-1})$ and 887 cm^{-1} $(^{15}N:$ 883 cm⁻¹). These values are similar to those of N_2O_2 in Fe-MOF-5.^[33] We accordingly assign C as a hyponitrite radical anion bound to Cu^{II}. Based on its associated isotope shift, the band at 1163 cm⁻¹ can be assigned to one of the v(N-O); assignment of the second band required computation (vide infra). No other isotope-sensitive bands could be discerned but we note that the complex spectral changes associated with framework vibrations may well conceal any less prominent NO-related features. In the final stage, bands associated with C decline and the spectrum evolves along with the emergence of a new species **D**. The transformation of **C** to **D** is clearly dependent on NO: in the absence of NO, no features of \mathbf{D} can be observed, and the rate of formation of **D** is clearly correlated to [NO]. Only one isotope-sensitive band at 1205 cm^{-1} (¹⁵ N 1180 cm⁻¹, calc. 1183 cm⁻¹) can be confidently assigned as v_{as} (N-O) in Cu^{II}-nitrito,^[34] with the corresponding v_s and δ modes likely obscured by framework vibrational modes. Detailed assignment of the IR features is discussed in

www.angewandte.org

the computational section. Additional evidence supporting Scheme 1 can be found in the SI.

Although **B** is only transiently formed under NO flow, it is the predominant species when NO is substoichiometric. This enables isolation of **B** and further in situ characterization. Diffuse-reflectance UV-visible-NIR spectroscopy (DRUVS, Figure S3 and S3) uncovers an electronic transition as a shoulder at 450 nm which can be assigned as a $Cu \rightarrow NO$ charge transfer (CT) band.^[31] With an excitation wavelength of 473 nm, resonance-enhanced Raman bands at 1762 cm⁻¹ $(^{15}N: 1731 \text{ cm}^{-1})$ and 434 cm^{-1} $(^{15}N: 429 \text{ cm}^{-1})$ can be found for B, which correspond to v(N-O) and v(Cu-NO) (Figure S4). An electron paramagnetic resonance (EPR) spectrum of **B** measured at 4.4 K displays a reverse-axial pattern $(g_{\parallel} < g_{\perp})$ of an S = 1/2 spin, with hyperfine coupling to both copper $(I_{Cu} = 3/2)$ and nitrogen $(I_N = 1)$ (Figure 4). This spectrum can be simulated well with $g_{\parallel} = 1.81$, $g_{\perp} = 1.98$, $A_{Cu_{\parallel}} = 143 \text{ G}, A_{Cu_{\perp}} = 110 \text{ G}, \text{ and } A_{N_{\parallel}} = 30 \text{ G}$ (Figure S5), where the small g-values and large $A_{N_{\parallel}}$ point to significant spin density population on the nitrogen atom in the nitrosyl ligand. All of these observations agree well with the EPR pattern for a typical Cu^I-nitrosyl compound.^[32]

Species **C** is also sufficiently stable to allow inspection by additional spectroscopic techniques. DRUVS (Figure 3) of the greenish yellow **C** under nitrogen revealed ligand-field (LF) transitions at 745 and 1065 nm, as well as charge transfer bands at 315 and 395 nm. The LF bands are clearly indicative of Cu^{II}. The band at 395 nm recedes when **C** converts to **D** (Figure S3), leading us to tentatively assign it as a Cu \rightarrow N₂O₂⁻⁻ CT band. In contrast, the blue-green **D** shows LF bands at 700 and 950 nm and CT band at 300 nm. An X-band EPR spectrum of **C** measured at 4.4 K shows an axial signal typical for a spin coupled to copper, with $g_{\parallel} = 2.30$, $g_{\perp} = 2.06$, $A_{Cu_{\parallel}} = 170$ G, and $A_{Cu_{\perp}} = 20$ G (Figure S4, Figure S5). X-ray photoelectron spectroscopy (XPS) data of **C** exhibited a N1s peak

Figure 3. Diffuse-reflectance UV-vis-NIR at different stages of NO reaction. λ_{max} at 395 nm is tentatively assigned to CT in Cu^{II}-N₂O₂·⁻.

© 2021 Wiley-VCH GmbH

www.angewandte.org

0.8 eV higher than those pertaining to the pyrazole nitrogen signals, which can be assigned to N_2O_2 ⁻⁻ (Figure S7).

The key evidence in support of assigning **C** as a two-spin system came from parallel mode EPR measurements, where the relative intensity of the $\Delta m_s = \pm 2$ transitions is enhanced. At 4.4 K, **C** exhibits a transition at 1688 G (g = 3.96) that is absent in the perpendicular mode spectrum (Figure S5). This agrees well with the expected transition at half-field typical for a triplet system arising from the coupling between the Cu^{II} and nitrogen-centered spins.^[35] To validate this assignment, we performed variable-temperature EPR in the range of 4.4–55 K in perpendicular mode, which has better signal-to-noise ratio (Figure 4b). For a spin exchange-coupled system, the nature of the coupling can be deciphered by comparing the temperature dependence of the signal intensity with the Curie law.^[36] For **C**, as the temperature increases, both the peak amplitude and the integrated intensity of the signal of interest

Figure 4. a) X-band EPR spectra for **B**, **C**, and **D** measured at 4.4 K under perpendicular mode. b) Variable temperature EPR spectra of **C** from 4.4 to 55 K. Inset shows the temperature dependence of double-integrated EPR intensity and the product of double integral and temperature.

decrease while preserving the line shape and linewidth (Figure S6). A closer look at the product of temperature and double-integrated EPR intensity reveals that this value increases to a maximum near 20 K before decreasing at higher temperatures (Figure 4b inset). This temperature dependence agrees well with the expected behavior for two ferromagnetically coupled spins with zero-field splitting, while thermal broadening is discounted based on invariance of the spectral linewidth.^[37,38]

The Cu^{II}-nitrite product **D** does not react further with NO under our reaction conditions. X-band EPR of **D** at 5 K displays a typical Cu^{II} signal with axial symmetry ($g_{\parallel} = 2.25$, $g_{\perp} = 2.04$) (Figure S6). The large $A_{Cu_{\parallel}} = 165$ G points to localization of the spin density on Cu^{II}. The absence of notable hyperfine coupling to nitrogen agrees with the assignment of a κ^2 oxygen-bound Cu^{II}-nitrito species. Importantly, powder X-ray diffraction (PXRD) of **D** shows retention of crystallinity (Figure S8), confirming that the structural integrity of the MOF itself is preserved.

A variety of linkage isomers for hyponitrite and nitrite are commonly seen in the literature.^[13,39] To further corroborate our spectroscopic studies and assignments in this context, we turned to density functional theory (DFT) simulations.^[40] The unit cell of ZrTpmC* was optimized at the PBE-D3 level and a cluster model containing the core [Cu¹-TpmC*]⁺[BF₄]⁻ was computed at the B3LYP-D3 level of theory, fixing the coordinates of the carboxylate C atoms to mimic the framework rigidity. The use of hybrid density functionals is recommended to properly account for different Cu oxidation states.^[41] Full details can be found in the SI and the ioChem-BD repository.^[42]

The most stable computed structures for **B**, **C**, and **D** are shown in Figure 5 (see Figure S11 for other isomers and spin states). It is found that TpmC* becomes κ^2 in **B**, **C**, and **D** (Cu-N \approx 2.0 Å, Cu···N 2.5–2.6 Å) and the BF₄⁻ therein interacts rather strongly with Cu (Cu···F \approx 2.3 Å). Strong interactions between Cu and BF₄⁻ are precedented.^[43] The calculated spin density (ρ) is consistent with our assignment from EPR and electronic spectroscopy. Species **B** is a doublet with a Cu^I center (ρ = 0.0) and a (κN)-NO· ligand (ρ = 1.0). Species **C** is a triplet with a Cu^{II} center (ρ = 0.7) and a *cis*-($\kappa O, \kappa O'$)-N₂O₂⁻⁻ ligand (ρ = 1.2) (Figure S12). The open-shell singlet has a similar energy (3.6 kJ mol⁻¹ above triplet **C**), while the closed-shell singlet (Cu³⁺-N₂O₂²⁻) is significantly less stable (33.3 kJ mol⁻¹ above triplet **C**). The energy difference between the open-shell singlet and triplet is slightly functional-

dependent but the order is invariant (Figure S13). Lastly, species **D** is a doublet with a Cu^{II} center ($\rho = 0.7$) and a ($\kappa O, \kappa O'$)-NO₂⁻ ligand ($\rho = 0.2$), all in good agreement with our spectroscopic assignments.

The computed vibrational frequencies for **B**–**D** are shown in Table 1. They are also in line with the experimental values. Calculations for **B** give v(N-O) at 1766 cm⁻¹ (exp. IR 1757 cm⁻¹, rR 1762 cm⁻¹). Omitting BF₄⁻ yields a larger value of 1812 cm⁻¹, further supporting a Cu-BF₄ interaction. v(Cu-NO) is found at 410 cm⁻¹ (exp. 434 cm⁻¹). Two main bands are computed for the N₂O₂ moiety in **C** in the region 1300-600 cm⁻¹: v_a(N-O) at 1183 cm⁻¹ (exp. 1163 cm⁻¹) and $\delta_{sym.bend}$ -(NNO) at 913 cm⁻¹ (exp. 887 cm⁻¹). No vibrational modes in the region 1600-1300 cm⁻¹ can be associated with the N₂O₂ group. The nitrito species in **D** computes with an asymmetric N-O stretch at 1201 cm⁻¹ (exp. 1205 cm⁻¹). The computed v_s(N-O) and δ (ONO) appear at 1308 cm⁻¹ and 857 cm⁻¹, respectively. Finally, the isotope shifts in vibrational frequencies are also well reproduced.

Table 1:	Computed	vibrational	frequencies	(cm ⁻¹)	١.
Tuble I.	computeu	vibrational	nequencies		.,

Species	В	C ^[a]	D
¹⁴ N comp.	1766, 410	1183, 913	1201
¹⁴ N exp. ^[b]	1757	1163, 887	1205
¹⁴ N exp. ^[c]	1762, 434		
¹⁵ N comp.	1734, 403	1148, 895	1177
¹⁵ N exp. ^[b]	1728	1159, 883	1180
¹⁵ N exp. ^[c]	1731, 429		

[a] Calculated based on the triplet state of **C**. [b] Experimental values from DRIFTS. [c] Experimental values from resonance Raman.

Conclusion

In summary, detailed spectroscopic investigation of NO disproportionation with a Cu center within a MOF identifies the key intermediate of the N-N coupling step as a cis- $(\kappa O, \kappa O')$ -N₂O₂⁻ ligand bound to Cu^{II}. This unusual intermediate is isolable at room temperature owing to spatial isolation within a pore. These results contribute to mounting evidence for the utility of MOFs in the isolation of extremely reactive species that are difficult to investigate with other platforms.^[44-50] This strategy is particularly effective in gassolid systems and with weak ligands such as Tpm, which tend to demetalate in solution. Indeed, in our hands, passing NO through a solution of [Cu(CH₃CN)BF₄]TpmC*-Et (TpmC*-Et is the ethyl ester of TpmC*) in CH₂Cl₂ led to immediate formation of the homoleptic bis-Tpm complex and no observable intermediate. This strategy may be valuable for the study of intermediates of relevance to enzymatic catalysis. Here, although the Cu^I-ZrTpmC* is evidently not a faithful structural or functional mimic of the Cu_B site in HCO, it presents the conceptual framework for discussing the intermediacy of an N₂O₂⁻⁻ species at Cu_B in 1e⁻-reduced HCO, en route to $N_2O_2^{2-}$.

Angew. Chem. Int. Ed. 2021, 60, 2–8

© 2021 Wiley-VCH GmbH

Acknowledgements

This research was funded by the National Science Foundation through the Alan T. Waterman Award to M.D. (DMR-1645232). This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. M.A.O. acknowledges the support of the Beatriu de Pinós postdoctoral program of the Government of Catalonia's Secretariat for Universities and Research of the Ministry of Economy and Knowledge (2017-BP-00039).

Conflict of interest

The authors declare no conflict of interest.

Keywords: bioinorganic chemistry · metalorganic frameworks (MOFs) · nitrogen oxides

- J. Hendriks, A. Oubrie, J. Castresana, A. Urbani, S. Gemeinhardt, M. Saraste, *Biochim. Biophys. Acta Bioenerg.* 2000, 1459, 266–273.
- [2] A. Giuffrè, G. Stubauer, P. Sarti, M. Brunori, W. G. Zumft, G. Buse, T. Soulimane, *Proc. Natl. Acad. Sci. USA* 1999, 96, 14718– 14723.
- [3] E. Forte, A. Urbani, M. Saraste, P. Sarti, M. Brunori, A. Giuffrè, *Eur. J. Biochem.* 2001, 268, 6486–6491.
- [4] T. Hino, Y. Matsumoto, S. Nagano, H. Sugimoto, Y. Fukumori, T. Murata, S. Iwata, Y. Shiro, *Science* 2010, 330, 1666–1670.
- [5] L. M. Hunsicker-Wang, R. L. Pacoma, Y. Chen, J. A. Fee, C. D. Stout, Acta Crystallogr. Sect. D 2005, 61, 340–343.
- [6] C. Varotsis, T. Ohta, T. Kitagawa, T. Soulimane, E. Pinakoulaki, Angew. Chem. Int. Ed. 2007, 46, 2210–2214; Angew. Chem. 2007, 119, 2260–2264.
- [7] C. Ferousi, S. H. Majer, I. M. DiMucci, K. M. Lancaster, *Chem. Rev.* 2020, 120, 5252-5307.
- [8] K. L. C. Grönberg, M. D. Roldán, L. Prior, G. Butland, M. R. Cheesman, D. J. Richardson, S. Spiro, A. J. Thomson, N. J. Watmough, *Biochemistry* 1999, *38*, 13780–13786.
- [9] V. Rauhamäki, D. A. Bloch, M. I. Verkhovsky, M. Wikström, J. Biol. Chem. 2009, 284, 11301–11308.
- [10] F. Melin, H. Xie, T. Meyer, Y. O. Ahn, R. B. Gennis, H. Michel, P. Hellwig, *Biochim. Biophys. Acta Bioenerg.* 2016, 1857, 1892– 1899.
- [11] M. Kato, S. Nakagawa, T. Tosha, Y. Shiro, Y. Masuda, K. Nakata, I. Yagi, J. Phys. Chem. Lett. 2018, 9, 5196–5200.
- [12] M. P. Schopfer, J. Wang, K. D. Karlin, *Inorg. Chem.* 2010, 49, 6267–6282.
- [13] A. M. Wright, T. W. Hayton, Inorg. Chem. 2015, 54, 9330-9341.
- [14] G. B. Wijeratne, S. Hematian, M. A. Siegler, K. D. Karlin, J. Am. Chem. Soc. 2017, 139, 13276–13279.
- [15] D. Lionetti, G. De Ruiter, T. Agapie, J. Am. Chem. Soc. 2016, 138, 5008-5011.
- [16] G. B. Wijeratne, M. Bhadra, M. A. Siegler, K. D. Karlin, J. Am. Chem. Soc. 2019, 141, 17962–17967.
- [17] N. Xu, A. L. O. Campbell, D. R. Powell, J. Khandogin, G. B. Richter-Addo, J. Am. Chem. Soc. 2009, 131, 2460-2461.
- [18] B. F. Hoskins, F. D. Whillans, D. H. Dale, D. C. Hodgkin, J. Chem. Soc. D 1969, 69.
- [19] A. M. Wright, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2012, 134, 9930–9933.

www.angewandte.org

© 2021 Wiley-VCH GmbH

Angew. Chem. Int. Ed. 2021, 60, 2-8

These are not the final page numbers!

- [20] S. Kundu, P. N. Phu, P. Ghosh, S. A. Kozimor, J. A. Bertke, S. C. E. Stieber, T. H. Warren, J. Am. Chem. Soc. 2019, 141, 1415-1419.
- [21] N. Arulsamy, D. S. Bohle, J. A. Imonigie, S. Levine, Angew. Chem. Int. Ed. 2002, 41, 2371–2373; Angew. Chem. 2002, 114, 2477–2479.
- [22] K. J. Franz, S. J. Lippard, J. Am. Chem. Soc. 1998, 120, 9034– 9040.
- [23] G. G. Martirosyan, A. S. Azizyan, T. S. Kurtikyan, P. C. Ford, *Inorg. Chem.* 2006, 45, 4079–4087.
- [24] J. P. Collman, Y. Yang, A. Dey, R. A. Decréau, S. Ghosh, T. Ohta, E. I. Solomon, *Proc. Natl. Acad. Sci. USA* 2008, 105, 15660-15665.
- [25] J. Wang, M. P. Schopfer, S. C. Puiu, A. A. N. Sarjeant, K. D. Karlin, *Inorg. Chem.* 2010, 49, 1404–1419.
- [26] C. E. Ruggiero, S. M. Carrier, W. B. Tolman, Angew. Chem. Int. Ed. Engl. 1994, 33, 895–897; Angew. Chem. 1994, 106, 917–919.
- [27] E. G. Abucayon, R. L. Khade, D. R. Powell, Y. Zhang, G. B. Richter-Addo, J. Am. Chem. Soc. 2018, 140, 4204–4207.
- [28] S. Sabuncu, J. H. Reed, Y. Lu, P. Moënne-Loccoz, J. Am. Chem. Soc. 2018, 140, 17389–17393.
- [29] J. L. Schneider, S. M. Carrier, C. E. Ruggiero, V. G. Young, W. B. Tolman, J. Am. Chem. Soc. 1998, 120, 11408–11418.
- [30] C. Sun, G. Skorupskii, J. H. Dou, A. M. Wright, M. Dincă, J. Am. Chem. Soc. 2018, 140, 17394–17398.
- [31] K. Fujisawa, A. Tateda, Y. Miyashita, K. I. Okamoto, F. Paulat, V. K. K. Praneeth, A. Merkle, N. Lehnert, *J. Am. Chem. Soc.* 2008, *130*, 1205–1213.
- [32] C. E. Ruggiero, S. M. Carrier, W. E. Antholine, J. W. Whittaker, C. J. Cramer, W. B. Tolman, *J. Am. Chem. Soc.* **1993**, *115*, 11285– 11298.
- [33] C. K. Brozek, J. T. Miller, S. A. Stoian, M. Dincă, J. Am. Chem. Soc. 2015, 137, 7495–7501.
- [34] N. Lehnert, U. Cornelissen, F. Neese, T. Ono, Y. Noguchi, K. I. Okamoto, K. Fujisawa, *Inorg. Chem.* 2007, 46, 3916–3933.
- [35] S. S. Eaton, K. M. More, B. M. Sawant, G. R. Eaton, J. Am. Chem. Soc. 1983, 105, 6560–6567.
- [36] A. Bencini, D. Gatteschi, *Electron Paramagnetic Resonance of Exchange Coupled Systems*, Springer Berlin Heidelberg, Berlin, 1990.
- [37] G. R. Eaton, S. S. Eaton, D. P. Barr, R. T. Weber, *Quantitative EPR*, Springer Vienna, Vienna, **2010**.
- [38] W. R. Hagen, H. Wassink, R. R. Eady, B. E. Smith, H. Haaker, *Eur. J. Biochem.* 1987, 169, 457–465.
- [39] S. Metz, Inorg. Chem. 2017, 56, 3820-3833.
- [40] S. O. Odoh, C. J. Cramer, D. G. Truhlar, L. Gagliardi, *Chem. Rev.* 2015, 115, 6051–6111.
- [41] B. Dereli, M. A. Ortuño, C. J. Cramer, *ChemPhysChem* 2018, 19, 959–966.
- [42] a) M. Álvarez-Moreno, C. De Graaf, N. López, F. Maseras, J. M. Poblet, C. Bo, J. Chem. Inf. Model. 2015, 55, 95–103; b) M. A. Ortuño, 2021, ioChem-BD database, DOI: https://doi.org/ 10.19061/iochem-bd-1-160.
- [43] A. Hazell, R. Hazell, C. J. McKenzie, L. P. Nielsen, *Dalton Trans.* 2003, 2203–2208.
- [44] E. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N. Maximoff, J. P. Bigi, R. Krishna, V. K. Peterson, F. Grandjean, G. J. Long, B. Smit, S. Bordiga, C. M. Brown, J. R. Long, *J. Am. Chem. Soc.* 2011, 133, 14814–14822.
- [45] D. J. Xiao, E. D. Bloch, J. A. Mason, W. L. Queen, M. R. Hudson, N. Planas, J. Borycz, A. L. Dzubak, P. Verma, K. Lee, F. Bonino, V. Crocellà, J. Yano, S. Bordiga, D. G. Truhlar, L. Gagliardi, C. M. Brown, J. R. Long, *Nat. Chem.* **2014**, *6*, 590– 595.
- [46] S. Øien, G. Agostini, S. Svelle, E. Borfecchia, K. A. Lomachenko, L. Mino, E. Gallo, S. Bordiga, U. Olsbye, K. P. Lillerud, C. Lamberti, *Chem. Mater.* 2015, *27*, 1042–1056.

- [47] T. Zhang, K. Manna, W. Lin, J. Am. Chem. Soc. 2016, 138, 3241– 3249.
- [48] A. Burgun, C. J. Coghlan, D. M. Huang, W. Chen, S. Horike, S. Kitagawa, J. F. Alvino, G. F. Metha, C. J. Sumby, C. J. Doonan, *Angew. Chem. Int. Ed.* **2017**, *56*, 8412–8416; *Angew. Chem.* **2017**, *129*, 8532–8536.
- [49] A. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, R. J. Behm, J. Am. Chem. Soc. 2019, 141, 5201-5210.
- [50] A. Das, Y.-S. Chen, J. H. Reibenspies, D. C. Powers, J. Am. Chem. Soc. 2019, 141, 16232-16236.

Manuscript received: November 17, 2020 Version of record online:

Research Articles

Research Articles

Metal–Organic Frameworks

C. Sun, L. Yang, M. A. Ortuño, A. M. Wright, T. Chen, A. R. Head, N. López, M. Dincă* _____

Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF-Supported Mononuclear Copper Site

A radical $N_2O_2^{*-}$ intermediate formed during a nitric oxide reductive coupling reaction was captured at a copper center in a metal–organic framework (MOF). Strict site isolation in the solid state is key in stabilizing this intermediate.