Thousand-fold increase in O₂ electroreduction rates with conductive MOFs

Ruperto G. Mariano, Oluwasegun J. Wahab,ⅡJoshua A. Rabinowitz,ⅡJulius Oppenheim, Tianyang Chen, Patrick R. Unwin,* and Mircea Dinca*

Cite This: https://doi.org/10.1021/acscentsci.2c00509

ACCESS | Metrics & More | Article Recommendations | Supporting Information

ABSTRACT: Molecular materials must deliver high current densities to be competitive with traditional heterogeneous catalysts. Despite their high density of active sites, it has been unclear why the reported O₂ reduction reaction (ORR) activity of molecularly defined conductive metal–organic frameworks (MOFs) have been very low: ca. –1 mA cm⁻². Here, we use a combination of gas diffusion electrolyses and nanoelectrochemical measurements to lift multiscale O₂ transport limitations and show that the intrinsic electrocatalytic ORR activity of a model 2D conductive MOF, Ni₃(HITP)₂, has been underestimated by at least 3 orders of magnitude. When it is supported on a gas diffusion electrode (GDE), Ni₃(HITP)₂ can deliver ORR activities ≳150 mA cm⁻² and gravimetric H₂O₂ electrosynthesis rates exceeding or on par with those of prior heterogeneous electrocatalysts. Enforcing the fastest accessible mass transport rates using scanning electrochemical cell microscopy revealed that Ni₃(HITP)₂ is capable of ORR current densities exceeding –1200 mA cm⁻² and at least another 130-fold higher ORR mass activity than has been observed in GDEs. Our results directly implicate precise control over multiscale mass transport to achieve high-current-density electrocatalysis in molecular materials.

INTRODUCTION

Achieving synthetic molecular control over electrocatalytic materials is a longstanding challenge in electrocatalysis. Molecular materials need to deliver high current densities to be competitive with heterogeneous electrocatalysts, but this is rare.¹ Electrically conductive metal–organic frameworks (MOFs) offer a way to bridge this gap, as they are molecularly defined and are both intrinsically porous and conductive.² They are fundamentally distinct from electrocatalysts made from sacrificial MOF precursors (such as single-atom catalysts accessed via thermolysis or electrolytic degradation of MOFs), because they retain their molecular definition.³⁴,13,14,5–12 As such, the structure space available to conductive MOFs renders them an ideal platform to tune the atomic structure for performance. We and others have previously shown that a family of 2D MOFs with the general formula M₃(HITP)₂ (HITP = 2,3,6,7,10,11-hexaiminotriphenylene, M = Co, Cu, Ni) (Figure 1A) are active for the O₂ electroreduction reaction (ORR), a transformation central to H₂O₂ electrolysises, metal/air batteries, and fuel cells.⁴,15,16 These and other conductive MOFs typically exhibit intrinsic surface areas (~300–900 m² g⁻¹) at least 10 times larger than that of dense metallic nanoparticles and conductivities comparable to that of graphite, yet their geometric current densities for ORR rarely exceed –1 mA cm⁻², implying a surprisingly low intrinsic electrocatalytic activity.²⁴,5,15,17–19

The performance of ORR electrocatalysts is most commonly measured using rotating ring disk electrodes (RRDEs) immersed in an electrolyte within two-compartment “H-cells”,⁴,20,21 During ORR catalysis in an H-cell, a region of depleted O₂ concentration (the concentration boundary, or diffusion layer) is formed adjacent to the catalyst layer (Figure 1B), because O₂ is reduced to H₂O₂ or H₂O at the electrode/electrolyte interface. In combination with the low saturation concentration of O₂ in water (~1 mM at 1 bar of O₂ and 298 K), O₂ must diffuse over distances of ca. 100 μm from the bulk electrolyte in order to reach the electrode/electrolyte interface.²² Concentration gradients are further exacerbated in porous electrodes, where diffusion within the porous layer can be severely restricted,²³,24 the resulting transport resistance depresses the mass activity of the electrocatalyst and leads to underutilization of the active sites.

Under these circumstances, it is unclear whether the –1 mA cm⁻² limit arises from mass transport limitations or in fact reflects intrinsically slow ORR kinetics with molecular materials. To probe the fundamental limitations of ORR catalysis with

Received: April 28, 2022

© XXXX The Authors. Published by American Chemical Society

https://doi.org/10.1021/acscentsci.2c00509
ACS Cent. Sci. XXXX, XXX, XXX–XXX
MOFs and potentially unlock a much higher intrinsic activity, we pursued a campaign to lift mass transport limitations by integrating Ni₃(HITP)₂ with gas diffusion electrodes (GDEs) and by leveraging the rapid transport environment afforded by scanning electrochemical cell microscopy (SECCM).

Here, we show that conductive MOFs enable geometric ORR current densities greater than −150 mA cm⁻² if the mass transport of O₂ is carefully controlled. When it is supported on a GDE (Figure 1C), Ni₃(HITP)₂ exhibits ORR activity and H₂O₂ electrolysiss rates >100-fold higher and >740-fold higher, respectively, than in an H-cell. At low mass loadings in a GDE, the gravimetric rates of H₂O₂ electrolysiss using Ni₃(HITP)₂ rival those of the highest rates reported for state of the art heterogeneous electrocatalysts. Together with efficient O₂ mass transport, metal ion substitution revealed that the intrinsic porosity and conductivity of M₃(HITP)₂ are the major drivers of activity during ORR catalysis. By enforcing the fastest accessible current densities for O₂ reduction ([ORR] Figure S6A,B) we quantified the partial current density for H₂O₂ synthesis ([H₂O₂] under potentiostatic conditions while applying an oxidizing potential of 0.91 V at the Pt ring to simultaneously detect H₂O₂. The Faradaic efficiency (FE) for H₂O₂ peaked at 60% (~0.121 mA cm⁻²) at 0.09 V and decreased upon application of more cathodic potentials, dropping to 21% (~0.085 mA cm⁻²) at ~0.54 V (Figure 2C, inset). The small limiting current values ([ORR] = −0.4 mA cm⁻²) are less than expected from the Koutecky–Levich equation (jₖ ~ 2.5 mA cm⁻² at 1500 rpm for the 2e⁻ process), indicative of slow O₂ mass transport not only from the bulk solution to the Ni₃(HITP)₂ catalyst layer but also within the immersed Ni₃(HITP)₂/Nafion catalyst layer.

To investigate whether the ORR activity of Ni₃(HITP)₂ would improve under a rapid bulk mass transport regime, we drop-casted Ni₃(HITP)₂ particles onto GDEs, at the same mass loading of 0.4 mg cm⁻² (SEM imaging in Figure S7 and S8). Composed of a carbon fiber support and a hydrophobic microporous conductive coating, GDEs enhance gas mass transport by providing a gas flow pathway unimpeded by electrolyte through the back of the electrode (Figure 1C). Ni₃(HITP)₂ GDEs were interfaced into a custom-built gas diffusion flow electrolyzer (Figure 2A, detailed in the Supporting Information) with a microfluidic pocket that limits the contact area (~0.8 cm²) between the MOF-loaded GDE and electrolyte (Figure 2A). The Ni₃(HITP)₂ GDE was compressed...
against a conductive, interdigitated flow field that rapidly transports O\textsubscript{2} to the Ni\textsubscript{3}(HITP)\textsubscript{2}/electrolyte interface. Electrolyte flowed through the cell and into a collection vial, enabling quantification of electrogenerated H\textsubscript{2}O\textsubscript{2}. Enhancing O\textsubscript{2} transport to the Ni\textsubscript{3}(HITP)\textsubscript{2}/electrolyte interface led to orders of magnitude higher ORR current densities using Ni\textsubscript{3}(HITP)\textsubscript{2} GDEs. Across the same potential range as was used with RRDEs, CVs of a Ni\textsubscript{3}(HITP)\textsubscript{2} GDE indicated that the geometric j\textsubscript{ORR} was ca. 1−2 orders of magnitude larger with the GDE relative to the RRDE (Figure 2B). At −0.29 V, whereas Ni\textsubscript{3}(HITP)\textsubscript{2} exhibited a j\textsubscript{ORR} value of only −0.6 mA cm−2 on the RRDE, its activity on the GDE was −62 mA cm−2. Control experiments of both the GDE support under an O\textsubscript{2} atmosphere (Figure S9) and the Ni\textsubscript{3}(HITP)\textsubscript{2} GDE under an N\textsubscript{2} atmosphere (Figure 2B) indicated that essentially all of the observed current could be attributed to ORR catalysis (i.e., no H\textsubscript{2} evolution) occurring at the Ni\textsubscript{3}(HITP)\textsubscript{2} sites. These data indicate that Ni\textsubscript{3}(HITP)\textsubscript{2} was starved of O\textsubscript{2} during polarization in the H-cell, which led to a vast underestimation of its intrinsic electrocatalytic performance.

We evaluated the ORR performance of the Ni\textsubscript{3}(HITP)\textsubscript{2} GDEs by measuring the current during step-potential polarization (Figure 2C). Unlike the case in the H-cell, the geometric j\textsubscript{ORR} value using the GDE increased monotonically with the applied potential in a broader range, reaching a maximum current density of −103 mA cm−2 at −0.36 V, an approximately 310-fold improvement in j\textsubscript{ORR} relative to those measured in the RRDE/H-cell. Similarly, the j\textsubscript{H2O2} value using the Ni\textsubscript{3}(HITP)\textsubscript{2} GDE increased as a function of applied potential from −1.2 mA cm−2 at 0.01 V to a maximum current density of 88.5 mA cm−2 (or 85% FE for H\textsubscript{2}O\textsubscript{2}) at −0.36 V, a 740-fold improvement over the maximum j\textsubscript{H2O2} value measured using the RRDE/H-cell at the same mass loading (Figure 2D). With 0.2 mL min−1 of electrolyte flowing through the cell, we measured a 108 mM
(3270 ppm) H₂O₂ product stream at −0.36 V. These high ORR current densities corresponded to a mass activity of 259 A g⁻¹ at −0.36 V, which is competitive with state of the art, H₂O₂-producing heterogeneous electrocatalysts in a neutral electrolyte. PXRD patterns and XPS spectra obtained immediately after polarization indicated that Ni₃(HITP)₂ retained its crystallinity, and we found no evidence for the formation of metallic Ni from reduction of framework Ni²⁺ (Figures S10 and S11). As H₂O₂ concentrations were likely even higher within the Ni₃(HITP)₂ pores, these data indicate that Ni₃(HITP)₂ is stable to high local concentrations of electrogenerated H₂O₂.

Supporting conductive MOFs on GDEs is a general strategy that allowed us to probe the effect of metal ion substitution in M₃(HITP)₂ under a high O₂ flux. We integrated two additional, isostructural HITP-based frameworks, namely Cu₃(HITP)₂ and Co₃(HITP)₂ with GDEs (Figure 2E–G; characterization in Text 1 in the Supporting Information and Figures S12–S17), to evaluate their ORR activity under high-mass-transport conditions. Polarization in O₂ revealed that the total j_{ORR} and j_{H₂O₂} values both depend on the identity of the MOF and vary in the order Ni > Co > Cu (Figure 2G). This reflected the trend in electrochemical surface area (ECSA, a composite value of intrinsic surface area and conductivity) among the three MOFs (Ni > Co > Cu; Figure 2F and Figure S18). Ni₃(HITP)₂ exhibits more than 6-fold higher ECSAs in comparison to the Cu or Co analogues, characteristic of its high conductivity and porosity. On a mass activity basis, Ni₃(HITP)₂ exhibits the highest activity at the lowest driving forces (Figure S17A). These data provided a simple model to rationalize the observed j_{ORR} value: Ni₃(HITP)₂ is the most active of the three M₃(HITP)₂ because it possesses an intrinsically higher ECSA and therefore a higher density of active sites. Given that crystallinity generally engenders high conductivity and surface area in conductive MOFs, and noting that as-synthesized Ni₃(HITP)₂ is intrinsically more crystalline than either Co₃(HITP)₂ or Cu₃(HITP)₂ (cf. Figures S1 and S12), these results suggest that high conductivity, porosity, and crystallinity are the keys to unlocking high rates of ORR catalysis in MOFs.

Motivated by the apparent dependence of j_{ORR} on M₃(HITP)₂ ECSA in the GDE and because maximizing j_{ORR} is technologically desirable, we sought to understand how much of the ECSA in Ni₃(HITP)₂ could be productively recruited for catalysis. To this end, we varied the Ni₃(HITP)₂ mass loading from 0.1 to 0.8 mg cm⁻² (Figure 3; chronoamperograms are given in Figure S20). The geometric j_{ORR} value generally increased with higher catalyst loading (Figure 3A). For instance, at −0.36 V, the geometric j_{ORR} value at 0.4 mg cm⁻² was ~2-fold higher than that at 0.1 mg cm⁻². CVs in N₂ showed that the ECSA also increased with increased mass loading (Figure S21 and Table S1). These mass-dependent increases in ECSA correlate with the increase in j_{ORR} and indicate a larger number of active sites available for ORR catalysis. Additionally, higher values of j_{H₂O₂} are correlated with higher mass loadings of up to 0.4 mg cm⁻² (Figure 3B). At −0.36 V, j_{H₂O₂} increased ~3.3-fold as the mass loading increased from 0.1 to 0.4 mg cm⁻². We did not observe a systematic correlation between mass loading and FE (Figure S22A), suggesting that 2e⁻ reduction of H₂O₂ to H₂O, or framework-catalyzed decomposition of H₂O₂ to O₂, does not accelerate with higher mass loadings under the conditions employed here.

At a high overpotential, the mass activity decreases as the catalyst loading increases (Figure 3C and Figure S22B), with the lowest mass loading of 0.1 mg cm⁻² being responsible for the highest mass activity of 553 A g⁻¹ at the most cathodic applied potential. At the highest applied potentials, the rate of H₂O₂ production using the 0.1 mg cm⁻² electrode is equivalent to a gravimetric rate of 6570 mol H₂O₂ kg₉MOF⁻¹ h⁻¹, better than or competitive with the highest activities reported among state of the art H₂O₂-evolving electrocatalysts.

Although low Ni₃(HITP)₂ mass loadings yield the highest mass activities (Figure 3C), they also exhibit the lowest geometric j_{ORR} and j_{H₂O₂} values (Figure 3A,B). This an important dilemma to address, because it implies that much of the ECSA in Ni₃(HITP)₂ GDEs remained underutilized at high mass loading. Indeed, an apparent plateau in the geometric j_{ORR} value (ca. −110 mA cm⁻²) is observed for GDEs with 0.4 and 0.8 mg cm⁻² of Ni₃(HITP)₂ at a high driving force. The contrast between the 0.8 and 0.4 mg cm⁻² electrodes is small: doubling the mass loading provides only marginal improvements at low overpotentials and essentially identical activity at high overpotentials. Moreover, the j_{H₂O₂} value for the 0.8 mg cm⁻² electrode is only ~80% of that for the 0.4 mg cm⁻² electrode (Figure 3B). If the mass activity of the 0.8 mg cm⁻² electrode were identical with that of the 0.1 mg cm⁻² electrode (481 A g⁻¹...
at −0.36 V), the measured \(j_{\text{ORR}} \) value for the 0.8 mg cm\(^{-2}\) electrode should be >380 mA cm\(^{-2}\) almost 4X larger than what we observe. In fact, mass activities across the four different mass loadings were relatively uniform at low overpotentials and diverged prominently only at high overpotentials (Figure S22B). This activity plateau limited the single-pass O\(_2\) conversion rate to just 30% (Figure S22C).

High-resolution scanning electrochemical cell microscopy (SECCM; Figure 4A)\(^{33-35}\) lent critical insight into the origin of the plateau in activity observed in our GDE studies (Figure S23 and the Supporting Information for experimental details). By confinement of the entirety of the electrode contact area to the footprint of a droplet at the end of a nanopipet, SECCM offers the fastest gas mass transport rates experimentally accessible for electrocatalysis: N\(_2\) or O\(_2\) can rapidly traverse the nanoscale droplet electrolyte and the porous Ni\(_3\)(HITP)\(_2\) particles, with the maximum diffusion length of gaseous species to the catalyst surface being set by the droplet radius.\(^{28,36}\) For example, a hemispherical droplet with a radius \(\text{d} = 25 \text{ nm}\) has a sub-microsecond diffusion time, about 6 orders of magnitude higher than that in the RRDE studies. By confining electrocatalytic studies to a nanoscale droplet, SECCM provides a unique platform to measure the intrinsic electrochemical mass activity in the absence of extrinsic transport limitations.

Using a 50 nm diameter nanopipet filled with a solution of 30 mM NaP\(_2\) (pH 7) and 100 mM NaCl, we directly mapped the electrochemical activity of Ni\(_3\)(HITP)\(_2\) particles under cathodic polarization under both N\(_2\) and air (P\(_{O_2}\) = 0.2 bar) (Figure S24 and Figure 4, respectively).\(^{37}\) The average current under N\(_2\) at −0.36 V was negligible at ca. −1 pA, close to the noise limit of the conditions we employ here (Figure S24, Movie S1, histograms in Figure S29). Comparison of individual linear sweep voltammograms (LSVs) in N\(_2\) versus those in air indicated that essentially all of the measured current in air arose from the ORR (Figure 4C). Importantly, control experiments probing the nanodroplet while it was in contact with Ni\(_3\)(HITP)\(_2\) revealed that the droplet was stable while it was in contact with the MOF. Furthermore, the droplet contact areas were similar on both Ni\(_3\)(HITP)\(_2\) and ITO, allowing us to estimate the maximum ECSA of Ni\(_3\)(HITP)\(_2\) contacted during SECCM measurements. (Text 2 in the Supporting Information and Figures S26−S29).

In contrast, SECCM scans of Ni\(_3\)(HITP)\(_2\) under air indicated high ORR activity across the MOF particle surface, with an average current of −25 pA at −0.36 V vs SHE (Figure 4B,C, Movie S2, and histograms in Figure S29B). Given a droplet radius of 25 nm, this current translates to a geometric \(j_{\text{ORR}} \) value of −1273 mA cm\(^{-2}\), 38-fold greater than the highest current densities observed under air using the GDE (Figure S25). The larger current densities observed in SECCM versus the GDE or RRDE configurations are consistent with the short diffusion pathways enforced by the nanoscopic dimensions of SECCM.\(^{28,35,36−51}\)

Using the SECCM and topography maps obtained under air, we calculated a lower-bound estimate of the intrinsic mass activity of Ni\(_3\)(HITP)\(_2\), making a conservative assumption that all of the cylindrical mass of Ni\(_3\)(HITP)\(_2\) under the droplet’s 50 nm footprint is recruited for catalysis (Figure S30). Strikingly, these estimates yielded a lower-bound average mass activity of 11250 A g\(^{-1}\) at −0.36 V vs SHE, 136-fold higher than the highest mass activities measured with GDEs in air.

The rapid transport environment of SECCM revealed that Ni\(_3\)(HITP)\(_2\) is even more active intrinsically than has been observed in the GDE, suggesting that even at low mass loadings some O\(_2\) mass transport resistance persists in the agglomerated Ni\(_3\)(HITP)\(_2\) GDE catalyst layer. At high Ni\(_3\)(HITP)\(_2\) GDE mass loadings, much of the active material is immersed in a thick aqueous electrolyte layer through which O\(_2\) mass transport is sluggish (Figure S31), with maximum diffusion lengths likely exceeding the thickness of the flooded GDE pores and Ni\(_3\)(HITP)\(_2\) catalyst layer (>10 μm; see Figure S8).

Crucially, the high mass activities observed in SECCM mean that the activity plateau observed in the GDE was extrinsic to Ni\(_3\)(HITP)\(_2\). Identifying slow micrometer-scale O\(_2\) mass transport, rather than low intrinsic catalyst activity, as the origin of current density limitations observed in the GDE provides an impetus to improve the mass transport properties of the Ni\(_3\)(HITP)\(_2\) GDE. As a simple proof of principle, we reformulated the catalyst ink to include 10 wt % of hydrophobic polytetrafluoroethylene (PTFE) powder that was intimately mixed with the Ni\(_3\)(HITP)\(_2\) nanoparticles, reducing Ni\(_3\)(HITP)\(_2\) particle agglomeration and providing continuous, hydrophobic channels through which O\(_2\) could diffuse rapidly (Figures S31−S34 and Text 3 in the Supporting Information).\(^{26,29}\)

The facility of O\(_2\) transport across the hydrophobic PTFE domains led to substantial increases in ORR activity: a 0.8 mg cm\(^{-2}\) Ni\(_3\)(HITP)\(_2\) GDE with 10 wt % added PTFE passed a total current density of −170 mA cm\(^{-2}\) at just −0.27 V (Figure S34A). By comparison, the previous best-performing PTFE-free 0.4 mg cm\(^{-2}\) Ni\(_3\)(HITP)\(_2\) electrode reached a peak \(j_{\text{ORR}} \) value of −103 mA cm\(^{-2}\) while also requiring a 90 mV higher driving force of −0.36 V. This activity translated to a 60% higher total single-pass O\(_2\) conversion rate of 48% at an O\(_2\) flow rate of 1.5 mL min\(^{-1}\) (Figure S34F). With the addition of 10 wt % PTFE, the 0.8 mg

![Figure 4. SECCM mapping of ORR activity on Ni\(_3\)(HITP)\(_2\). (A) Schematic of the experimental geometry in SECCM using a single-barrel nanopipet. (B) Optical image of the Ni\(_3\)(HITP)\(_2\) particles scanned using SECCM under air. (C) Single-pixel LSVs of Ni\(_3\)(HITP)\(_2\) obtained under N\(_2\) and air. Inset: average current densities at −0.36 V for Ni\(_3\)(HITP)\(_2\) under N\(_2\) and N\(_2\)/air SECCM scans corresponding to those in N\(_2\) are shown in Figure S24. (D) SECCM map of geometric current densities (defined as the current divided by the tip droplet area) measured on Ni\(_3\)(HITP)\(_2\) at −0.36 V. (E) Corresponding topographic map of Ni\(_3\)(HITP)\(_2\) derived from SECCM mapping.](https://doi.org/10.1021/acscentsci.2c00509)
cm² electrode exhibits 70% greater mass activity than its PTFE-free analogue: 212 vs ~124 A g⁻¹ (Figure S34C). Incorporating PTFE into the catalyst ink increased the apparent mass-transport-limited current from −110 to −180 mA cm⁻², an increase of ~60%. These large differences in activity demonstrate that enhancing O₂ mass transport in the Ni₃(HITP)₂ catalyst layer increased the apparent mass-transport-limited current from PTFE into the catalyst ink.

AIMS OF DESIGN

Deployment of these designer materials for a variety of transport bottlenecks that prevent MOFs from delivering high activity of the PTFE-free electrode with only 0.1 mg cm⁻² Ni₃(HITP)₂ catalyst layer. Identifying the multiscale differences in activity by the facility of O₂ mass transport. Further improvements in the geometric spatially resolved electrochemical video of Ni₃(HITP)₂ under an N₂ atmosphere (AVI). Spatially resolved electrochemical video of Ni₃(HITP)₂ under an air atmosphere (AVI).

Author Contributions

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (DMR-2105495), the Research Corporation for Science Advancement (R.G.M., M.D.), the University of Warwick Chancellor’s International Scholarship (O.J.W.) and the Royal Society of Chemistry Wolfson Research Merit Award (P.R.U.). The authors are grateful to Prof. Matthew Kanan of Stanford University for access to 3D printing equipment. The authors also thank Dr. Enrico Daviddi, Mr. Joshua J. Tully, and Dr. Gabriel N. Meloni of the University of Warwick for helpful comments and the design and 3D printing of SECCM environmental cells. The SEM imaging performed as part of this work made use of the facilities at MIT.nano. XPS data were collected at the Harvard Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

REFERENCES

