Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rebecca J. Abergel and Mircea Dinca*

College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA

Correspondence e-mail: mdinca@berkeley.edu

Key indicators

Single-crystal X-ray study
$T=167 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.042$
$w R$ factor $=0.054$
Data-to-parameter ratio $=10.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

9,10-Dibromotriptycene

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2}$, has high rigidity and approximate threefold symmetry, but no crystallographically imposed molecular symmetry.

Received 29 April 2004
Accepted 7 June 2004
Online 26 June 2004

Comment

9,10-Dibromotriptycene, (I), along with other dihalotriptycenes, can be used for further functionalization of triptycenes (Adcock \& Iyer, 1988; Adcock et al., 2001). The bond distances and angles in (I) are consistent with those reported in analogous mono- and di-substituted triptycenes. The $\mathrm{C}-\mathrm{Br}$ distances, 1.933 (5) and 1.952 (5) \AA, and the $\mathrm{Br}-\mathrm{C}-\mathrm{C}$ angles, ranging from 111.7 (4) to $113.3(4)^{\circ}$, are similar to the corresponding values in 9-bromotriptycene $(1.97 \AA$ and 111.4°; Palmer \& Templeton, 1968). The structure supports the conclusion that triptycene derivatives are highly symmetrical and rigid molecules. It is interesting to note that the molecule exhibits pseudo-threefold symmetry (as shown by the interplanar angles between the benzene rings: 123.7 (2), 121.5 (1), and $\left.114.8(2)^{\circ}\right)$. Unlike 9 -bromotriptycene, which crystallizes in $R \overline{3}$, it does not crystallize in a space group with threefold symmetry. Also, despite the largely aromatic nature of the molecule, no π-stacking is observed in the crystal structure.

(I)

Experimental

The title compound was prepared according to a previously published procedure (Bohm et al., 1974). Pale yellow crystals were grown by sublimation of the crude product and characterized by mass spectrometry and NMR.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2}$
$M_{r}=412.12$
Monoclinic, $P 2_{\mathrm{d}} / a$
$a=8.0753\left(\begin{array}{l}\text { a } \\ \mathrm{A}\end{array}\right.$
$b=13.698(1) \AA$
$c=14.054(1) \AA$
$\beta=92.639(2)^{\circ}$
$V=1552.9(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.763 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 1610
reflections
$\theta=2.9-23.1^{\circ}$
$\mu=5.23 \mathrm{~mm}^{-1}$
$T=167.2 \mathrm{~K}$
Parallelepiped, colorless $0.12 \times 0.08 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.683, T_{\text {max }}=0.855$
9101 measured reflections

Refinement

Refinement on F
$R=0.042$
$w R=0.054$
$S=2.08$
2073 reflections
199 parameters

3164 independent reflections
2073 reflections with $F^{2}>3 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-10 \rightarrow 6$
$k=-17 \rightarrow 17$
$l=-17 \rightarrow 17$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\max }=0.74 \mathrm{e} \AA \AA^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 1$	$1.952(5)$	$\mathrm{C} 1-\mathrm{C} 15$	$1.519(8)$
$\mathrm{Br} 2-\mathrm{C} 2$	$1.933(5)$	$\mathrm{C} 2-\mathrm{C} 8$	$1.535(8)$
$\mathrm{C} 1-\mathrm{C} 3$	$1.523(8)$	$\mathrm{C} 2-\mathrm{C} 14$	$1.521(7)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.524(8)$	$\mathrm{C} 2-\mathrm{C} 20$	$1.532(7)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 3$	$111.7(4)$	$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 8$	$112.0(4)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 9$	$112.3(4)$	$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 14$	$113.2(4)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 15$	$112.1(4)$	$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 20$	$113.3(4)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 9$	$106.6(4)$	$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 14$	$106.0(4)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 15$	$106.8(5)$	$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 20$	$105.7(4)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 15$	$107.1(4)$	$\mathrm{C} 14-\mathrm{C} 2-\mathrm{C} 20$	$106.1(4)$

H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001-2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: teXsan (Molecular Structure Corporation \& Rigaku Corporation, 1998); molecular graphics: teXsan; software used to prepare material for publication: teXsan.

The authors gratefully acknowledge Professor Kenneth N. Raymond, Dr. Frederick J. Hollander, and Dr. Allen G. Oliver for help with the crystal structure solution, and Steven S. Kaye for supplying the sample.

References

Adcock, W., Clark, C. I. \& Trout, N. A. (2001). J. Org. Chem. 66, 3362-3371. Adcock, W. \& Iyer, V. S. (1988). J. Org. Chem. 53, 5259-5266.
Altomare, A., Cascarano, M., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Figure 1
Molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids for the non-H atoms.

Figure 2
The unit-cell contents, projected down the a axis. H atoms have been omitted.

Bohm, H., Kalo, J., Yarnitzky, C. H. \& Ginsburg, D. (1974). Tetrahedron, 30, 217-219.
Bruker (2001-2003). SMART. Version 5.631. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT. Version 6.40. Bruker AXS Inc., Madison, Wisconsin, USA.
Molecular Structure Corporation \& Rigaku Corporation. (1998). teXsan. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA; Rigaku, 3-9-12 Akishima, Tokyo, Japan.
Palmer, K. J. \& Templeton, D. H. (1968). Acta Cryst. B24, 1048-1052.

