3.012 Fundamentals of Materials Science

Fall 2003


Lecture 9: 10.06.03 Equilibrium and the second law
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Reading:
Dill and Bromberg, Ch. 7, ‘dS = 0 Defines Thermal, Mechanical, and Chemical Equilibria,’ pp. 111-119

Supplementary Reading:
Mortimer Ch. 4 pp. 95-116 ‘The Second and Third Laws of Thermodynamics: Entropy’ (A description of the second law starting from analysis of heat engines)

Planning Notes: 



HW or recitation example: Dill p. 127 Heat moved from a cold object to a hot object if work is applied to a system



Introduction to the second law

· Thusfar, we have discussed thermodynamic functions that characterize a system, such as the enthalpy, entropy, and heat capacity.  We have seen how to make calculations of these quantities from measurable quantities.  However, we in these calculations we have been limited to making measurements of the thermodynamics of a system- but not to make predictions.  We can measure the location of the ice-water phase transition and its enthalpy of transition, but we have not yet explained why there should a phase transition at that temperature.  

· Last time, we introduced two fundamental equations for the internal energy and entropy, that account for each thermodynamic force acting on a system.  We are now ready to begin using these to determine equilibrium states- with the introduction of the second law.  The second law provides the theoretical tools to make predictions and assess the stability of materials- allowing us to understand when phase transitions happen and why.

Statements of the second law

· The second law provides the rule that governs which way a system will tend to change in order to reach equilibrium, and identifies the criterion for an equilibrium state.  There are numerous ways to formulate a statement of the second law, and we list here several of the simplest, most useful ways of stating it:

1. The entropy of the universe always increases or remains constant in any spontaneous process.

· There are numerous other famous statements of the second law, for example:

2. Heat never spontaneously flows from an object at lower temperature to one at a higher temperature. (Clausius)

3. It is impossible to continuously perform work by cooling a body to a temperature below that of the lowest temperature of its surroundings. (Kelvin)

· These statements can be shown to be equivalent.  Note the repeated use of the word spontaneous:  A spontaneous process is one that will occur under a given set of conditions without any additional external forces acting on the system.  

· Formulation 1 can also be readily written as a mathematical rule:

(Eqn 1)
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for any spontaneous process



THE SECOND LAW

or

(Eqn  1)
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for any spontaneous process

· If the change occurring in a process is small, the second law is equivalently written as dS ≥ 0.

· Consider the figure below, depicting the surface of entropy vs. internal energy and volume for some material system.  The second law graphically implies that any spontaneous process moves uphill on the entropy surface:

[image: image3.wmf]
(© W.C. Carter1)

· Thus, the equilibrium point must sit at the apex of maximum entropy.

· An alternative mathematical criterion that encompasses this graphical description is called the variational statement of the second law:

(Eqn  2)


[image: image4.wmf] at equilibrium
VARIATIONAL STATEMENT OF THE SECOND LAW

· Stated in words, at equilibrium, any small change to the state of the system that induces a small change in the entropy while the internal energy and volume remain constant must lower the entropy of the system. 

The internal energy at equilibrium

· We have a direct relationship connecting S and U:

(Eqn  3)
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or


[image: image6.wmf] at constant V,N

· The absolute temperature T > 0, thus the variational statement of the second law translates to a variational statement for the internal energy at equilibrium:

(Eqn  4)
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at equilibrium

· The variational statement for the internal energy indicates that the internal energy reaches a minimum at equilibrium.

· The second law thus provides the criterion we need to use the fundamental equations to identify equilibrium states for isolated systems: the entropy must be maximized at constant internal energy and volume (or equivalently, the internal energy must be mimized at constant entropy and volume).  

Applying the second law

Heat flows from hot objects to cold objects

· In lecture 4 we discussed the relationship between heat, temperature and entropy.  These three quantities are related by dS = dqrev/T.  This equation indicates that two different materials heated to equal temperatures might have absorbed different amounts of heat to reach that temperature.  In our discussion of heat and temperature so far, we have taken one fact of common experience for granted: if we place a hot material in contact with a colder material, heat will pass from the hot object to the cold one and raise its temperature.  The second law is an axiom that says this is what will always happen. Let’s show how the second law predicts that heat always flows from hot to cold:

· Suppose we have two large blocks of two metals, one at a temperature of 400°K and one at 300°K.  The blocks are big enough that a small transfer of heat from one block to the other will not cause a significant change in the temperature of either block.  Suppose we transfer 400 J of heat from the hot block (block A) to the cold block (block B) by a reversible process.  

· We can invoke our relationship between heat transfer and temperature to calculate the entropy changes occurring:

(Eqn 2)
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because S is a state function, we can integrate it.

(Eqn 3)
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(Eqn 4)
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(Eqn 5)
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·  Note that the temperature is assumed to be constant for both blocks during this transfer, as stated above.  We see the following three things: 1) the entropy of the colder block increased, 2) the entropy of the hotter block decreased, and 3) the entropy of the “universe” in this process increased.  The “universe” here just means both block A and B (since these are the only parts of the universe where changes are occurring- we don’t care about the bench the blocks are sitting on if no heat or work are passed between the blocks and their surroundings).

· The calculations above show that the process of transferring heat from block A to block B can spontaneously occur, as it does not violate the second law.  The second law also disallows the reverse process:

· Suppose 400 J of heat were to transfer from block B to block A:

(Eqn 6)
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(Eqn 7)
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(Eqn 8)
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· Since the entropy of the universe would decrease in this process, it is disallowed by the second law.

Thermal equilibrium

· Our example of heat transfer between metal blocks above showed how the second law predicts heat flow. Such spontaneous heat transfer is also a fact of common experience- a cold bar of glass dropped into a hot beaker of water will be warmed over time.

· But a question remains- when will heat transfer stop?  In other words- when is the system at equilibrium?  What state will blocks A and B be in once equilibrium is reached?  The second law provides the answer: Heat transfer will continue as long as the entropy of the universe (here, the two blocks together) continues to increase.  Once the entropy has reached a maximum value- i.e. any further heat transfer would cause the entropy to be lowered, the system is at equilibrium and spontaneous heat transfer stops.

· One may imagine the process of heat transfer between blocks A and B occurring in many tiny steps, as outlined in the figure below- a small amount of heat is transferred, the temperature and entropy of A decreases slightly, the temperature and entropy of B increase slightly, and the entropy of the total A+B increases slightly from the previous state.  At some point, the entropy of the two blocks will reach a maximum- any further heat transfer would lower the total entropy from the previous state.  

[image: image15.wmf](Dill and Bromberg2)

· The question is, what is the temperature of A and B when the point of maximum entropy is reached?

· To answer this question, we will use the fundamental equation for the entropy and the second law.  In the first example, the temperature of the two blocks was assumed to remain unchanged by the transfer of heat.  However, we now want to consider the case where the heat transferred does influence the temperature of block A and block B.

· The two blocks are allowed to transfer heat between one another but not with their surroundings (the two blocks form an isolated system).  Thus:

(Eqn 9)
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· Taking the differential of this equation:

(Eqn 10)
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or
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· This is simply the mathematical way of stating that any internal energy lost by block A must be gained by block B (conservation of energy).

· We now write the fundamental equation for the entropy of block A and of block B:

(Eqn 11)
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(Eqn 12)
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· In (Eqn 11) we’ve written out the complete expression for a simple material where the entropy is a function of U, V, and N (S = S(U,V,N))- but we are considering a system here where no volume change or particle exchange can occur, so dVA = dNA = 0.

· We can also write an expression for the entropy change of the ‘universe’: in this case, since no energy or matter can be exchanged between the two blocks and their surroundings, the only parts of the universe that need to be considered are both blocks- since they are the only parts of the universe undergoing a change in this process:
(Eqn 13)
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· At equilibrium, dSuniverse = 0 according to the second law.  Therefore:
(Eqn 14)
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or
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at equilibrium
· …which confirms the result we expect from common experience.  Thus the second law predicts that heat will flow from block A to block B until the temperatures of the two blocks are equal.
· SHOW THE PROCESS GRAPHICALLY? PLOT OF SA VS. TA? SHOW IT IS MAX WHEN TA=TB
· Question: Are the internal energies of the two blocks necessarily equal? (numerical example?)
Mechanical equilibrium

· In the previous section, we showed how the second law defines the equilibrium temperatures of two materials placed in thermal contact.  The power of the second law is that it can be used to determine the equlibrium conditions for any thermodynamic system, under arbitrary constraints – e.g. systems that can exchange heat, exchange molecules, exchange electric charge, etc.- in response to arbitrary thermodynamic driving forces: temperature, pressure, chemical potential, etc.  We will spend much of the term learning how to understand how to make use of the second law in this way.  

· Let’s show a second example: how the second law also defines the conditions for mechanical equilibrium:

· Consider two different ideal gases A and B enclosed in a cylinder, partitioned by a movable (frictionless) piston as illustrated in the figure below.  The volume of the cylinder cannot change (VA + VB = constant) but the partition can slide left or right- compressing one gas (placing it under higher pressure) while expanding the other (reducing the pressure).  The gases cannot exchange heat or work with their surroundings (therefore UA + UB = constant; what kind of system is this?).  What will the pressure on the two gases be at equilibrium?

[image: image24.wmf](Dill and Bromberg2)

· Since the total volume of the cylinder is fixed, we have:

(Eqn 15)
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· Applying the fundamental equation for the entropy of the two gases:

(Eqn 16)
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(Eqn 17)
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· We don’t include the dNj terms because the two gases cannot exchange molecules, but we haven’t excluded the possibility that they could exchange internal energy- so we leave the dU terms in our expression.  

· To utilize the second law, we calculate the entropy change for the ‘universe’ of our cylinder.  Using dUA = -dUB and dVA = -dVB:

(Eqn 18)
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· At equilibrium, dSuniverse = 0 .  We have two terms which are independent of one another (U = U(T) for an ideal gas; dUA will not depend on dVA).  Thus for dS = 0 we must have:

(Eqn 19)
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requires:

(Eqn  5)
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and

(Eqn  6)
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· Since TA = TB, this means that at equilibrium PA = PB.  Mechanical equilibrium is reached when the pressures on the two gases are equal.

Other equilibria

· The second law can be applied to define the conditions for equilibrium for any arbitrary system.  Our next step is to introduce the Gibbs free energy, which is a state function useful for determining equilibrium in the most common type of experimental system: one where the pressure and temperature are maintained at a constant value.
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