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ABSTRACT 

 

Glottal closed phase estimation during speech 

production is critical to inverse filtering and, although 

addressed for radiated acoustic pressure analysis, must be 

better understood for the analysis of the oral airflow volume 

velocity signal that provides important properties of healthy 

and disordered voices. This paper compares the estimation 

of the closed phase from the acoustic speech signal and the 

oral airflow waveform recorded using a pneumotachograph 

mask. Results are presented for ten adult speakers with 

normal voices who sustained a set of vowels at a 

comfortable pitch and loudness. With electroglottography as 

reference, the identification rate and accuracy of glottal 

closure instants for the oral airflow are 96.8 % and 0.28 ms, 

whereas these metrics are 99.4 % and 0.10 ms for the 

acoustic signal. We conclude that glottal closure detection is 

adequate for close phase inverse filtering but that 

improvements to detection of glottal opening instants on the 

oral airflow signal are warranted. 

 

Index Terms—Inverse filtering, glottal airflow, Rothenberg 

mask, glottal closure instant detection 

1. INTRODUCTION 

Closed-phase covariance analysis is known to provide 

robust estimates of the all-pole vocal tract transfer function 

to enable inverse filtering of acoustic speech signals [1, 2] 

and oral airflow [3] to extract the voice source signal. 

Reliable identification of glottal closure and opening 

instants, and thus the closed phase, from the acoustic speech 

signal [4, 5] has made closed-phase covariance analysis 

practicable without the use of an electroglottographic (EGG) 
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signal, and avoids manual or iterative methods to estimate 

the closed phase of the glottal airflow [6]. It is not known, 

however, whether detection algorithms developed to analyze 

acoustic signals can be applied directly to aerodynamic 

recordings of airflow. With this motivation, the goal of the 

current work is to estimate the closed phase timing by 

applying acoustics-derived methods of glottal closure and 

opening detection to oral airflow, which is unaltered by the 

acoustic radiation characteristic. The ultimate goal is to 

attain accurate inverse filtering and yield voice source 

features for the analysis of healthy and disordered voices. 

1.1. Motivation 

Voice source features extracted from the acoustic signal 

have played particular roles as biomarkers for neurological 

disorders, including major depressive disorder [7] and 

Parkinson’s disease [8]. Recording oral airflow during 

phonation using a pneumotachograph mask [9] is widely 

considered the most direct manner in which to estimate the 

volume velocity airflow exiting the mouth. Clinical voice 

assessment typically includes a measure of average airflow 

and subglottal pressure to enable the estimation of a vocal 

efficiency ratio relating the voice source input to the speech 

system output. In addition, tracking the high-bandwidth 

airflow waveform provides for inverse filtering methods to 

yield the voice source waveform and features such as 

maximum airflow declination rate, minimum airflow, and 

peak-to-peak amplitudes that are commonly linked with 

hyperfunctional vocal behavior [10] and other disorders. 

Currently, there are several techniques for inverse 

filtering the acoustic voice signal recorded with a 

microphone in the free field that consist of linear prediction 

coding (LPC)–based estimates of coefficients that describe 

the supraglottal tract transfer function [2]. Covariance 

methods of linear prediction require knowledge of the 

instants of glottal closure and opening such that LPC 

coefficients are derived during the closed phase of vocal 

fold vibration during which the supraglottal tract is closest 

to having all-pole qualities. The performance of inverse 

filtering algorithms has been evaluated primarily on 

databases consisting of acoustic microphone signals and a 

reference signal (e.g., from an EGG or laryngograph). 



1.2. Relation to prior work 

Closed-phase covariance analysis of speech requires that the 

glottal closure instant (GCI) and glottal open instant (GOI) 

are accurately identified for each glottal cycle in the speech 

signal. This is often done indirectly using a two channel 

analysis where the EGG signal is used to extract instants 

[11, 12]. A limitation with this approach is that the acoustic 

delay between the EGG and the signal being analyzed 

(microphone or oral airflow) is not known exactly. Reliable 

identification of the GCIs and the GOIs in the signals that 

are being analyzed is therefore very desirable. Closed-phase 

covariance analysis has also been performed without 

knowing the GCIs and GOIs beforehand by sliding the 

analysis window sample by sample and choosing the 

minimum energy of the resulting residual [13, 14], by 

minimizing formant ripple [15], or by detecting statistically 

significant changes in the AR coefficients [16]. 

One-channel analysis can be applied where algorithms 

such as YAGA [4] or DYPSA [17] can provide closed phase 

timing information. As alluded to earlier, however, it is 

unknown whether algorithms developed to analyze acoustic 

signals can be applied directly to aerodynamic recordings of 

airflow. If successful, single-channel inverse filtering of the 

oral airflow waveform may recover properties of the voice 

source excitation closer than that estimated from the 

acoustic waveform. 

2. METHOD 

This section describes the data collection from speakers with 

normal voices and two analysis methods: 1) GCI and GOI 

detection using YAGA [4] and 2) covariance method of 

linear prediction on acoustics and oral airflow to provide 

illustrations of closed phase inverse filtering performance. 

2.1. Database 

Ten adult speakers (five male, five female) with no history 

of voice disorders were recruited to participate in the study. 

The speakers were instructed to sustain five cardinal vowels 

(/a/, /e/, /i/, /o/, /u/) for 2–5 s at a comfortable pitch and 

loudness. Fig. 1 shows a snapshot of the three simultaneous 

signals recorded. The acoustic speech signal, oral airflow, 

and electroglottography (EGG) were sampled at 20 kHz. A 

circumferentially-vented pneumotachograph mask system 

(model MA-1L; Glottal Enterprises, Syracuse, NY) yielded 

the oral airflow signal. 

2.2. Glottal closure and opening instant detection 

GCIs and GOIs were extracted using YAGA [4] on the 

acoustic speech signal and the derivative of the oral airflow 

waveform. The derivative operation approximates the 

radiation characteristic to make the waveform suitable for 

epoch extraction. GCIs and GOIs were also detected from 

the derivative of the EGG signal as positive and negative 

peaks, respectively.  

Figure 1 shows an exemplary 30 ms segment from the 

sustained vowel of one of the female speakers with shading 

representing the duration of the closed phase between the 

GCI and GOI within each cycle. The acoustic propagation 

time from the glottis where the EGG signal is recorded to 

the microphone is approximately 0.9 ms, the time delay 

between the GCIs detected from the EGG signal and the 

corresponding GCIs in the oral airflow and microphone 

signals. Fig. 1 also shows the difference in the closed phase 

estimation between the microphone, oral airflow and EGG 

signals, indicated by the width of the shaded area. 

Fig. 1. Closed phases (shaded) identified in a segment of the 

sustained production of the /a/ vowel. The extracted GCIs and 

GOIs mark the start and the end, respectively, of the closed phase. 

 

Table 1. Performance assessment of glottal closure and opening 

instant detection using acoustic microphone (Mic.) and oral airflow 

(Flow) recordings of five sustained vowels. IDR = identification 

rate, MR = miss rate, FAR = false alarm rate, ACC = accuracy. 

  IDR 

[%] 

MR 

[%] 

FAR 

[%] 

GCI ACC 

[ms] 

GOI ACC 

[ms] 

Mic. 

Male 98.8 0.60 0.60 0.10 1.06 

Female 99.7 0.03 0.00 0.10 0.65 

All 99.4 0.40 0.20 0.10 0.79 

Flow 

Male 93.4 0.50 5.90 0.27 2.16 

Female 98.1 0.93 0.93 0.27 0.69 

All 96.8 0.81 2.35 0.28 1.42 

 



An evaluation of the GCI and GOI estimates of the 

acoustic microphone and oral airflow waveforms was 

carried out using the EGG as the reference signal. 

Performance measures across all glottal cycles consisted of 

the identification rate, miss rate, and false alarm rate, and 

identification accuracy defined in [17]. A GCI is considered 

to be “identified” when the algorithm obtains a single GCI 

within a pitch period of a GCI in the reference signal. A 

miss occurs when there is no identified GCI within the 

reference pitch period, and a false alarm occurs when more 

than one GCI is identified within the reference pitch period. 

The identification accuracy is the standard deviation of the 

time differences between identified GCIs and their 

associated reference GCIs. 

2.3. Closed phase inverse filtering 

Exemplary results from applying the covariance method of 

linear prediction to obtain inverse filtered waveforms are 

presented. Autoregressive (AR) parameters are estimated 

over 25 ms analysis windows every 10 ms. The closed phase 

of each glottal cycle is defined as being bounded by a GCI 

and successive GOI extracted from the signal being 

analyzed. The first 0.2 ms of the closed phase are skipped to 

reduce the chance that the source excitation near the closure 

instant is included in the analysis. The AR parameters are 

then derived from all the closed phase samples that lie 

within each analysis window [18]. The signal is then inverse 

filtered by using the AR parameters as FIR filter coefficients 

to obtain the voice source signal. 

3. RESULTS 

Results are presented for GCI/GOI detection with EGG as 

reference (182,563 cycles) followed by exemplary inverse 

filter analysis of acoustic and oral airflow waveforms. 

3.1. GCI and GOI detection 

Table 1 reports the performance of GCI and GOI detection 

categorized by gender and across all speakers for the 

microphone and oral airflow recordings of the five vowels 

in the database. Since the identification of the GOIs is 

directly linked to the GCIs by allowing only one GOI per 

GCI, the same identification rate, miss rate, and false alarm 

rate result for both GCI and GOI performance. The 

difference in the timing accuracy is also reported. 

For the microphone signal, the identification rate of 

99.4 % is comparable to that found in a similar analysis on 

the APLAWD database, which also consists of 5 male and 5 

female speakers [4]. The GCI timing accuracy of 0.10 ms on 

the acoustic signal is better than the 0.39 ms metric reported 

in [4]; but the GOI timing accuracy of 0.79 ms in the current 

study is lower than the 0.63 ms metric in [4]. For the oral 

airflow, the identification rate of 96.8 % is somewhat less 

than that for the microphone signal with the GCI timing 

accuracy of 0.28 ms remaining quite low. The timing 

accuracy of 2.16 ms of the GOI is, however, significantly 

higher for the male voices than for the female voices. 

Figure 2 breaks down the GCI results to show gender-

dependent miss and false alarm rates for all the vowels in 

the database. For the microphone-derived GCIs, the miss 

and false alarm rates remain particularly low for all vowels 

at a 1.25 % for males and 0.28 % for females (0.55 % 

combined); although performance is slightly degraded for 

/o/ by the males. The GCIs derived from the airflow, 

however, have much higher miss and false alarm rates, 

mostly due to the vowels /o/ and /u/ uttered by the male 

voices. Further investigation into vowel-dependent 

performance is warranted, since the results are not degraded 

in the acoustic speech signal. 

Figure 3 breaks down the high identification accuracy 

(all below 0.5 s) from the microphone and the airflow 

signal. The best performance is found for the vowels /a/ and 

/e/, and the GCIs derived from the microphone signal gives 
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Fig. 2. Sum of miss and false alarm rates for GCI estimates from 

the microphone and airflow signals categorized by vowel. 
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Fig. 3. Identification accuracy for GCI estimates using the speech 

signal and the oral airflow signal. 



somewhat better accuracy than the GCIs derived from the 

oral airflow signal. 

Figure 4 shows pairwise histograms of differences 

between the estimates of the closed phase duration from the 

microphone, EGG, and oral airflow signals. With the EGG 

as a reference for the closed phase duration, the top and 

middle panels show the deviation of the closed phase 

duration for the microphone and oral airflow signals 

respectively. From these distributions, both signals tend to 

overestimate the closed phase duration. The microphone-

derived closed phase overestimates the EGG-based closed 

phase by an average of 0.33 ms, whereas the airflow-based 

closed phase overestimates by an average of 0.24 ms. The 

standard deviation of each distribution is quite large, 

however, at 0.80 ms for the microphone signal and 0.68 ms 

for the oral airflow. The airflow-based closed phase appears 

to give more consistent results with respect to the EGG-

derived reference. 

3.2. Closed phase inverse filtering 

Figure 5 shows the inverse-filtered oral airflow waveform 

estimates for the same vowel in Fig. 1. Panel 1 and 4 show 

the oral flow inverse filtered using the closed phase (shaded) 

derived from the microphone and the EGG signal, 

respectively. Panel 2 shows the inverse filtered oral airflow 

using the closed phase derived from the oral airflow itself. 

In Panel 3, the closed phase was extended by adding 

0.25 ms to the derived GOIs of Panel 2 to obtain a closed 

phase closer to that derived from the microphone and EGG. 

The reason for this addition was to show how being too 

conservative (too small a closed phase) can affect the 

covariance analysis, as shown in Panel 2 of Fig. 5. The 

inverse filtered oral airflow using its own GOIs does not 

perform as well as if the GOIs were taken from one of the 

other two channels (microphone or EGG). Panel 3 

demonstrates that it is possible to rely on the GCIs extracted 

from the oral flow for the inverse filtering operation. The 

duration of the analysis period has to be long enough for 

first formant frequency estimation in covariance analysis.  

These voice source signals offer the chance to derive 

important voice source features that are not easily derived 

from the acoustic waveform. For example the minimum 

flow can be estimated form these waveforms along with the 

maximum flow declination rate. In case of the microphone 

signal, the lip-radiation characteristic (typically considered 

to be a derivative operation) is still present in the inverse 

filtered signal and must be reversed. The inverse-filtered 

oral airflow, on the other hand, does not need to be 

integrated as the lip-radiation does not affect it, and the 

glottal airflow volume velocity is obtained directly. 

4. CONCLUSION 

Reliable identification of GCIs and GOIs from the acoustic 

speech signal has made closed-phase covariance analysis 

practicable without the use of an EGG signal or manual 

methods to obtain the closed phase [4, 5]. This paper 

provides initial results supporting the application of GCI 

detection on the oral airflow waveform that could 

potentially be applied to disordered voice analysis. GOI 

detection on the oral airflow waveform, however, compares 

less favorably than that computed on the acoustic 

microphone signal. Since YAGA was tuned to acoustic 

analysis, future work warrants a sensitivity analysis of 

parameters (number of poles, pre-filtering settings, etc.) to 

analyze oral airflow signals that do not include the lip-

radiation characteristic.  

Fig. 5. Inverse filtered oral airflow waveforms for the adult female 

speaker uttering the vowel /a/. The closed phase (CP; shaded 

regions) timing is estimated in four different manners. 

Fig. 4. Histograms of the pairwise differences between closed 

phase duration estimates (CP) of microphone and EGG (top), 

airflow and EGG (middle), and airflow and microphone (bottom). 

CP
mic

 - CP
EGG

CP
flow

 - CP
EGG

N
u

m
b

e
r 

o
f c

y
c
le

s

-4 -2 0 2 4

CP
flow

 - CP
mic

Time [ms]



5. REFERENCES 

[1] P. Alku, C. Magi, S. Yrttiaho, T. Bäckström, and B. 

Story, “Closed phase covariance analysis based on 

constrained linear prediction for glottal inverse 

filtering,” J. Acoust. Soc. Am., vol. 125, no. 5, 

pp. 3289–3305, May 2009. 

[2] P. Alku, “Glottal inverse filtering analysis of human 

voice production — A review of estimation and 

parameterization methods of the glottal excitation and 

their applications,” Sādhāna: Indian Academy of 

Sciences Proceedings in Engineering, vol. 36, no. 5, pp. 

623–650, 2011. 

[3] M. Zañartu, J. C. Ho, D. D. Mehta, R. E. Hillman, and 

G. R. Wodicka, "Subglottal impedance-based inverse 

filtering of voiced sounds using neck surface 

acceleration," IEEE Trans. Audio Speech Lang. 

Processing, vol. 21, no. 9, pp. 1929–1939, 2013. 

[4] M. R. P. Thomas, J. Gudnason, and P. A. Naylor, 

“Estimation of glottal closing and opening instants in 

voiced speech using the YAGA algorithm,” IEEE 

Trans. Acoust., Speech, Signal Process., vol. 20, no. 1, 

pp. 82–91, January 2012. 

[5] T. Drugman, M.R.P. Thomas, J. Gudnason, P.A. 

Naylor, and T. Dutoit, “Detection of glottal closure 

instants from speech signals: A quantitative review,” 

IEEE Trans. Audio Speech Lang. Processing, vol. 20, 

no. 3, pp. 994–1006, March 2012. 

[6] J. Sundberg, E. Fahlstedt, and A. Morell, “Effects on 

the glottal voice source of vocal loudness variation in 

untrained female and male voices,” J. Acoust. Soc. 

Am., vol. 117, no. 2, pp. 879–885, 2005. 

[7] E. Moore II, M. A. Clements, J. W. Peifer, and L. 

Weisser, “Critical analysis of the impact of glottal 

features in the classification of clinical depression in 

speech,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, 

pp. 96-107, January 2008. 

[8] A. Tsanas, M. A. Little, P. E. McSharry, L. O. Ramig, 

“Accurate telemonitoring of Parkinson's disease 

progression by noninvasive speech tests,’ IEEE Trans. 

Biomed. Eng., vol. 57, no. 4, pp. 884–893, April 2010. 

[9] M. Rothenberg, “A new inverse filtering technique for 

deriving the glottal airflow waveform during voicing,” 

J. Acoust. Soc. Amer., vol. 53, pp. 1632–1645, 1973. 

[10] R. E. Hillman, E. B. Holmberg, J. S. Perkell, M. Walsh, 

and C. Vaughan, “Objective assessment of vocal 

hyperfunction: An experimental framework and initial 

results,” J. Speech Hear. Res., vol. 32, no. 2, pp. 373–

392, 1989. 

[11] D.E. Veeneman and S.L. BeMent, “Automatic glottal 

inverse filtering from speech and electroglottographic 

signals,” IEEE Trans. Acoust., Speech, Signal Process., 

vol. 33, pp. 369–377, April 1985. 

[12] A. K. Krishnamurthy and D. G. Childers, “Two-channel 

speech analysis,” IEEE Trans. Acoust., vol. 34, no. 4, 

pp. 730–743, August 1986. 

[13] H. W. Strube, “Determination of the instant of glottal 

closure from the speech wave,” J. Acoust. Soc. Am., 

vol. 56, no. 5, pp. 1625–1629, 1974. 

[14] D. Y. Wong, J. D. Markel, and J. A. H Gray, “Least 

squares glottal inverse filtering from the acoustic 

speech waveform,” IEEE Trans. Acoust., vol. 27, no. 4, 

pp. 350–355, Aug. 1979. 

[15] M. D. Plumpe, T. F. Quatieri, and D. A. Reynolds, 

“Modeling of the glottal airflow derivative waveform 

with application to speaker identification,” IEEE Trans. 

Speech Audio Process., vol. 7, no. 5, pp. 569–576, Sept. 

1999. 

[16] D. Rudoy, T. F. Quatieri, and P. J. Wolfe, “Time-

varying autoregressions in speech: Detection theory and 

applications,” IEEE Trans. Audio Speech Lang. 

Processing, vol. 19, no. 4, pp. 977–989, May 2011. 

[17] P. A. Naylor, A. Kounoudes, J. Gudnason, and M. 

Brookes, “Estimation of glottal closure instants in 

voiced speech using the DYPSA algorithm,” IEEE 

Trans. Speech Audio Process., vol. 15, no. 1, pp. 34–43, 

January 2007. 

[18] L. R. Rabiner and R.W. Schafer, Digital Processing of 

Speech Signals, Prentice-Hall, Englewood Cliffs, New 

Jersey, USA, 1978. 


