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SUMMARY

We present a hybridized discontinuous Petrov—Galerkin (HDPG) method for the numerical solution of steady
and time-dependent scalar conservation laws. The method combines a hybridization technique with a local
Petrov—Galerkin approach in which the test functions are computed to maximize the inf-sup condition.
Since the Petrov—Galerkin approach does not guarantee a conservative solution, we propose to enforce this
explicitly by introducing a constraint into the local Petrov—Galerkin problem. When the resulting nonlinear
system is solved using the Newton—Raphson procedure, the solution inside each element can be locally
condensed to yield a global linear system involving only the degrees of freedom of the numerical trace. This
results in a significant reduction in memory storage and computation time for the solution of the matrix
system, albeit at the cost of solving the local Petrov—Galerkin problems. However, these local problems are
independent of each other and thus perfectly scalable. We present several numerical examples to assess the
performance of the proposed method. The results show that the HDPG method outperforms the hybridizable
discontinuous Galerkin method for problems involving discontinuities. Moreover, for the test case proposed
by Peterson, the HDPG method provides optimal convergence of order k + 1. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The development of robust, accurate, and efficient methods for the numerical solution of
conservation laws in complex geometries is a topic of considerable importance. Indeed, hyperbolic
systems of conservation laws govern a wide range of physical phenomena and arise in several
areas of applied mathematics and mechanics such as fluid dynamics, thermodynamics, population
dynamics, magnetohydrodynamics, multiphase flow in nonlinear material, and traffic flow. The most
fundamental phenomenon of hyperbolic systems is the formation and propagation of discontinuities
and shock waves even if initial and boundary data are smooth. The presence of shock waves is
a serious challenge for any numerical methods to provide a physical and stable solution. Although
significant progress has been made over the years in both the theoretical and numerical investigation,
the numerical solution of hyperbolic conservation laws remains an active research area with many
challenging problems to be addressed.

In recent years, considerable attention has been turned to discontinuous Galerkin (DG) methods
[1-13] for the numerical solution of hyperbolic conservation laws. DG methods possess several
attractive properties for solving hyperbolic problems. In particular, they are flexible for complicated
geometry, locally conservative, high-order accurate, highly parallelizable, and have low dissipation
and dispersion. However, most existing DG methods suffer from two major drawbacks. The first
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drawback is that they are computationally expensive due to the large number of degrees of freedom
(DOFs) caused by nodal duplication at the element boundary interfaces. The memory storage and
computation cost of DG methods are typically several times greater than that of CG methods. The
second drawback is that higher-order DG methods are generally less robust than low-order methods
when solution features are under-resolved (in particular at shock waves).

More recently, a new class of implicit DG methods—the so-called hybridizable discontinuous
Galerkin (HDG) method—was first introduced for elliptic problems [14]. The HDG methods
have already been extended to convection—diffusion systems [15, 16], linear and nonlinear
elastodynamics [17, 18], incompressible and compressible flows [19-26], and electromagnetics [27].
The main idea of HDG methods is a hybridization of DG methods, which aims to solve for the
numerical trace of the approximate solution instead of the approximate solution itself. Because
the numerical trace is defined over inter-element boundaries and is single-valued over the element
faces, HDG methods have significantly less DOFs than standard DG methods. In fact, a variant
of the HDG method—the so-called embedded DG method [28,29]—has the same global DOFs as
CG methods and has the stability properties of a DG method. This large reduction in the number
of DOFs can lead to significant savings for both computational time and memory storage. Another
advantage of HDG methods is that their post-processed solution and approximate gradient converge
with one order higher than those of other DG and CG methods for diffusion-dominated problems.
These advantages render HDG methods competitive with CG methods even for diffusion problems
and elasticity problems [15,17,18,30].

Another interesting DG approach is the discontinuous Petrov—Galerkin method (DPG) first
introduced for convection problems [7] and later extended to linear convection—diffusion problems
[31]. The main idea of the DPG method is an automatic construction of optimal test functions to
maximize the stability constant. The performance of the DPG method is shown to be superior to
the standard DG method. In particular, the DPG method delivers optimal convergence rate k + 1
for the Peterson example, where it has been known that other DG methods yield a convergence rate
of only k + 1/2. The stability of the DPG scheme is excellent. However, the DPG method is more
expensive than other DG methods because it contains more globally coupled unknowns. Another
drawback of the DPG method is that the method is not conservative because its test space does not
contain a constant function.

In this paper, we introduce a hybridized discontinuous Petrov—Galerkin (HDPG) method that
combines the efficiency of the HDG method with the excellent stability of the DPG method. The
main idea here is to use the DPG method for the local problem and the HDG method for the global
problem. The global unknown and in fact the matrix structure of the HDPG method is thus the
same as that of the HDG method. Moreover, in order to render the HDPG method conservative,
we propose to enrich the test space with a constant function by introducing a constraint into
the local problem. We present several numerical examples to demonstrate the performance of the
HDPG method. Numerical results show that the HDPG method is more robust and stable than the
HDG method for a number of test cases. Moreover, for the test case proposed by Peterson [32],
the HDPG method provides optimal convergence of order k + 1.

The paper is organized as follows. In Section 2, we introduce some notation used throughout the
paper and present a brief overview of both the HDG method and the DPG method. We then describe
the HDPG method in Section 3 and present numerical results in Section 4. Finally, in Section 5, we
draw some concluding remarks.

2. OVERVIEW

2.1. Problem statement and notation

We first introduce the problem of interest, which is a scalar conservation law of the following form:

V-Fu)—V-(eVu) = f, in 2,

1
u=gp, onodL. 1
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As usual in the DG context, the problem is written as a first-order system:

V-Fu)—-V-(eq)=f, inQ,
q—Vu=0, in Q, (2)
u=gp, ondL.

Here, @ € R is the physical domain in d spatial dimensions with Lipschitz boundary 9$2,
f € L?(Q) is a square integrable source term, € € L*(Q) represents the isotropic diffusion
coefficient, and gp € L?(9Q) represents the boundary data. Moreover, u € L?(S2) represents
the scalar field, and F(u) € (L°°(2))¢ is a vector-valued function of the solution u.

Let 7, denote a collection of disjoint elements K that partition the domain 2. Let 07; denote
the set of faces of the triangulation 7, formed by collecting the faces of each element K, this is,
T, = {0K : K € Tp,}. For a given element of the triangulation K, e = dK N dRQ is a boundary
face if its d — 1 Lebesgue measure is non-zero. Similarly, for two elements K+ and K~ of the
triangulation, e = 9K+ N 9K~ is an interior face if its d — 1 Lebesgue measure is non-zero. Let 5,’;
denote the set of interior faces and £ 2 denote the set of boundary faces. We denote by &, := 8,’; u 52
the union of both sets. Notice that each interior face in S;; is represented twice in 07, whereas each
boundary face in 8;? is represented only once. Finally, let n* and n™~ denote the outward unit normal
for element K+ and K, respectively. Notice, by definition, if K * and K~ share a face e of &,
thennt = —n".

Let P?(D) denote the set of polynomials of order at most p in a domain D. We define the finite
element spaces as follows:

VP ={veL*(Ty) :vlk e PP(K) VK €T},
Wi = {WE (L>(Tw)* - wlk € (PP (K))* VKETh},
M) = {p e L&) ple € PP(e) Vee&),

that are polynomials inside each element (in the case of Vhp and W,’Z’ ) or face (in the case of M ,f’ ),
but discontinuous across them. We also define M,f(gp) ={u € M}f’ = P(gp)}, where P ()
denotes the L projection of the given data (-) on M} .

Finally, we define the following inner products as follows:

d
(a,b)y, = Y (a,b)k, @b)y, = Y Y (@ bk,
KeTy, KeTyi=1
(a,b)e, = Y (a,b)e, (a,b)ag, = Y (a,bak,
eegy, KeTy

where, for any functions a,b € L2(D), we define (a,b)p = [}, abif D € R? and (a,b)p = [, ab
if D e R,

2.2. HDG Scheme

Given an element K of the triangulation 7}, let # be a function supported on dK. We introduce the
so-called local problem as follows:

q“—Vu*¥=0, inKk, 3)

The local problem defines a Dirichlet-to-Neumann mapping 7T : i > (F (u”) - éqﬁ) -n that maps

boundary data 1 to the fluxes on 0K. It is clear that if 7 = u|yg, then, we have q’2 =q,u" = u.
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However, 1 is unknown unless an extra condition is prescribed. Thanks to the conservative character
of the equation, we can impose that jumps in the fluxes across faces must be zero in the interior,
together with the appropriate boundary condition:

(1)) 0 s )

i =gp, VYee&.

0, Veeé, @

This equation gives rise to the global system in terms of # because (u®,q%) is a function of 7 by
(3). The discrete version of the system (3)—(4) defines the HDG method.

As we discuss later, depending on the choice of the approximation space, several HDG
schemes can be devised [14]. In this particular case, we take the usual DG spaces consisting of
piecewise polynomials of the same order p for all the unknowns. Multiplying (3)—(4) by test
functions, and integrating by parts over each element or face, we arrive at the following weak
formulation for the approximate solution; find (up, s, iin) € V;” x W} x M (¢p) such that

((Fn = en) m.v)ak — (Fup) — eqn, Vol = (/. v)x,
(@ W)k + (up, V-wW)g — (i, w-n)yg =0, (5)
. N e o

((Fh—ﬂlh> ‘n" + (Fp—€qn) -n 1) =0,

forall K € Tp, alle € £ and all (v, w, ) € V,? x WP x M (0). Owing to the discontinuous nature
of the approximation spaces, the integration by parts introduces the so-called numerical fluxes f‘h
and qy, that represent an approximation to the fluxes at the interfaces and have to satisfy certain
properties to render the system well posed.

By summing (5) over all the elements, the problem reads as follows: find (uy,qp,uy) €
VP x W}y x M (gp) such that

(Fn—ein) -mv)o, — BGun) = eqn, Vo), = (f 0)75, Vo e VY,
(Qn, W) 7, + (up, VW7, — (lip, w-n)yr, =0, Vwe Wy, (6)
((ﬁh—eﬁh)'n,u)an =0, Ve M7 (0),
where the numerical fluxes are given by

By — e =F (i) — eqp + 7 (up. ip) (up — ) - m. (7
Here, t(up, ) is the stabilization parameter. The choice of t is vital for the system to be well
posed. A detailed analysis can be found in [16] and yields the following condition, that requires
F(u) to be a differentiable function of u:

1
T> < + —sup|F'(s)-n|, s € [min{uy, iy}, max {uy,is}], ®)

I 2
where [ is a characteristic length of the problem and the second term is related to the maximum
wave speed across interfaces. For the cases of interest in this paper, a constant value of t will be
chosen big enough to satisfy (8).

2.3. DPG Scheme

2.3.1. Optimal test functions. We will now describe the theory of the optimal test functions
first introduced by Demkowicz and Gopalakrishnan in the series of papers [7, 31, 33] for linear
convection—diffusion equations. Towards this end, we consider an abstract weak formulation: find
u € U such that

b(u,v)=1w), VYvelV, 9)
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where U and V are Hilbert spaces, b(-,-) : U XV > R is a continuous bilinear form, and /(:) € V' is
an element of the dual space of V. It is well known that the existence and uniqueness of the solution
of this problem is associated with the so-called inf-sup constant y (Babuska, [34]):

, b(u,v)
y := inf sup

_bww) (10)
uel yev lullulvllv

in particular, if y > 0, then problem 9 has a unique solution.
In the finite element context, we replace U with Uy, and V with V},, where Uj, and V}, are suitable
finite element spaces. As a result, we arrive at the following problem: find u; € U}, such that

b(uh,vh) = l(vh), Yvy, € V. (11)

The discrete inf-sup constant is then defined as

. b(up, vp)
yp = inf sup

T (12)
un<Us ey lunllo [vallv

and plays exactly the same role as the continuous one (10) in the sense that y;, > 0 is required for
existence and uniqueness. Our interest resides in using trial spaces U, with good approximation
properties (e.g., polynomials of order p), and computing the tests space Vj so that the stability
constant y;, is maximized. As described in [31], this can be achieved when the test functions are
computed using the composition of the operator that defines the problem and the inverse Riesz
mapping to yield 7" : U — V. The test space is obtained using the auxiliary problem: find Te; € V
such that:

(Te;,v)y =b(ej,v), Yvel, (13)

for each basis function of the trial space e; (U, = span{e; }). The discrete test space is then taken as
Vy, = span{Te;}.

2.3.2. DPG formulation. In practice, the previous step involves the non-trivial task of inverting
a continuous operator; hence, some degree of discretization has to be introduced. The approach
proposed in [7, 31, 33] relies on a space of candidate test functions V}, based on polynomials of
order p + Ap. This way, the approximate trial-to-test map reads: find Tpe; € V), such that

(Thei, v)y = b(ej,v), YveV,. (14)

The biggest obstacle becomes the inversion of the metric of the inner product (-,-)y for the basis
of V},. It is clear that in the case where continuous finite element spaces are used, the continuity of
the basis functions across elements generates a metric with a sparsity pattern similar to the original
bilinear form; hence, as expensive to solve as the weak formulation itself. However, when no such
continuity conditions appear between elements, as in the case of the usual DG spaces, the metric
can be efficiently inverted element-wise.

This is the basic approach proposed in [7, 31, 33], where the discontinuous Petrov—Galerkin
scheme of Bottasso er al. [35] is used in combination with the approximate optimal test functions
described here. Finally, note the choice of the space V}, is not unique and several other approaches
could be used, e.g. bubbles, provided dim(V}) > dim(Uy). In any case, the use of higher order
polynomials seems to be the most cost-effective solution as we would expect the approximate test
space to converge towards the optimal one (in the sense of (13)) as Ap is increased.

3. HYBRIDIZED DISCONTINUOUS PETROV-GALERKIN SCHEME

3.1. Nonlinear optimal test functions

We extend the previous theory to nonlinear conservation laws. For that, the theory has to be extended
to the case of a nonlinear weak formulation: find u € U such that

a(u,v)=1Iw), VYveV, (15)
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where the operator a(-,-) : U x V +> R is linear in v (indeed a(u,-) € V'), but nonlinear in u. In
this case, the problem can be usually written in residual form as follows: find u € U such that

r(u,v) :=a,v)—I(v)=0, VvelV. (16)

Note that the operator r is linear in v. The discrete approximation then reads as follows: find uj € Uy,
such that

r(up,v) =0, VYvev,. (17)

The test space V7, is constructed as follows.

Following the spirit of the previous section, we will assume that the test functions are not
known a priori and will be selected from a certain space Vj, that satisfies dim (17;,) > dim(Up). In
particular, one can use a similar approach to compute the test functions by means of the following
trial-to-test map:

(Thei,v)y =1y, (€,v), Vv €V, (18)

where 77, , (W, v) is the bilinear form induced by the Frechet derivative of r(u, v) with respect to u
evaluated at uy. The discrete test space is then taken as Vj = span{T¢;}. It is important to point
out that in the nonlinear case, the test space V}, depends on uj because r,, N (w, v) depends on uy,.
Therefore, the test functions can not be computed in advance as in the linear case.

We would like to point out a main difference between the proposed approach and the original DPG
scheme introduced in [36] for nonlinear problems. Our approach applies the concept of optimal test
functions to the nonlinear residual r(u, v), whereas the DPG scheme applies this concept to the
linearized problem arising from the Newton iteration on the nonlinear system. In other words, our
approach is Petrov—Galerkin projection followed by linearization, whereas the original DPG scheme
is linearization followed by Petrov—Galerkin projection. Hence, the test functions generated by the
original DPG approach are optimal with respect to the linearized problem, but not to the original
nonlinear problem. Owing to this lack of consistency in the Jacobian, the DPG scheme suffers from
slow convergence (as reported in [36]) in some cases.

Proposition 1
The nonlinear weak formulation (17) solved using the approximate optimal test space from (18) is
equivalent to the solution of the following problem:

. r(wp, v)
up = arginf sup ———

. (19)
wp €Uy UG‘;h ||U||V

Proof

Let v € R” denote the vector of coefficients of an element vy, € Vj,. Similarly, letu € R” (w € R™)
denote the vector of coefficients of an element uy € Uy, (wy, € Uy, respectively). We can rewrite the
min—max statement as follows:

, vir(w)
u = arg min max

werm VER" NT Xy
where the vector r(w) represents the usual duality pairing r = r(wy, v) against each element of the
basis for V, and Xy represents the metric of the space V. The inner maximization statement can
be solved exactly using the first order optimality condition:

r(w) vir(w)
VT Xyv (vTXVV)3/
The solution to the problem is unique (up to a scaling of v) as one can prove by rewriting it with

the additional constraint ||v|]|y = 1, in which case, the objective is linear with convex constraints.
Inserting (21) into (20), we obtain the following:

(20)

X, r(w)

vir(w)

SXyv=0=v= (vI Xyv) (21)

u = argmin /r(w)7 X 'r(w). (22)
weR”
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The first order optimality condition for (22) yields

ar(u) 7
Jdu

1 ar(u)”

2,/r(w)” X, r(u) du

to form a system of nonlinear equations for u.
To show the equivalence, we take (17) and write it in discrete form as follows: find u € R
such that

X;'r(w) =0= Xy 'r(u) =0, (23)

virwy=0, Vvel,. (24)

Here, V}, = span{t;, 1 <i <m) is obtained using the mapping defined in (18): find t; € R” such that

_,0r(u)
ti=X;! oy (25)
where e; denotes the vector of coefficients of e; € Uj. Combining (24) and (25), we obtain
ar(u) 7
wl a( ) X;'r(w) =0, YweR™ (26)
u
The desired result follows directly from (22) and (26). O
Remark 1
The minimization statement (22) can also be written as follows:
_ N PR
u = argmin —r(w)" Xy, 'r(w), 27

weR”

which represents a very general and flexible point of departure. In particular, it can be easily
constrained to guarantee certain properties such as local conservation.

3.2. HDPG formulation

A limitation of the DPG scheme presented in [31,33,36] is the fact that the DPG system is formed by
multiplying the transposed Jacobian by itself, hence, yielding a denser system to solve. Furthermore,
the scheme is not conservative in the sense that the constant mode is not guaranteed to belong to the
optimal test space. Despite these limitations, the scheme has certain good properties. For example,
it is clear that in the case of linear equations, the final system to solve for is symmetric positive-
definite and hence can be efficiently solved using well-developed iterative algorithms such as the
conjugate gradients method. Moreover, the DPG scheme gives optimal p + 1 error convergence
for the well-known case proposed by Peterson [32], whereas other DG methods can only achieve
p + 1/2 error convergence.
Our goal in this paper is to propose a new scheme that

e preserves the efficiency of the HDG scheme;
e incorporates the excellent stability of the DPG scheme; and
e enforces conservative solutions.

To define the HDPG scheme, we first introduce the residuals associated with the HDG formulation
(6)—(7) as
r¥ (ap.bp,vidp) = (F (@x) -n—eby -0+ 7 (ap.an) (@p —an) . v)ox
— (F(ap) —ebp, Vo) — (f,V)k,
ra (@, by w:an) = (bp, W)k + (@, V- W)k — (@, w-n)pk, (28)
ra (ap,bp,ap, u) = (F(ap) -n—eby -n+ 1 (ap,ap) (ap —ap) , ) o,

where we have inserted the definition of the numerical fluxes (7) into (6).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:950-970
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The HDPG formulation then reads as follows: find 11, € M }f’ (gp) such that
ra(p, Qp,tp, 1) =0, Ve MP(0), (29)
where (u, (1), qp (11p)) |k € PP(K) x (PP(K))¢ satisfies the following:

K N
. . ) r, (ap, by, v;u
(un (@) an (@) g = arginf ( max 1w @nDn Viilh) ”)),
(anbp)eP? (K)x (PP (K))d \0EPPA2(K) vllv

s.t. rqK(ah,bh,w; i) =0, vw € (P?(K))4
s.t. rf(ah,bh, 1;1;) =0,

for all K € 7. The system (29)-(30) completes the definition of the HDPG scheme.

Some remarks about the HDPG scheme are in order. The first equation (29) weakly enforces the
continuity of the normal component of the numerical fluxes across elemental interfaces whereas
the second equation (30) defines (u, qy) as a function of #i;, locally on every element. Therefore,
(29) is called the global problem, which gives rise to a nonlinear algebraic system for the DOFs of i1,
only. As for the local problem (30), we apply the optimal test function approach to the conservation
law only and strongly impose an equality constraint on the kinematic relationship by requiring that
rf (ap,bp,w:iiiy) = 0, Vw € (PP(K))?. In addition, we explicitly enforce the conservation of
the HDPG scheme at the local level by requiring the integration against a constant test function
v € P°(K) to be strongly satisfied.

3.3. Solution procedure

Our focus now is the solution of system (29)—(30). We shall seek an iterative algorithm that takes
advantage of the definition of the local problem to solve for the globally coupled DOFs of 1y
only. In particular, we apply the Newton—Raphson method to the global problem (29), thereby
obtaining a linear system at each iteration. This, in turn, requires us to solve the local problem (30)
for (uy (113), qx (115,)) and the associated sensitivities.

3.3.1. Algebraic system. Some further notation is required before introducing the iteration. We

denote by (u, Q,0) the vectors of coefficients associated with the functions (uy, qp, 1)) € Vhp X

K

W}’Z’ x M }f’ (gp). We also denote by rf , rf and ry; the residual vectors associated with r,f( ,Iq and

ry, respectively (see Appendix for description). This allows us to rewrite the HDPG formulation
(29)—(30) as an algebraic system: find @ € R” such that

r;(u,Qu) =0 (31
where (u(@t), Q(0))|x € R” x R™*¢ satisfies

1 N _ A
(0, Q)|x = arg min —ruK(a,B;u)TXVIruK(a,B;u),
(a,B)eR" xRMm*d

s.t. rf(a,B; a) =0,

s.t. cTrf(a, B;u) =0,

(32)

for all K € 7Ty, where c is the vector of coefficients for the constant mode represented in the local
basis for PP AP (K).

3.3.2. Global solver. As indicated earlier, in order to solve the system (31), we will use a Newton—
Raphson iteration. For this, given a current iterate (ﬁ, Q, l:l) that satisfies the local problem

(, Q) ‘ K= (u (fl) ,Q (ﬁ)) ‘K, we seek updates to the solution 8 by solving the following system:

Ory |, Oradw  OradQ) e (33)
g0 oguoa  eQoa)  ®
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where we have used the chain rule to obtain the fully linearized system with respect to u. Here,
all the terms involved such as residuals or Jacobians have to be computed using the current iterate

(ﬁ, Q. ﬁ) More details on the computation of these can be found in Appendix A. The iteration

is repeated in the usual Newton—Raphson fashion until the update gets below a certain tolerance
(]|6a]] < tol). To avoid the divergence of the iteration, a damped Newton strategy is implemented
that limits the stepsize by @ < 1 to guarantee ||r;(Q)]| > |r; (@ + 6a)|. The choice of o follows
the usual bisection rule. After each iteration, we use adu to update the solution. A basic algorithmic
description can be found later.

In theory, we would expect the Newton—Raphson iteration to present quadratic convergence once
the iterate is close to the solution. For this, the Jacobian matrix has to be properly computed, this

meaning, we require the dependencies (u, Q) ‘ K= (u (ﬁ) ,Q (ﬁ)) ‘K and the sensitivities du/ou

and 0Q/ 01 to be solved exactly (up to numerical error).

3.3.3. Exact local solver. We now describe an iterative scheme to solve the local problem (32) and
obtain the desired dependencies (ﬁ, Q) ‘ K= (u (ﬁ) ,Q (ﬁ)) )K. For this, two different approaches

will be combined using a simple switch. The first approach is to linearize the different residuals
that enter the problem before taking any minimization step. By this, we mean, from a current iterate
Z = (a,Q), we look for updates §Z = (Su, §Q) that solve the following linearized problem: given

€ MP, find §Z € R™ x R™*4 such that

1 oK\ ork
§Z = argmin —(rf-i— al’ 8C) X! (rf+ Tu SC),

SCeRmxRm<d 2 0Z 07
ork
K q _ (34)
't —46C =0,
S rq + aZ

Br
T K u
.t + —46C) =0,
S C (l‘u F )

where the different terms that appear in this system are described in Appendix A. Notice that the
variable Z has been introduced to simplify the notation. The minimization now follows by deriving
the Karush—Kuhn-Tucker conditions for §Z:

[ caek\T oy fack\ aK T a kT ]
(%) x' (%) = (%) « N g1 K
X 8Z 0Z vV ‘u
) 0 0 pog=- rk . (35
)
o7 (Bgé() 0 0 ey

Notice how 1y is fixed and just acts as a parameter. Also notice that A plays the role of a
Lagrange multiplier for the conservation whereas p represents a set of Lagrange multipliers for
the kinematic variables. This approach represents a constrained version of the well-known Gauss—
Newton method (GN) for nonlinear least squares problems. The GN method is very robust in
the sense that at each iteration, the computed update is a feasible descent direction of the prob-
lem. Also, it is well known that the convergence of this scheme can approach a quadratic rate,
though this strongly depends on the value of the objective function at convergence. In partic-
ular, when it is non-zero, some terms are missing in the linearization that may slow or even
prevent convergence.
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The second approach to solve (32) is to depart from the first order optimality conditions directly:

T K
ark 1K r 9% r (oK
(8Z) Xy, +pu A + Ac (ﬁ) =0,

rX =0, (36)
ek =,

u

and apply the Newton—Raphson iteration to it. This is also known as sequential quadratic
programming (SQP) and yields the following system to solve

[ ok N\T Ly (oK 92rK _ ok T ok \T ]
(55) x5 (5)+ (5)- (el ) 55 () e |
ark Z
o 0 0 pop=
A
< (%) 0 0
K \T 1 K
(52) Xy 'y
- l'f , (37)
CTI'K

where the vector of unknowns contains the update 6Z and the approximate Lagrange multipliers.
This way, the difference between (35) and (37) is only the second derivative terms that appear in the
latter one. These derivatives account for the variation of the test space with respect to the solution
and play a vital role in the convergence. Indeed, this might be the reason why the DPG scheme
of [36] does not achieve quadratic convergence even once close to the solution (see [36] pp. 16).
Notice also the second derivatives of rf have not been included since this residual is linear in all
the arguments.

One of the most important properties of the SQP iteration is the rate of convergence, which is
locally quadratic when close enough to the solution. Its main disadvantage is the cost associated
with constructing the second derivatives. Hence, we propose to combine the Gauss—Newton with
the SQP in order to take advantage of their respective properties. In particular, we propose a switch
of schemes based on the size of the update ||§Z||. More sophisticated switches might be devised,
but this works fine for the cases of interest here. The local solver iteration is described in the
algorithm below.

Before moving on to the next step in the HDPG scheme, we would like to comment on the local
solver just presented. In particular, we would like to point out that the problem to solve (32) is of
the constrained nonlinear least squares kind. These problems have long been studied in the field
of optimization; hence, very efficient algorithms exist to solve them (e.g., Levenberg—Marquardt
algorithm). We did not explore other options than the two presented here, which proved to be very
efficient at solving all types of elements, even with strongly under-resolved shocks in them as we
will see in the Results section.

From an implementation point of view, the local solver cost can be reduced if the equations for the
kinematic relationships are inverted before the minimization takes place. Namely, one can see from
(28) that the relationship between these variables is linear, and more importantly, can be inverted
locally to obtain q; = qp(up,1y). This way, the minimization statement only involves uy, and 1y,
and the Lagrange multipliers p can be dispensed with.

3.3.4. Local problem sensitivities ‘SZTZ, gg—i. Once the local problem is solved, the sensitivities of
the local solution to the boundary data, required to formulate system (33) have to be computed. To
do so, we can use the first order optimality conditions, (36), and use the implicit function theorem
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to obtain the sensitivities. For this, let U € R™/ be the coefficients of 1y, on 0K, where f is the
number of faces. The system to solve for the sensitivities reads as follows:

_ T _—
ork r _1 (orK 92rk ~1.K T 31}{{ ark 97
(a%) XV(3%>+(azg)'(eru+“) 0 (a%) ¢ i
ark 0 _
KA 0 0 0 (T
A
T 3I‘K =
i C ( 7 ) 0 0 i a0
ory g X—l ar,{f + 32514( X—l K + A T)
J0Z 14 90 9790 ( v Tu ¢
K
- e : (38)
U
T 3ry
¢ 30

where the different terms that appear are properly described in Appendix A. Notice that the only
condition for this to hold is that the Jacobian of the implicit mapping with respect to the variable
we want to compute sensitivities for, has to be invertible. Notice this is just the matrix on the left
of (38), that coincides with the matrix from the SQP iteration, and because of this, can be reused
provided the convergence tolerance for the local solver is small enough to make the changes in
the solution negligible. Our test indicates this strategy does not affect the overall convergence of
the scheme.

Algorithm 1 Hybridized discontinuous Petrov—Galerkin (HDPG) scheme

Given: u,Q, 1, |60y, = 10 - tol
while ||da,|| > tol do
for j =1 — N do
Extract U from a

(ﬁ, Q, 3—5, 2—3) = HDPG Local Solver (1‘17 Q, ﬂ)
end for
Solve the Global problem (Equation 33) — du
Find damping « using bisection
0 0+ adl
U+ a+adisa, Q+ Q+aldsn
end while

Algorithm 2 HDPG Local Solver

Given initial conditions for: u, Q
Given boundary data: U
while ||du|| > tol do
if [|[0ul| > O(1) then
Solve the GN system (Equation 35) — du, 6Q

else
Solve the SQP system (Equation 37) — du, 6Q
end if
u+—u+éu, Q+—Q+0Q
end while
Compute sensitivities (Equation 38) —

. du 90Q
Return: u, Q, 50 50

du 9Q
au’ oU
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3.4. Extension to time dependent problems

Next, we would like to extend the HDPG scheme to an unsteady convection—diffusion problem
defined by the following:

9
a—':+v-F(u)—v-(eq)=f, in Q.
q-Vu=0, inQ, (39)

u=gp, onadL.

In particular, we introduce the usual polynomial spaces for the solution; however, we assume
this solution is parameterized by the time ¢. Namely, we seek (u(¢),qp(2),15(1)) € Vhp X Wf X
M }f’ (gp). We can derive the weak formulation residuals by using integration by parts as follows:

. oup, . . .
ruk (Up, Qp, vily) = (? v) + (F(ilp) -n+eqp -+ t(up, ip)(up —tp), v)og
K

— (F(up) —eqn, Vo) — (f, v)k, (40)
rqk (Up, Qp, Wi i) = (Qn, W)k + (up, V- W) g — (i, W-n)k,
o (Ups Qs gy, ) = (F(ip) -+ eqp -+ t(up, i) (Up —tp), (1)o7,

In this paper, we will follow a method of lines approach in which the solution is discretized
in time using standard ODE formulations and introduced in the definition of the residuals. The
differential-algebraic nature of the residuals (notice only uj, presents time derivatives) represents an
obstacle to the application of certain time stepping schemes; however, it fits naturally in the frame-
work of implicit methods like the backwards difference formulae (BDF) or the diagonally implicit
Runge—Kutta schemes (DIRK). As an example, we will describe here the BDF1 (Backward Euler)
implementation. For this, we assume at the current time step s, the derivatives can be approximated
by the formula:

dup/ot|; ~ (uj — uz_l)/At, (41)

and the rest of the terms in the equations are computed at time s, too. The residuals then read
as follows:

. up . . .
ruk (Up, qQp, Vi) = (A_t’v>K + (F(ip) -m+ eqp -+ t(up, ip)(up —p), v)ox
ui_l
— (F(up) —eqp, Vo)g — f+ At , U K, (42)

rqk (Un, Qp, Witlp) = (qp, W)k + (Up, V- W) g — (lp, W-n) ok,
Fa(Ups Qs g, 1) = (F(ip) -n+ eqp -m+ t(up, i) (up —0p), 1)o7,

where the superscript s has been omitted for clarity. Notice in this definition, uz_l is just data from
the previous time step and can be grouped with the source term f. In order to apply the HDPG
scheme to the unsteady problem, we just have to follow the algorithm described in Sections 3.2-3.3
using (42) to define the residuals.

4. NUMERICAL EXPERIMENTS

In this section, we present some results for HDPG compared against HDG, both for the same
polynomial order p. In every case, the tests space is enriched up to the point where no difference is
noticed from increasing Ap. In some cases, we will focus our attention on pure convective operators
for which the HDPG formulation presented above is still valid, however, one can save computation
by dispensing the kinematic variables qy,.
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4.1. One-dimensional linear convection problem

We first present the HDPG scheme applied to a linear convection problem:

ou  Ju
ot
with initial condition
u(x,0) = {

a:

0, inQelo,1],

1 ifx €[0.2,0.4]

0 otherwise,

(43)

(44)

and homogeneous Dirichlet conditions on the boundaries. The initial condition for uy, is interpolated
from the analytical one and generates some initial oscillation that we will propagate down in time.
The results for both HDG and HDPG using 50 elements of order p = 5 are included in Figure 1.
The time stepping was carried out using a backwards Euler scheme with A7 = 1073. As we can see,
the HDPG scheme produces less oscillatory solutions than the HDG scheme.

t =0.001 t =0.200 t = 0.400
1.4 : 1.4 : 1.4 :
12 12 12}
i 1 ”&4 1}
0.8 0.8 08
g 06 0.6 0.6}
|
3 04 ! 0.4 041
0.2 0.2 02f
0 fesses 0 h} 0
-0.2 0.2 0.2
04 04 04
0.5 0.5 0.5 1
xT
(a)HDG,p=5
t = 0.001 t = 0.200 t = 0.400
1.4 ‘ 14 : 14 :
12 12 12}
1 E@T 1 - 1 ij
0.8 0.8 08t
£ 06 0.6 06t
E
3 04 0.4 04
0.2 0.2 02t Lm
0 ==y 0 0 i
-0.2 -0.2 02
04 04 04
0 0.5 0.5 0.5 1
x

(b) HDPG,p=5,Ap=5

Figure 1. Linear convection of a hat function using (a) hybridizable discontinuous Galerkin (HDG) and (b)
hybridized discontinuous Petrov—Galerkin (HDPG). In this case, p = 5, Ap = 5 and a backward Euler
formula with Az = 1073 is used.
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4.1.1. One-dimensional viscous Burgers’ problem. Next, we present results for the Burgers’
equation in 1D in cases where smooth initial conditions give rise to discontinuities. The equation to
solve reads as follows:

ou 10u? 0%u

o T2 S
where the artificial viscosity used will be measured in terms of the so-called cell Peclet number:
Pel|cen = (h/p)(c/e€) that measures the ratio between resolution of the scheme and characteristic
length of diffusion layers. In this formula, & represents a characteristic size of the element, and ¢
represents a characteristic propagation velocity, which is equal to |u| for Burgers’ equation.

The first case we presented corresponds to the situation where an initial sinusoidal profile steepens
into a stationary shock wave. For this case, the initial condition is set to be u(x, 0) = sin(27x) with
homogeneous Dirichlet boundary conditions, and the viscosity is set to zero (Pe|cy = 00). The
results for both HDG and HDPG using 25 elements of order p = 3 are shown in Figure 2. To time
march, a BDF3 scheme with At = 1072 was used. The results indicate how the good stabilization
properties of HDPG carry on to this nonlinear case as oscillation is strongly reduced in the vicinity
of the shock.

inQ €0,1], (45)

t=0.01 t=0.15 t=0.30

1.5 1.5 1.5

1

0.5
=1
g

= 0
3
wn

-0.5

-1

-1.5 - -1.5 - -1.5 -
0 0.5 1 0 0.5 1 0 0.5 1
x
(a) HDG,p=3
t=0.01 t=0.15 t=0.30

1.5 1.5 1.5
=]
S
E
3
w2

-1.5 : -1.5 : -1.5 :
0 0.5 1 0 0.5 1 0 0.5 1

(b) HDPG,p=3,Ap=4

Figure 2. Burgers’ equation solution for the case where a steady shock forms using (a) HDG and (b) HDPG.
In this case, p = 3, Ap = 4 and a BDF3 scheme with At = 102 is used.
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To further confirm this, we apply HDPG to the same equation with an initial condition consisting
of a smoothed version of the hat function

[ 1 ifxe0.2,0.5]
u(x,0) = { 0 otherwise, o

and homogeneous Dirichlet boundary conditions. This setting generates both a moving shock and
an expansion fan that is integrated in time using a BDF3 scheme with Az = 1072, For this case,
25 elements of order p = 3 are used, combined with constant viscosity € such that Pe|..; = 10.
The results, included in Figure 3, show the evolution of the shock and fan when HDG and HDPG
are used. As we can see, while both schemes propagate the shock at the right speed, thanks to being

conservative, the HDPG solution is significantly less oscillatory.

t=0.15 t=0.30

t=20.01

Solution

0.5 1

T
t =0.60 t=0.75

t =0.45

0 0.5 1 0 0.5 1 0 0.5 1
(a) HDG, p=3
t=0.01 t=0.15 t=0.30

Solution

0.5 1 0 0.5 1

t = 0.60 t=0.75

t =0.45

0.5

0 bosos”

0.5 1

0 0.5 1 0 0.5 1 0

(b) HDPG, p =3 ,Ap =4

Figure 3. Burgers’ equation solution for the case where a moving shock and an expansion fan form using
(a) HDG and (b) HDPG. In this case, p = 3, Ap = 4 and a BDF3 scheme with At = 1072 is used.
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4.2. Peterson’s example

The Peterson’s example [32] is a famous test case in which DG methods are known to yield p +1/2
order of convergence. The DPG method proposed in [7,31] is the first of them that produces optimal
convergence of order p + 1. The problem to solve reads as follows:

V.(eu)=0, inQe[0,1]x[0,1], (47)

where ¢ = (0, 1) and the boundary conditions are Dirichlet on the sides and bottom u(x, y) = uy,
and free outflow on the top. In this case, both uo(x) = x? and uo(x) = sin(6x) have been used as
boundary condition, following Peterson [32] and Demkowicz et al. [31], respectively.

The results for the error and the convergence rate of the HDPG scheme, in this case, are
summarized in Table I. Here, / is an indicator of the element size. As we can see, the expected
p + 1/2 convergence rate for HDG is achieved, while HDPG approaches p + 1 for Ap > 3.
This shows the enhanced stability of the proposed scheme. Notice for Ap = 1, the error of the
HDPG scheme did not converge, even though the solver did not report conditioning issues with the
matrices involved. The analysis carried out in [37] for the original DPG scheme partially explains
this behavior.

4.2.1. Two-dimensional viscous Burgers’ equation. In the last example, we apply the HDPG
scheme to solve a two-dimensional Burgers’ equation:

190(u?) du 0%u N 0%u
— — =€ - -
2 ox dy ox2  0y2

) , inQel0,1]x[0,1]. (48)

Here, the boundary conditions need to be consistent with the hyperbolic character of the equation.
In particular, we will set u(x,y) =1 —2x onthe x =0, x = 1 and y = 0 sides of the domain and
extrapolation boundary conditions at y = 1.

The results in Figure 4 compare HDG and HDPG for the case of a regular mesh of 98 triangular
elements, using p = 4 and no viscosity (Pelcn = 00). As we can see, the HDPG solution is
significantly less oscillatory with an enriched space of only order Ap = 2 higher.

These results might be influenced by the regularity of the mesh. In order to assess the method, we
performed the computation of similar cases on an unstructured mesh. It is worth to mention that for

Table I. Error and convergence rate for Peterson’s example using hybridizable discontinuous Galerkin
(HDG) and hybridized discontinuous Petrov—Galerkin (HDPG) with p = 1.

(@) ug = x2 (b) ug = sin(6x)
Method  Ap h lu —uplla  Order Method  Ap h lu—upllz  Order
HDG — 0167 3.19x1073 - HDG - 0.167 377x1072 -
HDG — 0083 1.18x1073  1.44 HDG — 0083 149x1072 133
HDG — 0042 404x107* 154 HDG — 0042 524x1073 151
HDG — 0021 1.56x107¢ 1.37 HDG — 0021 204x1073 1.37
HDG — 0010 536x107° 154 HDG — 0010 695x107% 155
HDPG 2 0167 292x1073 - HDPG 2 0167 3.53x1072 —
HDPG 2 0.083 1.08x1073 143 HDPG 2 0083 137x107%2 137
HDPG 2 0042 3.14x107% 178 HDPG 2 0042 408x1073  1.74
HDPG 2 0021 124x107% 135 HDPG 2 0021 161x1073 134
HDPG 2 0010 455x1075 144 HDPG 2 0010 591x107*% 144
HDPG 3 0167 2.10x1073 - HDPG 3 0167 271x1072 -
HDPG 3 0083 590x107% 183 HDPG 3 0083 751x1073 185
HDPG 30042 159%x107%  1.90 HDPG 30042 201x1073  1.90
HDPG 30021 416x1075  1.93 HDPG 30021 532x107% 192
HDPG 30010 1.11x1073 1.91 HDPG 30010 143x107%  1.90
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:950-970
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-2 -1 0 1 2 2 1 2
[ R | [ O |
(a) HDG, p = 4, Pe|ceyy = 00 (b) HDPG, p = 4, Ap = 2, Pe|cenp = 00

Figure 4. Solution to the Burgers equation in 2D using both (a) HDG and (b) HDPG on a structured mesh.
Notice the reduced oscillation that HDPG introduces compared to HDG at the shock location.

Table II. Comparison of maximum relative oscillation (%) at the

shock as a function of viscosity between HDG and HDPG for the

space—time Burgers’ equation using p = 4 and Ap = 2 on an
unstructured grid.

Pelcerr HDG oscillation (%) HDPG oscillation (%)
2 0 0
10 44 30
50 90 42
100 110 43
1000 — 44
) — 44
-1.5 -1 -0.5 0 0.5 1 1.5
N ; -

|
'
N
:
i
5

3
ey
ANVAVANLY. /ANVAVAVAY.
(a) HDG, p = 4, Pelcen = 10 (b) HDPG, p = 4, Ap = 2,
Pelcell =10

Figure 5. Solution to the Burgers equation in 2D using both (a) HDG and (b) HDPG on an unstructured
mesh. Notice the oscillation present in the HDG solution around the elements that contain the discontinuity,
that is not present in the HDPG solution. Notice also the slight bending of the shock because of the mesh in
the HDPG case, which indicates that the stabilization mechanism depends on the geometry of the element.

the case without viscosity, the HDG scheme failed to deliver a solution. In particular, divergence of
the simulation occurred owing to the extreme oscillation around the discontinuity. To explore this
phenomenon, different values of Pel. € [2,00) were used to add extra stability to the scheme.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:950-970
DOI: 10.1002/nme



HDPG SCHEME FOR SCALAR CONSERVATION LAWS 967

This revealed that the HDPG scheme converged in all cases whereas the HDG scheme did not. The
different overshoot present at the shock for both schemes, as a function of the artificial viscosity, is
summarized in Table II. As we can see, once the viscous effects are small enough, the oscillation of
the HDPG solution no longer grows, indicating that the stabilization mechanism introduced by the
optimal test function is suitable for under-resolved situations. A visual comparison of the solution
is included in Figure 5.

5. CONCLUSIONS

In this paper, we have presented the HDPG approach for scalar conservation laws. Our objective
was to devise a method with the same complexity as the original HDG scheme, but with enhanced
stability in the presence of discontinuities. To do so, the HDG scheme was combined with the
theory of the optimal test functions, suitably modified to account for nonlinearity and to enforce
conservation.

The scheme has been applied to linear convection and Burgers’ equation in 1D and 2D, with
and without the addition of artificial viscosity, and compared to the HDG scheme. The results
indicate that HDPG delivers less oscillatory solutions in the presence of discontinuities, because
of the stabilization role of the optimal test functions. In particular, optimal p + 1 error estimates
have been experimentally confirmed for the p + 1/2 sub-optimal case constructed by Peterson.

We end the paper by noting that the application of HDPG to systems of conservation laws such
as the Euler or Navier—Stokes equations is a subject of current research.

APPENDIX A: RESIDUAL AND DERIVATIVES EVALUATION

In this appendix, we will describe the different terms that enter the HDPG formulation. In what
follows, the unknown Z that was introduced to alleviate the notation, will be split in the original
components u and Q. Let ¢; denote the ith basis function of the space P?(K), of dimension m.
Similarly, let v; denote the ith basis function of the space P?+2?(K), of dimension n. Let u € R”

and Q € R™*¢ represent the vector of coefficients of the expansion of u; and qj in the basis for
PP(K) and (P¥(K))4, respectively.

m m
uh:Z“i¢i’ Clhj=261ij¢i Jj=1....d.
i=1 i=1

Also, let ¢;; denote the ith basis function for the space P?(Ex) at the j th local face. This space

has dimension ¢ at each face and can be broken in f face contributions. We denote by Ue RS
the vector of coefficients of the expansion of iy, in the basis ¢;;.

t f
=23 > Uiji.
i=1j=1
We obtain the residuals of the local problem by integration against each element of the test space;

up . . .
rE = (-=.vi) + (F@p) n+eqp-n+ t(up, dp) up —ip), ¥i)ox
At K

us—l
_(F(uh)_EQh,VWi)K—(f‘i‘ﬁ,l/fi) , i=1,...,n,
K

0 . . .
V@=(th,¢i)1(+(uh,a—l) —(Up. i -njlog, i=1,....m j=1,...,d,
Xj/) Kk
Xyik=W;.¥vj)k, i=1....n k=1,...,n,

where, following the HDPG scheme presented earlier, the residual for the conservation law (r, g ) is
integrated against polynomials of order Ap higher (n > m).
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With this in mind, we can compute the different Jacobians and second derivatives required in the
local iteration as follows:

ork d U R R
Tui (ﬂ Wi) + (M¢k(“h — i), Vidok + (T(up, tp)dr. Vi)ok
K

ouy At’ duy,

JoF
_( (””)qsk,vw,-) L i=1,...n k=1,...,m,
dup K
ark .
U — ey -np, YiVox, i=1,....n k=1,....m l=1,....d,
Iqk1
W (6 2 o m j=l..d k=1,....m,
ug 0x; ) x
8rlf.
Y= Gdr-di)k, i=1...m j=1...d k=1...m I=1,....4d,
Iqk1
92rkK 92t (up, R At (up, Ui
= ( (h2 h)¢k¢r(uh—uh),%)alf+(2—( " h)¢k¢r,%)31<
Uy ouy oy, dup,
32F(u%) )
- Gk Vi | . i=1...,n k=1,....om r=1,....m,
ouy, X

where only non-zero second derivatives have been computed.
Similarly, we can compute the terms required for the sensitivities as follows:

ork oF(1i3) -n ot(up,u .
= (Ah) Ckz,lﬁi)aKJr(Msz(uh—uh),lﬂi)aK—
Uy oy, oty
(tQup, )1, Vidox, i=1,...,n k=1,...,t I=1,...,f,
arlf.
W = i onjdex, i=1,....m j=1,....d k=1,...,t I=1,...,f,
92rK 2t (up, 1 R ot (up, i at(up, i

2 = S h h)§k1¢r(uh—uh),1ﬂi)al<+( ( ! n) _ 9rtn, ) &r il Vi)ok

ou, Uy oupduy, oy, duy,

i=1,....m j=1,...,d k=1,...,t I=1,...,f, r=1,....,m,

again, only the non-zero terms have been computed.

Finally, we need to derive expressions for the computation of the global problem r; = 0 and its
derivatives. Following the usual finite element procedure, we introduce an index mapping from the
DOFs of the faces, 0,- i, to the global DOFs of the space M ? denoted by 0(i, j, k). The residual
can then be computed by summation over all the elements as follows:

e
Faga e = 2 (F(in) - n+ eqp-n+ 7 (up, i) (up — i), §ij) &,
k=1

Similarly, we can compute the derivatives that enter (33):

aﬁeijk : IF (itp) - 9 it ) i
r ("):Z(( F(ip,) n_ T(up ”h)(uh—uh)—t(uh,uh)) Lrs Ci VK,

8ﬁg(rys,k) =1 3ﬁh 812},

- 9
+ ) (et 'm&sfz‘jh{k
k=1 aUrs

e A
ot (up,up) . A dug
+ Z((a—(uh — i)+ T ) ) e, G K, -
P Up U,
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