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We present a high-order self-adaptive monolithic method for solving viscous-inviscid
interaction problems. The defect formulation is used to segregate the viscous and inviscid
e�ects and couple them at the wall using the integrated defects for the conserved quantities,
thereby allowing the overlap of the inviscid and boundary layer meshes. In particular,
the viscous mesh will be extruded from the surface of the body or the wake in a given
direction (obtained from a preprocess step) according to a normal scaling scalar variable �.
This normal scaling quantity satis�es a partial di�erential equation on the surface of the
body or wake and will be evolved as part of the solution process. This allows the viscous
mesh to be adapted to the thickness of the boundary layer in an automated manner. The
viscous and inviscid parts of the system are discritized using a high order Hybridizable
Discontinuous Galerkin (HDG) scheme while the normal scaling equation is discretized
using a Surface Finite Element Method (SFEM). The system is solved in a monolithic
manner. We present results in 2D for simple laminar and turbulent ows to validate the
solver.

I. Motivation

In the last decade, the advances in high order schemes have signi�cantly pushed the state of the art
in solvers for aerodynamic applications. These high order schemes come in several variants: Discontinuous
Galerkin (DG), Spectral Finite Di�erences (SD) and Spectral Finite Volumes (SV) each with its associated
advantages and disadvantages. Of particular success for complex geometries are the schemes that are based
on the RANS equations on unstructured grids such as DG,1{3 especially when they are combined with an
adaptivity procedure to take advantage of the asymptotic convergence rate of the high order approxima-
tion.4,5 Despite these very promising results, DG schemes are far from being widely used in the industry for
several reasons.

First, they are considered computationally expensive unless very high levels of accuracy are required, in
which case the higher order of convergence quickly leverages the cost.6

Also, high order mesh generation is not mature enough to reliably produce good quality anisotropic
meshes for complex geometries in an automated fashion. Several researchers have looked at the problem
with more or less success using PDE based techniques to deform the mesh and conform to the boundaries
of the domain7 while others use cut-cells to generate the high order mesh from an initial non-conforming
anisotropic mesh.6 In any case there is no clear solution to the problem yet.

Finally, high order schemes are generally believed to present robustness issues in certain situations such
as shock waves or under-resolved boundary layers. In general, it is widely agreed that this is related to the
oscillations that high order approximations may su�er when the solution is not regular enough or there is
not enough resolution (for a given combination of approximation order and mesh size), that may move the
solution into non-physical values and produce a sudden divergence of the computations. Several researchers
have proposed di�erent ways to alleviate this issues, that range from the use of arti�cial viscosity8,9 to
modi�ed numerical schemes10 or regularized uid models.11
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All this issues together make high order schemes impossible to implant on a design environment, where
the engineer might have to run dozens of con�gurations and iterate the design along the way, and does not
have time to spend on �xing meshes and close watching convergence. In this situation, faster and more
robust tools are preferred over high order methods (or low order Navier-Stokes solvers) even if they simplify
the physics of the problem. The best example of this kind of tool would be the TRANAIR code12 that sees
heavy use across The Boeing Company.13,14 The success of TRANAIR is due to several reasons: �rst, it
does not require the user to generate an initial mesh and only the geometry of the body has to be de�ned,
second, it performs adaptation in an automated manner, third, it solves the full-potential equations and
hence can model compressibility e�ects, and last, it uses a far-�eld correction to truncate the domain of the
solution and reduce the computation to a fraction of what it would take any Navier-Stokes solver for the
same problem.

To account for viscous e�ects, TRANAIR is combined with a fully-coupled 2D streamline integral bound-
ary layer method. The results obtained agree well with experiments for a wide range of cases, provided 3D
e�ects in the boundary layer are not important. This limits the accuracy of the predictions in regions like
the wing-body junction or engines nacelles or in cases where ow might separate. Furthermore, the advent
of new aircraft concepts like the ones derived from NASA’s N+3 project, will bring a change of paradigm in
which the di�erent elements of the aircraft (wing, fuselage, engines, etc.) will be more closely integrated and
hence less prone to independent analysis or simpli�ed interaction assumptions. In this situation, designers
will require a tool that models 3D viscous e�ects and provides solutions in a reasonable time in a robust
way.

It seems reasonable to think that a segregation of the viscous e�ects from the inviscid ow using interactive
boundary layer theory (IBLT), as done in TRANAIR, would help achieve this goal. The next critical step
would be to deal with the boundary layer in an e�cient way. Following the success of 2D coupled integral
boundary layer formulations,15{17 several 3D integral boundary layer models have been proposed using 3
or 4 equations and closure coe�cients to parametrize the 3D pro�les.18,19 These models have not seen
widespread use due to several reasons, the most important being how hard they are to calibrate for general
ows compared to their 2D counterparts.

Another approach would consist of a di�erential method where the RANS equations are solved wherever
viscous e�ects are important.20 A signi�cant advantage of this approach is the independence of the solution
with respect to closure functions and calibration (other than the turbulence model used). However, this
approach requires an e�cient way of computing the viscous ows and the generation of a mesh that does
not extend into the inviscid ow. If any of these two requirements is not satis�ed the whole purpose of the
IBLT segregation would be defeated.

In this work we propose to use the IBLT approach solving the Euler equations in the whole domain
together with the Defect formulation of the Navier-Stokes equations21,22 on a mesh extruded from the surface
mesh and overlapping with the inviscid domain. The coupling between both domains will happen at the wall
using the integrated defects across the boundary layer. To obtain the best accuracy for a given computational
e�ort, the discretization of the equations will be carried out using a high order Discontinuous Galerkin
method, and the extruded mesh thickness will be computed as part of the solution to follow the boundary
layer pro�le.20 This way, we combine the advantages of an adapted grid with a high order approximation at
the cost of an extra equation on the surface to account for the thickness. In order to accommodate the grid
evolution, an Arbitrary Lagrangean-Eulerian (ALE) formulation of the defect equations will be used. Using
the ALE formulation, the equations are solved on a reference domain, that in this case is the tensor product
of a surface grid and a 1D normal grid, and is never formed explicitly.

In what follows, we will �rst present the formulation of the problem, followed by the discretization
schemes used. Continuing, some preliminary results using this approach will be presented for at plate
ows. Conclusions and expected contributions will be discussed last.

II. Formulation

The problem of compressible viscous ow can described by the Favre-Averaged Navier-Stokes equations
that written in conservation form read:

@u

@t
+r � F = r �G; (1)
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where:

u =

2666664
�

�v1

�v2

�v3

�E

3777775 ; Fi =

2666664
�vi

�viv1 + p�i1

�viv2 + p�i2

�viv3 + p�i3

�viH

3777775 ; Gi =

2666664
0

�1i

�2i

�3iPd
j=1 �ijuj + qi

3777775 ; (2)

�ij = ��

�
@vi
@xj

+
@vj
@xi
� 2

3
�ij

@vk
@xk

�
; qi = ��

@T

@xi
; p = �RT: (3)

Here, � represents the density, vi is the i-th component of the velocity, E is the total speci�c energy H is the
total speci�c enthalpy. The pressure (p), the density and the temperature (T ) obey the ideal gas law. The
coe�cients �� and �� are the e�ective dynamic viscosity and heat conductivity respectively. This coe�cients
account for both the molecular and turbulent e�ects (if any):

�� = �+ �t; �k = Cp

�
�

Pr
+

�t
Prt

�
: (4)

Notice Stokes’s hypothesis and the absence of volume forces have been used to simplify the formulation. For
the turbulent cases presented in this paper, the Spalart-Allmaras23 model will be used, modi�ed to enhance
convergence when high order discretizations are used.11

The boundary conditions for most problems of interest read:

u = u1; jxj ! 1; at Far-�eld; (5)

(v1; v2; v3) = 0; T = Tw; at solid wall (prescribed temperature); (6)

(v1; v2; v3) = 0; q � n = qw; at solid wall (prescribed heat ux): (7)

A. Defect Equations

The defect formulation was �rst proposed by Le Balleur24 as a rigorous way to decouple the viscous and
inviscid e�ects around boundary layers and wakes. The idea follows from the observation that the Real
Viscous Flow u (RVF) asymptotes to a solution that satis�es the inviscid Euler equations outside boundary
layers and wakes, the so called Equivalent Inviscid Flow ui (EIF).

In principle, one can extend the domain of such inviscid solution all the way down to the wall (or wake)
despite the fact that the RVF is di�erent there (see Fig. 1). To guarantee the matching at the edge of the
boundary layer, the interaction between both solutions has to be considered. For this, �rst the di�erential

EIF: @ui

@t +r � Fi = 0

�; �

�

ui

u

RVF: : @u
@t +r � F = r �G

Figure 1: Velocity pro�les for the EIF and RVF.

operators that de�ne the RVF and the EIF are subtracted to yield the defect form of the equations:

@(u� ui)

@t
+r � (F� Fi) = r �G: (8)
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Then, we de�ne a coordinate transformation from a locally cartesian parameter space (�; �; �) to the physical
space (x; y; z) such that (�; �) represents a parametrization of the surface of the body or wake (this mapping
is described in the next section in more detail). Now, integrating the defect form over a di�erential volume
like the one described in Figure 2 and taking the limit as d� and d� tend to zero, we obtain a boundary
condition that the EIF has to satisfy at the wall:

Fi � nj�=0 =�G � nj�=0 +
@d

@t
+
@D�

@�
+
@D�

@�
; (9)

where the integrated defects read:

d =

� 1
0

(u� ui)d�; D� =

� 1
0

((F� Fi �G) � n�)d�; D� =

� 1
0

((F� Fi �G) � n�)d�: (10)

Here, the metric factors on the integrals have been omitted for simplicity of notation.

n�

d�d�
�

�
�

z

y

x

@x
@�

@x
@�

Figure 2: Control volume used to derive the coupling between EIF and RVF. The bottom surface � = 0 is
assumed to be located at a solid wall or over a wake.

The segregated equations are solved on overlapping domains and read:

EIF:
@ui

@t
+r � Fi = 0; (11)

ui = u1; jxj ! 1; (12)

Fi � nj�=0 = �G � nj�=0 +
@d

@t
+
@D�

@�
+
@D�

@�
; (13)

RVF:
@(u� ui)

@t
+r � (F� Fi) = r �G; (14)

u = ui; at � =1; (15)

(v1; v2; v3) = 0; T = Tw (or q � n = qw); at � = 0: (16)

From this it is easy to see that the e�ect of the RVF on the EIF happens at the wall through the integrated
defects just discussed. Meanwhile the e�ect of the EIF on the RVF appears in the governing equations as
well as on the boundary conditions at the edge of the boundary layer. Considering that the di�erence u�ui

is negligible a �nite distance away from the wall, then the RVF as well as the defect integrals in the EIF
can be truncated at a value � = �ext. All in all, the RVF and the EIF can be solved on overlapping meshes
where viscous e�ects are only considered on the RVF close to the wall, as described in Figure 3.

The defect formulation described here is somewhat more complete than the one originally proposed by
Le Balleur21,24 where he used the Thin Shear Layer Navier-Stokes approximation for the viscous uxes to
formally retain curvature correction terms in the integral boundary layer equations. An important advantage
of using the full Navier-Stokes is that the defect form is also valid in the vicinity of stagnation points and
hence there is no need to initialize the boundary layer there.

B. Coupling boundary conditions and the unicity of the EIF

As it stands, the system described by Eqs. 11-16 does not have a unique solution. As discussed by Murman
and Bussing,25 there is actually in�nitely many, since the thermodynamic state of the uid entering the EIF
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EIF Mesh

�; �
�

RVF Mesh

Figure 3: Example of the RVF and EIF meshes used in the defect formulation.

through the wall is irrelevant as long as the mass ow is correct. Due to this, several boundary conditions are
feasible, each of them with their own advantages and disadvantages (see the original paper25 for a discussion
of them). In general, since we are interested in solving the EIF on a coarse mesh (in terms of the boundary
layer thickness), we need to choose the boundary conditions so that no entropy layers are generated, as
these would require a re�nement of the EIF mesh and would ultimately defeat the whole purpose of the
viscous/inviscid segregation.

For this reason, we will use the boundary conditions proposed by Whit�eld, valid for the case of weakly
interacting, iso-energetic ows. These consist of the extrapolation of the pressure and the following conditions
on the mass ux and the gradient of the solution:

�v � n =
@

@t

� �ext

0

(�� �i) d� +
@

@�

� �ext

0

(�v � �vi) � n�d� +
@

@�

� �ext

0

(�v � �vi) � n�d�; (17)

@(v � n�)

@�
= 0;

@(v � n�)

@�
= 0;

@H

@�
= 0; (18)

and are meant to substitute Eq. 13.

C. Real Viscous Flow Geometry

As mentioned in the motivation, for this decoupling approach to have any chance of success, the viscous grid
needs to follow the boundary layer in such a way that the high order discretization is within the asymptotic
convergence regime always. To do so, the RVF domain (again, truncated at a certain � = �ext) needs to
evolve with the solution accordingly. A simple way to do this is to extrude the domain from the wall (or
wake) outwards following a prede�ned direction n̂ that does not necessarily need to coincide with the normal
to the surface. The length of the extrusion is dictated by a parameter �, over the surface of interest, that
represents the normal scaling for the boundary layer at a given point on the surface. Based on this, a
mapping G : (�; �; �) 7! (x; y; z) is de�ned by:

x = Gsurf(�; �) + �(�; �)� � � n̂(�; �); (19)

where Gsurf is the parametric representation of the wall (or wake).
Of the two parameters that de�ne the extrusion, n̂ can be generated a priori based on the geometric

characteristics of the surface. This only leaves � to be computed simultaneously with the ow. For this, �
will be evolved on the surface according to the following di�usion-reaction equation:

@�

@t
=
�spec(u; �)� �

�
+ ��(��); (20)

where �� is the Laplace-Beltrami operator26 and the parameters � and � are constants that dictate the
degree of spreading of sharp changes in the indicator. The function �spec(u; �) is a measure of the thickness
of the boundary layer based on the kinematic displacement thickness and momentum thickness:27

�spec(u; �) /
�
�k + �k

�
3:15 +

1:72

Hk � 1

��
: (21)
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The boundary conditions for this equation are only required at the edges of the surface. In most of
the cases this coincides with the ow leaving the domain, hence of little e�ect on the solution. The results
obtained here have all been obtained with homogeneous Neumann conditions.

D. Arbitrary Lagrangean Eulerian Formulation

The last step in the formulation of the problem consists on taking into account the e�ect of the evolution of
the geometry in the system of PDEs that de�nes the RVF. For this, an Arbitrary Lagrangean Eulerian (ALE)
approach28 will be used. The main ingredient of the ALE is a mapping G : (�; �; �) 7! (x; y; z) between the
reference domain and the physical domain. The goal is the transformation of the general conservation law:

@u

@t
+r �A(u;ru) = f ; (22)

into the reference domain. For this, the following derivatives of the mapping are required:

vG =
@G

@t
; G = r~�G; g = det (G): (23)

The transformed equations in di�erential form29 read:

@(gu)

@t
+r~� �

�
gG�1A(u;G�1r~�(u))� gG�1u
 vG

�
= gf ; (24)

and can be discretized using a variety of algorithms. In the unsteady case, it can be proved that the ALE does
not satisfy the simple case of a uniform ow unless the so-called Geometric Conservation Law is satis�ed.
Several ways to enforce this are described in the literature.29 In the cases analyzed here, only steady state
solutions are considered, so the Geometric Conservation Law during the time relaxation is not enforced for
the sake of simplicity. This has not a�ected the convergence of the tests shown below.

III. Discretization

All the equations described before are discretized using Finite Element techniques. In particular, the
EIF (Eq.11-12,17-18) on the whole domain is discretized using a Hybridized Discontinuous Galerkin scheme
(HDG).30,31 The discrete approximation to the EIF, denoted by uhi, consists of piecewise polynomials of
order p, discontinuous across faces of the mesh. Details on the implementation of HDG for the Euler and
Navier-Stokes equations, including a discussion on the far �eld boundary conditions can be found in the
literature.32

Similarly, the RVF (Eq.14-16) in ALE form is also discretized using an HDG scheme. In this case, the
approximation space for the RVF, denoted by uh, consists on polynomials of order p formed from tensor
products of polynomials on the surface and 1D polynomials in the normal direction. As in the case of the
EIF, this polynomials are discontinuous across faces of the virtual mesh.

The RVF system requires the value of the EIF or an approximation to it inside the viscous mesh. One
possible approach would be to interpolate exactly the value from the EIF, however, this is expensive (since
the mesh is evolving) and prone to unstable numerical e�ects. Some authors have considered the use of the
EIF and its gradient at the edge of the viscous mesh20 to avoid the interpolation in the whole domain, but,
this is as hard as the previous option. Here, the value of the EIF at the surface of the viscous mesh will be
used. This is:

ui(�; �; �) � ui(�; �; 0): (25)

Higher order corrections based on the normal gradient at the wall to account for curvature could be easily
implemented if required.

Finally, the normal scaling equation is discretized on the surface using a Continuous Galerkin Surface
Finite Element Method (SFEM).26 The approximation space for the discrete normal scaling �h consists of
continuous piecewise linear polynomials on the surface that de�nes the wall or wake.

The discrete RVF geometry representation is de�ned by a high order iso-parametric representation of the
surface (inherited from the EIF) combined with a linear normal extrusion as follows:

x(�; �; �) =

NX
i=1

xi�i(�; �) +

NvertexX
j=1

�hjn̂j�
1
j (�; �)�; � 2 [0; �ext]: (26)
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Here, xi represents the coe�cients of the iso-parametric surface mapping, �i(�; �) represents a high order
basis function for the surface, �1

j (�; �) represents the linear basis functions for �hj and n̂j is the extrusion
direction at the edges of the surface triangulation.

The value of the displacement thickness �k that appears in the de�nition of �spec (Eq. 21) is approximated
as a constant inside each surface element Si, de�ned as:

�k =

�
Si

�� �ext
0

�
1� v�vi

vi�vi

�
d�
�
dSi�

Si dSi
; (27)

which is close to an average over the surface of the element. A similar approach is taken for �k:

�k =

�
Si

�� �ext
0

�
1� v�vi

vi�vi

�
d�
��

v�vi

vi�vi

�
dSi�

Si dSi
: (28)

For the time evolution, a method of lines is used in which the time-dependent terms are approximated
using an implicit backwards Euler scheme. The nonlinear system de�ned by the three discrete residuals
(EIF, RVF and normal scaling) is solved at each time-step using a Newton-Raphson iteration. For this, the
derivatives of all the equations in the system with respect to uh, uhi and �h are computed analytically. To
solve the linear system at each iteration, a sparse direct solver is used.

To converge to a solution, a time relaxation was used in which the time step was multiplied by a �xed
constant (2 for laminar ows and 1.5 for turbulent cases) whenever the Newton-Raphson procedure converged
in the same number of iteration or less than the previous solution. Otherwise, the time step was reduced
by the same factor for the next step. The time relaxation was carried out until a certain time was reached
(usually 2 to 3 times L=u1). After this, the time-dependent terms were dropped and a steady state solution
was computed usually in a few iterations of the Newton-Raphson procedure.

We found that the convergence of SA is ameliorated if a model continuation strategy is followed in which
the source terms of the SA model are multiplied by a very small constant (�SA = 10�3) in the beginning and
increased by a factor of 5 (up to a value of �SA = 1) after each successful time step. The rationale for this
is to reduce the sti�ness of the problem in the initial phase when the solution does not satisfy the boundary
conditions at the wall and large gradients are present.

IV. Results

The proposed solver will be tested on a series of standard laminar and turbulent cases. Due to limitations
on the current implementation of the solver only symmetric (no lift) cases will be considered, yet, this should
be enough to highlight the advantages of this approach and indicate areas where there is still room for
improvement.

A. Laminar Flat Plate

We �rst present the solution of the ow over a �nite lenght at plate at Reynolds number Re = 1 � 105

(based on the chord of the plate) and Mach number M = 0:3. For this, a mesh of 15 elements in the normal
direction and 30 elements on the at plate and the wake was used. Three di�erent polynomials orders were
considered: p = 2, p = 4 and p = 6. We included a wake in the calculations so that we can try a simple
geometry with both a leading and trailing edge. The initial mesh had a uniform thickness of �=L = 5 � 10�3,
roughly 10 times smaller than the �nal one.

The time relaxation procedure described in the previous section yields a solution like the one shown
in Figure 4 for the horizontal velocity pro�les over the plate and on the wake. Notice the solution is not
sensitive to increasing the polynomial order. This suggests the mesh indicator (see Figure 5) is making a
good job at tracking the boundary layer so that the solution is virtually grid converged. At �rst sight, the
velocity pro�les in Fig.4 match the Blasius solution for the at plate without a pressure gradient. To con�rm
this, Fig. 6a shows the friction coe�cient Cf along the plate compared to the well know result by Blasius.33

Notice the solution virtually overlaps over the entire domain for all the approximation orders used except
close to the trailing edge, where it is a�ected by a a slight pressure gradient due to the wake recovery. Also
notice how the Cf presents a jump at the trailing edge that is due to a combination of a sudden change on
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the boundary conditions (from wall to wake) and lack of streamwise resolution. This e�ect is less pronounced
in the mass transpiration applied to the EIF as shown in Fig. 6b.
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(a) Horizontal velocity pro�le at x=L = 0:5.
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(b) Horizontal velocity pro�le at x=L = 1:5 (on the wake).

Figure 4: Horizontal velocity pro�les for the ow around a �nite length at plate. For this case Re = 1 � 105

and M1 = 0:3. The results were computed using polynomials of order p = 2, p = 4 and p = 6.
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Figure 5: Normal scaling � and thickness indicator �spec for the case of the laminar ow over a �nite at
plate at Re = 1 � 105 and M1 = 0:3. In this case the ow was computed using polynomials of order p = 6.
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ṁ
/
ρ
u
∞

 

 

p = 2

p = 4

p = 6

(b) Mass transpiration

Figure 6: Friction coe�cient (left) and mass transpiration (right) over the surface of the �nite at plate at
Re = 1 � 105 and M1 = 0:3 using di�erent polynomial orders.

B. Laminar ow over a bump

The next case we would like to present is the laminar ow over a small sinusoidal bump at a Reynolds
number of Re = 1 � 105 (based on a characteristic computational length L) and Mach number M = 0:2. The
bump extends one characteristic length along a at plate and has a height of h=L = 10�2. The viscous mesh
for this case consists on 30 elements on the surface of the geometry and 12 elements in the normal direction.
Three di�erent polynomials orders were considered for the solution: p = 2, p = 4 and p = 6. The initial
mesh used for the computation was uniformly set to �=L = 10�3, 20-40 times smaller than the �nal mesh,
that is represented in Fig. 7.

The interest in this case lies on the fact that this combination of bump height and Reynolds number
produces a laminar separation bubble downwind of the bump that eventually reattaches. One can distinguish
such separation bubble in Fig.8 where the horizontal component of the velocity is plotted. One can also
identify the separation bubble by looking at the friction coe�cient over the bump (Fig. 9a) or by a direct
plot of the velocity pro�les there (Fig. 9b). Notice how the solution is still changing as the polynomial order
is increased, which suggests a possible lack of resolution in our mesh, most likely in the streamwise direction.
Further numerical tests are required to asses this issue. In any case, the approach based on adapting on the
y has proven robust and provides meshes that follow the viscous features as desired (see Fig. 10). These
features (thinning, separation, reattachment, etc.) are properly transferred to the inviscid solver through
the coupling at the wall as shown in Fig. 11.

Figure 7: Viscous (black) and Inviscid (red) meshes obtained during the computation of the laminar ow
over a bump.
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Figure 8: Horizontal component of the velocity �eld u=u1 over a bump computed using polynomials of order
p = 6. For visualization purposes, axis are NOT to scale.
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(b) Horizontal Velocity pro�le at station x=L = 2

Figure 9: Friction coe�cient (left) and horizontal velocity pro�le (right) across the separation bubble com-
puted using di�erent polynomial orders.
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Figure 10: Normal scaling � and thickness indicator �spec for the case of the laminar ow over a bump as
computed using polynomials of order p = 6. Notice the peak in the indicator over the extent of the separation
bubble.
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Figure 11: Mass transpiration uxes obtained in the case of a laminar bump for di�erent polynomial orders.

C. Laminar ow over a NACA 0006 airfoil

In the previous examples, we tested the solver in geometries that despite being simple were able to produce
e�ects such as wakes or moderate separation. In this same spirit, we now move on to the case of symmetric
laminar airfoil. The goal here is to test how it behaves in the presence of a stagnation point as well as very
mild separation at the trailing edge. In particular, we will solve the ow over half a NACA 0006 airfoil,
modi�ed to have a closed trailing edge. For this, the following equation is used to describe the top surface
of the airfoil:

yt =
t

0:2
c

�
0:2969

r
x

c
� 0:1260

�x
c

�
� 0:3516

�x
c

�2

+ 0:2843
�x
c

�3

� 0:1036
�x
c

�4
�
; (29)

where the last term is di�erent with respect to the standard NACA 4-digit series. For this case we will set
the Reynolds number to Re = 1 � 105 (based on the chord of the airfoil c) and the Mach number to M = 0:3.
The viscous mesh in this case consists of 44 elements in the surface direction and 12 elements in the normal.
Solutions up to polynomial order p = 4 were computed on this mesh. The initial condition for the normal
scaling was set to � = 5 � 10�3. The meshes obtained in the �nal iteration are plotted in Fig. 12.

To asses how well the scheme behaves around stagnation points, we can have a look at the Mach number
and density pro�les around it. These are shown in Fig. 13. One of the main advantages of our approach
is the fact that it does not depend on any thin shear layer approximations, hence, it does not require an
initialization of the boundary layer at the stagnation point nor identifying it a priori. The only conditions
we set in this example are the symmetry boundary conditions on the line y = 0.

To con�rm that the solution is correct, we can have a look at surface quantities. In particular, we can
compare our solution against the widely adopted solver Xfoil34 for the same parameters of the problem.
The results in Fig. 14 show the good agreement in friction coe�cient and transpiration velocity around the
leading edge for di�erent approximation orders. There, we can also see a very mild separation happening at
the trailing edge that is picked up by the normal scaling indicator (see Fig. 15) and modi�es the pressure
�eld around the trailing edge (see Fig. 16) accordingly. The discrepancies with Xfoil at the trailing edge
might be due to the fact that we propagate a laminar wake while Xfoil prescribes transition there.

Figure 12: Viscous (black) and Inviscid (red) meshes obtained from the computation of the laminar ow
over a NACA 0006 airfoil.
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(a) Mach number M

(b) Density �

Figure 13: Mach number (left) and density (right) �elds in the vicinity of the leading edge of the NACA
0006 airfoil computed using polynomials of order p = 4.
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(a) Friction coe�cient
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(b) Mass Transpiration ux

Figure 14: Friction coe�cient (left) and mass transpiration ux (right) for the case of the NACA 0006 airfoil.

D. Turbulent ow over a at plate

Now we turn our attention to the case of turbulent ows. For this, we will solve the RANS equations using a
modi�ed version of the Spalart-Allmaras model suitable for a high order discretization.11 It is a well known
fact that the solution of the RANS equations is signi�cantly harder that the solution of laminar ows due
to severe restrictions in mesh size as well as the strong nonlinearity of most closure models. For this reason,
we will start from the very simple case of a �nite length at plate. Namely, we are interested in the fully
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Figure 15: Normal scaling � and thickness indicator �spec for the case of the laminar ow over a NACA 0006
computed using polynomials of order p = 4. Notice the peak in the indicator due to mild separation at the
trailing edge.
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Figure 16: Pressure coe�cient for the case of the NACA 0006 airfoil computed using polynomials of order
p = 4. As comparison, the results obtained without boundary layer and using Xfoil are also included.

turbulent ow over a �nite at plate at Reynolds number Re = 107 (based on the length of the plate L) and
Mach number to M = 0:5. The mesh used for the viscous solution consists on 36 elements over the plate
and the wake and 10 elements in the normal direction of polynomial order up to p = 4.

We set the initial mesh thickness to �=L = 5 � 10�5 and using time relaxation, combined with model
continuation, we reach steady state. The two most relevant �elds in the solution are the horizontal velocity
and the SA working variable, that are plotted in Fig. 17. There we can see how the normal scaling mimics
the growth of the boundary layer and the wake adequately. If we look at their pro�les at a point in the
middle of the plate (Rex = 5 � 106), contained in Fig.18, we can see how the velocity (once properly scaled)
closely follows the law of the wall. Also, the SA working variable shows the expected shape.

Some surface quantities of interest are plotted in Figs. 19 and 20. In particular, Fig. 19b shows the
friction coe�cient computed using di�erent orders of approximation and compared to the analytical solution
proposed by Prandtl.33 The results are in good agreement although they do not match perfectly. This might
be due to the limited resolution in the normal direction, dictated by a combination of the normal scaling
� (see Fig. 20a), the distribution of nodes in the reference coordinate � and the number of such nodes (or
elements). Ideally, one would seek a mesh distribution such that y+

1 = O(1) for the �rst node o� the wall.
In Fig. 20b we plot the value y+

1 . As we can see, the criterion is only satis�ed very close to the leading edge.
More re�ned meshes ought to be used to �nd the source of such discrepancy.
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(a) Horizontal velocity u=u1

(b) SA working variable �=�1

Figure 17: Horizontal velocity �eld (top) and SA variable �eld (bottom) for the case of the turbulent at
plate. For visualization purposes, axis are NOT to scale.
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Figure 18: Pro�les of the solution at Rex = 5 � 106 for the turbulent at plate.

E. Turbulent ow over a NACA 0008 airfoil

Last, we would like to show some results for the turbulent ow around a NACA 0008 airfoil at Reynolds
number Re = 107 (based on the aerodynamic chord) and Mach number M = 0:3. As in the case of the
laminar airfoil, only half the geometry will be computed. Also, Eq. 29 is used to generate a closed trailing
edge. The mesh used for the viscous solution consists of 43 elements along the surface and 15 in the normal
direction. In this case, solutions up to p = 3 were computed.
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Figure 19: Mass transpiration (left) and friction coe�cient (right) over the turbulent at plate for di�erent
approximation orders.
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(a) Normal scaling � and thickness indicator �spec
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Figure 20: Normal scaling and thickness indicator (left) and y+ for the �rst node o� the wall (right) in the
case of the turbulent at plate.

After the usual time relaxation, a steady state was found for the viscous mesh (Fig. 21) as well as
the solution (Fig. 22). In this case, the ratio of maximum to minimum normal scaling � is of order 200
(6�10�2=3�10�4) and is generated automatically without user intervention. We believe this is one of the main
advantages of the proposed approach. As in the case of the laminar airfoil, we compare our solution with
the one provided by Xfoil34 for this same geometry. In particular, Fig. 23 contains the surface quantities of
interest for this ow. As we can see there, the friction coe�cient agrees with Xfoil provided there is enough
resolution close to the wall to properly capture the laminar sublayer (notice the discrepancy for p = 2) while
the mass transpiration ux agrees well in both cases.

F. A word on the trailing edge conditions

All the result presented above are fully converged solutions where the residual of the �nal steady state
iteration could be driven to values close to machine precision in absolute terms (kRk < 10�10). In most
instances, the computed �elds are clean and free from oscillations, yet, some derived quantities like the
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Figure 21: Viscous (black) and Inviscid (red) meshes obtained during the computation of the turbulent ow
over a NACA 0008 airfoil.

(a) Mach number M (b) SA variable �=�1

Figure 22: Mach number (left) and SA variable (right) for the turbulent NACA 0008. Axis are NOT to scale
for visualization purposes
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(a) Friction coe�cient
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(b) Mass Transpiration ux

Figure 23: Friction coe�cient (left) and mass transpiration ux (right) for the case of the turbulent ow
over a NACA 0008 airfoil.

mass transpiration or the friction coe�cient might present them. In some cases these oscillations are due to
singularities in the leading edge, such as the case of the at plate, and appear when we try to approximate
them with a high order polynomial. These are usually mild and rarely prevent convergence of the iteration.

On the other hand, we have the oscillations produced at the trailing edge, that in most cases make the
friction coe�cient a small distance away from it completely useless. One could argue that this is exactly the
opposite behavior as the leading edge in that the friction coe�cient suddenly changes from a �nite value on
the wall to zero at the wake, hence the oscillation. Our concern is that we have found this to be a typical
failure mode of the iteration in which a high frequency solution at the trailing edge grows until it corrupts
the mass transpiration and the iteration stagnates. We are still working on the solution to this problem and
evaluating other boundary conditions that might help alleviate this issue.
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V. Conclusions and future work

We have presented a new interactive boundary layer solver and tested it on some simple symmetric cases
in 2D. The results indicate that this technique is capable of self adapting the boundary layer grid based on
the boundary layer thickness, and using a segregated approach based on the defect formulation, couple it to
the inviscid solver at the wall in a monolithic manner.

In the future, the solver will be extended to treat cases with lift as well as coupling it to other inviscid
models such as full potential or panel methods. These simpli�ed models might be the key to the extension of
this technique to 3D ows due to computational savings, simplicity of wake treatment as well as compatibility
of the coupling conditions.
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