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Synopsis

e have developed a new spring force law which can be used in bead-spring chain models of the
orm-like chain. The bead-spring chain has no bending potentials between the springs, and so
iffers from the current models only in the functional form of the force law. This new model can
ccurately represent a chain that contains many persistence lengths even if each spring represents
nly a few persistence lengths. We also discuss the assumptions in the model and other sources of
ossible error. The new force law significantly reduces the error compared with using the
arko-Siggia interpolation formula. © 2006 The Society of Rheology.

DOI: 10.1122/1.2206713�

. INTRODUCTION

The worm-like chain �WLC� model has been used to represent a wide variety of
olecules, ranging from biological macromolecules such as DNA to worm-like micelles

Marko and Siggia �1995�; Dalhaimer et al. �2003��. It is important to build accurate but
easible models of these molecules that can be used with experiments to further the
nderstanding of the behavior of the materials. The level of detail included in the model
s determined by the physics of the problem of interest. The current models can be
oughly grouped into three classes based on the length scale they aim to capture: �1� atom
r united-atom level �Schlick et al. �2000�; Mergell et al. �2003�; Lu et al. �1998��; �2�
ontinuous worm-like chain, e.g., the limit of the Kratky-Porod model �Kratky and Porod
1949�; Yamakawa �1997��; and �3� bead-spring chain using a force law such as the

arko and Siggia interpolation formula �Marko and Siggia �1995�; Underhill and Doyle
2004��.

In this article we will consider groups �2� and �3�, in particular how to bridge the gap
n models between them. In order for the Kratky-Porod model to represent the continuous
orm-like chain, each rod must be smaller than about one-fifth of the persistence length

t equilibrium and even smaller when the chain is stretched. At the other end, the bead-
pring chains using the Marko and Siggia interpolation formula are only used if each
pring represents more than about 20 persistence lengths �Underhill and Doyle �2004��.
his leaves a gap of at least two orders of magnitude. For double-stranded DNA with a
ersistence length of about 50 nm, this gap corresponds to lengths between 10 nm and
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514 P. T. UNDERHILL AND P. S. DOYLE
�m. This is exactly the characteristic size when studying polymers in microfluidic and
anofluidic devices �Chen et al. �2004�; Tegenfeldt et al. �2004�; Chen et al. �2005��, so
t is important to have coarse-grained versions of the WLC at that length scale.

There are two basic ways that have been used previously to attempt to close this gap
n models. One way is to push the Kratky-Porod model so each rod represents a larger
raction of a persistence length. This has been attempted by using a different bending
otential than is typically used in the Kratky-Porod model �Wilhelm and Frey �1996�;
arkas et al. �2003��. One of the main disadvantages of this method is that, because rigid
ods are used, the response at large forces looks more like the response of a freely jointed
hain than the worm-like chain. This is not consistent with trying to represent the con-
inuous WLC or the behavior of double-stranded DNA. The use of finite-size rigid rods
ith bending potentials has been studied recently �Livadaru et al. �2003�; Storm and
elson �2003��. These researchers were not studying this model as a coarse-grained
ersion of the continuous worm-like chain but as a new alternative to the continuous
orm-like chain, called the discrete persistent chain. Some polymers such as single-

tranded DNA may be better described by the discrete persistent chain than either the
reely jointed chain or the continuous worm-like chain �Storm and Nelson �2003��. How-
ver, for double-stranded DNA this difference would only be present at forces larger than
bout 1 nN �Livadaru et al. �2003��. This is beyond the forces that cause structural
hanges in the DNA, which are not considered here. Thus, for our purposes, double-
tranded DNA is approximately a continuous worm-like chain, and it is this model which
e would like to coarse grain.
The other way of bridging the gap is to push the bead-spring chains so each spring

epresents a smaller number of persistence lengths. This has been attempted by using an
ffective persistence length in the spring force law which differs from the true persistence
ength of the continuous worm-like chain to be modeled. We have addressed some of the
ssues involved in this process previously �Underhill and Doyle �2004��. Essentially, it is
ot possible to simultaneously have the correct behavior at small and large extensions.
e will quantify in this paper exactly how well it can model the continuous worm-like

hain.
Our approach is to use bead-spring chain models, but with a different functional form

or the spring force law. We previously applied this idea to the freely jointed chain, an
mportant and common micromechanical model of polymers �Underhill and Doyle
2004�, �2005��. Our focus here is on the worm-like chain which is more complicated to
oarse grain because of the coupling along the chain’s contour. The goal of this article is
o show that we can partially close the gap in models without using bending potentials
etween the springs. In order to completely close the gap, a more complicated model
ould need to be used that accounts for the coupling along the contour. We do not

ttempt that here because there remain complications to overcome, and it may be suffi-
ient for many purposes to use the simple model developed here.

Although we only consider here the spring force law, in many situations hydrody-
amic interaction �HI� and excluded volume �EV� interaction play an important role in
btaining accurate predictions from a bead-spring chain model. Our philosophy of build-
ng an accurate model is that the spring force law should be chosen such that the model
ives the correct response if HI and EV do not affect the response even if included. One
uch situation is the force-extension behavior at “theta” conditions, so we use that re-
ponse to determine the spring force law. While theta conditions correspond to the situ-
tion where EV can be effectively neglected, HI is always important for long chains.

owever, HI does not affect the force-extension behavior. Thus, by using the force-



e
s
b

i
“
�
f
“
s

u
P
t
d
i
a
�

r
b
u
p

m
H
f
t
i
w
i
i
d
e
t
t
c
f

s
t
s
m
p
t
�
s
m
d

515ALTERNATIVE WORM-LIKE CHAIN SPRING FORCE LAW
xtension behavior in theta conditions to coarse grain the continuous WLC to a bead-
pring chain, the spring force law will give the chain the correct configurational distri-
ution function under theta conditions.

If the bead-spring chain developed here is placed in a situation where HI and EV are
mportant, those effects must be included also in the model. Research is ongoing into the
best” way of choosing the parameters governing the strength of HI and EV �Larson
2005�; Sunthar and Prakash �2005��. Separating the development of the spring force law
rom the choice of HI and EV strength parameters may help in the determination of the
best” HI and EV parameters, particularly when the amount of polymer represented by a
pring is being changed.

Even without the inclusion of HI and EV we can still understand some implications of
sing the new spring force law in terms of rheology and dynamics of single molecules.
reviously we have shown how the force-extension behavior at small force is related to

he size of the coil at equilibrium and thus to the zero shear rate rheology for a free-
raining model in theta conditions �Underhill and Doyle �2004��. Even though HI is
mportant for all long polymers, free-draining models are still often used, for which
nalyzing the predictions of a free-draining model is appropriate and useful. For example,
-phage DNA is generally considered “short” in that the effects of HI on nonlinear
heology, such as the start-up of uniaxial extensional flow, can be approximately modeled
y using a free-draining model if the drag is rescaled appropriately �Larson �2005��. The
se of these models should be done carefully because a free-draining model fails in
redicting some aspects of polymer behavior.

However, our approach here is not limited to this class of molecules. An accurate
odel will include full fluctuating HI, which is important for all long polymers. Even if
I is included in the model, obviously the size of the coil is critical to model correctly. In

act, in the nondraining limit in theta conditions, any dynamic property is directly related
o the radius of gyration Rg through a universal ratio �Sunthar and Prakash �2005��. Thus,
t is crucial for the coarse-grained model to accurately represent the size of the coil,
hich is directly related to the force-extension behavior at small force. In addition to its

mpact on rheological properties, the size of the equilibrium coil will have important
mplications for the behavior in confining geometries in microdevices or in many size-
ependent separation techniques. Along these same lines, in non-“theta” conditions EV
ffects must be included to get the correct coil size. This is particularly important because
ypical single molecule experiments using DNA are performed in good solvents. Under
hese conditions it is still important for the spring force law to give the correct theta
ondition size of the coil, with the solvent quality parameter giving the correct deviation
rom this size.

The effect of the spring force law on the behavior of the chain far from the coil state
eems even easier to understand. In highly stretched states the effects of EV are expected
o be small and the influence of HI may be weaker. Even when HI plays a critical role
uch as in coil-stretch hysteresis, using the correct spring force law may help in deter-
ining the appropriate HI strength parameter. Previous work looking at the response of

olymers to strong flows or the relaxation after strong flow have illustrated the effect of
he spring force law near full extension �Ladoux and Doyle �2000�; Shaqfeh et al.
2004��. Our article will show that by simply using a different functional form for the
pring force law, the force-extension response of the worm-like chain can be accurately
odeled using a bead-spring chain in the coiled state, the extended state, and at interme-
iate states.
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516 P. T. UNDERHILL AND P. S. DOYLE
I. IMPLICATIONS OF NO BENDING POTENTIALS

Before developing the new spring force law, we must discuss some implications of
sing a model without bending potentials between the springs as a coarse-grained version
f the worm-like chain.

Consider the continuous worm-like chain in Fig. 1. The vectors r1 and r2 correspond
o segments of polymer which will be modeled by springs. The polymer has a persistence
ength Ap, and each segment has a contour length of �, so �= � /Ap represents number of
ersistence lengths. The segments are separated by an amount of polymer with contour
ength �c. One way of examining the assumptions in the coarse-grained model is to
ompare �r1

2� and �r1 ·r2� between the continuous worm-like chain and the bead-spring
odel. We can calculate these properties of the continuous WLC by using the average

orrelation of the tangent vector,

�t�s� · t�p�� = exp�− �s − p�/Ap� , �1�

here s and p denote the positions along the contour of the WLC and t�s� is the unit
angent vector at position s. We will also use that the vector connecting two points on the
hain is the sum over all the tangent vectors connecting those points, for example

r1 = �
a

a+�

dst�s� , �2�

here a is an arbitrary constant related to the convention of where s and p are defined to
e zero. Using these two equations we can show that

�r1 · r2� = Ap
2�1 − e−��2e−c�, �3�

�r1
2� = 2 � Ap + 2Ap

2�e−� − 1� . �4�

e would like the coarse-grained version of the WLC �the bead-spring chain� to repro-
uce these two properties. Consider first the behavior of �r1 ·r2�. Without bending poten-
ials in the bead-spring chain model, the mean dot product between two spring connector
ectors is zero. Note that even if each spring represents a large segment of polymer �i.e.,
→��, neighboring sections �c=0� would need to have a nonzero mean dot product to
xactly model the continuous WLC. Next-nearest neighbors �c=1� in the continuous

LC have an exponentially decaying mean dot product for large �. As we will see later,
t is not possible to use a bead-spring chain without bending potentials to accurately

odel a WLC with ��2 �less than one Kuhn length�. For the case ��2 which we
onsider here, the correlation between next-nearest neighbors in the continuous WLC is
mall, and so can be approximately modeled without bending potentials.

Another issue that must be addressed is the matching of the force-extension behavior

IG. 1. Illustration of a worm-like chain with vectors connecting positions on the chain. The coarse-grained
odel would ideally reproduce the average correlation of the vectors. The polymer has persistence length Ap.
he contour length represented by the vectors is �. The contour length between the two vectors is �c.
etween the bead-spring chain and the continuous worm-like chain. This turns out to be
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517ALTERNATIVE WORM-LIKE CHAIN SPRING FORCE LAW
elated to �r1
2� because the slope of the force-extension behavior at small force is propor-

ional to the second moment of the spring length �Underhill and Doyle �2004��.
Figure 2 shows a sketch of the force-extension behavior of a series of continuous

orm-like chains of different contour lengths relative to the persistence length, �
L /Ap. This represents the behavior of the exact WLC which we want the bead-spring
hain to reproduce. Using the second moment of the squared end-to-end distance for the
xact WLC �similar to Eq. �4� but for the entire polymer� and its relation to the zero force
lope, one can show that in this sketch, the slope at zero force is

lim
f̂→0

�

� f̂
�ẑ� =

2

3
+

2

3�
�e−� − 1� . �5�

s � increases, the slope increases until it saturates at 2 /3. The behavior at large force
as not been rigorously calculated for finite �. However, approximate calculations for
orm-like chains with �	1 �Wilhelm and Frey �1996�� suggest that the behavior at large

nough force may behave as

�ẑ� 
 1 −
1

2 f̂1/2
+ O� 1

� f̂
� �6�

or all values of ��0.
Now, consider two different bead-spring chain models, one with Ns=1 number of

prings and �=4 number of persistence lengths represented by each spring, and the other
odel with Ns=100 number of springs and �=4 number of persistence lengths repre-

ented by each spring. Because there are no bending potentials between the springs and
he value of � is the same, the average fractional extension versus force curves of these
ead-spring chains are identical �Underhill and Doyle �2004��. The total number of per-
istence lengths in the whole chain is �=Ns�, so the continuous worm-like chains that are
o be modeled contain �=4 and �=400, respectively. Figure 2 shows that these continu-
us worm-like chains have different force-extension behaviors. This would appear to be
n inconsistency in our method of determining the spring force law by matching the
orce-extension behavior of the bead-spring model with the continuous worm-like chain.
his inconsistency results from the absence of bending potentials in the bead-spring chain
odel.
To proceed with a bead-spring model without bending potentials that is also consis-

ent, we will only attempt to model continuous worm-like chains which are “long” in the
ense that ��1. However, keep in mind that the systems of interest here, and any real
ystem, will have a finite � no matter how large it is. For example, consider now two

IG. 2. Sketch of the average fractional extension as a function of the applied force for a continuous worm-like
hain model. The arrow denotes increasing �=L /Ap, where L is the contour length and Ap is the persistence
ength. The dashed curve represents �=�. The z extension is made dimensionless using the contour length, ẑ

z /L. The externally applied force is made dimensionless using the persistence length, f̂ = �fAp� / �kBT�.
ead-spring models, one with Ns=25 number of springs and �=10 number of persistence
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518 P. T. UNDERHILL AND P. S. DOYLE
engths represented by each spring, and the other model with Ns=100 number of springs
nd �=4 number of persistence lengths represented by each spring. The continuous
orm-like chains to be modeled contain �=250 and �=400, respectively. While these

ontinuous worm-like chains do not have identical force-extension behaviors, because
�1, they are very close to each other and also very close to the �=� force-extension
ehavior of the continuous WLC shown in Fig. 2. From Eqs. �5� and �6� we see that the
aximum relative error between a curve with finite � and the �=� curve is 1 /� for large
. In this article the spring force law will be constructed so that the force-extension
ehavior of these bead-spring models with �=10 and �=4 will be identical �to within the
rror discussed later�, and that force-extension behavior will be the �=� limit in Fig. 2.
n other words, the spring force law developed here will be valid even if each spring
epresents a relatively small amount of polymer �e.g., �=4� as long as the entire chain
ontains many persistence lengths ��=Ns��1�. In practice this is not much of a restric-
ion because many worm-like chains of interest contain many persistence lengths, such as
he commonly modeled stained �-phage DNA which contains about �	400 persistence
engths.

The more subtle point is that we are essentially sacrificing some accuracy at the scale
f a single spring �as �r1

2�� or neighboring springs �as �r1 ·r2� for c=0� to obtain the
orrect behavior at the scale of the entire chain. We can see this sacrifice by comparing
r1

2� for the bead-spring chain and the WLC. In order for the bead-spring chain to have
he �=� force-extension behavior at small force without bending potentials, the bead-
pring chain will be required to have �r1

2�=2�Ap because of the relation between this
oment and the zero-force slope of the force-extension behavior. Comparing this with
q. �4�, we see that the relative error in this second moment decays as 1/� for large � and

s 76% when a spring represents two persistence lengths.
This is the same type of compromise at equilibrium that is made when the bead-rod

hain is used to model ��1 worm-like chains. In fact, the bead-spring chain models
eveloped here would become the bead-rod chain if each spring represents two persis-
ence lengths. A worm-like chain of two persistence lengths is not a rigid rod and neigh-
oring segments are not freely jointed. The bead-rod chain sacrifices this accuracy to
escribe the entire ��1 worm-like chain at equilibrium. The approximation made in this
aper is less severe because each spring represents at least two persistence lengths and
he bead-spring chains developed here also capture the response correctly when external
orces are applied.

II. REAL CONTINUOUS WLC

As discussed in the previous section, the spring force law in the new bead-spring chain
odel will be chosen so that the force-extension behavior of the model matches that of

he �=� continuous WLC in the limits of large and small force. Recall that the � of any
ystem considered here is finite, but we are only considering systems with ��1 such
hat the force-extension behavior is very close to the �=� force-extension behavior. To
auge the accuracy of this bead-spring chain we will calculate the error in the force-
xtension behavior relative to the �=� behavior over the entire force range. The force-
xtension behavior for an �=� worm-like chain cannot be written exactly as a simple
nalytic function, but the response can be calculated numerically. In this article we use
he numerical calculation by Bouchiat et al. �1999� as the “true” worm-like chain.
The asymptotic expansions for both large and small forces are
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519ALTERNATIVE WORM-LIKE CHAIN SPRING FORCE LAW
�ẑ� 
 1 −
1

2 f̂1/2
−

1

128 f̂3/2
+ O� 1

f̂2� , �7�

�ẑ� 

2

3
f̂ −

44

135
f̂3 + O� f̂5� , �8�

here �ẑ� is the average fractional extension and f̂ is the externally applied force made
imensionless using kBT divided by the persistence length, Ap. The numerical data from
ouchiat et al. have these asymptotic behaviors. Bouchiat et al. also developed a simple

ormula to approximate the numerical evaluation. While this formula only introduces a
mall error, because of the functional form chosen, it does not have exactly the expan-
ions above. Thus, in the main body of this article we only use the numerical data from
ouchiat et al. See the Appendix for a discussion of the simple functions to approximate

he behavior.

V. ACCURACY OF MARKO-SIGGIA SPRING

Before discussing the new spring force law, we will address the accuracy of using the
arko and Siggia interpolation formula as the spring force law at different levels of

iscretization. This analysis is related to that done previously �Underhill and Doyle
2004��, though it differs in one very important aspect. Previously, we were concerned
ith understanding how the different ensembles and corresponding fluctuations affect the

esponse. Therefore, when analyzing the behavior of bead-spring chains using the Marko-
iggia force law, we compared the force-extension behavior of the bead-spring chain
ith a hypothetical polymer which has the Marko-Siggia formula as its true behavior.
his is because we did not want the fact that the Marko-Siggia form is not the same as the

eal WLC to complicate our understanding of the different ensembles and fluctuations.
However, our concern here is to analyze how well a bead-spring chain models the real

ontinuous WLC, so we compare the behavior of Marko-Siggia chain to the real WLC
using the numerical data from Bouchiat et al. �1999��. Note that because the hypothetical

arko-Siggia polymer is the same as the real WLC at small and large force, the error will
e the same as the previous analysis in those two limits. It is at intermediate forces where
here is a difference.

The Marko and Siggia spring force law takes the form

fspring�r� = � kBT

Aeff
�
� r

�
� −

1

4
+

1

4�1 − r/ � �2� , �9�

here Aeff is an effective persistence length which can be different from the true persis-
ence length of the WLC being modeled, Atrue �previously denoted Ap�. The effective
ersistence length is a fudge factor used to improve the behavior of the bead-spring
hain. An extensive analysis of different choices for this effective persistence length was
erformed previously �Underhill and Doyle �2004�� in terms of the ratio �=Aeff /Atrue.
he result is that a single choice of � is not capable of correcting the force-extension
ehavior at both small and large forces. In this section we will see further evidence of this
act. The value of � is a function of the number of persistence lengths represented by
ach spring �. Here, we will use the low-force criterion for �, which chooses the function
��� such that the force-extension behavior of the bead-spring chain matches the force-

xtension behavior of the �=� continuous WLC at zero force.
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520 P. T. UNDERHILL AND P. S. DOYLE
Figure 3 shows the relative error in the fractional extension versus force between using
he Marko-Siggia spring force law and the �=� continuous WLC. The curves correspond
o �=4,20,�, and the low-force criterion was used for �. To avoid ambiguity in the sign
f the relative error, we define it as

	 �
true value − calculated value

true value
. �10�

he key point is that the error appears to not be the smallest at �=�. At intermediate �
like �=20� the maximum error can be smaller than when �=�. This is because the error
iscussed previously �Underhill and Doyle �2004�� counteracts the error because the
arko-Siggia formula does not match the real WLC.
The general response can be understood by examining the limiting behaviors of the

ead-spring chain and the real WLC. At large force the average fractional extension using
he Marko-Siggia force law is

�ẑ� 
 1 −
1

2�1/2 f̂1/2
+ O�1

f̂
� , �11�

here the external force f̂ is made dimensionless using the true persistence length, de-
oted Atrue. Recall that in Fig. 3, ���� was determined using the low-force criterion. This

eans that for any 10/3����, the relative error eventually decays as f̂−1/2 with a
oefficient that is negative, and the error gets worse as � grows �i.e., � decreases for the
ow-force criterion�.

The form of the Marko-Siggia formula makes the behavior at small force slightly more

ubtle. For any 10/3����, the relative error at small enough force decays as f̂2. This

s because �ẑ� is an odd analytic function of f̂ around small force, and the low-force

riterion for the effective persistence length makes the order f̂ term match the real WLC.

he coefficient to this decay in relative error is determined from the order f̂3 contribution
o �ẑ�, which is related to the second and fourth moments of the spring length, �r̂2� and
r̂4� �Underhill and Doyle �2004��. The subtlety arises because as �→�, the coefficient to

ˆ2 1/2

IG. 3. Relative error in the fractional extension versus force for the Marko-Siggia spring using the low-force
riterion for the effective persistence length. The gray lines signify that 	�0, while the black lines signify that
�0. The curves correspond to �=4 �dotted�, �=20 �dashed�, and �=� �solid�. As �→10/3 the curves
pproach the bead-string chain �dash-dot�.
f in the relative error diverges as � . Higher order terms in force also have diverging
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521ALTERNATIVE WORM-LIKE CHAIN SPRING FORCE LAW
oefficients. This large number of terms, each with diverging coefficients, combines and

ancels perfectly to give a relative error that decays as f̂ . The actual curve in the �→�
imit is found by comparing the inverse of the Marko-Siggia force law with the behavior
f the real WLC. The inverse of the Marko-Siggia force law is not an odd function, and
o has all terms in the expansion for small force.

It may appear that the Marko-Siggia spring force law with an effective persistence
ength has sufficiently small error at intermediate levels of discretization such as �=20.
owever, in many cases it is not sufficient to simply have the relative error approach zero

t large force. Any bead-spring model with a finite fully extended length will have a
ractional extension that approaches 1 as the force approaches infinity; thus, the relative
rror in the fractional extension will approach zero as the force approaches infinity. It is
lso important for an accurate model to have the correct approach to full extension. As
hown in Eq. �11�, the approach to full extension is affected by the effective persistence
ength. The approach to full extension has been used to analyze the behavior in strong
ows and the relaxation after cessation of elongational flow �Ladoux and Doyle �2000�;
haqfeh et al. �2004�� and is therefore important to capture with the coarse-grained
odel.
It is useful to pause at this point and recall how far the low-force criterion can be

ushed. It was shown previously �Underhill and Doyle �2004�� that the low-force crite-
ion for the Marko-Siggia force law cannot be pushed past �=10/3. At that point, the
ffective persistence length becomes infinite. What that means is the spring force is zero
or all extensions less than the fully extended length. This type of model is also called the
ead-string chain �Bird et al. �1987��. The fractional extension as a function of the force
or the bead-string chain is

�ẑ� =
− 3kBT

f �
+

1

L�f � /�kBT��
, �12�

here L is the Langevin function �Underhill and Doyle �2004��. We show this curve in
ig. 3, which is the limiting behavior of the Marko-Siggia system with low-force crite-

ion when �→10/3. Note that the f̂−1/2 approach to full extension has totally vanished. In
act, the response is not all that different from using the freely jointed chain to model the
orm-like chain �with each rod representing two persistence lengths�.

. ALTERNATIVE TO MARKO-SIGGIA

The main goal of this paper is to systematically build a new spring force law which
an be used in bead-spring chain models and perform better than the Marko-Siggia
ormula. We now develop that new spring force law in this section. We proceed as for the
reely jointed chain previously �Underhill and Doyle �2005��. We start by assuming a
orm of the spring force law

f̂s =
Cr̂

�1 − r̂2�2 +
Gr̂

��1 − r̂2�
+ Dr̂ + Br̂�1 − r̂2� . �13�

e choose the values �functions of �� for C ,G ,D ,B such that the force-extension be-
avior of the bead-spring chain is the same �in the limits of small and large force� as the
=� continuous WLC.
For the similar analysis for the freely jointed chain we knew the way the spring force
ust approach full extension to have the desired force-extension behavior from the ran-
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522 P. T. UNDERHILL AND P. S. DOYLE
om walk spring �RWS� model. For the worm-like chain we must instead directly calcu-
ate the force-extension behavior of a bead-spring chain using the postulated form as the
pring force law. For large force the fractional extension is

ẑ� 
 1 −
C1/2

2 f̂1/2
−

G + 7

4� f̂
+

1

f̂3/2
�C1/2�C − 16D�

64
+

C1/2�G + 4�
16�

−
�G + 1��G + 3�

16�2C1/2 � + O� 1

f̂2� .

�14�

o match with the behavior of the �=� WLC �Eq. �7��, we choose C=1, G=−7, and

D =
3

32
−

3

4�
−

6

�2 . �15�

ith these choices the average fractional extension expansion is

�ẑ� 
 1 −
1

2 f̂1/2
−

1

128 f̂3/2
+ O� 1

f̂2� . �16�

he remaining parameter, B, is chosen to match the behavior at small force �at equilib-
ium�. We will first proceed in the same way as for the freely jointed chain, using the
arge � expansion of the second moment of the spring length, �r̂2�. Because this second
oment is proportional to the slope of the force-extension behavior at small force, match-

ng the second moment between the spring and the WLC means that the force-extension
ehavior is correct at small force.

Provided r̂=0 is the global minimum of the spring potential energy, the behavior of the
econd moment for large � is obtained by expanding the energy for small r̂ �Underhill
nd Doyle �2004�, �2005��. Recall that for our bead-spring chain to match the equilibrium
ehavior of the �=� WLC, each spring must have by construction �r1

2�=2�Ap. In di-
ensionless form, this is equivalent to �r̂2�=2/�. If we choose

Bh� =
13

32
+

39

16�
−

323

192�2 , �17�

hen the expansion of the second moment for the spring with our new force law is

�r̂2� 

2

�
+ O� 1

�4� . �18�

e have denoted this Bh� because the value comes from examining the expansion at high
. For the freely jointed chain we found that using the high � expansion allowed us to get
very small error even at smaller �. Figure 4 shows the relative error in the second
oment of the spring length as a function of �. While the error does decay as �−3 as we

xpect, the prefactor is large enough that the relative error at �=4 is about 15%. This is
arger than we want. While one way to reduce the error is to continue the expansion to
igher order in 1/�, making the error decay as �−4 or even higher, this will have most of
ts impact at large � where the error is already small enough and will barely change the
rror at small �.

An alternative is to determine numerically the function B��� such that the error is
xactly zero. This is similar to how the effective persistence length is determined numeri-
ally as a function of � when using the Marko-Siggia force law and low-force criterion.
n fact, the low-force criterion function for the Marko-Siggia force law ���� is the
unction such that �r̂2�=2/�. It would be more useful to have an approximate formula for

��� that still has a small error. One such formula is
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B =
�13/32� + �0.8172/�� − �14.79/�2�

1 − �4.225/�� + �4.87/�2�
. �19�

sing this formula, the error in the second moment of the spring length vanishes at �
4,5 ,9 ,30,� by construction and has a maximum relative error of 0.07% for ��4.

Using this function for the parameter B, we obtain our new spring force law

f̂s =
r̂

�1 − r̂2�2 −
7r̂

��1 − r̂2�
+ � 3

32
−

3

4�
−

6

�2�r̂

+ � �13/32� + �0.8172/�� − �14.79/�2�
1 − �4.225/�� + �4.87/�2� �r̂�1 − r̂2� . �20�

igure 5 shows the relative error in the fractional extension versus force using this new
pring force law. We see that the maximum error is approximately 1% even for �=4. The
esponse also has the correct approach to full extension, which can be seen from the
teeper power law near large force than was seen for the Marko-Siggia force law.

IG. 4. Relative error in the second moment of the spring length, �r̂2�, using the new spring force law and the
unction Bh�.

IG. 5. Relative error in the average fractional extension �ẑ� using the new spring force law �Eq. �20��. The
ray lines signify that 	�0, while the black lines signify that 	�0. The curves correspond to �=4 �dotted�,

=20 �dashed�, and �=� �solid�.
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524 P. T. UNDERHILL AND P. S. DOYLE
We can use the expansions of the fractional extensions to examine the limiting behav-
or of the relative error. At large force our new spring force law captures correctly up to

rder f̂−3/2 so the relative error decays as f̂−2. For �=4,5 ,9 ,30,� the parameter B makes

he error vanish at small force, so the relative error decays as f̂2. For other values of �,
here is a small but nonzero relative error at zero force, so the relative error behaves as a

mall constant plus a term of order f̂2.
We will again pause to discuss how far this force law can be pushed. Recall that the

orce law uses the B parameter to make �r̂2�=2/�. This is only possible if ��2 because
he spring cannot be larger than the fully extended length. If each spring represents two
ersistence lengths, then the B value would need to make �r̂2�=1. In other words, the
pring will have to look more and more like a rigid rod because the average equilibrium
ength and fully extended length become equal. To make this true it would be necessary
o have B=−�. In this limit, the bead-spring chain becomes a freely jointed chain. This is
est illustrated by examining the spring potential energy directly.

Figure 6 shows the spring potential energy calculated from our new spring force law
Eq. �20�� for a few values of �. Initially, as � gets smaller, the potential energy weakens,
llowing for fluctuations to larger extensions. As � gets even smaller, the minimum in the
otential appears at nonzero extension. This allows the spring to correctly model both the
ow and high force behaviors. The minimum is at nonzero extension because the spring is
ecoming more like a rigid rod. As � decreases, this minimum moves towards full
xtension and gets deeper. For B=−� �which is necessary to get the correct �r̂2�=1 for
=2�, the potential is infinitely deep at r̂=1. In other words, one way of simulating a

reely jointed chain using stiff springs would be to set �=2 and B→−� in our spring
orce law.

The subtle point has to do with the behavior at large force. From the high force
ehavior in Eq. �14� and our choice of C, G, and D, one might think the behavior at high
orce is retained even in the limit �=2 and B→−�. This is not true because one of the

eglected terms in Eq. �14� goes as B / f̂2. This means that, for any finite B, there exists a
orce large enough that the term is negligible. However, at any finite force, as B→−�
hese higher order terms become important, so the response approaches that of the freely
ointed chain.

IG. 6. Spring potential energy versus fractional extension for the new spring force law �Eq. �20��. The curves
orrespond to �=20,10, 4, with the arrow denoting decreasing �. The arbitrary additive constant has been
hosen so the potential energy vanishes at zero extension.
We illustrate this approach by showing in Fig. 7 the error in the fractional extension
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525ALTERNATIVE WORM-LIKE CHAIN SPRING FORCE LAW
or �→2, where in this plot B is determined numerically such that �r̂2�=2/�. The curves
hown are for �=4,3 ,2.5,2.1,2 with corresponding B=−1.265,−9.836,−70.68,
8185.9,−�. For the �=2, B=−� curve, we have plotted the behavior of the freely

ointed chain. Note that each curve eventually decays like f̂−2 for large force, but the
ransition to that behavior is delayed as �→2. When �=2, the transition never occurs.
or each force, as �→2, the response approaches the freely jointed chain response.

I. CONCLUSION

We have examined the coarse graining of the continuous worm-like chain polymer
nto a bead-spring chain model. We have restricted the discussion to very long polymers
��1� so that we can consistently develop a model without bending potentials between
he springs. A key point is that, even though the entire chain is very long, each spring
oes not represent a large number of persistence lengths �� can be small�. We illustrated
he deficiencies of using the Marko-Siggia force law even with the use of an effective
ersistence length. This is related to our previous work analyzing the behavior of the
arko-Siggia force law �Underhill and Doyle �2004��.
We then developed a new spring force law �Eq. �20�� in a systematic way that signifi-

antly outperforms the Marko-Siggia spring force law. The new spring force law still has
simple functional form, so it can be easily used in dynamical simulations. The maxi-
um error in the force-extension behavior is about 1% even if each spring represents

nly four persistence lengths. This naturally raises the questions beyond force-extension
ehavior: Will all these results be swamped by HI and EV in rheological predictions, and
ow would previous simulations using the Marko-Siggia force law be affected by using
his new force law?

As mentioned in the Introduction, even when including HI and EV in the model, it is
mportant to correctly capture the size of the coil under theta conditions. The solvent
uality parameter will cause the chain to swell from theta conditions to the correct size.
nclusion of HI will cause the dynamic properties to have the correct values because of
ccurate predictions of universal ratios and the correct prediction of the radius of gyration
Sunthar and Prakash �2005��. Since this size of the coil is related to the force-extension

IG. 7. Relative error in the average fractional extension �ẑ� using the new type of spring force law as �
2. The value of B was determined numerically to make the error vanish at zero force. The curves correspond

o �=4,3 ,2.5,2.1,2 with the arrow denoting decreasing �. The �=2 curve is the response of the freely jointed
hain.
esponse at small force, correctly modeling the force-extension behavior, as well as
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526 P. T. UNDERHILL AND P. S. DOYLE
ncluding HI and EV correctly, will result in accurate predictions. Alternatively, if the
orce-extension behavior or size of the coil is not modeled correctly, the predictions will
orrespondingly change to incorrect values. The rheological predictions at large forces or
xtensions seem easier to understand. In this limit, the EV effects should be small and the
nfluence from HI should be smaller, so the spring contribution which comes from the
orce-extension behavior should be the dominant factor. Our new spring force law cor-
ectly models the response in both of the extremes, at small forces �equilibrium� and large
orces.

However, using this new force law in place of the Marko-Siggia form in previous
imulations will probably only produce a small change in the response. This is because
revious simulations have only been performed when each spring represented a fairly
arge number of persistence lengths �e.g., �
20�. This is in part because the error which
ccurs if � became smaller was recognized, but also because the physics of the problems
id not necessitate performing simulations for smaller �. Simulating the behavior of
olymers in increasingly smaller microdevices will require a model which can be used
or smaller �. We believe that in this area, a more substantial difference will emerge
etween our new spring force law and the Marko-Siggia formula. Even for �
20, where
he difference in behavior may be slight, there are advantages to using the new force law.
he new force law has a more systematic development which includes the fluctuations in
onfiguration space. Our analysis resulted in a simple formula �Eq. �20�� which elimi-
ates the need to calculate an effective persistence length which must be calculated based
n some criteria which balance the response at small and large forces. Using this new
orce law should also help in the determination of the “best” HI and EV strength param-
ters to use. Different researchers use different fitting procedures to determine the model
arameters and thus simulate using a range of model parameters �Larson �2005�; Somasi
t al. �2002�; Jendrejack et al. �2002��. If an incorrect spring force law is used, then the
arameters such as the persistence length and EV strength parameter must be changed to
ompensate for the incorrect force law. Using our new force law should help reduce this
ariation among researchers and isolate coarse-graining issues associated with springs
rom that with HI and EV.

However, our new bead-spring chain model does have some assumptions intrinsic to it
ecause there are no bending potentials between the springs. The errors from these
ssumptions are not as easy to quantify. Keep in mind, though, that these are the same
ype of assumptions made using the current spring force laws and when the freely jointed
hain is used to approximate the worm-like chain. In fact, using the method presented
ere, a bead-spring chain trying to represent two persistence lengths per spring becomes
quivalent to the freely jointed chain.

The results presented here should be considered a step forward towards filling the gap
n coarse-grained models discussed in the Introduction. We have been able to reduce the
ize of this gap without introducing any further assumptions. This has pushed bead-spring
hain models without bending potentials as far as possible. In order to eliminate the gap
ompletely and account for the finite length of the worm-like chain ��
1�, there must be
orrelation between segments in the coarse-grained model. We think this may be best
ccomplished using bending potentials between the springs or a generalized bead-spring
hain discussed previously �Underhill and Doyle �2005��. However, if each spring rep-
esents more than a few persistence lengths �which also means the whole chain contains
ore than a few persistence lengths�, it seems sufficient to use the simpler model without
ending potentials.
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PPENDIX

. Alternative to Exact Worm-like Chain

As mentioned previously, the force-extension behavior for the infinitely long WLC is
ot known analytically. It is convenient to have a simple analytic form which is a good
pproximation. The Marko-Siggia formula is such a function which is correct asymptoti-
ally for small and large forces. However, it can deviate by up to 10% at intermediate
orces. Bouchiat et al. �1999� developed a new approximate formula by adding terms to
he Marko-Siggia form. This formula is

f̂ =
1

4�1 − r̂�2 −
1

4
+ r̂ + �− 0.516 422 8r̂2 − 2.737 418r̂3 + 16.074 97r̂4 − 38.876 07r̂5

+ 39.499 44r̂6 − 14.177 18r̂7� . �A1�

hey used this new formula to analyze force-extension experiments with double-stranded
NA to determine if a continuous WLC model is appropriate and determine the persis-

ence length. Figure 8 shows how accurately Eq. �A1� represents the infinitely long WLC.
he maximum relative error is 0.3% at a dimensionless force of about 0.1 �about 8 fN for
ouble-stranded DNA�, with a much smaller error at higher forces. Certainly for any
umerical calculation or comparison to experiments this is sufficiently accurate.

The one drawback of this formula is that it only has the first term correct in a series
xpansion at small and full extension. This does not dramatically impact the overall error
ecause the coefficients have been determined by fitting. This means that the series
onverges slowly, making a series expansion of the approximate function not very useful.

It would be nice if the approximate function had many correct terms in the series
xpansion. We can do this by using a function that is a sum of terms of the form

ˆ2n+1 ˆ2 m

IG. 8. Relative error in extension between the real infinitely long WLC �numerical data from Bouchiat et al.
1999�� and approximate formulas. The approximation from Bouchiat et al. �our Eq. �A1�� is shown by dia-
onds, while our Eq. �A6� is shown by squares.
�1−r � inspired by Flyvbjerg �2001�. It is possible to have the same limiting be-
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528 P. T. UNDERHILL AND P. S. DOYLE
avior as the real WLC with terms for integers n�0 and m�−2. Not all these terms are
ecessary though because the three terms �n ,m�= �i , j� , �i+1, j� , �i , j+1� are linearly de-
endent. We have chosen the form

f̂ =
Cr̂

�1 − r̂2�2 +
Gr̂

�1 − r̂2�
+ Dr̂ + Br̂�1 − r̂2� + Jr̂�1 − r̂2�2�1 + k2r2 + k4r4 + ¯ � . �A2�

ote that the formulas in this section are not spring force laws, but are approximations to
he force-extension behavior of the infinitely long WLC. For the infinitely long system it
s not necessary to distinguish between the constant force or constant extension en-

embles. We can therefore drop the averaging notation and use simply f̂ and r̂.
The advantage of the new form is that it correctly captures the odd parity of the WLC.

his allows us to match successive terms in the expansions near r̂=0 and r̂=1 between
ur approximate form and the infinitely long WLC. We have chosen C=1,G=0,D
3/32,B=5/64,J=21/64, k2=41/35, which gives expansions of

f̂ 

1

4�1 − r̂�2 +
1

32
+ O��1 − r̂�2� , �A3�

f̂ 

3

2
r̂ +

33

20
r̂3 + O�r̂5� . �A4�

ur choice of functional form means that performing a fit with the other parameters does
ot affect the expansions above. We have chosen

k4 = 0.627, k6 = − 11.71, k8 = 10.26, �A5�

nd all higher k’s are zero. This gives an approximation to the WLC behavior of

f̂ =
r̂

�1 − r̂2�2 +
3

32
r̂ +

5

64
r̂�1 − r̂2� +

21

64
r̂�1 − r̂2�2�1 +

41

35
r2 + 0.627r4 − 11.71r6 + 10.26r8� .

�A6�

igure 8 shows how well this new formula approximates the infinitely long worm-like
hain. The maximum error is 0.04%, with much smaller error at small and large forces.
he main difference between this new form and that developed by Bouchiat et al. occurs
t small forces where, because the new formula has the correct series expansion, it has a
maller error.
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