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We study a system of colloidal spheres with induced magnetic dipoles confined in two-dimensional �2D�
hard-wall channels using Brownian dynamics simulations. The external magnetic field is directed normal to the
2D plane and therefore the colloids interact with a purely repulsive r−3 potential. The effects of confinement
between parallel walls are determined by analyzing the structure and dynamics of these confined systems and
comparing to the unbounded �infinite� 2D plane limit. The bond-order correlation function is analyzed as a
function of time and exhibits unique characteristics associated with the channel-like confinement. The exis-
tence of a plateau in this correlation function is observed over an intermediate time scale and the fate of the
plateau �decay or persistence� depends upon the channel width, the strength of the external magnetic field, and
the number density. The plateau is analyzed in further detail and an explanation is put forth for its existence and
subsequent long time behavior. Additionally, re-entrant behavior with respect to dimensionless channel width
is observed in the structural properties and an associated state-diagram is presented for these systems.
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I. INTRODUCTION

Magnetorheological �MR� fluids are suspensions of col-
loids which acquire dipole moments under application of a
magnetic field. Recently there has been much interest in us-
ing the colloids in these fluids as structural components in
microfluidic applications. There have been a number of stud-
ies on confined systems of MR fluids in recent years ranging
from determination of fundamental properties of the self-
assembly to applications utilizing the self-assembled struc-
tures. Self-assembly of MR fluids in the thin slit geometry
has been well studied and the types of structures that form in
this geometry have been characterized �1–3�. At low volume
fractions, the MR fluid self-assembles into a structure char-
acterized by uniformly spaced columns that span the height
of the slit �1�. Using more complex fields such as a rotating
field, periodic planar structures have been observed in the
plane of the rotating field between parallel walls �2�. At
higher volume fractions, in thin slits, more complex struc-
tures can be formed that are highly dependent upon the
thickness of the slit �3�.

Researchers have begun to take advantage of the unique
combination of structural and dynamical capabilities that MR
fluids offer in order to design microdevices utilizing these
properties. Experimental studies have been performed on a
variety of applications involving self-assembled MR fluids in
confined geometries �4–9�. Of particular interest is the use of
these MR colloids as structural components for biomolecule
separation devices. The porous network of columns formed
by MR fluids in microfluidic channels has been shown to be
effective for size dependent separation of DNA �4,5�.

In this work we present an analysis of the dynamics of
equilibrium structures created by the self-assembly of MR
fluids in two-dimensional �2D� channels and show how those
dynamics are correlated with the structure. Self-assembly of

field-responsive colloids in 2D has been widely studied be-
cause it is a model system with very interesting physics. The
most studied aspect of these systems is the nature of the
solid-liquid phase transition. In the unbounded �infinite
plane� 2D system, it has been theorized that the nature of the
solid-liquid phase transition is second order with an interme-
diate stable hexatic phase �10–12�. There is compelling ex-
perimental evidence supporting the existence of a hexatic
phase in the case of purely repulsive dipoles �13–15�. While
many simulation studies have been performed upon a variety
of 2D colloidal systems, the nature of the phase transition
has not yet been conclusively determined in simulations
�16–21�.

In addition to the nature of the phase transition, many
researchers have been interested in the properties of 2D col-
loids confined laterally. Much of this research has focused on
circular confinements �22–27�. This confinement imposes a
circular shell-like structure upon the crystal and leads to very
unique properties of the phase transition. Nonhomogeneous
melting has been observed in these systems where the melt-
ing begins at the boundary between the shell-like structure
and the more hexagonal structure in the center of the circular
confinement �23,24�. Additionally, re-entrant freezing was
observed in small clusters of colloids confined in 2D circles
due to radial fluctuations �22,25,26�. As the interaction
strength between the colloids was decreased the clusters tran-
sitioned from solidlike to liquidlike. However as the interac-
tion strength was further decreased, increased radial fluctua-
tions of the colloids caused rings of colloids to become
locked in register with one another and produced re-entrant
freezing behavior. This type of re-entrant phase behavior was
also observed in systems of 2D colloids confined in periodic
1D light fields �28–30�.

Another very important form of constraint for 2D colloi-
dal systems is channel-like confinement. This type of system
has the obvious application towards studying microfluidic
geometries. Additionally, channel-like confinement breaks
the symmetry that exists in circular confinements leading to
different structures and dynamics. A few experimental stud-*Electronic address: pdoyle@mit.edu
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ies have been done on colloidal-like systems confined in
quasi-2D channels �31–33�. Teng et al. �31� observed aniso-
tropic diffusion, enhanced in the direction parallel to the con-
fining walls when studying a dusty plasma system confined
in a quasi-2D channel. The other studies were performed on
spherical block copolymers confined in a 2D channel �32,33�
and the authors observed that the orientational order decayed
in the regions farther from the wall. Recently, simulation and
theory have been performed on a system of colloids in nar-
row 2D channels interacting with a Yukawa potential �34�.
The channel walls in these studies consisted of a parabolic
confining potential. The authors observed re-entrant behavior
as a function of the density of colloids in the channels and
they characterized the structural and melting transitions that
occur in this system.

We have recently presented a simulation study on repul-
sive dipoles confined in 2D channels and have fully charac-
terized the types of structures that form in these systems
�35�. Here we will present an analysis of the dynamics in
these systems and demonstrate the close connection between
the structure and dynamics that are observed. The organiza-
tion of this paper is as follows. In Sec. II we present the
details for the simulations performed in this study. In Sec. III
we present our results for the simulations of the unbounded
2D system. We then compare those results to 2D channel
systems in Sec. IV. In Sec. IV A we discuss in further detail
the interesting dynamics that we have observed in the chan-
nel systems. We illustrate the link between structure and dy-
namics in Sec. IV B. Combining all of the results, we present
a state-diagram for these 2D systems in Sec. V. We discuss
the generality of the state-diagram in Sec. VI and in Sec. VII
we summarize our findings and discuss the impact of this
work.

II. SIMULATION DETAILS

The system studied consisted of MR colloids confined to
a 2D plane with a uniform external magnetic field directed
normal to the confining plane. The details of the simulations
are given in a recent publication �35� and we summarize here
the major points. In this system, the colloids interact with a
purely repulsive dipolar potential. We have modeled the MR
colloids as hard spheres with repulsive point dipoles at their
centers. This approach has been used widely in the literature
�35–37� and has been shown to be a good approximation for
the magnetic behavior of MR colloids �38�. The large sepa-
ration distances between the colloids in this system ensure
that the dominant magnetic field is the external field and the
effect of mutual induction between colloids is negligible. The
pairwise dipolar interaction energy �Vij� is given by

Vij�rij� = �� d

rij
�3

, �1�

where �=�oM�B�2 /4�d3 is the energy scale and d is the
diameter of the hard sphere. The center-to-center distance
between the two colloids i and j is given by rij, �o is the
magnetic permeability of free space, and M�B� is the dipole
moment of an individual colloid and is a function of the

magnetic field strength �B�. A dimensionless field strength is
then defined as

� =
�

kBT
� d

R
�3

, �2�

where R is defined as R=a sin 60 and a is the lattice spacing
in a perfectly hexagonal 2D crystal. The lattice spacing is a
purely geometric property and is a function of the number
density in the system �n� such that a= �n�3/2�−1/2. The num-
ber density is defined as the number of colloids in the system
divided by the total area available to the centers of the col-
loids. Therefore, the length scale in terms of the number
density in the system is written as

R = � 2
�3

n�−1/2

. �3�

The dimensionless interaction energy in the system is thus
defined as

Vij�rij�
kBT

= �� R

rij
�3

, �4�

resulting in the interesting observation that all 2D dipolar
systems at the same � behave identically, as long as R is the
only relevant length scale in the system �i.e., d�R� �37� as is
the case for all of the results reported here.

Brownian dynamics simulations were used to study this
system �39�. The equation of motion is approximated by the
stochastic differential equation

dri�t� �
1

�
Fs,i„r j�t�…dt +�2kBT

�
dWi, �5�

where the inertia of the colloids is neglected. The parameter
Wi is a Wiener process with 	dWi
=0 and 	dWidW j
=dt�
where � is the identity tensor. This Wiener process represents
the thermal fluctuations in the system. Fs,i(r j�t�) is the sum of
all pairwise interactions in the system including dipole-
dipole interactions and � is the drag coefficient on a single
colloid. For simplicity, we neglect hydrodynamic interac-
tions. The equation of motion was integrated forward in time
using an Euler integration. At the end of a time step, hard
sphere overlaps were treated by displacing overlapped col-
loids along the line connecting their centers until they are
just contacting �40�. In this manner, we project out any un-
physical moves that may occur during the course of a time
step. This procedure was performed for all overlaps, between
two colloids and between colloids and hard walls, and was
iterated until all overlaps in the system were removed. Due
to the large magnitude of the repulsive interactions compared
to the thermal motion in our 2D systems �at the field
strengths we simulated� we never observed overlaps between
colloids, only overlaps between the colloids and the walls.

Simulations of the unbounded system were performed
with 14 784 colloids. We imposed periodic boundary condi-
tions in the x and y directions and the magnetic field was
aligned in the z direction. Simulations of the channel systems
were done with 960–3840 colloids. In these systems we im-
posed periodic boundary conditions in the y direction and
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hard walls in the x direction. A time step of dt̃=7.5�10−5

was used where time is made dimensionless as t̃= tkBT /�R2.
The time necessary for a colloid to freely diffuse a unit dis-
tance R is given by �R2 /kBT. A cutoff for the dipole-dipole
interaction of 6.5R was used along with a linked-list binning
algorithm �41� where the bin sizes were slightly larger than
the cutoff value. Therefore, only interactions between col-
loids separated by a distance less than the cutoff were con-
sidered.

The number density in the simulations reported here was
held constant at n=0.0462 such that d�R. For the channel
systems, the width of the channel was taken to be the width
accessible to the centers of the colloids. This definition im-
plies that the width of the channel used for calculating the
number density is in fact the true width of the channel minus
d. Defining the channel width in this way ensures that we
remove any system dependence on the colloid diameter d. In
the unbounded systems the area is simply the true area since
we have periodic boundary conditions in all directions. All of
the simulations were determined to be converged in system
size, time step, and cutoff for the dipole-dipole interaction.

III. UNBOUNDED 2D SYSTEM

The unbounded systems were equilibrated from a perfect
hexagonal lattice. The total defect concentration was tracked
as a function of time and the system was determined to be at
equilibrium when the defect concentration �Cdef

b � remained
unchanged over a dimensionless time of 373. A defect is
defined as a colloid with more or less than six nearest neigh-
bors. Statistics were taken after the system was determined to
be equilibrated. Examples of the equilibration curves are
shown in Fig. 1�a�. In the liquid phase, near the transition
field strength, the equilibration was slower than for systems
farther away from the phase boundary. This is shown in Fig.
1�a� where the equilibration of the unbounded system at a
dimensionless field strength of 12.41 is much faster than at a
dimensionless field strength of 14.89. Fluctuations in the de-
fect concentration also increase near the phase boundary
which is consistent with the recent work of Reichhardt and
Reichhardt �42�. The state of the unbounded system was de-
termined by calculating the bond-order correlation function
in time �g6�	̃�� �43�. The correlation function is given by the
equation

g6�	̃� = 	
6
*�0�
6�	̃�
 , �6�

where 	̃ is the dimensionless lag time and 
6 is the local
bond order parameter


6 =
1

m
�
k=1

m

ei6�k. �7�

In Eq. �7�, m is the number of nearest neighbors for a given
colloid and �k is the angle between the vector connecting the
colloid and its kth nearest neighbor and an arbitrary reference
axis. The nearest neighbors are determined by performing a
Delaunay triangulation. Theory predicts that the behavior of
g6�	̃� in time can be used to determine the phase of the un-

bounded system �43�. In the solid phase, g6�	̃� remains con-
stant for all lag times while in the liquid phase g6�	̃� decays
exponentially to zero as a function of lag time. In the hexatic
phase, g6�	̃� decays algebraically to zero as a function of lag
time. The bond-order correlation function is plotted in Fig.
1�b� for a variety of dimensionless field strengths. We were
able to equilibrate the liquid phase up to a dimensionless
field strength of 14.89 and the solid phase down to a dimen-
sionless field strength of 15.2. Between these two field
strengths we were not able to converge our unbounded sys-
tem due to the diverging correlation lengths and times near
the phase transition �44� and therefore we are not able to
comment upon the existence of a hexatic phase in this sys-
tem. However, our results clearly indicate that the solid-
liquid phase transition occurs between a dimensionless field
strength of 14.89 and 15.2. This range is in good agreement
with the simulation results of Löwen �45� for the same type
of system. However, Löwen used an empirical criterion to
determine the transition point and the system size was much
smaller �N=961� than the current study. Experimental stud-
ies have shown the existence of a hexatic phase between a
dimensionless field strength of 12.14 and 13.93 with a liquid
phase below 12.14 and a solid phase above 13.93 �13�, a
slightly lower range than our simulation results. However,
our determination of the phase boundary region in the un-
bounded system serves as a base case for our simulation
study which we will perturb by introducing parallel walls
into our 2D system.

FIG. 1. �Color online� �a� Defect concentration as a function of
time during the equilibration of the unbounded system at three di-
mensionless field strengths. �b� The bond-order correlation function
for unbounded 2D systems at several dimensionless field strengths.
Above a dimensionless field strength of 15.20 the system behaves
as a solid crystal and below a dimensionless field strength of 14.89
the system behaves as a liquid.
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IV. 2D CHANNELS

Each channel system was annealed from a liquid state to
the desired dimensionless field strength. The concentration of
defects in the channel was tracked as a function of time to
determine when equilibrium had been reached. We assumed
the system was sufficiently equilibrated when the concentra-
tion of defects did not change over a time period of 373.
Statistics were taken thereafter. Previously we characterized
the equilibrium structures that form in these systems and we
found that the colloids along the walls exhibit significantly
different behavior from the colloids in the bulk �35�. We
performed an analysis of the dynamics of the colloids against
the wall and found that they are highly localized and remain
so over the duration of our simulations. Therefore, in this
work we will focus on the dynamics of the bulk colloids. A
bulk colloid is defined as any colloid located at a distance
greater than R /2 from the wall. All of the results presented
for g6�	̃� are given for the bulk colloids only.

The bond-order correlation function is shown in Fig. 2 for
a variety of channel widths at two different field strengths. In
Fig. 2�a�, g6�	̃� is shown for channels at a dimensionless field
strength of 16.13, a value well into the solid phase for an
unbounded system. For a channel width of 100, the g6�	̃�
behavior is indistinguishable from the behavior in the un-
bounded system showing that the channel system approaches
the unbounded system in the limit of large channels. As the
channel width is made narrower the channel system becomes
more disordered than the unbounded system at this dimen-
sionless field strength �35�. This trend towards more disorder
is nonmonotonic and exhibits several oscillations as a func-
tion of channel width. An example of these oscillations is
illustrated by the g6�	̃� behavior for the dimensionless chan-
nel widths 5–3 �g–a� in Fig. 2�a�.

In Fig. 2�b�, g6�	̃� is shown for channels at a dimension-
less field strength of 12.41. This field strength is well into the
liquid phase in the unbounded system where g6�	̃� decays
exponentially to zero. In Fig. 2�b� �and Fig. 2�c�� at a chan-
nel width of 100, the g6�	̃� curve begins to decay exponen-
tially and is indistinguishable from the unbounded curve.
However, at a dimensionless lag time of �1, a plateau be-
gins to develop and the curve deviates from the unbounded
case. Eventually at a dimensionless lag time of �50 the pla-
teau begins to decay exponentially again. We will discuss
this plateau in more detail in Sec. IV A. As the channel width
is made narrower the channel system becomes more ordered
than the unbounded system at this field strength. Again, the
nonmonotonic behavior in g6�	̃� is observed for this dimen-
sionless field strength. In Fig. 2�b� oscillations are shown for
dimensionless channel widths 5–3 �g–a�. However, in gen-
eral as the channel width becomes wider the unbounded case
is approached slowly as seen in Fig. 2�c�, where four g6�	̃�
curves are shown for successively wider channels, 10, 20,
50, and 100 at a dimensionless field strength of 12.41. The
second exponential decay of the plateau only becomes evi-
dent for channels with a channel width w̃�20. The existence
of this intermediate time plateau is a very interesting feature
of this system and we offer below an explanation for its
origin and subsequent decay.

A. Local dynamics

The origin of the plateau is due to the presence of the
parallel flat walls in the channel systems. The walls create a
region of stable structure that extends away from the wall
into the middle of the channel. We are interested in probing
the local dynamics in these regions and therefore we chose to
look at the bond-order correlation function in time for differ-
ent sections of the channel. We analyzed g6�	̃� for strips of
dimensionless width 2 along the length of the channel lo-
cated at increasing distances from the walls. Therefore, the
strip labelled 0-2 indicates the sections of the channel that
are within a dimensionless distance of 2 from either wall. In
our analysis, only colloids that remained in a given strip for
the duration of the lag time were considered. Additionally,

FIG. 2. The bulk bond-order correlation function at a dimen-
sionless field strength of �a� �=16.13, �b� �=12.41 for a variety of
channel widths. �c� The bulk bond-order correlation function at a
dimensionless field strength of �=12.41 for large channel widths.
The letters a, b, c, d, e, f, g, h, i, j, and k correspond to the dimen-
sionless channel widths 3, 3.12, 3.46, 4, 4.15, 4.62, 5, 10, 20, 50,
and 100, respectively. The dotted line corresponds to the unbounded
system at a dimensionless field strength of �a� �=16.13 and �c� �
=12.41.
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only bulk colloids were considered for this analysis �e.g., in
the strip labelled 0-2, the colloids within a distance R /2 from
the wall were not used in the analysis�. The results of this
analysis are shown in Fig. 3 for a dimensionless channel
width of 100 at a dimensionless field strength of 12.41. In the
regions nearest the wall �0-2 to 2-4� there is a very well
defined plateau in g6�	̃� over all dimensionless lag times. As
we move farther away from the walls �4-6 to 6-8� there is
still a distinguishable plateau in g6�	̃� over all lag times but it
is plagued by large statistical noise. The poor statistics are
the result of the fact that the colloids in these sections do not
remain in their respective sections for very long times. If we
move even farther away from the wall �8-10 to 14-16� there
is no longer a statistically distinguishable plateau in g6�	̃�
and all of the curves fall on top of the curve for the un-
bounded system at this dimensionless field strength. These
results bring to light many interesting features of the dynam-
ics in these systems. In the sections where there is a plateau
in g6�	̃�, it remains constant until the longest lag time for
which we have statistics. Additionally, the value of this pla-
teau is continuously decreasing as we move away from the
wall until there is no longer a statistically significant plateau.
This continuous decrease indicates that there is no well de-
fined boundary between the “wall” region and the “bulk”
region but rather there is a continuous transition from one to
the other. This result is similar to the observations made by
Segalman et al. �33� for a system of block copolymers con-
fined in two-dimensional channels. Teng et al. �31� also ob-
served the decay of order as one moves away from the con-
fining walls in a dusty plasma system. Additionally, in their
results for g6�	̃� they observed a plateau for the sections near
the walls in good agreement with our results.

Now we address the issue of the subsequent decay in the
plateau in large channels �Fig. 2�c�� since no such decay is
observed within the sections nearest the wall in Fig. 3. The
reason for the decay is actually related to the mobility of the
colloids in the different regions of the channel. As mentioned
previously, the statistics in Fig. 3 for the sections 4-6 and 6-8
away from the wall become rather poor at long times due to

this mobility. In Fig. 4 we show trajectories for two colloids
over four different dimensionless lag times in a dimension-
less channel width of 100 at a dimensionless field strength of
12.41. For all of the lag times, the colloid against the wall
remains very localized next to the wall but becomes increas-
ingly mobile in the direction parallel to the wall. For a di-
mensionless lag time 1 �Fig. 4�a�� the colloid in the bulk is
able to explore its local region without feeling the constraint
of its neighboring colloids. This type of behavior is seen
uniformly over the entire width of the channel and gives rise
to the initial exponential decay in the bond-order correlation
function. Over intermediate lag times �Figs. 4�b� and 4�c��
that colloid completely explores its local environment but
remains trapped in its local region near the wall. Since the
colloid remains trapped in this local region its orientation
with respect to its neighbors remains well correlated in time
and therefore a plateau develops in g6�	̃�. Over very long lag
times �Fig. 4�d�� the bulk colloid is able to escape the region
near the wall and make an excursion into the center of the
channel. This excursion causes the correlation of the bond-
order for this colloid to decay and therefore the plateau in
g6�	̃� begins to decay for very long lag times.

Figures 3 and 4 illustrate that the structure in the different
regions of the channel combined with the different dynamics
in those regions give rise to the unusual behavior of the
bond-order correlation function in time. The region closest to
the wall is highly structured and the colloids there have low
mobility while the regions far from the wall have less struc-
ture and high mobility. The exchange of colloids between
these two regions of the channel is slow and therefore over
intermediate times there is a plateau in g6�	̃� before the col-
loids near the wall can escape into the bulk. It is important to
note that in Fig. 2�c� the decay in the plateau is only seen for
channels wider than �20, matching well with what we have
found in Fig. 3 where we observed a persistent plateau in
g6�	̃� out to a dimensionless distance of 8 from the walls.
This means that, at this dimensionless field strength, in chan-
nels with a dimensionless width narrower than �16 there are
no regions where the g6�	̃� curve decays to zero and there-
fore in these channels we would expect the plateau to persist
for all lag times.

FIG. 3. The local bond-order correlation function at a dimen-
sionless field strength �=12.41 and a dimensionless channel width
w̃=100. The labels 0-2, 2-4, etc., refer to the dimensionless distance
away from the wall where statistics were taken. The distances 8-10
through 14-16 away from the wall are statistically indistinguishable
from one another and from the bond-order correlation function for
the unbounded system at this field strength.

FIG. 4. �Color online� Trajectories for a bulk colloid �blue� and
a neighboring wall colloid �red� over four different times at a di-
mensionless field strength of �=12.41 in a channel of dimension-
less width w̃=100. The total trajectory time is �a� 	̃=0.373, �b� 	̃
=3.73, �c� 	̃=37.3, and �d� 	̃=373. The channel wall is drawn as a
solid line.
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The behavior of the bond-order correlation function and
the dynamics of the colloids in general are intimately related
to the defects in these 2D systems �11,14�. We have observed
that the channel-like confinement gives rise to some very
interesting defect properties �35� and we will now discuss in
more detail how those defect properties affect the dynamics
of the colloids in 2D channels.

B. Link between structure and dynamics

It is well known that defects can give rise to increased
mobility of the colloids in a solid 2D crystal. This point is
illustrated for the channel systems in Fig. 5. Figure 5�a�
shows the defect structure for four different dimensionless
channel widths �3.46, 4, 4.15, and 4.62� at a dimensionless
field strength of 16.13. In the channel systems, a bulk colloid
is said to be a defect if it has more or less than six neighbors
while a wall colloid is said to be a defect if it has more or
less than four neighbors. It is quite evident that the defect
concentration is larger for the intermediate channel widths of
4 and 4.15 than it is for the channel widths of 3.46 and 4.62.
Additionally, it is important to note that even in the channels
with a low concentration of defects �3.46 and 4.62� there are
still regular dislocations along the wall �35�. Comparing the
defect structures in Fig. 5�a� with the trajectories shown in
Fig. 5�b� it is seen that the colloids in the channels with more
defects are significantly more mobile than those in the chan-
nels with lower defect concentration. Similar to the trajecto-
ries in Fig. 4, the colloids along the wall remain highly lo-
calized even if there is significant mobility of the colloids in
the bulk.

Again, the behavior �and the magnitude� of g6�	̃� is highly
correlated to the defect structure of the 2D system. Therefore
comparing the curves in Fig. 2�a� for the same dimensionless
channel widths as in Fig. 5 we see that the oscillations in the
trend of g6�	̃� as a function of channel width come about
because of oscillations in the defect concentration. In the
unbounded 2D system both the bond-order correlation func-
tion in time and information about the defects can be used to

characterize the phase of the system and therefore we will
apply a similar analysis to our 2D channel systems.

V. STATE-DIAGRAM OF A LATERALLY CONFINED
DIPOLAR SYSTEM

As we have shown in Sec. IV A, the channel system is
quite heterogeneous with the regions near the wall having
different behavior than the regions farther away from the
wall. Additionally, there is no well defined boundary between
these two regions and therefore it is very difficult to define a
“phase” for the entire channel system. We can however pro-
duce a map of the properties of the system as a function of
the independent thermodynamic variables controlling the
system �� and w̃�. An example of this type of state diagram
is shown in Fig. 6 where we have chosen to map the system
property of bulk-defect concentration �Cdef

b � as it is closely
related to the dynamics of the 2D channel system. The bulk-
defect concentration is the fraction of colloids in the bulk
that are defects. In Fig. 6�a� we show the value of the bulk-
defect concentration for each set of conditions that we simu-
lated. In Fig. 6�b� we show an interpolated continuous con-
tour plot for the same data in order to more clearly illustrate
the trends in the data. The most obvious characteristic of the
state diagram in Fig. 6 is the re-entrant behavior observed as
a function of dimensionless channel width. The periodicity
of the oscillations in the bulk-defect concentration as a func-
tion of channel width is �R. This observation suggests that

FIG. 5. �a� Snapshots of equilibrium defect configurations at a
dimensionless field strength of �=16.13 for sections of dimension-
less length 20, in four different channel widths c, d, e, and f corre-
sponding to w̃=3.46, 4, 4.15, and 4.62, respectively �keeping con-
sistent notation from the curves in Fig. 2�. Open thin circles
correspond to sixfold coordinated colloids �or fourfold if on a wall�,
closed circles correspond to fivefold coordinated colloids �or three-
fold if on a wall�, � symbols correspond to sevenfold coordinated
colloids �or fivefold if on a wall�. �b� Trajectories of the colloids in
that section of the channels for a time of 	̃=3.73.

FIG. 6. �Color online� �a� Bulk defect concentration as a func-
tion of channel width and field strength. Light �yellow� indicates a
high concentration of defects and dark �black� indicates a low con-
centration of defects. Each symbol designates a simulation result.
�b� Continuum plot of bulk defect concentration as a function of
channel width and field strength. Continuous contours have been
interpolated along lines of constant defect concentration from the
data in �a�.
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the parallel channel walls cause a periodic destabilization of
the crystal in the bulk as the channel width is decreased. We
do not observe any re-entrant behavior as a function of di-
mensionless field strength, in contrast to systems confined in
2D circles or periodic 1D light fields �22,25,26,28–30�.

A state-diagram such as this is important in that it shows
how sensitive the structures, and therefore dynamics, in 2D
channel systems are to the geometric constraints imposed
upon the system. The state-diagram presented here is quite
general and similar trends occur for other properties of the
channel-like 2D system such as the local orientational order
parameter �
6� and even the value of the plateau in g6�	̃�.
Additionally, the re-entrant behavior as a function of the di-
mensionless channel width is an interesting characteristic
that has not been observed in other 2D confining geometries.

As an example of the effect of � on the structure of the
system we show density profiles for four different dimen-
sionless channel widths in Fig. 7. The four dimensionless
channel widths in Fig. 7 are the same as the four channels
shown in Fig. 5. For all of the dimensionless field strengths
in Fig. 7 there is a large magnitude peak in the density pro-
files occurring at the walls �35�. For low � systems �Fig.
7�a�� there is not a significant qualitative difference between
the density profiles for the four channels. However, as � is
increased �Figs. 7�b� and 7�c�� the density profiles for dimen-
sionless channel widths 3.46 and 4.62 begin to appear strik-
ingly different from the profiles for dimensionless channel
widths 4 and 4.15. Sharp peaks in the density profiles appear
for w̃=3.46 and 4.62 while for dimensionless channel widths
of 4 and 4.15 the peaks are not as pronounced and there is
less order across the channel.

VI. GENERALITY OF RE-ENTRANT BEHAVIOR FOR
REPULSIVE POTENTIALS

We have compared our results for the dipolar system with
two other systems described here. The first system consists
of colloids interacting via a r−6 potential defined as

V6ij�rij� = �6� d

rij
�6

. �8�

Similar to the dipolar system, we define a dimensionless field
strength �6 as

�6 =
�6

kBT
� d

R
�6

, �9�

where the length scale R is as defined for the dipolar system.
The simulation details for the r−6 system are identical to
those described in Sec. II for the dipolar system and d�R so
R is still the only important length scale.

The second system consists of hard-spheres confined in a
2D channel. The analogous term for the dimensionless field
strength �HS is defined for this system as �45�

FIG. 8. �Color online� Concentration of defects in the bulk as a
function of dimensionless channel width at three different dimen-
sionless field strengths �a� �=0.16�*, �6=0.16�6

*, �HS=0.79�HS
*

�unbounded liquid phase� �b� �=0.58�*, �6=0.58�6
*, �HS=0.9�HS

*

�unbounded liquid phase� �c� �=1.13�*, �6=1.13�6
*, �HS

=1.13�HS
* �unbounded solid phase�. The �black� solid lines corre-

spond to the dipolar system �r−3�, the �red� dotted lines correspond
to the r−6 system, and the �green� dashed lines correspond to the
hard sphere system.

FIG. 7. Density profiles across the channels for three different
dimensionless field strengths �a� �=2.48, �b� �=8.69, �c� �
=13.65. Density profiles are given for four dimensionless channel
widths c, d, e, and f corresponding to w̃=3.46, 4, 4.15, and 4.62,
respectively �keeping consistent notation from the curves in Fig. 2�.
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�HS = nd2, �10�

where n is again the number density in the system. For the
hard sphere system, the important length scale is now d so
the dimensionless channel width for these systems is defined
as the true width of the channel scaled by d. Additionally
time is made dimensionless as t̃= tkBT /�d2 for this system.
The simulations of the hard sphere systems utilized the same
dimensionless time step and total times as the dipole system.
The algorithm developed by Heyes �40� was used to treat
hard sphere interactions for this system.

Löwen �45� reports values for the solid-liquid phase tran-
sition for these two systems in the unbounded limit as �6

*

=5.33 and �HS
* =0.887 �where the asterisk refers to the phase

transition point� giving us a reference for solid and liquid
phases in these two systems. In Sec. III we showed that the
phase transition in the dipolar system occurs in the range �
=14.89–15.2 so for this section we will take �*=15.045 for
the dipolar system.

In Fig. 8 we illustrate the general result of re-entrant be-
havior in 2D channel systems by showing data for bulk de-
fect concentration as a function of dimensionless channel
width for the three different types of 2D colloidal systems. In
Figs. 8�a� and 8�b� the dimensionless field strengths are such
that the unbounded systems would be in the liquid phase
while in Fig. 8�c� the dimensionless field strengths are large
so that the unbounded systems would be well into the solid
phase. The curves in Fig. 8 are equivalent to taking slices of
constant � in Fig. 6. The hard sphere results in Figs. 8�a� and
8�b� were done for different fractions of �HS

* than the respec-
tive simulations for the dipole and r−6 systems. This is be-
cause the hard sphere system becomes a gas if the number
density is too low and therefore loses all structure. In Fig. 8,
as the interaction strength is increased, it is evident that the
re-entrant behavior of the bulk defect concentration as a
function of channel width becomes more pronounced for the
dipolar and r−6 systems. For the hard sphere curves in Figs.
8�a� and 8�b� this trend is evident as well. In Fig. 8�c� the
�HS for the hard sphere system is large enough that there are
hardly any defects in any of the channel widths but even this
system still exhibits re-entrant behavior as a function of
channel width. These results strongly suggest that the general
form of the state-diagram shown in Fig. 6 holds for 2D col-

loidal systems confined in hard-wall channels and interacting
with repulsive potentials.

There are significant differences, however, between the
three different types of colloidal systems. For instance, in
Fig. 8�c� the hard sphere system is nearly perfect due to the
high number density while the other two systems still exhibit
significant defect concentrations. A qualitative example of
this difference between the systems is given in Fig. 9 where
we present snapshots of the defect structure in a section of a
channel with dimensionless width 6.5 for the three different
systems. The dimensionless field strengths in Fig. 9 are �
=1.13�*, �6=1.13�6

*, and �HS=1.13�HS
* , all well into the

solid phase for the unbounded systems. It is evident that the
three systems have significantly different defect distribu-
tions. The dipolar system shows the regular dislocations
along the wall that have been reported previously �35�, while
the other two systems exhibit no such regular defects along
the walls. Rather, in the r−6 system, the defects are found in
small clusters that are distributed along the length of the
channel. In the hard sphere system there are very few, short
lived, pairs of dislocations showing evidence of the extreme
ordering mentioned above.

VII. DISCUSSION AND CONCLUSIONS

An analysis has been presented of the structure and dy-
namics in a system of repulsive dipoles confined in 2D chan-
nels. We have compared the dynamical properties of these
systems to the case of an unbounded 2D system. We have
performed careful simulations of the unbounded system in an
attempt to determine over which range of dimensionless field
strengths the solid-liquid phase transition occurs. We were
able to determine that the phase transition occurs in a narrow
range of dimensionless field strengths �between 14.89 and
15.2� but we were unable to converge our simulations of the
unbounded system between these two dimensionless field
strengths. Experimentally, a hexatic phase has been observed
in this system �13–15� indicating that it may be possible to
observe this type of phase in a simulation with an extremely
large number of colloids.

We perturbed this 2D unbounded system by introducing
parallel hard walls to create a channel-like geometry. In the
channel systems we observed dynamics that differed signifi-
cantly from the unbounded system. We observed the exis-

FIG. 9. Snapshots of equilibrium defect configurations in channels with a dimensionless width of w̃=6.5 and a dimensionless field
strength of �=1.13�*, �6=1.13�6

*, �HS=1.13�HS
* . Each snapshot shows a section of dimensionless length 100 �total dimensionless channel

length is 170�. Open thin circles correspond to sixfold coordinated colloids �or fourfold if on a wall�, closed circles correspond to fivefold
coordinated colloids �or threefold if on a wall�, � symbols correspond to sevenfold coordinated colloids �or fivefold if on a wall�. The
channel walls are shown as solid lines.
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tence of a plateau in the bond-order correlation function due
to the stabilizing presence of a hard wall. We also observed
that the channel systems exhibited strikingly different local
structure and dynamics in the regions near the wall and far-
ther away from the walls causing both the onset and the
subsequent decay of the plateau in the bond-order correlation
function in large channels at lower dimensionless field
strengths. The heterogeneity of the channel systems was
shown by calculating the bond-order correlation function in
different sections of the channel. We observed a decay in the
correlation function as we moved away from the walls in our
channel systems. This observation is consistent with studies
performed on spherical block copolymers confined in very
wide 2D channels �33�. However, combining this observation
with our analysis of the local dynamics of the colloids leads
to an explanation of the anomalous form of the g6�	̃� curves
seen in this 2D channel system.

The dynamics in 2D colloidal systems are strongly linked
to the defect properties of those systems and we showed this
to be true for the 2D channel systems as well. We have
presented a state-diagram for dipoles confined in a 2D chan-
nel system as a function of dimensionless field strength and
dimensionless channel width that summarizes the behavior
of these systems. The qualitative aspects of the state-diagram
are applicable to any order parameter of the 2D channel sys-
tem as they are all linked to the structure and dynamics.
Additionally, by simulating systems with sharper repulsive
potentials we have shown that the general form of the state-
diagram presented here �with re-entrant behavior� can be
considered universal for colloids in 2D hard-wall channels
interacting with repulsive potentials.

We have observed re-entrant behavior in the properties of
the dipolar system as a function of the geometry of the sys-
tem, not the dimensionless field strength. This finding is
similar to the re-entrant behavior observed in other simula-
tion studies of colloids confined in 2D channels �34� demon-
strating that, qualitatively, this behavior can be seen for a
variety of colloidal interactions as well as confining poten-
tials. Despite the qualitative similarities however, there are

important differences between the hard wall confinement
presented here and the parabolic confinement studied previ-
ously. These differences have been discussed extensively in
the case of 2D circular geometries �25–27,46�. An important
distinction between these two types of confinement is that
the systems with parabolic confinement have a homogeneous
distribution of colloids while the hard wall confinement leads
to an inhomogeneous distribution throughout the system due
to the high density of colloids along the walls. This higher
density along the walls was observed in the case of channel-
like confinement as well �35�. Another important difference
between these two types of confinement is that the average
density of colloids remains constant when the external field
strength is decreased in hard wall systems while in systems
with parabolic confinement the average density of colloids
increases with decreased external field strength. As a result
of these two very important distinctions, hard wall systems
and parabolic systems can behave quite differently, even in
the case of channels. An example of this difference in behav-
ior is the unusual structural transition from four rows to three
rows and then back to four rows as the interaction strength
between colloids was increased in parabolic channel-like
confinement �34�. No such structural transition is observed in
the case of hard wall confinement. However, as mentioned
previously, both systems do exhibit re-entrant behavior.

We did not observe any re-entrant behavior as a function
of dimensionless field strength but the re-entrant behavior as
a function of the dimensionless channel width implies that
the structural properties and therefore the dynamics of these
self-assembled colloidal systems in microfluidic geometries
are very sensitive to the confinement geometry itself. This
will have an impact upon many applications where both the
structure and mobility of the self-assembled colloids are im-
portant considerations in the application design.
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