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We present an investigation into the important physical principles associated with the self-assembly of

magnetorheological (MR) fluids in the microfluidic setting. We concentrate on the role of channel

topology in influencing the resulting microstructure. In particular, using Brownian dynamics

simulations, we show how a variety of geometrically-simple confining microchannels can be used to

strongly control the lattice type and orientation in self-assembled MR fluids. Additionally, we

demonstrate how topographical features can be used to dictate the order (or disorder) of the steady-

state structure. We highlight the similarities and differences between our three-dimensional

microchannel system and the structures and dynamics observed in two-dimensional confined systems.

Furthermore, we present an example of the introduction of local magnetic field inhomogeneity and its

strong influence over the resulting self-assembled MR fluid structure.
1 Introduction

In recent years, self-assembled systems have garnered much

attention due to their potential for creating order on very small

scales as well as their obvious analogy to biological systems.1–4

When considering these systems, one must be aware of the ever

present issue of boundary effects which can strongly influence the

behavior and structure of the self-assembled system.5–7 In many

cases, the boundary effects are caused by a confined system in

which the assembly is taking place. For instance, colloidal

assembly in microfluidic devices has been shown to be a prom-

ising route for manufacturing micron, or sub-micron, structured

systems.8–13 Furthermore, the study of confined self-assembly has

revealed many interesting phenomena which depend on the

nature of the confinement.14–21 In the current study we will

investigate the self-assembly of magnetorheological (MR) fluids

in microfluidic confinement and the important role of channel

topology.

We will focus on MR colloids in the presence of a uniform

external magnetic field and in the absence of flow. When confined

in the field direction, the colloids in a MR fluid self-assemble into

column-like structures aligned with the field and arranged in

a hexagonal pattern.15,17 If the confining planes are separated by

a single colloid diameter by definition the system is two-dimen-

sional (2D) and the structure is determined by only a single

degree of freedom (a convolution of the volume fraction of

colloids and the strength of the external field).22 Increasing the

separation of the confining planes to create a 3D system yields

a rich phase behavior including many different structural

configurations.16,23 Alternatively, introducing lateral confine-

ment into such systems can alter the self-assembled structures

and lead to interesting structural properties. Self-assembly of
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MR fluids in laterally confined systems has predominately been

studied in 2D where the lateral confinement is in the form of

closed cavities18,19 or open channels.7,20,24 In 2D closed cavities, it

has been shown that the confining boundaries influence the

lattice type formed by a finite number of MR colloids,18,19 while

in 2D channels we have previously shown that the channel width

plays a crucial role in determining how ordered the hexagonal

colloidal structure can become.7,20,24 Additionally, in both cases,

the presence of parallel non-magnetic walls induces extreme

localization of colloids along those walls.

In this work we explore the self-assembly of MR fluids in 3D

microchannels where the height in the field direction is varied

down the length of the channel. A schematic of the general

geometry is shown in Fig. 1. This geometry is easily created in the

microfluidic community using a simple two-step soft lithographic

process.25 Among our primary interests is to control the type of

lattice (orientation, spacing, and order/disorder) formed by the

MR colloids in these systems without altering their utility (i.e.

still enabling throughput of fluid and molecules). Such control
Fig. 1 A schematic illustrating the geometry of the stepped channels.

(a) Side view of the confining geometry which is periodic in the y direc-

tion. The channel has alternating regions of dimensionless height 10 and 6

with lengths ~LT and ~LS respectively. (b) Top view of the confining

geometry showing the dimensionless width of 20. The short and tall

regions are indicated by shaded and non-shaded regions respectively. The

uniform magnetic field is oriented in the z direction.
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Fig. 2 The top row contains snapshots of the configuration of colloids in

the channel for (a) ~LS ¼ 5 and ~LT ¼ 10, (b) ~LS ¼ 10 and ~LT ¼ 20, and (c)
~LS ¼ 30 and ~LT ¼ 5 respectively. The bottom row contains Delaunay

triangulation plots of nearest-neighbor pairs of clusters for the same three

channels. The short and tall regions are indicated by shaded and non-

shaded regions respectively. The uniform magnetic field is oriented

normal to the page.
will be critical for applications such as bio-molecule separations

that rely upon the microstructure in the system that acts like

a sieve.9,11,26,27

It is important to contrast the present system with the previous

work of our group and others in 2D systems. In 2D cavities, the

system boundaries define a finite closed area in which colloidal

assembly takes place.18,19 While this is a model system for

studying the effects of closed boundaries upon self-assembly it is

not practical for microfluidic applications. In 2D channels, the

system remains open along one dimension and the colloids self-

assemble between the two parallel closed boundaries defining the

channel walls.7,20,24 In this case, the walls are the only geometrical

feature that can induce boundary effects upon the system. In the

present study, the channel side walls exert boundary effects upon

the system in much the same way as 2D channels but the addition

of non-uniform topography along the other confining direction

creates pseudo-boundaries that influence structure formation as

well. Further, we consider 3D systems that are not only more

realistic for applications, but also fundamentally different than

purely 2D monolayers.16,23 The central question remains open as

to how topographical features in microchannels can influence the

structure of self-assembled MR fluids.

2 Simulation details

When subjected to a uniform external magnetic field, the colloids

in a MR fluid acquire dipole moments whose interactions can be

modeled by the energy:

~Uij
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�
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The interaction energy between two colloids ~Uij is made

dimensionless with the thermal energy ( ~Uij ¼ Uij/kBT) and the

separation distance between the centers of colloids i and j is

scaled by the colloid diameter (~rij ¼ rij/d). The parameter qij is the

angle between the vector rij and the external field vector. This

interaction energy neglects the effects of mutual induction that

can be present in real MR fluids but it has been successfully used

to quantitatively predict the behavior of MR fluids.28 The

dimensionless magnetic field strength l is defined as:

lh� ~Uijð1; 0Þ ¼
pm0d

3c2H0
2

72kBT
(2)

where m0 is the permeability of free space, c is the effective

magnetic susceptibility of an individual MR colloid, and H0 is

the magnitude of the external magnetic field. The dimensionless

field strength is the ratio of the maximum magnitude interaction

energy to the thermal energy in the system.17 When l [ 1 the

MR fluid will self-assemble into structures aligned with the

external magnetic field.

Brownian dynamics simulations were used to model the

motion of the MR colloids as previously described in detail.15

Briefly, the equation of motion for the colloids was given by:

driðtÞx
1

z
FD;iðtÞdtþ

1

z
FB;iðtÞdt (3)

where the inertia of the colloids is neglected.29 The term FD, i

represents all of the deterministic forces acting upon colloid i
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(due solely to magnetic interactions) and z is the drag coefficient

on a single colloid. FB, i is a stochastic term used to model the

Brownian force acting on the colloid. Hydrodynamic inter-

actions between the colloids were neglected for simplicity.

Eqn 3 was integrated forward in time using a simple Euler

integration scheme. At the end of each time-step, hard sphere

overlaps were treated by displacing overlapped colloids along the

line connecting their centers until they are just contacting.30 This

procedure was performed for all overlaps between two colloids

and between colloids and hard walls15,20 and was iterated until all

overlaps in the system were removed.

The external field was directed along the z-axis and hard wall

boundary conditions were imposed in the x and z directions. The

system was periodic in the y direction thus creating a channel-like

geometry along the y-axis. The volume fraction of MR colloids

was held constant at f ¼ 0.03 and the channel width in the x

direction was fixed at a dimensionless length of 20. The dimen-

sionless length of the simulation box in the y direction ranged

from 80 to 180 depending upon the geometry in the z direction

and the total number of colloids in the simulations therefore

ranged from 825 to 1650. A dimensionless time-step of D~t¼ 1 �
10�4 was used with time made dimensionless as ~t ¼ t(kBT)/(zd2),

where (zd2)/(kBT) is the time necessary for a MR colloid to freely

diffuse a distance equal to its diameter. A dimensionless cutoff of

20 was used for the dipole–dipole interaction along with a linked

list binning algorithm31 where the bin sizes were slightly larger

than the cutoff value. The simulations were started from

a random configuration and the external magnetic field was

ramped continuously from l ¼ 0 to l ¼ 100 over a dimensionless

time of 50 after which it was held constant at l ¼ 100. All of the

simulations were determined to be converged in system size,

time-step, cutoff for the magnetic interactions, and ramp time for

the external field.
3 Results

Snapshots of the structure that forms in three representative

channels are shown in Fig. 2. The step lengths ( ~LS, ~LT) are (5,10),

(10,20) and (30,5) respectively for the three channels a, b, and c.

As expected, the clusters are aligned in the field direction into

columns of magnetic colloids. There are several interesting

features of the structure in these three channels. In the configu-

ration snapshots (top row) the alignment of the clusters along the

channel wall is evident and is consistent with observations of 2D

channel systems.7 Interestingly, in Fig. 2a, clusters appear to be

excluded from the short regions (shaded areas) and in Fig. 2b
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they appear to consistently have room for one line parallel to the

step. The exclusion, or partial exclusion, of clusters from the

short regions is surprising. Considering the ability of the colloids

to freely migrate down the channel during the assembly process,

a constant density of clusters may be expected. However, these

features may be explained when we take into account the theo-

retical spacing between colloids in an equivalent 2D system. We

have previously defined this spacing as:15

�
~s
�

2D
h

ffiffiffiffiffiffiffiffiffiffiffiffi
p

3f
ffiffiffi
3

p
r

(4)

and for the current study h~si2D ¼ 4.49. Therefore, in the channel

shown in Fig. 2a, the short sections are equivalent to h~si2D

indicating that there is not room for clusters to form within these

sections. Likewise, in the channel shown in Fig. 2b the short

sections have a length that is equivalent to 2h~si2D and thus there

is only room for one row within these sections.

Aside from the equivalence of the length scales of cluster

spacing and step length, there is one other feature of the structure

in these systems that has not been previously observed. In Fig. 2

the clusters are also seen to align along the steps in the channel

(edges of the shaded regions in Fig. 2) creating repulsive pseudo-

boundaries for the short sections and giving rise to the behavior

observed in Fig. 2a and b. While the pseudo-boundaries strongly

affect the structure, they do not change the open nature of the

system. These lines of clusters impose a secondary orientation

upon the lattice. This secondary orientation is more easily

observed in the triangulations shown in the bottom row of Fig. 2.

Each line segment in these figures connects two nearest-neighbor

clusters as determined by Delaunay triangulation.15 In Fig. 2a

and b the emergence of a square lattice can be observed in the

triangulation plots while in Fig. 2c, the structure in the system

remains predominately hexagonal with only small regions that

appear square.

In order to further quantify the type of structure present in the

channels, we determined the probability density for two nearest-

neighbor clusters to be oriented at a particular angle (qn) with

respect to the y-axis (or channel walls). These probability

distributions are shown in Fig. 3 for the three channels discussed

above. Because of the symmetry of our system, we plot qn for 0 #

qn < 180 and qn � 180 for 180 # qn < 360. A perfectly aligned

hexagonal structure within the channel would have peaks at the
Fig. 3 Angles between nearest-neighbor clusters with reference to the

y-axis (channel walls). Three different channel geometries are shown: ~LS

¼ 5, ~LT ¼ 10 (solid black line), ~LS ¼ 10, ~LT ¼ 20 (dash-dot red line), and
~LS ¼ 30, ~LT ¼ 5 (dashed blue line). The vertical lines mark the theoretical

peak locations for a perfect square lattice (S) and a perfect hexagonal

lattice (H) oriented in the channel direction.
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locations indicated by the letter ‘‘H’’ in Fig. 3 while a perfectly

aligned square structure would have peaks at the locations

indicated by the letter ‘‘S’’. From the distributions in Fig. 3 we

observe that two of the channels appear to have square symmetry

while the third predominately retains its hexagonal symmetry.

Channels a and b exhibit strong square symmetry with large

peaks at qn ¼ 0, 90, and 180 and secondary peaks at qn ¼ 45, and

135. Channel c exhibits a drastically different structure with

peaks closer to qn ¼ 0, 60, 120 and 180 indicative of a hexagonal

structure. Channel c still exhibits a peak at qn ¼ 90 as is expected

due to the alignment of clusters along the steps, but the magni-

tude of that peak is small in comparison with channels a and b.

In order to achieve a broader picture of the effects of channel

geometry upon the lattice structure in these systems, we define

the local bond-orientational order parameters h|J6|i and h|J4|i.
We have used h|J6|i previously to characterize the structure in

2D dipole systems.7,20 The order parameters are defined as:

h
��J6

��ih 1

N

XN �����1m
Xm
k¼1

expi6qk

����� (5)

h
��J4

��ih 1

N

XN �����1m
Xm
k¼1

expi8qk

����� (6)

where m is the number of nearest-neighbors for a given cluster

and qk is the angle between the vector connecting the cluster and

its kth nearest-neighbor and an arbitrary reference axis. If the

lattice is perfectly hexagonal then h|J6|i ¼ 1, if it is perfectly

square then h|J4|i ¼ 1, and if it is totally disordered then both

order parameters approach zero.

In Fig. 4 we present state diagrams indicating the symmetry of

the structure that forms in these channel systems. In Fig. 4a and

c, each circle symbol represents a simulation result for a partic-

ular geometry. The points along ~LS ¼N and ~LT ¼N indicate the

value of h|J6|i or h|J4|i for purely rectangular channels of

dimensionless height 6 and 10 respectively. In order to more

clearly observe the trends in the state diagram we present in

Fig. 4b and d an interpolated continuous contour plot for the

same data. The most obvious feature of the data is the large

region in the lower left corner where the structure has weak

hexagonal symmetry. Clearly, the region in Fig. 4b that is least

hexagonal is the same region in Fig. 4d that exhibits the most

square symmetry. As one or both of the step lengths increases,

the structure appears to become more hexagonal. However, even

at dimensionless step lengths of 30, the system is far from the

infinite limit. This is consistent with results for 2D channel

confinement7,20 where a length (or channel width) of 30 colloid

diameters is still strongly influenced by the presence of the

confining boundaries. In contrast to 2D channels however, in this

case the important features are not confining boundaries but

rather topographical features. Additionally, in Fig. 4d at larger

step lengths, the structure retains much more square symmetry

than the constant height case. There are many other subtle

features of the state diagram for this system most likely due to the

confluence of a number of complicating effects. These particular

channel systems are subject to the subtleties of 2D channel

confinement,7,20 thin-slit confinement,15,23 and confinement in

pseudo-cavities19 all of which contribute to the complexity of the

structure observed.
This journal is ª The Royal Society of Chemistry 2009



Fig. 4 State diagram of the order parameters J6 (a, b) and J4 (c, d) as a function of ~LS and ~LT. (a and c) Individual simulation data points. (b and d)

Interpolated contour plot showing regions of strong and weak hexagonal (b) and square (d) structure. The points at N on either axis represent the

structure in a straight rectangular channel of height 6 in the case of ~LS ¼ N and height 10 in the case of ~LT ¼ N.
Within the regions of pseudo-confinement defined by the tall

sections of the channel, we not only observe structure reminis-

cent of 2D cavity systems19 but we also observe some very

interesting dynamics. In Fig. 5 we present the trajectories of

clusters in a small section of the channel for the same three cases

(a, b, and c) as presented above. The trajectories are over

a dimensionless time of 100 during which the cluster positions

were sampled 1000 times. The first feature to note in Fig. 5 is the

behavior of the clusters along the walls and along the steps. Both

along the walls and along the steps, the clusters are closely

constrained in the direction normal to the confining boundary

and are more free to fluctuate along the boundary. This is

especially evident in Fig. 5b. While this behavior is expected

along closed boundaries, it is surprising to note that the effect is

just as pronounced along the steps which are open edges.

Additionally, in the corners of the tall regions, the clusters are

constrained in both directions and barely migrate at all. This

feature can be observed in Fig. 5c where, at the top of the figure,

there is a single cluster in the tall region that fluctuates along half

the length of the wall while the two clusters at the bottom of the
Fig. 5 Traces of cluster positions over a dimensionless time of 100 for

one periodic unit in channels with (a) ~LS ¼ 5 and ~LT ¼ 10, (b) ~LS ¼ 10 and
~LT ¼ 20, and (c) ~LS ¼ 30 and ~LT ¼ 5 respectively. The cluster positions

were sampled 1000 times over the course of the trajectories. The short and

tall regions are indicated by shaded and non-shaded regions respectively.

The uniform magnetic field is oriented normal to the page.
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figure in the corners of the tall region do not leave the immediate

vicinity of the corners.

A second feature that is evident is the absence of clusters in the

short region in Fig. 5a, the alignment of clusters down the center

of the short region in Fig. 5b, and the fact that in Fig. 5c the

clusters in the short region arrange in a hexagonal pattern that is

not perturbed by the presence of the tall region. In all three cases,

the clusters in the bulk (i.e. clusters not along the walls or steps)

appear to be able to fluctuate freely in any direction around their

lattice position.

Perhaps the most striking features of the trajectories presented

are the rectangular sub-systems that catch the eye in Fig. 5a and

b. In the tall region, the clusters arrange themselves into a rect-

angular cage in which the remaining clusters assemble into a local

lattice. This behavior is analogous to the behavior observed in

2D cavity systems.18,32 However, in this case, there exist no walls

parallel to the x-axis and the entire channel system is open in that

direction. This is an important point because even though we

have not physically confined the MR colloids, they assemble into

a structure that mimics that of a confined system.

Thus far we have demonstrated the ability to generate, in open

systems, structures that mimic closed cavity systems. Addition-

ally, by imposing pseudo-confinement with stepped regions in the

channel we demonstrated the ability to change the equilibrium

lattice symmetry. We will now explore methods to affect lattice

orientation within the channel by allowing the orientation of the

stepped regions to vary. These microfluidic geometries are also

simple to manufacture with a two-step lithographic process.25

The step-orientation of the systems presented above was qs ¼ 90

with respect to the y-axis. In Fig. 6 we present configuration

snapshots for three different channels (a, b, and c) with step

angles of qs ¼ 60, 45, and 30 respectively. The length of the short

sections (shaded areas) is ~LS ¼ 10 and the tall sections have

a length of ~LT ¼ 20. Even when the angle of the step is varied, the
Soft Matter, 2009, 5, 1192–1197 | 1195



Fig. 6 The top row contains snapshots of the configuration of colloids in

the channel for ~LS ¼ 10 and ~LT ¼ 20 and (a) qs ¼ 60, (b) qs ¼ 45, (c) qs ¼
30 respectively. The bottom row contains Delaunay triangulation plots of

nearest-neighbor pairs of clusters for the same three channels. The short

and tall regions are indicated by shaded and non-shaded regions

respectively. The uniform magnetic field is oriented normal to the page.

Fig. 8 The top image is a snapshot of the colloid positions in a templated

channel with dimensionless height of 6 and dimensionless width of 20. A

single layer of MR colloids (not shown) is fixed in a square lattice with

dimensionless spacing of 4.75 on the bottom of the channel. The bottom

image is a Delaunay triangulation plot of nearest-neighbor pairs of

clusters for the same channel. The uniform magnetic field is oriented

normal to the page.
alignment of clusters along the step in the tall sections is still

evident in the snapshots along the top row of Fig 6. Additionally,

as the angle is decreased, clusters begin to become excluded from

the short sections of the channel (cf. Fig. 6a and c) even though

their relative fraction of the total channel volume remains

constant. Most notably, because of the templating due to the

presence of the steps, in some instances, the lattice becomes more

aligned with the channel walls as in Fig. 6a and in other instances

it becomes less aligned with the channel walls as in Fig. 6c.

In order to see more clearly the effects of the step angle on the

lattice type in these channels, we present in Fig. 7 the dependence

of the two order parameters h|J6|i and h|J4|i upon qs. When the

step angle is 90, the case in Fig. 2 to 5, the lattice type is much

more square than hexagonal as we have already shown. As qs is

decreased however, there is a dramatic effect upon the structure

in the system. As qs approaches 60, the structure becomes much

more hexagonal than square (this can also be seen in the bottom

row of Fig. 6a). As qs goes to 45 the system appears to be equally

structured in terms of both order parameters and it is not

immediately apparent which type of structure dominates. Upon

careful observation of the Delaunay triangulation for this

channel in Fig. 6b, we observe an equivalent number of square

sites and hexagonal sites. Additionally, there are a couple clusters

with up to nine neighbors, disrupting both square and hexagonal

lattices. As qs is further decreased to a value of 30, the structure in

the system does not resemble either type of lattice. In fact, it

appears that order has been almost completely disrupted in this

system. Fig. 6 and 7 serve to illustrate, to our knowledge, the first

instance of geometric topography influencing the structure and

lattice type of self-assembled field-responsive fluids in 3D

systems. Rather than confining the colloids to a single cavity

which defines the entire system, the geometry in this case simply
Fig. 7 Values of the order parameters h|J4|i (black diamonds) and h|J6|i
(red triangles) as a function of the step angle (qs) in a channel with ~LS ¼ 10

and ~LT ¼ 20.
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serves to template the structure that forms. Such epitaxy effects

have been used to successfully grow single colloidal crystals upon

a topographically patterned substrate33 but have never been

demonstrated for field-responsive fluids, in which colloids

interact anisotropically and self-assembly is a fundamentally

different process.

A very effective, albeit more complex, alternative to geometric

control of self-assembled structure is to introduce local inho-

mogeneities in the magnetic field. In the microfluidic setting, this

can be accomplished by patterning magnetic materials at discrete

positions within, or near, the fluidic channels.12,34,27 When

a uniform external magnetic field is applied to the system, the

magnetic material generates its own non-uniform field that

influences the motion of the MR colloids. As an alternative to

patterning continuous regions of magnetic materials, one may

pattern discrete colloids to achieve the same effects.35 While this

approach has the potential to be extremely effective for influ-

encing self-assembled structure of MR fluids, it requires rather

complex manufacturing techniques which limit its usefulness.

Nonetheless, we also present the power of this approach with

a simple example. Fig. 8 is a snapshot of the structure that forms

in a templated channel of dimensionless width 20 and dimen-

sionless height 6. In this example, a single layer of MR colloids is

immobilized on the bottom surface of the channel in a square

lattice with a dimensionless spacing of 4.75 between colloids.

This spacing is of the same magnitude as the natural spacing

(h ~S2Di) of the hexagonal lattice formed in this system as pre-

sented above. The snapshot in the top of Fig. 8 shows the loca-

tions of the remaining colloids in this system. It is clear in Fig. 8

that the templated pattern completely determines the lattice that

forms in this case. In both the snapshot and the triangulation

plot, the lattice appears square. The order parameters for the

self-assembled structure in this system are h|J6|i ¼ 0.14 and

h|J4|i ¼ 0.80 respectively and confirm that the lattice type is

square. As mentioned, the microchannel fabrication involved in

creating the template pattern shown in Fig. 8 is more difficult

than the creation of stepped microchannels. However, technol-

ogies are currently being developed that allow for such templates

to be created more easily within a microfluidic setting12,35
4 Summary

We have outlined several design strategies to create useful spatial

motifs of MR colloids in microfluidic channels. We show that
This journal is ª The Royal Society of Chemistry 2009



channels with a stepped-height topography can alter the lattice

type, orientation, and order. In contrast to 2D monolayer

systems, in our system there are no closed cavities, but instead

pseudo-cavities created by the topography of one confining

boundary. The flexibility of this simple method will have

tremendous impact upon DNA separation devices that rely upon

the structure of self-assembled MR fluids9,11 since the orientation

and order of the lattice has been shown to be an important

consideration.36

While the present study contains only simulation results, the

channel motifs presented here have been previously realized25

and are thus experimentally accessible. Such geometries have

never been explored for directing self-assembly of field-respon-

sive fluids and we have presented only a single, yet informative

example of how they might be utilized. In general, the use of

topographically varying confinement to control the 3D self-

assembly of MR fluids has not been explored. Thus, there remain

several interesting open questions as to the breadth of possibili-

ties along the lines of the work presented here. For instance, we

have presented a case where the topographical features can easily

be considered units of a larger lattice. However, if the features are

incompatible with any lattice, such as circular indentations, one

may expect completely different behavior. Further, the addition

of another driving force, such as flow, will create rich anisotropic

colloid dynamics which could be exploited for sorting applica-

tions. In the future, we will address this and many other

questions about how one may use topography to direct the self-

assembly of field-responsive fluids.
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G. M. Whitesides, Science, 2002, 295, 647–651.
26 M. Slovakova, N. Minc, Z. Bilkova, C. Smadja, W. Faigle,

C. Futterer, Myriam. and J. L. Viovy, Lab Chip, 2005, 5, 935–942.
27 N. Pamme, Lab Chip, 2006, 6, 24–38.
28 M. Mohebi, N. Jamasbi and J. Liu, Phys. Rev. E, 1996, 54(5), 5407–

5413.
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