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We experimentally demonstrate that addition of small, charge-neutral polymers

to a buffer solution can promote compression of dilute solutions of single

electrophoresing DNA. This phenomenon contrasts with the observed extension of

DNA during capillary electrophoresis in dilute solutions of high molecular weight

polymers. We propose these discrepancies in micron-scale DNA configurations

arise from different nano-scale DNA-polymer collision events, controlled by solute

polymer properties. We build upon theories previously proposed for intermolecular

DNA aggregation in polymer-free solutions to develop scaling theories that describe

trends seen in our data for intramolecular DNA compaction in dilute polymer

solutions. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878135]

I. INTRODUCTION

Electric fields are widely used to transport and manipulate DNA in micro/nanodevices1,2

with applications in molecular genetics,3,4 nucleic acid-based diagnostics,5,6 and fundamental

studies of polyelectrolytes.7 The interplay between electrokinetics and polymer physics in elec-

tric field mediated DNA transport has been shown to cause DNA aggregation,8–11 a phenom-

enon that either hinders the separation of long DNA molecules by capillary electrophoresis or

can be harnessed to concentrate DNA on-chip. Recently, it was demonstrated that electric fields

can cause compression of single, large (�100 kbp) DNA molecules in a standard electrophore-

sis buffer.12,13 As shown by Tang et al.,12 a moderate electric field of a few hundred V/cm

induces strong coil-to-globule compaction and self-entanglement of DNA. Increasing ionic

strength or decreasing DNA molecular weight lessens this effect. Tang et al. developed scaling

relations to collapse data that lend support to the postulate that the mechanism driving the intra-

molecular compression of a single DNA molecule is analogous to what Isambert et al.10,11

developed for electric field induced intermolecular DNA aggregation in more concentrated solu-

tions (�overlap concentration c*). Other models including curvature condensation13,14 were

proposed to explain the physical mechanism leading to compression. However, as remarked by

Tang et al.,12 the curvature condensation theory neglects electrohydrodynamic effects which are

the underlying physics of the mechanism proposed by Isambert et al.10,11

According to Isambert et al.,10,11 the electrohydrodynamic flow that ultimately leads to

DNA aggregation is a consequence of concentration fluctuations of macroions and augmented

by the different mobilities of the small salt ions and much larger macroions (e.g., DNA or col-

loids). If this mechanism also explains the compression of single DNA, adding neutrally

charged macromolecules to the system should enhance these compressive flows, since they

serve to reduce the mobility of the macroion (DNA) without significantly changing the mobility

of smaller salt ions. In this manuscript, we experimentally investigate the proposed mechanism

by systematically studying the conformations of T4 DNA under electric fields in various dilute

neutral polymer solutions of different concentrations and molecular weights. We find that the

addition of dextran polymers to the electrophoresis buffer enhances DNA compression at poly-

mer concentrations well below that required for depletion-induced DNA compaction in bulk.15
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We contrast this phenomenon with an observed DNA elongation when the same volume frac-

tion of hydroxypropyl cellulose (HPC) polymers is added to the electrophoresis buffer. We

argue that this dissimilarity arises due to differences in DNA-polymer collisions. Following the

arguments of Isambert et al.,10,11 we derive the key dimensionless group that drives the com-

paction process and show that it is able to collapse the experimental data.

II. EXPERIMENTAL METHODS

The conformations of dilute (concentration c� c*, where c* is the overlap concentration,

see the supplementary material for details16) fluorescently labeled T4 DNA (165.6 kbp, Nippon

gene) in 0.5X Tris-Borate-EDTA (TBE, Sigma-Aldrich) buffer was examined under uniform

electric fields in 2 lm tall by 200 lm wide straight microchannels using an inverted fluores-

cence microscope (IX71, Olympus) combined with an Andor EMCCD camera with an exposure

time of 0.01 s and at a rate of 24 frames per second. For convenience in describing the polymer

concentrations, we define a scaled concentration U¼ c/c*. Physically, U corresponds to the

fraction of the volume pervaded by the polymer coils when envisioned as spheres with a radius

equal to the polymer radius of gyration. Unless otherwise noted, all polymer concentrations

were at a value of U¼ 0.6 and so can be considered dilute. Dextran polymers are

charge-neutral, branched, flexible, and readily dissolved in most solutions. The dextran poly-

mers used in this study have molecular weights of 5 kDa, 80 kDa, 410 kDa, and 2000 kDa

(Pharmacosmos). The concentration of dextran polymers used is well below the value of

U� 3–4 needed for the smallest dextran polymers (Mw¼ 5 k) to induce condensation of uncon-

fined DNA in the absence on an electric field due to depletion interactions.17 The larger molec-

ular weight dextran polymers require even higher volume fractions to collapse DNA. We also

examined the effects of the following charge-neutral linear polymers: HPC of molecular weight

100 kDa, 370 kDa, and 1000 kDa from Sigma-Aldrich, and polyvinylpyrrolidone (PVP) of mo-

lecular weight 10 kDa and 1000 kDa from Polysciences. A uniform electric field (up to a few

hundred V/cm) was applied to the channel using an external DC power source. More detailed

experimental information (e.g., overlap concentrations and polymer properties) is given in the

supplementary material.16

III. EXPERIMENTAL RESULTS AND DISCUSSION

The probability distributions, P, of the radius of gyration, Rg, of T4 DNA at equilibrium

and under uniform electric fields of 23 and 46 V/cm in a dextran solution (Mw¼ 410 k, U¼ 0.6)

are shown in Fig. 1(a). Without an applied electric field, the DNA molecules sample a wide

range of expanded configurations. Under an electric field of 46 V/cm, the DNA molecules are

significantly more compact and exhibit much smaller size fluctuations (Fig. 1(a)). As the field

strength increases, the molecules become more isotropic, reflected by a decrease in the ratio of

the radii of the major and minor axes RM/Rm of the radius of gyration tensor18 (Fig. 1(b)).

Results for three dextran solutions (Mw� 410 k) with the same ionic strength (0.5X TBE) and

volume fraction (U¼ 0.6) but different sizes of dextran polymers are shown in Figs. 1(c) and

1(d). We observe a continuous decrease in hRgi=hRg;eqi (ensemble average Rg normalized by

equilibrium average hRg;eqi) and hRM=Rmi of T4 DNA with increasing field strength. Without

added dextran polymers, the onset of T4 DNA compression occurs at higher field strengths.

The largest dextran polymers among the three sizes (Mw¼ 410 k) reduce the electric field

threshold required for DNA compression to 40 V/cm, compared to 150 V/cm in a dextran-free

solution (Figs. 1(c) and 1(d)). An enhanced compression of DNA due to solute polymers

(MW¼ 410 k dextran) was also seen for U¼ 0.3 and 0.6, shown in Fig. S4 in the supplementary

material.16 It is important to note that the trend of decreasing compression field thresholds with

increasing size of dextran polymers is opposite to that observed in depletion-induced DNA con-

densation in the absence of electric fields17,19 where, for a given volume fraction, dextran poly-

mers with a larger molecular weight cause less compression. Thus, depletion effects are not the

driving mechanism behind the polymer-assisted compression of DNA in electric fields.

034103-2 Renner, Du, and Doyle Biomicrofluidics 8, 034103 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

18.189.50.11 On: Thu, 15 May 2014 13:05:45



The results in Fig. 1 are remarkable considering it is widely known that extension of DNA

is observed during electrophoresis in solutions containing relatively rigid linear polymers such

as hydroxyethyl cellulose (HEC)20,21 or HPC.22 In fact, the extension of DNA in these dilute

polymeric solutions is a result of the mechanism that enables size dependent separation via cap-

illary electrophoresis. HPC, a stiff linear polymer with similar physical properties as HEC,

induces significant extension of DNA in an applied field, shown in Fig. 2(a) by the increase in

hRgi=hRg;eqi with increasing field strength. Furthermore, the extension and alignment of DNA

with the applied field naturally result in increasingly anisotropic configurations, displayed in

Fig. 2(b). Additionally, the size of added HPC polymers has a marked effect on DNA confor-

mations. The addition of high Mw HPC polymers (370 k and 1000 k) results in DNA extension,

whereas lower Mw HPC polymers (100 k) facilitate DNA compression.

These drastic differences between the conformations of electrophoresing DNA in different

dilute polymer solutions indicate that the properties of the solute polymer are critically

FIG. 1. Compression of T4 DNA in dextran solutions. Probability distributions of (a) Rg and (b) RM/Rm of T4 DNA in dex-

tran solutions (Mw¼ 410 k, volume fraction U¼ 0.6, 0.5X TBE) at equilibrium (0 V/cm) and under uniform DC electric

fields of E¼ 23 and 46 V/cm. All probability distributions, P(x), are constructed to satisfy the normalization criteria:Ð1
�1 PðxÞdx ¼ 1. (c)–(d) Conformations of T4 DNA under uniform DC electric fields in 0.5X TBE and dextran solutions

with the same volume fraction (U¼ 0.6) but different molecular weights (Mw¼ 5 k, 80 k, and 410 k) in 0.5X TBE. (c)

Ensemble average radius of gyration Rg of T4 normalized by the equilibrium average hRg;eqi, and (d) the corresponding av-

erage ratio between the major and minor axes hRM=Rmi as functions of field strength E. If not visible, the error bar (stand-

ard error) is smaller than the symbol size.

FIG. 2. Conformations of T4 DNA under uniform DC electric fields in HPC solutions of Mw¼ 100 k, 370 k, and 1000 k (a)

and (b), dextran solution of Mw¼ 2000 k (c) and (d), and PVP solutions of Mw¼ 10 k and 1000 k (e) and (f). All solutions

are at U¼ 0.6 in 0.5X TBE. If not visible, the error bar (standard error) is smaller than the symbol size.
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important to the overall physics. To further explore these effects, we investigate the conforma-

tions of DNA electrophoresing in high molecular weight dextran (Mw¼ 2000 k) solutions. As

opposed to solutions with smaller dextran polymers (Mw� 410 k), the larger 2000 k dextran so-

lution causes moderate initial compression at low field strengths followed by substantial exten-

sion of T4 DNA at high field strengths (Figs. 2(c) and 2(d)). This observation is consistent with

the observed extension of T2 DNA in 2000 k dextran solutions at 200 V/cm by Wang and

Morris.23 The effect of PVP, a linear polymer, on the conformation of electrophoresing DNA is

shown in Figs. 2(e) and 2(f). Compression of T4 DNA is seen in 10 k PVP solutions, while

elongation is seen in 1000 k PVP solutions at field strengths larger than 100 V/cm. This is the

same qualitative behavior as seen in dextran solutions with low (Figs. 1(c) and 1(d)) and high

(Figs. 2(c) and 2(d)) molecular weights. Thus, for a given polymer, increasing molecular weight

can result in a crossover between assisting compression to inducing extension of DNA, indicat-

ing a change in the physical process that governs DNA conformations.

IV. THEORY FOR DNA-POLYMER COLLISIONS

We propose that the extension of DNA in dilute polymeric solutions results from the forces

involved in nanoscopic DNA-polymer collisions. These forces are largely determined by the

electrophoretic velocity U of the DNA, the physical properties of the solute polymer (radius of

gyration Rg,p, diffusivity Dp, and persistence length lp,p), and the physical properties of the DNA

(bare width wDNA� 2 nm, persistence length lp,DNA� 50 nm, contour length Lc,DNA� 75 lm, and

diffusivity DDNA). Inspired by literature on DNA-post collisions during electrophoresis, we

define a P�eclet number24,25

Pec ¼
URg;p

Dp

; (1)

which represents the ratio of the time for the solute polymer to diffuse versus the time to con-

vect over the collision length scale which is Rg,p (as Rg,p>wDNA for all solvent polymers

studied). For Pec� 1, the solute polymer diffuses around the approaching DNA, avoiding colli-

sions; DNA-polymer collisions begin to occur at Pec� 1, depicted in Fig. 3. After collision, the

solute polymer becomes entrained with the electrophoresing DNA and imparts a local drag

force of FD,p¼Ufp, where fp is the drag coefficient of the entrained polymer. By comparing

this drag force of the entrained polymer to the scales for the elastic spring forces of the poly-

mer FS;p � kBT
lp;p

and DNA FS;DNA � kBT
lp;DNA

, two additional P�eclet numbers can be formed

FIG. 3. Schematic of DNA electrophoresing in dilute solutions of polymers. Top: DNA at rest prior to application of the

electric field. Bottom: Steady state configurations long after switching on the electric field. (a) DNA with “small” polymers

such that Pec� 1 and Peeff� 1. (b) DNA with “large” polymers such that Pec� 1 and Peeff� 1. Polymers entrained with

DNA contour are shown in red.
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Pep ¼
Ulp;pfp

kBT
; (2)

and

PeDNA ¼
Ulp;DNAfp

kBT
: (3)

We note that prior to the collision, the solute polymer is considered to be undeformed, so

the drag coefficient can be calculated from the equilibrium diffusivity of the polymer via the

Stokes-Einstein relation, fp ¼ kBT
Dp

. The P�eclet number for the solute polymer can then be written

as Pep ¼ Ulp;p

Dp
, a more common expression. The magnitudes of Pep and PeDNA determine

whether a single collision event can cause deformation in the solute polymer or DNA, respec-

tively. However, when considering the conformation of DNA, the magnitude of the force on

the DNA due to drag of all (N) entrained polymers must be considered, FN
D;DNA ¼ N � FD;p.

The number of solute polymers entrained with the DNA contour (N) can be calculated by

N ¼ sc � kenc � Pc Pecð Þ; (4)

where kenc is the rate at which DNA encounters solute polymers, Pc (Pec) is the probability that

the encountered solute polymer actually collides with the DNA contour, and sc is the duration

time of such a polymer-DNA collision event. We note that Pc is a function of Pec and asymp-

totically approaches zero for small Pec and unity for large Pec.

The rate at which the electrophoresing DNA encounters solute polymers is

kenc ¼
3URg;pLc;DNA

4pR3
g;p

U: (5)

This expression requires some explanation. The product Rg,p Lc,DNA is the cross-sectional area

available for polymer-DNA collisions. Multiplying this term by the electrophoretic velocity

gives the rate at which such a collision volume is generated by the electrophoresing DNA.

Dividing by the volume of a solute polymer coil, 4pR3
g;p=3, gives the rate at which the DNA

would encounter a solute polymer for U¼ 1, and multiplying through by U renormalizes this

rate for the actual volume fraction.

Now, using Eqs. (4) and (5), FN
D;DNA can be compared to FS,DNA. Dropping the factor of

4p/3, we arrive at

Peeff ¼ PeDNA � sc �
ULc;DNA

R2
g;p

U

 !
� Pc Pecð Þ; (6)

the dimensionless group that determines the configuration of the electrophoresing DNA in a

dilute solution of neutral polymers.

In Table I, we use a representative scale for an electrophoretic velocity of U¼ 100 lm/s to

present values of these groups for all studied polymer solutions. To consistently define polymer

properties for all polymer solutions, we estimate Rg;p ¼ ð 3Mw

4pNAc	Þ
1=3

and Dp ¼ kBT
6pgRh;p

, where g¼ 1

cP is the solvent buffer viscosity and Rh,p¼Rg,p/1.56 in the limit of long, linear chains.26 For

nearly all polymers studied, Pep� 1, and Pep is still below unity for the two largest HPC solu-

tions. Therefore, for all solutions, we make the assumption that the polymers do not deform

during collision, so fp ¼ kBT
Dp

in all expressions and PeDNA ¼ lp;DNA

lp;p
Pep. A further consequence

of this fact is that the polymer must disengage from the DNA via diffusive motion, and since

Dp�DDNA for all solutions studied, the duration of a polymer-DNA collision event is sc ¼
R2

g;p

Dp
.

This yields a simplified expression of

Peeff ¼ PeDNA �
ULc;DNA

Dp

U
� �

� Pc Pecð Þ: (7)
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Inspection of the relative sizes of these dimensionless groups clarifies the physical picture.

For 10 k PVP, 5 k, 80 k, and 410 k dextran, and 100 k HPC polymers, Pec� 1, so Pc (Pec) is

near zero, and thus Peeff becomes small, and the DNA does not extend during electrophoresis.

In solutions where extension is observed, we note that Pec� 1, and thus we expect

DNA-polymer collisions to occur. In these cases, we use a conservative lower bound of Pc

(Pec)¼ 0.05 for all solutions to calculate Peeff. We find that Peeff� 1 for all these solutions,

consistent with the experimentally observed extension of DNA. A comparison of the proposed

DNA-polymer collision physics for both compacted and extended DNA configurations under an

electric field is shown in Fig. 3.

It is interesting to note that this analysis does not explicitly consider the structure of the

solute polymer, e.g., branched dextran polymers vs. linear PVP or HPC polymers. These effects

are reflected in the Rg,p, lp,p, and fp. These differences are sufficient to order the solute poly-

mers in Table I. The structure of the solute polymer (linear vs. branched) may affect the con-

formational change of DNA beyond what is captured by Rg,p,lp,p, and fp. This is suspected to

be at most a secondary effect since changing only the molecular weight is able to induce a tran-

sition from compressed DNA to extended DNA for both linear (PVP) and branched (dextran)

solute polymers.

V. ELECTROHYDRODYNAMICAL MECHANISM OF DNA COLLAPSE

We next explore the mechanism by which relatively small polymers may act to assist DNA

compression by examining a proposed electrohydrodynamic scaling. In these solutions, collision

events are not substantially extending the DNA, and the polymers primarily act to reduce the

overall mobility of the DNA.

We will develop our theory by building off the main result from the Isambert and co-

workers.10,11 The key tenets in their theory are: (1) DNA (macroions) and salt (microions) will

have differing electrophoretic mobilities denoted by lM and ls, respectively and (2) Brownian

motion will give rise to spontaneous fluctuations in the DNA concentration denoted by dcM.

Isambert et al. showed that in the vicinity of these concentration fluctuations there will be an

induced hydrodynamic flow that leads to further increase the local DNA concentration and ulti-

mately gives rise to DNA aggregates. The flow field was found to scale as

vh � ��0

lsdcMNMLh

lMcsg
E2; (8)

where NM is the number of charges per DNA, ��0 is the solvent dielectric constant, cs is salt

concentration, g is the solvent viscosity, and Lh is the length scale of the electrohydrodynamic

flow. Readers are referred to the original papers of Isambert et al. for a detailed derivation.

To describe the effect of this flow on a single macroion, we derive a scaling for a dimen-

sionless group, the Deborah number, which characterizes the balance between compression due

TABLE I. Various P�eclet numbers for the polymeric solutions used in this study.

Pec Pep PeDNA Peeff

PVP, 10 k 0.0019 0.00097 0.037 …

PVP, 1000 k 0.33 0.013 0.49 11

Dextran, 5 k 0.0020 0.00031 0.038 …

Dextran, 80 k 0.021 0.0010 0.12 …

Dextran, 410 k 0.086 0.0020 0.25 …

Dextran, 2000 k 0.34 0.0040 0.50 11

HPC, 100 k 0.042 0.035 0.18 …

HPC, 370 k 0.20 0.077 0.39 6.7

HPC, 1000 k 0.66 0.14 0.70 22
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to electrohydrodynamics and the macroion (DNA) entropic tendency to expand back conforma-

tion: De 
 _es, where _e is the strain rate of the electrohydrodynamic flow and s is the longest

relaxation time of the macroion in solution. We then have

_e 
 vh

Lh
� ��0

lsdcMNM

lMcsg
E2: (9)

Since the longest relaxation time s� g when cs and molecular weight of DNA are kept

constant, we find

De 
 _es � ��0

lsdcMNM

lMcs
E2: (10)

We now relate the above scaling to our experimental data. For all dextran solutions, cs and NM

are held constant, and the dielectric constant ��0 (Refs. 27 and 28) and ls are approximately

constant (see the supplementary material for the ls data16). As a result, De is only dependent

FIG. 4. DNA conformations and mobility fluctuations in dextran solutions at 15 V/cm. (a) Representative oscillation pro-

files of lM, RM, and Rm of T4 DNA in dextran solutions Mw¼ 80 k, U¼ 0.6, 0.5X TBE. (b) Snapshots of DNA conforma-

tions during electrophoresis corresponding to each time point in (a). Scale bar: 5 lm. (c)–(e) Probability distributions of Rg,

RM/Rm, and lM of T4 in three dextran solutions with different molecular weights (Mw¼ 5 k, 80 k, and 410 k), all U¼ 0.6.

All probability distributions, P(x), are constructed to satisfy the normalization criteria:
Ð1
�1 PðxÞdx ¼ 1. Insets of (c)–(e)

are the standard deviations d of Rg, RM/Rm, and lM as a function of the size of dextran polymers, respectively.
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on lM, dcM, and E. As described above, the primary consequence of the dextran polymers is to

effectively decrease the overall mobility of the macroion. As shown in Fig. S1,16 DNA mole-

cules migrate much slower in dextran solutions than in 0.5X TBE, i.e., 2 (lm/s)/(V/cm). As

larger polymer chains produce greater tension on electrophoresing DNA coils, DNA molecules

migrate slower and their mobilities exhibit larger fluctuations in 410 k compared to 5 k or 80 k

dextran solutions (Fig. S1 (Ref. 16)). This finding agrees with our observation of DNA confor-

mational fluctuations in dextran solutions at low field strength (Fig. 4). During electrophoretic

migration, DNA coils are moderately stretched by the dextran polymers and recoil back as these

polymers are released from them. Consequently, periodic oscillations in DNA size and mobility

are observed. Larger dextran polymers likewise induce more significant fluctuations in DNA

volume dV, and since dcM� dV they also give rise to larger magnitudes of segment density

fluctuations. As a result, dextran polymers with larger molecular weights promote DNA com-

pression more strongly by reducing DNA mobility and amplifying DNA segment density fluctu-

ations more significantly (see Eq. (10)).

We finally test if the collapse of DNA in solutions of low molecular weight dextran poly-

mers (Mw� 410 k) is quantitatively consistent with our proposed model by considering a scaling

analysis to collapse the data. First, we examine the effects of macroion mobility by replotting

the data in Figs. 1(c) and 1(d) versus E=l1=2
M , finding a substantial collapse of data (Fig. 5(a)).

Further collapse of the data is achieved by accounting for differing macroion segment density

fluctuations and replotting the data versus (EðdV=lMÞ1=2
) (Fig. 5(b)). Here, the fluctuations in

macroion segment density dcM are estimated from the magnitude of fluctuations in macroion

volume dV. Assuming the 3D DNA molecule is described by an ellipsoid with RM and Rm as

its major and minor principle axes in the observable 2D-plane, we get dcM � dV � dRMR2
m þ

2dRmRMRm (see supplementary material16). As DNA coils are quickly compressed (�1 s) to

globules on applying a high enough electric field, a change which greatly influences volume

fluctuations and mobilities, we use characteristic values of dV and lM at a low field strength

(15 V/cm) to achieve data collapse in Fig. 5. Replotting the data using lM as a function of E
results in a similar extent of data collapse (Fig. S3 (Ref. 16)). The collapse supports our pro-

posed mechanism for polymer-facilitated DNA collapse.

VI. CONCLUSIONS

Our observations demonstrate that the electric-field-induced compression of single DNA

molecules is significantly enhanced by the addition of dextran polymers (Mw� 410 k) to solu-

tion. We sharply contrast this behavior to the observed DNA extension in HPC solutions, a

widely known phenomenon. By varying the size of added polymers, we show that high

FIG. 5. Replotting the data in Figs. 1(c) and 1(d) versus (a) El�1=2
M , units: ðV=cmÞð 1

ðlm=sÞ=ðV=cmÞÞ
1=2

; (b) EðdV
lM
Þ1=2

, units:

ðV=cmÞð lm3

ðlm=sÞ=ðV=cmÞÞ
1=2

results in a data collapse onto a master curve. lM and dV used were measured at at E¼ 15 V/cm.
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molecular weight dextran (Mw� 2000 k) and PVP (Mw� 1000 k) polymers can also cause similar

DNA extension. Through derivation and inspection of the dimensionless groups governing the

DNA-polymer collisions, these counterintuitive observations are explained. When the polymers

act only to slow the bulk mobility of the DNA, we find that the compression of single isolated

DNA molecules is well described by a scaling consistent with the arguments developed by

Isambert et al. for intermolecular DNA aggregation that occurred at an overlap concentration.

For DNA separations in dilute polymer solutions, the compact globule conformation of

DNA is undesirable, and a lower field strength, higher ionic strength,12 and avoidance of short

and flexible polymers as separation medium are expected to prevent the compression of large

DNA. Conversely, it is challenging to produce self-compacting DNA vectors for therapeutic

gene delivery.29 To achieve this end, the addition of dextran or similar short flexible polymers to

DNA solutions could be used to lower the field threshold for compaction, mitigating potential

damage to DNA chains by high electric fields. This enhancement of DNA compression could

also be used to systematically induce topological states, such as knots or self-entanglements, in

single DNA for fundamental studies in polymer physics.12,30 It is reasonable to expect that small

polymers can also assist in intermolecular DNA aggregation and hence improve assays that

exploit these instabilities for label-free DNA detection in lab-on-chip devices.31 In future work,

it will be interesting to explore how the interplay between nanofluidic-confinement and polymer

collisions affects the conformation and dynamics of DNA.
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