
Optimal Approximations of the Frequency Moments of
Data Streams

Piotr Indyk ∗

MIT

indyk@mit.edu

David Woodruff †

MIT

dpwood@mit.edu

ABSTRACT
We give a 1-pass Õ(m1−2/k)-space algorithm for computing
the k-th frequency moment of a data stream for any real
k > 2. Together with the lower bounds of [1, 2, 4], this
resolves the main problem left open by Alon et al in 1996
[1]. Our algorithm also works for streams with deletions

and thus gives an Õ(m1−2/p) space algorithm for the Lp

difference problem for any p > 2. This essentially matches
the known Ω(m1−2/p−o(1)) lower bound of [13, 2]. Finally

the update time of our algorithm is Õ(1).

Categories and Subject Descriptors
F.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY

General Terms
Algorithms

Keywords
Streaming algorithms, frequency moments

1. INTRODUCTION
Computing over data streams is a recent phenomenon that

is of growing interest in many areas of computer science,
including databases, computer networks and theory of algo-
rithms. In this scenario, it is assumed that the algorithm
sees a stream of elements one-by-one in arbitrary order, and
needs to compute certain statistics over the input. How-
ever, it does not have enough memory to store the whole
stream. Therefore, it must maintain only a sketch of the
data, which is small but nevertheless powerful enough to
compute the desired statistics.

∗Supported in part by NSF ITR grant CCR-0220280, David
and Lucille Packard Fellowship and Alfred P. Sloan Fellow-
ship.
†Supported by an NDSEG fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05,May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Within the theory community, the recent interest in these
problems can be traced to the paper of Alon, Matias and
Szegedy [1]. In that influential paper, the authors give up-
per and lower bounds for the space complexity of streaming
algorithms for the problem of estimating the frequency mo-
ments of a stream. In this problem, the stream is a sequence
S of elements a1, . . . , an, aj ∈ [m] = {1 . . . m}. For each el-
ement i ∈ [m], its frequency fi in S is the number of times
it occurs in S. The k-th frequency moment (for real k ≥ 0)
of S is defined as

Fk = Fk(S) =
X

i∈[m]

fk
i

An algorithm A (ε, δ)-approximates Fk if A outputs a num-

ber F̃k for which Pr[|F̃k−Fk| > εFk] < δ. In [1], the authors

present Õ(1)1 space algorithms which (ε, δ)-approximate Fk

for integers k ≤ 2, and Õ(m1−1/k) space algorithms for in-

tegers k ≥ 3. For k > 5, they also show an Ω(m1−5/k) lower
bound. Their ideas spurred vigorous research on problems
in this area. Soon, their algorithmic results (for the case
k ≤ 2) were shown [7, 10] to hold for a more general prob-
lem of estimating the p-th norm of the vector (f1, . . . , fm);
see the definition below. Later, a line of research [2, 4] cul-

minated in an Ω̃(m1−2/k) space lower bound for estimating
Fk for any real k > 2. Recently, better upper bounds of
Õ(m1−1/(k−1)) and Õ(m1−2/(k+1)) were shown in [6, 8] and
[9].

In this paper, we present a one-pass Õ(m1−2/k)-space
streaming algorithm for estimating Fk for any real k > 2.
By the aforementioned results, our space bound is tight (up

to Õ(1) factors). Thus, together with the lower bound of
[2, 4], our result resolves the main problem left open by [1],
resolving a long line of research on the frequency moments.
We note that, in addition to matching the known space lower
bound, the update time of our algorithm is essentially opti-
mal: Õ(1) per stream element.

Our algorithm has the additional feature of being able to
estimate Fk over streams with deletions, instead of just the
update-only model defined above. It can therefore be used
to estimate Lp differences, p > 2, in one-pass with space
Õ(m1−2/p). The Lp difference problem is to approximatePm

i=1 |ai − bi|p, where the ai’s and bi’s arrive in arbitrary
order. Prior to our work the best known algorithms used
space Õ(m1−1/(p−1)) [6, 8]. Since there is an Ω(m1−2/p−o(1))

1f(m) = Õ(g(m)) means f(m) =

g(m)
`

1
ε

´O(1)
logO(1) mn log 1/δ; the Ω̃ notation is de-

fined similarly.

space lower bound [13, 2] for this problem, our algorithm is
essentially optimal.

Our techniques: The earlier algorithms for estimating
Fk were obtained by constructing a single estimator, which
was shown to equal Fk in expectation, and to have small
variance. Our algorithm departs from this approach. In-
stead, the main idea of our algorithm is as follows. First,
we (conceptually) divide the elements into classes Si, such
that the elements in class Si have frequency ≈ (1 + ε)i. We
observe that, in order for the elements in Si to contribute
significantly to the value of Fk, it must be the case that the
size si of Si is comparable to the size of Si+1∪ . . .∪Slog1+ε n.
If this is the case, we have a good chance of finding an ele-
ment from Si if we restrict the stream to an ≈ 1/si fraction
of universe elements, and then find the most frequent ele-
ments in the substream. The contribution of Si to Fk can
then be approximately estimated by si · (1 + ε)ik. By sum-
ming up all estimated contributions, we obtain an estimator
for Fk.

Unfortunately, finding the most frequent element in a gen-
eral stream (even approximately) requires storage that is
linear in the stream size. However, if the distribution of the
stream elements is not very “heavy-tailed”, then a more ef-
ficient algorithm is known [5]. This more efficient method
is based on the sketching algorithm for F2 given in [1]. We
show that the streams generated by our algorithm (for Si’s
that contribute to Fk), satisfy this “tail property”, and thus
we can use the algorithm of [5] in our algorithm.

A somewhat technical issue that arises in implementing
the above algorithm is a need to classify a retrieved element
i into one of the classes. For this, we need to know fi. This
information is easy to obtain using a second pass. In the
absence of that, we use the estimation of fi provided by
the algorithm of [5], but we define the thresholds defining
the classes randomly, to ensure that the error in estimating
the frequencies is unlikely to result in misclassification of a
frequency.

2. NOTATION AND PRELIMINARIES
We are given a stream S of n elements, each drawn from

the universe [m]. Our goal is to output an approximation
to the kth frequency moment Fk. For simplicity, we assume
k ≥ 2 is a constant (for k < 2, space-optimal algorithms
already exist [1, 3]) , while m, n, 1/ε may be growing. Let
0 < δ, ε < 1 be the desired confidence and accuracy of our
estimate, respectively. We define the following parameters:

ε′ = O(ε), α = 1 + ε′, λ = ε′/αk, L =
λ

log n + 1

W.l.o.g., we may assume that m is a power of two and that
n is a power of α. Unless otherwise specified, logs are to the
base α. We define the frequency classes Si, for 0 ≤ i ≤ log n,
as

Si = {j | αi ≤ fj < αi+1}.

We use the shorthand notation si for |Si|. We say that a
class Si contributes if

αiksi ≥ LFk.

The next lemma relates si to | ∪l>i Sl| =
P

l>i sl when Si

contributes.

Lemma 1. If Si contributes, then si ≥ L
P

l>i sl.

Proof. Notice that

αiksi ≥ LFk ≥ L
X
l>i

slα
lk ≥ L

X
l>i

slα
ik,

and the lemma follows by dividing by αik.

We define F C
k to be the component of Fk due to the con-

tributing frequency classes, namely,

F C
k =

X
contributing Si

X
j∈Si

fk
j .

We define F NC
k to be the component due to the non-contributing

classes, so F C
k + F NC

k = Fk. The next lemma shows that
F NC

k is small.

Lemma 2.

F NC
k < λαkFk.

Proof. We note that if j ∈ Si, then fj < αi+1. There-
fore,

F NC
k <

X
non-contr. Si

siα
(i+1)k < Lαk

X
non-contr. Si

Fk ≤ λαkFk.

3. THE ALGORITHM

3.1 An Idealized Algorithm
We start by making the unrealistic assumption that we

have the following oracle algorithm. Later we remove this
assumption by approximating the oracle with the Counts-
ketch algorithm of [5].

Assumption 3. For some B = B(m, n), there exists a
1-pass B-space algorithm Max that outputs the maximum
frequency of an item in its input stream.

We start by describing our algorithm which outputs a (1±ε)-
approximation to Fk with probability at least 8/9. The main
idea is to estimate Fk by estimating each of the set sizes si

and computing
P

i siα
ik. Although in general it will not

be possible to estimate all of the si, we show that we can
estimate the sizes of those Si that contribute. By Lemma
2, this will be enough to estimate Fk. The space complexity
will be B up to poly

`
1
ε
ln n ln m

´
terms.

The algorithm approximates si by restricting the input
stream to randomly-chosen substreams. By this, we mean
that it randomly samples subsets of items from [m], and only
considers those elements of S that lie in these subsets. More
precisely, the algorithm creates b = O(ln(m/L)) families of
R = O

`
1

L3 ln (ln m log n)
´

substreams Sr
j , for j ∈ [b] and

r ∈ [R]. For each r, Sr
j will contain about m/2j randomly

chosen items. If a class contributes, then using Lemma 1 we
can show there will be some j for which a good fraction of
the maximum frequencies of the family {Sr

j }r∈[R] come from
the class. This fraction will be used to estimate the class’s
size si via a helper algorithm Estimate. Since the fraction
is a function f(si,

P
l>i sl) of si together with the sizes of

previously estimated classes, Estimate can use the previous
estimates with the value of f to estimate si.

There are a few “extra checks” performed by our algo-
rithm in step 4 to ensure that Estimate is accurate. First,
we only invoke Estimate on the family {Sr

j }r∈[R] if the num-
ber of maxima crosses a certain threshold. Second, we make

sure that both
P

l>i s̃l > 2j (if Estimate is invoked on the

family {Sr
j }r∈[R]) and that L · 2j is at least as large as the

output of Estimate. If either one of these conditions fails to
hold, s̃i is set to 0. As the analysis will show, these condi-
tions effectively allow Estimate to inductively approximate
the si from the function f and its previous estimates.

We separate the description of the algorithm from its
helper algorithm Estimate used in step 4.

Fk-Approximator (stream S):

1. For j ∈ [b] and r ∈ [R], independently sample func-
tions hr

j : [m] → [2j] from O(ln(1/L))-wise indepen-
dent families Hj , or by using the PRG in section 3.5

2. Let Sr
j be the restriction of S to those items x for

which hr
j (x) = 1

3. For each j, R, compute Mr
j = Max(Sr

j)

4. For i = log n, . . . , 0,

• Find the largest j for which at least RL/64
indices r satisfy αi ≤ Mr

j < αi+1. If no such

j exists, or if 4
P

l>i s̃l > 2j , set s̃i = 0.

• Otherwise, set:
temp = Estimate(i, j,

P
l>i s̃l, M

1
j , . . . , MR

j)

• If 2j ≥ temp/L, set s̃i = temp, else s̃i = 0

5. Output F̃k =
P

i s̃iα
ik.

Before describing the algorithm Estimate, we observe that if
the s̃i are good approximations to the si, then F̃k is a good
approximation to Fk. More precisely, define the event E as
follows:

• for all i, 0 ≤ s̃i ≤ (1 + ε)si, and

• for all i, if Si contributes, then s̃i ≥ (1− ε/(k + 2))si.

We claim that proving F̃k is a (1±ε)-approximation reduces
to bounding the probability that event E occurs. More pre-
cisely,

Claim 4. Suppose that with probability at least 8/9, event

E occurs. Then with probability at least 8/9, we have |F̃k −
Fk| ≤ εFk.

Proof. Assume E occurs. Put ε∗ = ε/(k + 2). Then,

F̃k =
X

i

s̃iα
ik ≤

X
i

(1 + ε)siα
ik ≤ (1 + ε)Fk.

For the other direction, write F̃k = F̃ C
k + F̃ NC

k , where F̃ C
k

denotes the contribution to F̃k due to the contributing Si.

Then, using Lemma 2, and assuming ε′ ≤ ε∗,

F̃ C
k =

X
contributing Si

s̃iα
ik

≥ (1− ε∗)

αk

X
contributing Si

siα
(i+1)k

≥ (1− ε∗)

αk
F C

k

>
(1− ε∗)(1− λαk)

αk
Fk

= (1− ε∗)

„
1

αk
− λ

«
Fk ≥

(1− ε∗)2

αk
Fk

≥ (1− ε∗)2(1− kε∗)Fk

≥ (1− (k + 2)ε∗)Fk

= (1− ε)Fk.

Noting that F̃ NC
k ≥ 0, we conclude that with probability at

least 8/9, we have |F̃k − Fk| ≤ εFk.

We now describe Estimate, and in the next section prove it
yields the premise of Claim 4. Define ri,j = (1−(1−2−j)si).
For any stream Sr

j , the probability that αi ≤ Mr
j < αi+1 is

precisely

pi,j = (1−2−j)
P

l>i sl(1−(1−2−j)si) = (1−2−j)
P

l>i slri,j .

Estimate computes an approximation r̃i,j to ri,j , and uses it
to estimate si through the expression for pi,j .

Estimate (i, j,
P

l>i s̃l, M
1
j , . . . , MR

j):

1. Set Ai,j = #r for which αi ≤ Mr
j < αi+1

2. Set r̃i,j = min
“

Ai,j

R(1−2−j)
P

l>i s̃i
, 1

”
3. Output

ln(1−r̃i,j)

ln(1−2−j)

3.2 Analysis
The goal of the analysis is to prove the following theorem.

Theorem 5. For sufficiently large m, n, with probability
at least 8/9, event E occurs.

In the bulk of the analysis we will assume the hr
j are truly

random functions, but we remove this assumption in section
3.5 using the techniques of [10]. Alternatively, one can adapt
the inclusion-exclusion approach used in [3] to our setting,
where the families Hj should be chosen to be O(ln(1/L))-
wise independent. We omit the details of the latter ap-
proach. To simplify the analysis, we start by showing that
with probability at least 8/9, a very natural event occurs.
We then condition on this event in what follows.

Observe that in Estimate,

E[Ai,j] = Rpi,j = R(1− 2−j)
P

l>i slri,j .

We define F to be the event that for all Ai,j ,

• If E[Ai,j] ≥ RL/(128e), then |Ai,j−E[Ai,j]| ≤ LE[Ai,j].

• If E[Ai,j] ≤ RL/(128e), then Ai,j < RL/64.

Lemma 6. Pr[F] ≥ 8/9.

Proof. Fix any i, j for which E[Ai,j] ≥ RL/(128e). By
Chernoff bounds,

Pr[|Ai,j−E[Ai,j]| ≥ LE[Ai,j]] ≤ e−Θ(L2E[Ai,j]) = O

„
1

ln m log n

«
.

Now suppose Ai,j is such that E[Ai,j] ≤ RL/(128e). Then

Pr[Ai,j ≥ RL/64] ≤ 2−RL/64 = O

„
1

ln m log n

«
.

The lemma follows by a union bound over all i and j.

3.2.1 Consequences ofF
In the remainder, we assume that F occurs.

Definition 7. We say that temp is set if in step 4 of the
main algorithm, temp is set to the output of Estimate. We
say that s̃i is set if in step 4, s̃i is set to temp.

We’d like to approximate si by approximating pi,j . We start
with the following proposition.

Proposition 8. Suppose 0 < si/L ≤ 2j and 0 < γ < 1.
Then if r̃i,j − ri,j ≤ γri,j, then s̃i, defined by

s̃i =
ln(1− r̃i,j)

ln(1− 1/2j)
,

satisfies s̃i − si ≤ (γ + O(L))si. If in addition, ri,j − r̃i,j ≤
γri,j, then si − s̃i ≤ (γ + O(L))si.

Proof. By a Taylor expansion, 2−j ≤ − ln(1 − 2−j) ≤
2−j + η1, where η1 = O(1/4j). Similarly, r̃i,j ≤ − ln(1 −
r̃i,j) ≤ r̃i,j+η2, where η2 = O(r̃2

i,j). Since si2
−j−s2

i 2
−2j−1 ≤

ri,j ≤ si2
−j , we have

s̃i ≤ 2j(r̃i,j + η2) ≤ 2j(r̃i,j + r̃i,jO(ri,j))

≤ 2jri,j(1 + γ)(1 + O(ri,j))

≤ si(1 + γ + O(L))

If also ri,j − r̃i,j ≤ γri,j , then

s̃i ≥ r̃i,j

2−j + η1

≥ 2j(1− γ)ri,j

1 + 2jη1

≥ si(1− γ)(1− si2
−j−1)

1 + 2jη1

≥ si(1− γ −O(L))

Lemma 9. Suppose for some i and some 0 < γ < 1/3,
|
P

l>i sl −
P

l>i s̃l| ≤ γ
P

l>i sl. If temp is set for Si, then
|r̃i,j − ri,j | ≤ (1 + γ + 2L)ri,j.

Proof. Fix such an i, put σ =
P

l>i sl, and σ′ =
P

l>i s̃l.

In Estimate, r̃i,j ≤ min
“

Ai,j

R(1−2−j)σ′ , 1
”
. Also, E[Ai,j] ≥

RL/(128e) since temp is set and F occurs. Recall that
E[Ai,j] = R(1− 2−j)σri,j . Therefore,

(1− L)(1− 2−j)γσri,j ≤ r̃i,j ≤ (1 + L)(1− 2−j)−γσri,j .

Since temp is set and γ < 1/3, we have 2j ≥ 4σ′ ≥ 2σ.
Using standard bounds (see the appendix of [12]), one can
show that

(1− L)(1− 2−j)γσri,j ≥ (1− L)(1− γ)ri,j

≥ (1− L− γ)ri,j

and similarly that

(1+L)(1−2−j)−γσri,j ≤ (1+L)(1+γ)ri,j ≤ (1+2L+γ)ri,j .

Corollary 10. Suppose for some i and some 0 < γ <
1/3, |

P
l>i sl −

P
l>i s̃l| ≤ γ

P
l>i sl. Then 0 ≤ s̃i ≤ si +

(γ + O(L))si.

Proof. If either temp or s̃i is not set, then s̃i = 0 and
we’re done. Otherwise, 2j ≥ s̃i/L in step 4. If s̃i < si,
since the output of Estimate is nonnegative, 0 ≤ s̃i < si.
Otherwise, 2j ≥ s̃i/L ≥ si/L > 0, where the last inequality
follows from the fact that temp is set. Since |r̃i,j − ri,j | ≤
(1 + γ + 2L)ri,j by Lemma 9, applying Proposition 8 gives
s̃i ≤ si + (γ + O(L))si.

Lemma 11. Let 0 < γ < 1/3, |
P

l>i s̃l −
P

l>i sl| ≤
γ

P
l>i sl, and suppose that Si contributes. Then |s̃i − si| =

(γ + O(L))si.

Proof. Suppose Si contributes, and put σ =
P

l>i sl.

Consider j for which 8σ ≤ 2j < 16σ. Then, recalling that
E[Ai,j] = Rpi,j , one can bound E[Ai,j] below by R(1 −
σ2−j)si/2j+1 since (1 − (1 − 2−j)si) ≥ si/2j+1 for 2j ≥
si. Note that 2j+1 < 32σ. Moreover, si ≥ Lσ since Si

contributes. Thus E[Ai,j] is at least R(1 − σ2−j)L/32 ≥
(7/8)(RL/32). Since L < 3/7, we have Ai,j ≥ (1−L)E[Ai,j] ≥
RL/64. Since 8σ ≥ 4σ′, temp is set, so |r̃i,j − ri,j | ≤
(1 + γ + 2L)ri,j by Lemma 9.

Now consider j for which 2si/L ≤ 2j < 4si/L. The claim
is that E[Ai,j] ≥ RL

8e
. Note that if we show the claim, then it

follows that Ai,j ≥ (1−L)RL/(8e) ≥ RL/64 since L < 1/2.
To show the claim, by dividing by R, by using the upper
bound on 2j , and by using that (1−(1−2−j)si) ≥ si/2j+1 for
2j ≥ si, it is enough to show that (1−2−j)σ ≥ e−1. If σ = 0,
this is immediate. Otherwise, by Lemma 1, si ≥ Lσ, and
thus 2j ≥ 2σ. So it remains to show that

`
1− 1

2σ

´σ ≥ e−1.

But
`
1− 1

2σ

´σ ≥ e−1/2(1− 1
2σ

)1/2 ≥ e−1, as needed (again,
see the bounds in the appendix of [12]).

Now we know for the j found in step 4 of the algorithm,
we have 2j ≥ si/L > 0. Proposition 8 implies |temp −si| ≤
(γ + O(L))si. Finally, since γ < 1/3, it holds that for large
enough n, si ≥ temp/2, and thus, 2j ≥ 2si/L ≥ temp/L. In
particular, s̃i is set.

Now define βi = (log n + 1− i)O(L) for i = log n + 1, . . . , 0.
We show that in step 4 of the algorithm, when processing
Si, we have |

P
l>i s̃i−

P
l>i si| ≤ βi+1

P
l>i si for all i. The

only worry is that we may underestimate many of the si for
those ranges for which either temp or s̃i is not set. However,
these ranges cannot contain too many elements.

Lemma 12. For i = log n, . . . ,−1,˛̨̨̨
˛X

l>i

s̃i −
X
l>i

si

˛̨̨̨
˛ ≤ βi+1

X
l>i

si.

Proof. We induct downwards on i. The base case, i =
log n, is trivial. We show it for some i < log n assuming it
holds for i + 1. If Si contributes, then |s̃i − si| ≤ (βi+1 +
O(L))si ≤ βisi by Lemma 11. Thus,˛̨̨̨

˛̨X
l≥i

s̃l −
X
l≥i

sl

˛̨̨̨
˛̨ ≤

˛̨̨̨
˛X

l>i

s̃l −
X
l>i

sl

˛̨̨̨
˛ + |s̃i − si|

≤ βi+1

X
l>i

sl + βisi

≤ βi

X
l≥i

sl,

proving the inductive step. If Si does not contribute, then
si ≤ L

P
l>i sl, and so˛̨̨̨
˛̨X

l≥i

s̃l −
X
l≥i

sl

˛̨̨̨
˛̨ ≤

˛̨̨̨
˛X

l>i

s̃l −
X
l>i

sl

˛̨̨̨
˛ + si

≤ βi+1

X
l>i

sl + L
X
l>i

sl

≤ βi

X
l≥i

sl,

where we use that |s̃i − si| is maximized for s̃i = 0, since,
by Corollary 10, s̃i ≤ si + (γ + O(L))si.

Noting that (log n+1)O(L) ≤ ε/(k +2), Claim 4, Corollary
10, Lemma 11, and Lemma 12 imply that event E occurs.

3.3 A 2-pass Algorithm
We instantiate Assumption 3 with the CountSketch algo-

rithm of [5].

Theorem 13. ([5]) Let 0 < η < 1. Given a stream S
and a parameter B, there is an algorithm CountSketch that
with probability at least 1 − η returns all items x for which
f2

x ≥ F2/B. Further, the space complexity of CountSketch is
O(B(ln n ln 1/η + ln m)).

For completeness, we briefly sketch the algorithm. It
maintains t = O(B) counters, c[0] . . . c[t − 1], initially set
to 0. It also maintains pseudorandom hash function g :
[m] → [t] and pseudorandom variables Yx, x ∈ [m]. Given
a new element x, the i-th counter performs the following: if
g(x) = i, then c[x] = c[x] + Ya.

We modify Fk-Approximator as follows. In step 3 we in-
voke CountSketch, obtaining lists Lr

j of candidate maxima

for Sr
j . In parallel, we compute a 2-approximation F̃2(Sr

j)
to F2(Sr

j) for each j and r. Then, before invoking steps 4
and 5, we make a second pass over S and compute the true
frequency of each element of each Lr

j . Since the Lr
j are rela-

tively small, this is efficient. We then prune the lists Lr
j by

removing all items with frequency less than 2F̃2(Sr
j). We set

Mr
j to be the maximum frequency amongst the remaining

items in Lr
j , if there is at least one remaining item. Other-

wise we set Mr
j = 0. At the end of the 2nd pass, we proceed

with steps 4 and 5 as before.
We note that since both the CountSketch algorithm and

the F2 algorithm have Õ(1) update time and can handle
deletions, our algorithm also has these properties.

We start by conditioning on the following event:

G1
def
= ∀j, r, CountSketch succeeds.

The next lemma follows by a union bound.

Lemma 14. If we set η = O(1/(bR)) in Theorem 13, then
Pr[G1] ≥ 8/9.

To further simplify matters, we condition on the event:

G2
def
= ∀j, r, F2(Sr

j) ≤ 9bR · F2(S)

2j
.

Lemma 15. Pr[G2] ≥ 8/9.

Proof. We have E[F2(Sr
j)] = F2(S)/2j , so

Pr
h
F2(Sr

j) ≥ 9bRF2(S)/2j
i
≤ 1/(9bR)

by Markov’s inequality. By a union bound over all j, r,
Pr

ˆ
∃j, r | F2(Sr

j) ≥ 9bRF2(S)/2j
˜
≤ 1/9.

Finally, define the event

G3
def
= ∀j, r, F̃2(Sr

j) ≤ 2F2(Sr
j).

Lemma 16. Pr[G3] ≥ 8/9.

Proof. We may run the F2-approximator of [1] or [14]
in space O((ln m + ln n) ln 1/η), where η = 1/(9bR) is the
failure probability. A union bound gives the lemma.

We set the CountSketch parameter B = O(bRm1−2/k).

Consequences of F , G1,G2, and G3: We start with a techni-
cal claim.

Claim 17. For all j, r, either Mr
j is set to the maximum

frequency in Sr
j , or to 0.

Proof. Suppose for some j, r the pruned list Lr
j con-

tains at least one element x of Sr
j , but does not contain

the most frequent element y of Sr
j . Then, since G1 oc-

curs, f2
x < f2

y < F2(Sr
j)/B. Since G3 occurs, we have

f2
x < F2(Sr

j)/B ≤ 2F̃2(Sr
j)/B, which contradicts the fact

that x wasn’t pruned.

Corollary 18. For all i, j, E[Ai,j] ≤ Rpi,j.

Proof. Follows from the fact that Pr[Mr
j] = 1 can only

decrease.

We have the following adaptation of Lemma 9 and Corollary
10.

Lemma 19. Suppose for some i and some 0 < γ < 1/3,
|
P

l>i sl −
P

l>i s̃l| ≤ γ
P

l>i sl. Then 0 ≤ s̃i ≤ si + (γ +
O(L))si.

Proof. We may assume temp is set for Si, otherwise s̃i =
0. The main difference from Lemma 9 is that now E[Ai,j] ≤
R(1 − 2−j)σri,j , by Corollary 18. We use half of the proof
of Lemma 9 to conclude that r̃i,j ≤ (1 + 2L + γ)ri,j . If s̃i is
not set or if s̃i ≤ si, we are done. Otherwise 2j ≥ s̃i/L ≥
si/L > 0. and the lemma follows by Proposition 8.

Now we show that Lemma 11 still holds.

Lemma 20. Let 0 < γ < 1/3, |
P

l>i s̃l −
P

l>i sl| ≤
γ

P
l>i sl, and suppose Si contributes. Then |s̃i − si| =

(γ + O(L))si.

Proof. Since F occurs, from the proof of Lemma 11, it
is enough to show that for 2j ≥ 2si/L, the values Mr

j are
distributed just as under Assumption 3. That is, they are
i.i.d. Bernoulli(pi,j). Indeed, if it happens that 2si/L ≥ 8σ,
then temp will be set as before. If instead 2si/L ≤ 8σ, then
in particular, the values Mr

j are identically distributed for

2j ≥ 8σ, and temp will be set as in the proof of Lemma 11.
Since G1 and G3 occur, it suffices to show that for all

x ∈ Si and all r, f2
x ≥ 4F2(Sr

j)/B ≥ 2F̃2(Sr
j)/B (thus for

y ∈ Si′ , i
′ > i, f2

y ≥ 2F̃2(Sr
j)/B). Applying Hölder’s in-

equality, F2 =
Pm

i=1 f2
i ·1 ≤

`Pm
i=1 fk

i

´2/k `Pm
i=1 1

´1−2/k
=

F
2/k
k m1−2/k. Using that fk

x si ≥ αiksi ≥ LFk, we have

α2is
2/k
i ≥ F2L

2/k

m1−2/k
≥

2j · F2(Sr
j)L2/k

9bR ·m1−2/k
≥

2j+1F2(Sr
j)L2/k

B
,

since G2 occurs. Since k ≥ 2, we have 2j/s
2/k
i ≥ 2j/si. If

2j ≥ 2si/L, since L2/k/L ≥ 1 for k ≥ 2, we have f2
x ≥

4F2(Sr
j)/B, as needed.

As the proof of Lemma 12 is unchanged, we conclude,

Theorem 21. There exists a 2-pass algorithm which (ε, δ)-

approximates Fk in space Õ(m1−2/k).

Proof. The lemmas above show that if F ∧G1 ∧G2 ∧G3

occurs, then so does E . By a union bound, Pr[F ∧ G1 ∧
G2∧G3] ≥ 5/9. Taking the median of O(ln 1/δ) independent
repetitions shows the output is an (ε, δ)-approximation to
Fk.

Clearly the algorithm can be implemented with 2 passes.
Ignoring ln(ln mn/ε) factors, Theorem 13 implies the total
space is (recall, log n = log1+α n = O

`
ln n

ε

´
)

O

„
bR ·B (ln n + ln m) ln

1

δ

«
= O

„
b2R2m1−2/k (ln n + ln m) ln

1

δ

«
= O

„
ln2 m ln6 n

ε12
m1−2/k (ln n + ln m)

«
.

3.4 The 1-pass Algorithm
In this section we show how to remove the second pass

from the algorithm in the previous section, and obtain a
1-pass algorithm. For convenience, let f(i) denote the fre-
quency of item i.

Recall that, in the previous section, the algorithm as-
sumed an oracle that we refer to as Partial Max. For a
certain value of a threshold T , the oracle reported the el-
ement i∗ ∈ [m] with the maximum value of f(i∗), but if and
only if f(i∗) ≥ T . The second pass was needed in order
to compute the exact frequencies of the candidate maxima,
and check if (a) any of them was greater than T and (b) find
the element with the maximum frequency.

We reduce the need of the second pass by transforming the
algorithm in such a way that, if we replace each frequency
f(i) by its estimation f̃(i) provided by Countsketch, the be-
havior of the transformed algorithm is, with high probabil-
ity, the same as in the original algorithm.

We assume the following event holds for the items re-
ported by CountSketch:

f(i) ≤ f̃(i) ≤ (1 + κ)f(i)

Note that this event holds with probability 1 − o(1) if the
space used by the algorithm is multiplied by a factor poly-
nomial in 1/κ

The transformations are as follows.
Shifted boundaries. We modify the algorithm so that

the thresholds T passed to the Partial Max are multiplied
by some value y ∈ [1, α), and the frequency boundaries αi

are multiplied (consistently) by some value x ∈ [1/α, 1).
The algorithm and its analysis of correctness can be easily
adapted to this case. This requires natural adjustments,
such as replacing each term αi in the estimator by (xα)i,
etc.

The reason for this modification is that, if we choose x, y
independently at random from a near-uniform distribution,
then, for fixed i, the outcome of comparisons , say, f(i) ≥ yT

and f̃(i) ≥ yT , is likely to be the same, as long as f(i) and

f̃(i) differ by a small multiplicative factor.
Class reporting. We replace the Partial Max oracle by

another oracle, called Rounded Partial Max, which does the
following: for a permutation π : [m] → [m], it reports i with
the smallest value of π[i] such that f(i) is in the same fre-
quency class as f(i∗), but only if f(i∗) ≥ yT . The algorithm
and its analysis remains unchanged, since it only performs
comparisons of f(i) with values xαi and yT .

In the following we assume π is choosen uniformly at ran-
dom from the set of all permutations of [m]. Later, we
show how to reduce the required randomness by choosing π
from a family of 2-approximate min-wise independent func-
tions [11].

Approximate frequencies. Now we consider the fol-
lowing key modification to Rounded Partial Max. The modi-
fication replaces the use of the exact frequencies f(i) by their

approximations f̃(i). Specifically, we replace each compar-

ison f(i) ≥ v by a comparison f̃(i) ≥ v(1 + κ). Note that

f̃(i) ≥ v(1 + κ) implies f(i) ≥ v. Call the resulting oracle
Approximate Max.

Let i′ be such that π(i′) is the smallest value of π(i)
over all i for which f(i) is in the same frequency class as

f(i∗), and let [xαk′ , xαk′+1) be the frequency class contain-
ing f(i∗). If we invoke Rounded Partial Max with parameters
j, r, we denote the values i′, i∗, k′, T by i′(j, r), i∗(j, r),
k′(j, r) and T (j, r). Consider the following event B(j, r):

1. f(i′(j, r)) ≥ xαk′(j,r)(1 + κ), and

2. f(i∗(j, r)) ≥ yT (j, r) ⇒ f(i∗(j, r)) ≥ yT (j, r)(1 + κ)

The following claim can be verified by tracing through the
steps of the algorithm.

Claim 22. Fix the random bits of the algorithm. If B(j, r)
holds for all j, r, then the behaviors of all invocations of
Rounded Partial Max and Approximate Max, respectively, are
exactly the same. Therefore, the output of the algorithms
using either oracle is the same.

Now it suffices to show that each B(j, r) holds with good
probability. We show that this holds even if π is chosen from
a family of 2-approximate min-wise permutations i.e., such
that for any A ⊂ [m], a ∈ [m] − A, we have Prπ[π(a) <
minb∈A π(b)] ≤ 2

|A|+1
. Such families exist and are con-

structible from only O(log2 m) random bits [11].

Lemma 23. There is a distribution of x so that, for any
0 < ζ < 1, if 0 < κ < 1 < α = 1 + ε′ < 2, then for a fixed

pair (j, r) the probability of

f(i′(j, r)) < xαk′(j,r)(1 + κ)

is at most O(κ/ε′ · log m · 1/ζ + ζ). Moreover, this fact
holds even if π is chosen at random from a family of 2-wise
functions.

Proof. For simplicity, we are going to omit the pair (j, r)
in the notation below.

For a parameter β, define I ′(β) = |{i : β ≤ f(i)}|, and

I ′′ = |{i : β ≤ f(i) < β(1 + κ)}|. Consider β = xαk′ . Ob-
serve that the event we are concerned in this lemma occurs
if i′ ∈ I ′′(β).

We choose x = (1 + κ)s/α, where s is chosen uniformly
at random from {0, . . . , log1+κ α}. Note that log1+κ α =
Θ(ε′/κ).

Observe that the value of β ranges in [f(i∗)/α . . . f(i∗)].
Also, observe that each value in that interval is assumed at
most once (that is, for only one value of x).

Claim 24. For any 0 < ζ < 1, the number of different
values of β such that I ′′(β)/I ′(β) ≥ ζ is at most log1+ζ(m+
1) + 1 = O(log m/ζ).

Proof. Assume this is not the case, and let β1 . . . βt,
t ≥ log1+ζ(m + 1) + 1 be the different values of β such that

I ′′(β)/I ′(β) ≥ ζ, in decreasing order.
Since I ′(β) = I ′′(β) + I ′(β(1 + κ)), we have that for each

βi, I ′(βi) ≥ 1
1−ζ

I ′(βi(1+κ)) ≥ (1+ζ)I ′(β(1+κ)). Moreover,

the value of I ′(β) does not decrease as β decreases. It follows
that I ′(βt) ≥ (1 + ζ)t−1 > m, which is a contradiction.

Thus, for the value β induced by a random choice of x, the
probability that I ′′(β)/I ′(β) ≥ ζ is at most O(κ/ε′ log1+ζ m).

The probability that i′ belongs to I ′′(β) is at most ζ (if π is
a truly random permutation) or at most 2ζ (if π is chosen
from 2-approximate min-wise independent family).

The other part of the event B(j, r) can be handled in a sim-
ilar way.

By setting ζ =
p

κ/ε′ · log m we get

Lemma 25. The probability that some event B(j, r) does
not hold is at most

O(Rb
p

κ/ε′ · log m)

which is o(1) for small enough κ = 1/(1/ε′ + log m)O(1).

3.5 Reducing the randomness
It remains to show that the functions hr

j used by our al-
gorithm can be generated in small space. To this end, we
will use Nisan’s generator, as in [10]. Specifically, observe
that the state maintained by algorithm consists of several
counters c (as in the CountSketch algorithm). Each counter
is identified by indices j, r and i. Given a new element x, the
counter performs the following operation: if hr

j (x) = 1 and
g(x) = i, then c = c + Yx. Therefore, we can use Lemma 3
of [10], to show that the random numbers hr

j (0), . . . hr
j (m−1)

can be generated by a PRG using only O(log2(nm)) truly
random bits as a seed. Thus, the total number of random
bits we need to store is bounded by the total storage used
by our 1-pass algorithm times O(log(nm)).

4. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
In Proceedings of the 28th Annual ACM Symposum on
the Theory of Computing (STOC), pages 20-29, 1996.
Also; J. Comp. Sys. Sci. 58, pages 137–147, 1999.

[2] Z. Bar Yossef, T.S. Jayram, R. Kumar, and D.
Sivakumar. An information statistics approach to data
stream and communication complexity. In Proceedings
of the 43rd Symposium on Foundations of Computer
Science (FOCS), pages 209–218, 2002.

[3] Z. Bar Yossef, T.S. Jayram, R. Kumar, D. Sivakumar,
and Luca Trevisan. Counting distinct elements in a
data stream. RANDOM 2002, 6th. International
Workshop on Randomization and Approximation
Techniques in Computer Science, p. 1-10, 2002.

[4] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal
lower bounds on the multiparty communication
complexity of set-disjointness. In Proceedings of the
18th IEEE Conference on Computational Complexity
(CCC), pages 107–117, 2003.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Theor. Comput.
Sci. 312(1), pages 3-15, 2004 (Extended Abstract
appeared in Proceedings of the 29th International
Colloquium on Automata Languages and Programming
(ICALP), 2002).

[6] D. Coppersmith and R. Kumar, An improved data
stream algorithm for frequency moments. In Proc of
the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 151-156, 2004.

[7] J. Feigenbaum, S. Kannan, M. Strauss, and M.
Viswanathan. An Approximate L1-Difference
Algorithm for Massive Data Streams. In SIAM
Journal on Computing 32, pages 131-151, 2002
(Extended Abstract appeared in Proceedings of IEEE
Symposium on Foundations of Computer Science
(FOCS), 1999).

[8] S. Ganguly. Estimating Frequency Moments of Data
Streams using Random Linear Combinations. In
RANDOM, 2004.

[9] S. Ganguly. A Hybrid Technique for Estimating
Frequency Moments over Data Streams. Unpublished
Manuscript, 2004.

[10] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
In Journal of the ACM, to appear. Preliminary version
in Proceedings of the 41st Symposium on Foundations
of Computer Science (FOCS), pages 187-197, 2000.

[11] P. Indyk. A Small Approximately Min-Wise
Independent Family of Hash Functions. In Journal of
Algorithms 38, 2001.

[12] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[13] M. Saks and X. Sun. Space lower bounds for distance
approximation in the data stream model. In Proc of
the 34th Annual ACM Symposium on Theory of
Computing (STOC), pages 360-369, 2002.

[14] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation. In Proc of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 615-624, 2004.

