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Nomenclature
Ω rotation rate
Qm torque
Pshaft shaft power
ηm efficiency
KV speed constant
KQ torque constant

v terminal voltage
R resistance
i current
io zero-torque current

1 Motor Model

1.1 Fundamental relations

The behavior of DC electric motor is described by the equivalent circuit model shown in
Figure 1.
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Figure 1: Equivalent circuit for a DC electric motor.

1.1.1 Resistance model

The resistance R of the motor is assumed to be constant.

1.1.2 Torque model

The shaft torque Qm is assumed proportional to the current i via the torque constant KQ,
minus a friction-related current io.

Qm(i) = (i − io)/KQ (1)

1.1.3 Voltage model

The internal back-EMF vm is assumed proportional to the rotation rate Ω via the motor
speed constant KV .

vm(Ω) = Ω/KV (2)
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The motor terminal voltage is then obtained by adding on the resistive voltage drop.

v(i, Ω) = vm(Ω) + iR = Ω/KV + iR (3)

1.2 Derived relations

The model equations above are now manipulated to give the current, torque, power, and
efficiency, all as functions of the motor speed and terminal voltage. First, equation (3) is
used to obtain the current function.

i(Ω, v) =
(

v −
Ω

KV

)

1

R
(4)

The remaining motor variables follow immediately.

Qm(Ω, v) =
[

i(Ω,v) − io
] 1

KQ

=
[(

v −
Ω

KV

)

1

R
− io

]

1

KQ

(5)

Pshaft(Ω, v) = Qm Ω (6)

ηm(Ω, v) =
Pshaft

i v
=

(

1 −
io
i

)

KV

KQ

1

1 + iRKV /Ω
(7)

In the limiting case of zero friction (io = 0) and zero resistive losses (R= 0), the efficiency
(7) becomes

ηm =
KV

KQ

(zero losses) (8)

Hence, energy conservation requires that the torque constant KQ must be equal to the speed
constant KV . The equations here assume KV is in rad/s/Volt, and KQ is in the equivalent
units of Amp/Nm. However, KV is usually given in RPM/Volt.

2 Motor Parameter Measurement

The motor operation functions (4) – (7) depend on the “motor constants” R, io, KV , KQ.
These can be obtained by benchtop measurements, together with simple data fitting.

2.1 Motor resistance

The motor resistance R can be measured directly with a milli-ohmmeter. Alternatively, it
can be determined using a power supply, an ammeter, and a voltmeter. A representative
range of currents i is sent through the motor by applying a suitable voltages v to the motor
terminals, while the shaft is held to prevent rotation. The resistance is then computed using
Ohm’s Law.

R = v/i (9)

On a commutated motor this will likely vary with shaft position, in which case the various
R values need to be averaged over different shaft positions.
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2.2 Zero-load current

With the motor shaft free to turn, a voltage v is applied to the motor such that the RPM
is comparable to the expected operating RPM. The resulting zero-load current io is then
measured.

2.3 Speed constant

Using the previously-obtained resistance R, the motor back-EMF voltage vm can be com-
puted for the freely-spinning case, using the measured zero-load v, io data.

vm = v − io R (10)

The speed constant is then computed from (2).

KV = Ω/vm (11)

2.4 Torque constant

The torque constant can be simply assumed to be the same as KV .

KQ = KV (12)

Alternatively, it can be obtained from motor torque data if this is available. Ideally, the
motor is operated at different loads (the zero-load tests are not usable here), and over a
range of speeds by applying different voltages. According to the torque model (1), the Qm

data versus i − io should be a straight line passing through the origin. The slope of the
best-fit line to the data then gives 1/KQ.
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Figure 2: Qm data versus i−io, with curve fit to determine KQ.

As can be seen from (8), any resulting discrepancy between this measured KQ and KV

will give a nonunity efficiency even if all the loss quantities R, io are set to zero. Hence,
a nonunity KV /KQ ratio indicates the degree of imperfection of the present motor model.
However, simply allowing KQ to be different from KV will at least partially account for the
model imperfections, since the efficiency is then likely to be predicted more accurately.
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