
TOWARDS COMMON-SENSE REASONING

VIA CONDITIONAL SIMULATION:

LEGACIES OF TURING IN ARTIFICIAL INTELLIGENCE

CAMERON E. FREER, DANIEL M. ROY, AND JOSHUA B. TENENBAUM

Abstract. The problem of replicating the flexibility of human common-sense
reasoning has captured the imagination of computer scientists since the early

days of Alan Turing’s foundational work on computation and the philosophy

of artificial intelligence. In the intervening years, the idea of cognition as
computation has emerged as a fundamental tenet of Artificial Intelligence (AI)

and cognitive science. But what kind of computation is cognition?

We describe a computational formalism centered around a probabilistic
Turing machine called QUERY, which captures the operation of probabilis-

tic conditioning via conditional simulation. Through several examples and

analyses, we demonstrate how the QUERY abstraction can be used to cast
common-sense reasoning as probabilistic inference in a statistical model of our

observations and the uncertain structure of the world that generated that ex-
perience. This formulation is a recent synthesis of several research programs

in AI and cognitive science, but it also represents a surprising convergence of

several of Turing’s pioneering insights in AI, the foundations of computation,
and statistics.

1. Introduction 1
2. Probabilistic reasoning and QUERY 5
3. Computable probability theory 12
4. Conditional independence and compact representations 19
5. Hierarchical models and learning probabilities from data 25
6. Random structure 27
7. Making decisions under uncertainty 33
8. Towards common-sense reasoning 42
Acknowledgements 44
References 45

1. Introduction

In his landmark paper Computing Machinery and Intelligence [Tur50], Alan
Turing predicted that by the end of the twentieth century, “general educated opinion
will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted.” Even if Turing has not yet been proven right, the
idea of cognition as computation has emerged as a fundamental tenet of Artificial
Intelligence (AI) and cognitive science. But what kind of computation—what kind
of computer program—is cognition?

1



2 FREER, ROY, AND TENENBAUM

AI researchers have made impressive progress since the birth of the field over
60 years ago. Yet despite this progress, no existing AI system can reproduce any
nontrivial fraction of the inferences made regularly by children. Turing himself
appreciated that matching the capability of children, e.g., in language, presented a
key challenge for AI:

We hope that machines will eventually compete with men in all
purely intellectual fields. But which are the best ones to start with?
Even this is a difficult decision. Many people think that a very
abstract activity, like the playing of chess, would be best. It can
also be maintained that it is best to provide the machine with the
best sense organs money can buy, and then teach it to understand
and speak English. This process could follow the normal teaching
of a child. Things would be pointed out and named, etc. Again I
do not know what the right answer is, but I think both approaches
should be tried. [Tur50, p. 460]

Indeed, many of the problems once considered to be grand AI challenges have
fallen prey to essentially brute-force algorithms backed by enormous amounts of
computation, often robbing us of the insight we hoped to gain by studying these
challenges in the first place. Turing’s presentation of his “imitation game” (what we
now call “the Turing test”), and the problem of common-sense reasoning implicit
in it, demonstrates that he understood the difficulty inherent in the open-ended, if
commonplace, tasks involved in conversation. Over a half century later, the Turing
test remains resistant to attack.

The analogy between minds and computers has spurred incredible scientific
progress in both directions, but there are still fundamental disagreements about
the nature of the computation performed by our minds, and how best to narrow
the divide between the capability and flexibility of human and artificial intelligence.
The goal of this article is to describe a computational formalism that has proved
useful for building simplified models of common-sense reasoning. The centerpiece of
the formalism is a universal probabilistic Turing machine called QUERY that per-
forms conditional simulation, and thereby captures the operation of conditioning
probability distributions that are themselves represented by probabilistic Turing
machines. We will use QUERY to model the inductive leaps that typify common-
sense reasoning. The distributions on which QUERY will operate are models of
latent unobserved processes in the world and the sensory experience and observa-
tions they generate. Through a running example of medical diagnosis, we aim to
illustrate the flexibility and potential of this approach.

The QUERY abstraction is a component of several research programs in AI and
cognitive science developed jointly with a number of collaborators. This chapter
represents our own view on a subset of these threads and their relationship with
Turing’s legacy. Our presentation here draws heavily on both the work of Vikash
Mansinghka on “natively probabilistic computing” [Man09, MJT08, Man11, MR]
and the “probabilistic language of thought” hypothesis proposed and developed by
Noah Goodman [KGT08, GTFG08, GG12, GT12]. Their ideas form core aspects
of the picture we present. The Church probabilistic programming language (intro-
duced in [GMR+08] by Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum)



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 3

and various Church-based cognitive science tutorials (in particular, [GTO11], de-
veloped by Goodman, Tenenbaum, and O’Donnell) have also had a strong influence
on the presentation.

This approach also draws from work in cognitive science on “theory-based
Bayesian models” of inductive learning and reasoning [TGK06] due to Tenenbaum
and various collaborators [GKT08, KT08, TKGG11]. Finally, some of the theoret-
ical aspects that we present are based on results in computable probability theory
by Ackerman, Freer, and Roy [Roy11, AFR11].

While the particular formulation of these ideas is recent, they have antecedents
in much earlier work on the foundations of computation and computable analysis,
common-sense reasoning in AI, and Bayesian modeling and statistics. In all of these
areas, Turing had pioneering insights.

1.1. A convergence of Turing’s ideas. In addition to Turing’s well-known con-
tributions to the philosophy of AI, many other aspects of his work—across statistics,
the foundations of computation, and even morphogenesis—have converged in the
modern study of AI. In this section, we highlight a few key ideas that will frequently
surface during our account of common-sense reasoning via conditional simulation.

An obvious starting point is Turing’s own proposal for a research program to
pass his eponymous test. From a modern perspective, Turing’s focus on learning
(and in particular, induction) was especially prescient. For Turing, the idea of
programming an intelligent machine entirely by hand was clearly infeasible, and so
he reasoned that it would be necessary to construct a machine with the ability to
adapt its own behavior in light of experience—i.e., with the ability to learn:

Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one that simulates the child’s?
If this were then subjected to an appropriate course of education
one would obtain the adult brain. [Tur50, p. 456]

Turing’s notion of learning was inductive as well as deductive, in contrast to much
of the work that followed in the first decade of AI. In particular, he was quick to
explain that such a machine would have its flaws (in reasoning, quite apart from
calculational errors):

[A machine] might have some method for drawing conclusions by
scientific induction. We must expect such a method to lead occa-
sionally to erroneous results. [Tur50, p. 449]

Turing also appreciated that a machine would not only have to learn facts, but
would also need to learn how to learn:

Important amongst such imperatives will be ones which regulate
the order in which the rules of the logical system concerned are to
be applied. For at each stage when one is using a logical system,
there is a very large number of alternative steps, any of which one is
permitted to apply [. . .] These choices make the difference between
a brilliant and a footling reasoner, not the difference between a
sound and a fallacious one. [. . .] [Some such imperatives] may be
‘given by authority’, but others may be produced by the machine
itself, e.g. by scientific induction. [Tur50, p. 458]

In addition to making these more abstract points, Turing presented a number of
concrete proposals for how a machine might be programmed to learn. His ideas



4 FREER, ROY, AND TENENBAUM

capture the essence of supervised, unsupervised, and reinforcement learning, each
major areas in modern AI.1 In Sections 5 and 7 we will return to Turing’s writings
on these matters.

One major area of Turing’s contributions, while often overlooked, is statistics.
In fact, Turing, along with I. J. Good, made key advances in statistics in the
course of breaking the Enigma during World War II. Turing and Good developed
new techniques for incorporating evidence and new approximations for estimating
parameters in hierarchical models [Goo79, Goo00] (see also [Zab95, §5] and [Zab12]),
which were among the most important applications of Bayesian statistics at the
time [Zab12, §3.2]. Given Turing’s interest in learning machines and his deep
understanding of statistical methods, it would have been intriguing to see a proposal
to combine the two areas. Yet if he did consider these connections, it seems he
never published such work. On the other hand, much of modern AI rests upon a
statistical foundation, including Bayesian methods. This perspective permeates the
approach we will describe, wherein learning is achieved via Bayesian inference, and
in Sections 5 and 6 we will re-examine some of Turing’s wartime statistical work in
the context of hierarchical models.

A core latent hypothesis underlying Turing’s diverse body of work was that pro-
cesses in nature, including our minds, could be understood through mechanical—in
fact, computational—descriptions. One of Turing’s crowning achievements was his
introduction of the a-machine, which we now call the Turing machine. The Turing
machine characterized the limitations and possibilities of computation by providing
a mechanical description of a human computer. Turing’s work on morphogenesis
[Tur52] and AI each sought mechanical explanations in still further domains. In-
deed, in all of these areas, Turing was acting as a natural scientist [Hod97], building
models of natural phenomena using the language of computational processes.

In our account of common-sense reasoning as conditional simulation, we will use
probabilistic Turing machines to represent mechanical descriptions of the world,
much like those Turing sought. In each case, the stochastic machine represents
one’s uncertainty about the generative process giving rise to some pattern in the
natural world. This description then enables probabilistic inference (via QUERY)
about these patterns, allowing us to make decisions and manage our uncertainty
in light of new evidence. Over the course of the article we will see a number of
stochastic generative processes of increasing sophistication, culminating in mod-
els of decision making that rely crucially on recursion. Through its emphasis on
inductive learning, Bayesian statistical techniques, universal computers, and me-
chanical models of nature, this approach to common-sense reasoning represents a
convergence of many of Turing’s ideas.

1.2. Common-sense reasoning via QUERY. For the remainder of the paper, our
focal point will be the probabilistic Turing machine QUERY, which implements a
generic form of probabilistic conditioning. QUERY allows one to make predictions
using complex probabilistic models that are themselves specified using probabilistic
Turing machines. By using QUERY appropriately, one can describe various forms

1Turing also developed some of the early ideas regarding neural networks; see the discussions

in [Tur48] about “unorganized machines” and their education and organization. This work, too,

has grown into a large field of modern research, though we will not explore neural nets in the
present article. For more details, and in particular the connection to work of McCulloch and Pitts

[MP43], see Copeland and Proudfoot [CP96] and Teuscher [Teu02].



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 5

of learning, inference, and decision-making. These arise via Bayesian inference,
and common-sense behavior can be seen to follow implicitly from past experience
and models of causal structure and goals, rather than explicitly via rules or purely
deductive reasoning. Using the extended example of medical diagnosis, we aim
to demonstrate that QUERY is a surprisingly powerful abstraction for expressing
common-sense reasoning tasks that have, until recently, largely defied formalization.

As with Turing’s investigations in AI, the approach we describe has been moti-
vated by reflections on the details of human cognition, as well as on the nature of
computation. In particular, much of the AI framework that we describe has been
inspired by research in cognitive science attempting to model human inference and
learning. Indeed, hypotheses expressed in this framework have been compared with
the judgements and behaviors of human children and adults in many psychology
experiments. Bayesian generative models, of the sort we describe here, have been
shown to predict human behavior on a wide range of cognitive tasks, often with
high quantitative accuracy. For examples of such models and the corresponding ex-
periments, see the review article [TKGG11]. We will return to some of these more
complex models in Section 8. We now proceed to define QUERY and illustrate its
use via increasingly complex problems and the questions these raise.

2. Probabilistic reasoning and QUERY

The specification of a probabilistic model can implicitly define a space of complex
and useful behavior. In this section we informally describe the universal probabilis-
tic Turing machine QUERY, and then use QUERY to explore a medical diagnosis
example that captures many aspects of common-sense reasoning, but in a simple
domain. Using QUERY, we highlight the role of conditional independence and
conditional probability in building compact yet highly flexible systems.

2.1. An informal introduction to QUERY. The QUERY formalism was origi-
nally developed in the context of the Church probabilistic programming language
[GMR+08], and has been further explored by Mansinghka [Man11] and Mansinghka
and Roy [MR].

At the heart of the QUERY abstraction is a probabilistic variation of Turing’s
own mechanization [Tur36] of the capabilities of human “computers”, the Turing
machine. A Turing machine is a finite automaton with read, write, and seek access
to a finite collection of infinite binary tapes, which it may use throughout the course
of its execution. Its input is loaded onto one or more of its tapes prior to execution,
and the output is the content of (one or more of) its tapes after the machine enters
its halting state. A probabilistic Turing machine (PTM) is simply a Turing machine
with an additional read-only tape comprised of a sequence of independent random
bits, which the finite automaton may read and use as a source of randomness.

Turing machines (and their probabilistic generalizations) capture a robust notion
of deterministic (and probabilistic) computation: Our use of the Turing machine
abstraction relies on the remarkable existence of universal Turing machines, which
can simulate all other Turing machines. More precisely, there is a PTM UNIVERSAL
and an encoding {es : s ∈ {0, 1}∗} of all PTMs, where {0, 1}∗ denotes the set of
finite binary strings, such that, on inputs s and x, UNIVERSAL halts and outputs
the string t if and only if (the Turing machine encoded by) es halts and outputs
t on input x. Informally, the input s to UNIVERSAL is analogous to a program



6 FREER, ROY, AND TENENBAUM

written in a programming language, and so we will speak of (encodings of) Turing
machines and programs interchangeably.

QUERY is a PTM that takes two inputs, called the prior program P and condi-
tioning predicate C, both of which are themselves (encodings of) PTMs that take no
input (besides the random bit tape), with the further restriction that the predicate
C return only a 1 or 0 as output. The semantics of QUERY are straightforward:
first generate a sample from P; if C is satisfied, then output the sample; otherwise,
try again. More precisely:

(1) Simulate the predicate C on a random bit tape R (i.e., using the existence
of a universal Turing machine, determine the output of the PTM C, if R
were its random bit tape);

(2) If (the simulation of) C produces 1 (i.e., if C accepts), then simulate and
return the output produced by P, using the same random bit tape R;

(3) Otherwise (if C rejects R, returning 0), return to step 1, using an indepen-
dent sequence R′ of random bits.

It is important to stress that P and C share a random bit tape on each iteration,
and so the predicate C may, in effect, act as though it has access to any interme-
diate value computed by the prior program P when deciding whether to accept or
reject a random bit tape. More generally, any value computed by P can be re-
computed by C and vice versa. We will use this fact to simplify the description of
predicates, informally referring to values computed by P in the course of defining a
predicate C.

As a first step towards understanding QUERY, note that if > is a PTM that
always accepts (i.e., always outputs 1), then QUERY(P,>) produces the same dis-
tribution on outputs as executing P itself, as the semantics imply that QUERY
would halt on the first iteration.

Predicates that are not identically 1 lead to more interesting behavior. Consider
the following simple example based on a remark by Turing [Tur50, p. 459]: Let
N180 be a PTM that returns (a binary encoding of) an integer N drawn uniformly
at random in the range 1 to 180, and let DIV2,3,5 be a PTM that accepts (outputs
1) if N is divisible by 2, 3, and 5; and rejects (outputs 0) otherwise. Consider a
typical output of

QUERY(N180,DIV2,3,5).

Given the semantics of QUERY, we know that the output will fall in the set

{30, 60, 90, 120, 150, 180} (1)

and moreover, because each of these possible values of N was a priori equally likely
to arise from executing N180 alone, this remains true a posteriori. You may recognize
this as the conditional distribution of a uniform distribution conditioned to lie in
the set (1). Indeed, QUERY performs the operation of conditioning a distribution.

The behavior of QUERY can be described more formally with notions from prob-
ability theory. In particular, from this point on, we will think of the output of
a PTM (say, P) as a random variable (denoted by ϕP) defined on an underlying
probability space with probability measure P. (We will define this probability space
formally in Section 3.1, but informally it represents the random bit tape.) When
it is clear from context, we will also regard any named intermediate value (like N)
as a random variable on this same space. Although Turing machines manipulate
binary representations, we will often gloss over the details of how elements of other



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 7

countable sets (like the integers, naturals, rationals, etc.) are represented in binary,
but only when there is no risk of serious misunderstanding.

In the context of QUERY(P,C), the output distribution of P, which can be writ-
ten P(ϕP ∈ · ), is called the prior distribution. Recall that, for all measurable sets
(or simply events) A and C ,

P(A | C) :=
P(A ∩ C)

P(C)
, (2)

is the conditional probability of the event A given the event C, provided that
P(C) > 0. Then the distribution of the output of QUERY(P,C), called the posterior
distribution of ϕP, is the conditional distribution of ϕP given the event ϕC = 1,
written

P(ϕP ∈ · | ϕC = 1).

Then returning to our example above, the prior distribution, P(N ∈ · ), is the
uniform distribution on the set {1, . . . , 180}, and the posterior distribution,

P(N ∈ · | N divisible by 2, 3, and 5),

is the uniform distribution on the set given in (1), as can be verified via equation (2).
Those familiar with statistical algorithms will recognize the mechanism of QUERY

to be exactly that of a so-called “rejection sampler”. Although the definition of
QUERY describes an explicit algorithm, we do not actually intend QUERY to be
executed in practice, but rather intend for it to define and represent complex dis-
tributions. (Indeed, the description can be used by algorithms that work by very
different methods than rejection sampling, and can aid in the communication of
ideas between researchers.)

The actual implementation of QUERY in more efficient ways than via a rejection
sampler is an active area of research, especially via techniques involving Markov
chain Monte Carlo (MCMC); see, e.g., [GMR+08, WSG11, WGSS11, SG12]. Turing
himself recognized the potential usefulness of randomness in computation, suggest-
ing:

It is probably wise to include a random element in a learning ma-
chine. A random element is rather useful when we are searching
for a solution of some problem. [Tur50, p. 458]

Indeed, some aspects of these algorithms are strikingly reminiscent of Turing’s
description of a random system of rewards and punishments in guiding the organi-
zation of a machine:

The character may be subject to some random variation. Pleasure
interference has a tendency to fix the character i.e. towards prevent-
ing it changing, whereas pain stimuli tend to disrupt the character,
causing features which had become fixed to change, or to become
again subject to random variation. [Tur48, §10]

However, in this paper, we will not go into further details of implementation, nor
the host of interesting computational questions this endeavor raises.

Given the subtleties of conditional probability, it will often be helpful to keep in
mind the behavior of a rejection-sampler when considering examples of QUERY.
(See [SG92] for more examples of this approach.) Note that, in our example,



8 FREER, ROY, AND TENENBAUM

(a) Disease marginals

n Disease pn
1 Arthritis 0.06
2 Asthma 0.04
3 Diabetes 0.11
4 Epilepsy 0.002
5 Giardiasis 0.006
6 Influenza 0.08
7 Measles 0.001
8 Meningitis 0.003
9 MRSA 0.001
10 Salmonella 0.002
11 Tuberculosis 0.003

(b) Unexplained symptoms

m Symptom `m
1 Fever 0.06
2 Cough 0.04
3 Hard breathing 0.001
4 Insulin resistant 0.15
5 Seizures 0.002
6 Aches 0.2
7 Sore neck 0.006

(c) Disease-symptom rates

cn,m 1 2 3 4 5 6 7
1 .1 .2 .1 .2 .2 .5 .5
2 .1 .4 .8 .3 .1 .0 .1
3 .1 .2 .1 .9 .2 .3 .5
4 .4 .1 .0 .2 .9 .0 .0
5 .6 .3 .2 .1 .2 .8 .5
6 .4 .2 .0 .2 .0 .7 .4
7 .5 .2 .1 .2 .1 .6 .5
8 .8 .3 .0 .3 .1 .8 .9
9 .3 .2 .1 .2 .0 .3 .5

10 .4 .1 .0 .2 .1 .1 .2
11 .3 .2 .1 .2 .2 .3 .5

Table 1. Medical diagnosis parameters. (These values are fab-
ricated.) (a) pn is the marginal probability that a patient has a
disease n. (b) `m is the probability that a patient presents symp-
tom m, assuming they have no disease. (c) cn,m is the probability
that disease n causes symptom m to present, assuming the patient
has disease n.

every simulation of N180 generates a number “accepted by” DIV2,3,5 with prob-
ability 1

30 , and so, on average, we would expect the loop within QUERY to re-
peat approximately 30 times before halting. However, there is no finite bound
on how long the computation could run. On the other hand, one can show that
QUERY(N180,DIV2,3,5) eventually halts with probability one (equivalently, it halts
almost surely, sometimes abbreviated “a.s.”).

Despite the apparent simplicity of the QUERY construct, we will see that it
captures the essential structure of a range of common-sense inferences. We now
demonstrate the power of the QUERY formalism by exploring its behavior in a
medical diagnosis example.

2.2. Diseases and their symptoms. Consider the following prior program, DS,
which represents a simplified model of the pattern of Diseases and Symptoms we
might find in a typical patient chosen at random from the population. At a high
level, the model posits that the patient may be suffering from some, possibly empty,
set of diseases, and that these diseases can cause symptoms. The prior program DS
proceeds as follows: For each disease n listed in Table 1a, sample an independent
binary random variable Dn with mean pn, which we will interpret as indicating
whether or not a patient has disease n depending on whether Dn = 1 or Dn =
0, respectively. For each symptom m listed in Table 1b, sample an independent
binary random variable Lm with mean `m and for each pair (n,m) of a disease and
symptom, sample an independent binary random variable Cn,m with mean cn,m, as
listed in Table 1c. (Note that the numbers in all three tables have been fabricated.)
Then, for each symptom m, define

Sm = max{Lm, D1 · C1,m, . . . , D11 · C11,m},
so that Sm ∈ {0, 1}. We will interpret Sm as indicating that a patient has symptom
m; the definition of Sm implies that this holds when any of the variables on the
right hand side take the value 1. (In other words, the max operator is playing the
role of a logical OR operation.) Every term of the form Dn · Cn,m is interpreted
as indicating whether (or not) the patient has disease n and disease n has caused
symptom m. The term Lm captures the possibility that the symptom may present



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 9

itself despite the patient having none of the listed diseases. Finally, define the
output of DS to be the vector (D1, . . . , D11, S1, . . . , S7).

If we execute DS, or equivalently QUERY(DS,>), then we might see outputs like
those in the following array:

Diseases Symptoms

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
4 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We will interpret the rows as representing eight patients chosen independently at
random, the first two free from disease and not presenting any symptoms; the
third suffering from diabetes and presenting insulin resistance; the fourth suffering
from diabetes and influenza, and presenting a fever and insulin resistance; the fifth
suffering from unexplained aches; the sixth free from disease and symptoms; the
seventh suffering from diabetes, and presenting insulin resistance and aches; and
the eighth also disease and symptom free.

This model is a toy version of the real diagnostic model QMR-DT [SMH+91].
QMR-DT is probabilistic model with essentially the structure of DS, built from data
in the Quick Medical Reference (QMR) knowledge base of hundreds of diseases and
thousands of findings (such as symptoms or test results). A key aspect of this model
is the disjunctive relationship between the diseases and the symptoms, known as
a “noisy-OR”, which remains a popular modeling idiom. In fact, the structure of
this model, and in particular the idea of layers of disjunctive causes, goes back even
further to the “causal calculus” developed by Good [Goo61], which was based in
part on his wartime work with Turing on the weight of evidence, as discussed by
Pearl [Pea04, §70.2].

Of course, as a model of the latent processes explaining natural patterns of dis-
eases and symptoms in a random patient, DS still leaves much to be desired. For
example, the model assumes that the presence or absence of any two diseases is inde-
pendent, although, as we will see later on in our analysis, diseases are (as expected)
typically not independent conditioned on symptoms. On the other hand, an actual
disease might cause another disease, or might cause a symptom that itself causes
another disease, possibilities that this model does not capture. Like QMR-DT, the
model DS avoids simplifications made by many earlier expert systems and prob-
abilistic models to not allow for the simultaneous occurrence of multiple diseases
[SMH+91]. These caveats notwithstanding, a close inspection of this simplified
model will demonstrate a surprising range of common-sense reasoning phenomena.

Consider a predicate OS, for Observed Symptoms, that accepts if and only if S1 =
1 and S7 = 1, i.e., if and only if the patient presents the symptoms of a fever and a
sore neck. What outputs should we expect from QUERY(DS,OS)? Informally, if we
let µ denote the distribution over the combined outputs of DS and OS on a shared
random bit tape, and let A = {(x, c) : c = 1} denote the set of those pairs that OS
accepts, then QUERY(DS,OS) generates samples from the conditioned distribution
µ(· | A). Therefore, to see what the condition S1 = S7 = 1 implies about the



10 FREER, ROY, AND TENENBAUM

plausible execution of DS, we must consider the conditional distributions of the
diseases given the symptoms. The following conditional probability calculations
may be very familiar to some readers, but will be less so to others, and so we
present them here to give a more complete picture of the behavior of QUERY.

2.2.1. Conditional execution. Consider a {0, 1}-assignment dn for each disease n,
and write D = d to denote the event that Dn = dn for every such n. Assume
for the moment that D = d. Then what is the probability that OS accepts? The
probability we are seeking is the conditional probability

P(S1 = S7 = 1 | D = d) (3)

= P(S1 = 1 | D = d) · P(S7 = 1 | D = d), (4)

where the equality follows from the observation that once the Dn variables are
fixed, the variables S1 and S7 are independent. Note that Sm = 1 if and only if
Lm = 1 or Cn,m = 1 for some n such that dn = 1. (Equivalently, Sm = 0 if and
only if Lm = 0 and Cn,m = 0 for all n such that dn = 1.) By the independence of
each of these variables, it follows that

P(Sm = 1|D = d) = 1− (1− `m)
∏

n : dn=1

(1− cn,m). (5)

Let d′ be an alternative {0, 1}-assignment. We can now characterize the a posteriori
odds

P(D = d | S1 = S7 = 1)

P(D = d′ | S1 = S7 = 1)

of the assignment d versus the assignment d′. By Bayes’ rule, this can be rewritten
as

P(S1 = S7 = 1 | D = d) · P(D = d)

P(S1 = S7 = 1 | D = d′) · P(D = d′)
, (6)

where P(D = d) =
∏11
n=1 P(Dn = dn) by independence. Using (4), (5) and (6), one

may calculate that

P(Patient only has influenza | S1 = S7 = 1)

P(Patient has no listed disease | S1 = S7 = 1)
≈ 42,

i.e., it is forty-two times more likely that an execution of DS satisfies the predicate
OS via an execution that posits the patient only has the flu than an execution which
posits that the patient has no disease at all. On the other hand,

P(Patient only has meningitis | S1 = S7 = 1)

P(Patient has no listed disease | S1 = S7 = 1)
≈ 6,

and so

P(Patient only has influenza | S1 = S7 = 1)

P(Patient only has meningitis | S1 = S7 = 1)
≈ 7,

and hence we would expect, over many executions of QUERY(DS,OS), to see
roughly seven times as many explanations positing only influenza than positing
only meningitis.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 11

Further investigation reveals some subtle aspects of the model. For example,
consider the fact that

P(Patient only has meningitis and influenza | S1 = S7 = 1)

P(Patient has meningitis, maybe influenza, but nothing else | S1 = S7 = 1)

= 0.09 ≈ P(Patient has influenza), (7)

which demonstrates that, once we have observed some symptoms, diseases are no
longer independent. Moreover, this shows that once the symptoms have been “ex-
plained” by meningitis, there is little pressure to posit further causes, and so the
posterior probability of influenza is nearly the prior probability of influenza. This
phenomenon is well-known and is called explaining away ; it is also known to be
linked to the computational hardness of computing probabilities (and generating
samples as QUERY does) in models of this variety. For more details, see [Pea88,
§2.2.4].

2.2.2. Predicates give rise to diagnostic rules. These various conditional probability
calculations, and their ensuing explanations, all follow from an analysis of the DS
model conditioned on one particular (and rather simple) predicate OS. Already,
this gives rise to a picture of how QUERY(DS,OS) implicitly captures an elaborate
system of rules for what to believe following the observation of a fever and sore
neck in a patient, assuming the background knowledge captured in the DS program
and its parameters. In a similar way, every diagnostic scenario (encodable as a
predicate) gives rise to its own complex set of inferences, each expressible using
QUERY and the model DS.

As another example, if we look (or test) for the remaining symptoms and find
them to all be absent, our new beliefs are captured by QUERY(DS,OS?) where the
predicate OS? accepts if and only if (S1 = S7 = 1) ∧ (S2 = · · · = S6 = 0).

We need not limit ourselves to reasoning about diseases given symptoms. Imag-
ine that we perform a diagnostic test that rules out meningitis. We could represent
our new knowledge using a predicate capturing the condition

(D8 = 0) ∧ (S1 = S7 = 1) ∧ (S2 = · · · = S6 = 0).

Of course this approach would not take into consideration our uncertainty regarding
the accuracy or mechanism of the diagnostic test itself, and so, ideally, we might
expand the DS model to account for how the outcomes of diagnostic tests are
affected by the presence of other diseases or symptoms. In Section 6, we will discuss
how such an extended model might be learned from data, rather than constructed
by hand.

We can also reason in the other direction, about symptoms given diseases. For
example, public health officials might wish to know about how frequently those with
influenza present no symptoms. This is captured by the conditional probability

P(S1 = · · · = S7 = 0 | D6 = 1),

and, via QUERY, by the predicate for the condition D6 = 1. Unlike the earlier
examples where we reasoned backwards from effects (symptoms) to their likely
causes (diseases), here we are reasoning in the same forward direction as the model
DS is expressed.

The possibilities are effectively inexhaustible, including more complex states of
knowledge such as, there are at least two symptoms present, or the patient does
not have both salmonella and tuberculosis. In Section 4 we will consider the vast



12 FREER, ROY, AND TENENBAUM

number of predicates and the resulting inferences supported by QUERY and DS,
and contrast this with the compact size of DS and the table of parameters.

In this section, we have illustrated the basic behavior of QUERY, and have begun
to explore how it can be used to decide what to believe in a given scenario. These
examples also demonstrate that rules governing behavior need not be explicitly
described as rules, but can arise implicitly via other mechanisms, like QUERY,
paired with an appropriate prior and predicate. In this example, the diagnostic
rules were determined by the definition of DS and the table of its parameters.
In Section 5, we will examine how such a table of probabilities itself might be
learned. In fact, even if the parameters are learned from data, the structure of DS
itself still posits a strong structural relationship among the diseases and symptoms.
In Section 6 we will explore how this structure could be learned. Finally, many
common-sense reasoning tasks involve making a decision, and not just determining
what to believe. In Section 7, we will describe how to use QUERY to make decisions
under uncertainty.

Before turning our attention to these more complex uses of QUERY, we pause
to consider a number of interesting theoretical questions: What kind of probability
distributions can be represented by PTMs that generate samples? What kind of
conditional distributions can be represented by QUERY? Or represented by PTMs
in general? In the next section we will see how Turing’s work formed the foundation
of the study of these questions many decades later.

3. Computable probability theory

We now examine the QUERY formalism in more detail, by introducing aspects of
the framework of computable probability theory, which provides rigorous notions
of computability for probability distributions, as well as the tools necessary to
identify probabilistic operations that can and cannot be performed by algorithms.
After giving a formal description of probabilistic Turing machines and QUERY, we
relate them to the concept of a computable measure on a countable space. We then
explore the representation of points (and random points) in uncountable spaces,
and examine how to use QUERY to define models over uncountable spaces like
the reals. Such models are commonplace in statistical practice, and thus might
be expected to be useful for building a statistical mind. In fact, no generic and
computable QUERY formalism exists for conditioning on observations taking values
in uncountable spaces, but there are certain circumstances in which we can perform
probabilistic inference in uncountable spaces.

Note that although the approach we describe uses a universal Turing machine
(QUERY), which can take an arbitrary pair of programs as its prior and predi-
cate, we do not make use of a so-called universal prior program (itself necessarily
noncomputable). For a survey of approaches to inductive reasoning involving a uni-
versal prior, such as Solomonoff induction [Sol64], and computable approximations
thereof, see Rathmanner and Hutter [RH11].

Before we discuss the capabilities and limitations of QUERY, we give a formal
definition of QUERY in terms of probabilistic Turing machines and conditional
distributions.

3.1. A formal definition of QUERY. Randomness has long been used in math-
ematical algorithms, and its formal role in computations dates to shortly after the
introduction of Turing machines. In his paper [Tur50] introducing the Turing test,



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 13

Turing informally discussed introducing a “random element”, and in a radio discus-
sion c. 1951 (later published as [Tur96]), he considered placing a random string of
0’s and 1’s on an additional input bit tape of a Turing machine. In 1956, de Leeuw,
Moore, Shannon, and Shapiro [dMSS56] proposed probabilistic Turing machines
(PTMs) more formally, making use of Turing’s formalism [Tur39] for oracle Turing
machines: a PTM is an oracle Turing machine whose oracle tape comprises inde-
pendent random bits. From this perspective, the output of a PTM is itself a random
variable and so we may speak of the distribution of (the output of) a PTM. For the
PTM QUERY, which simulates other PTMs passed as inputs, we can express its
distribution in terms of the distributions of PTM inputs. In the remainder of this
section, we describe this formal framework and then use it to explore the class of
distributions that may be represented by PTMs.

Fix a canonical enumeration of (oracle) Turing machines and the corresponding
partial computable (oracle) functions {ϕe}e∈N, each considered as a partial function

{0, 1}∞ × {0, 1}∗ → {0, 1}∗,

where {0, 1}∞ denotes the set of countably infinite binary strings and, as before,
{0, 1}∗ denotes the set of finite binary strings. One may think of each such partial
function as a mapping from an oracle tape and input tape to an output tape.
We will write ϕe(x, s) ↓ when ϕe is defined on oracle tape x and input string s,
and ϕe(x, s) ↑ otherwise. We will write ϕe(x) when the input string is empty or
when there is no input tape. As a model for the random bit tape, we define an
independent and identically distributed (i.i.d.) sequence R = (Ri : i ∈ N) of binary
random variables, each taking the value 0 and 1 with equal probability, i.e, each
Ri is an independent Bernoulli(1/2) random variable. We will write P to denote
the distribution of the random bit tape R. More formally, R will be considered to
be the identity function on the Borel probability space ({0, 1}∞,P), where P is the
countable product of Bernoulli(1/2) measures.

Let s be a finite string, let e ∈ N, and suppose that

P{ r ∈ {0, 1}∞ : ϕe(r, s)↓ } = 1.

Informally, we will say that the probabilistic Turing machine (indexed by) e halts
almost surely on input s. In this case, we define the output distribution of the eth
(oracle) Turing machine on input string s to be the distribution of the random
variable

ϕe(R, s);

we may directly express this distribution as

P ◦ ϕe( · , s)−1.

Using these ideas we can now formalize QUERY. In this formalization, both
the prior and predicate programs P and C passed as input to QUERY are finite
binary strings interpreted as indices for a probabilistic Turing machine with no
input tape. Suppose that P and C halt almost surely. In this case, the output
distribution of QUERY(P,C) can be characterized as follows: Let R = (Ri : i ∈ N)
denote the random bit tape, let π : N × N → N be a standard pairing function

(i.e., a computable bijection), and, for each n, i ∈ N, let R
(n)
i := Rπ(n,i) so that

{R(n) : n ∈ N} are independent random bit tapes, each with distribution P. Define



14 FREER, ROY, AND TENENBAUM

the nth sample from the prior to be the random variable

Xn := ϕP(R(n)),

and let

N := inf {n ∈ N : ϕC(R(n)) = 1 }

be the first iteration n such that the predicate C evaluates to 1 (i.e., accepts). The
output distribution of QUERY(P,C) is then the distribution of the random variable

XN ,

whenever N < ∞ holds with probability one, and is undefined otherwise. Note
that N < ∞ a.s. if and only if C accepts with non-zero probability. As above, we
can give a more direct characterization: Let

A := {R ∈ {0, 1}∞ : ϕC(R) = 1 }

be the set of random bit tapes R such that the predicate C accepts by outputting
1. The condition “N < ∞ with probability one” is then equivalent to the state-
ment that P(A) > 0. In that case, we may express the output distribution of
QUERY(P,C) as

PA ◦ ϕ−1
P

where PA(·) := P( · | A) is the distribution of the random bit tape conditioned on
C accepting (i.e., conditioned on the event A).

3.2. Computable measures and probability theory. Which probability dis-
tributions are the output distributions of some PTM? In order to investigate this
question, consider what we might learn from simulating a given PTM P (on a partic-
ular input) that halts almost surely. More precisely, for a finite bit string r ∈ {0, 1}∗
with length |r|, consider simulating P, replacing its random bit tape with the finite
string r: If, in the course of the simulation, the program attempts to read beyond
the end of the finite string r, we terminate the simulation prematurely. On the
other hand, if the program halts and outputs a string t then we may conclude that
all simulations of P will return the same value when the random bit tape begins
with r. As the set of random bit tapes beginning with r has P-probability 2−|r|,
we may conclude that the distribution of P assigns at least this much probability
to the string t.

It should be clear that, using the above idea, we may enumerate the (prefix-free)
set of strings {rn}, and matching outputs {tn}, such that P outputs tn when its
random bit tape begins with rn. It follows that, for all strings t and m ∈ N,∑

{n≤m : tn=t}

2−|rn|

is a lower bound on the probability that the distribution of P assigns to t, and

1−
∑

{n≤m : tn 6=t}

2−|rn|

is an upper bound. Moreover, it is straightforward to show that as m→∞, these
converge monotonically from above and below to the probability that P assigns to
the string t.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 15

This sort of effective information about a real number precisely characterizes
the computable real numbers, first described by Turing in his paper [Tur36] intro-
ducing Turing machines. For more details, see the survey by Avigad and Brattka
connecting computable analysis to work of Turing, elsewhere in this volume [AB].

Definition 3.1 (computable real number). A real number r ∈ R is said to be
computable when its left and right cuts of rationals {q ∈ Q : q < r}, {q ∈ Q :
r < q} are computable (under the canonical computable encoding of rationals).
Equivalently, a real is computable when there is a computable sequence of rationals
{qn}n∈N that rapidly converges to r, in the sense that |qn − r| < 2−n for each n.

We now know that the probability of each output string t from a PTM is a com-
putable real (in fact, uniformly in t, i.e., this probability can be computed for each
t by a single program that accepts t as input.). Conversely, for every computable
real α ∈ [0, 1] and string t, there is a PTM that outputs t with probability α. In
particular, let R = (R1, R2, . . . ) be our random bit tape, let α1, α2, . . . be a uni-
formly computable sequence of rationals that rapidly converges to α, and consider
the following simple program: On step n, compute the rational An :=

∑n
i=1Ri ·2−i.

If An < αn−2−n, then halt and output t; If An > αn+2−n, then halt and output t0.
Otherwise, proceed to step n+ 1. Note that A∞ := limAn is uniformly distributed
in the unit interval, and so A∞ < α with probability α. Because limαn → α, the
program eventually halts for all but one (or two, in the case that α is a dyadic
rational) random bit tapes. In particular, if the random bit tape is the binary
expansion of α, or equivalently, if A∞ = α, then the program does not halt, but
this is a P-measure zero event.

Recall that we assumed, in defining the output distribution of a PTM, that the
program halted almost surely. The above construction illustrates why the stricter
requirement that PTMs halt always (and not just almost surely) could be very
limiting. In fact, one can show that there is no PTM that halts always and whose
output distribution assigns, e.g., probability 1/3 to 1 and 2/3 to 0. Indeed, the
same is true for all non-dyadic probability values (for details see [AFR11, Prop. 9]).

We can use this construction to sample from any distribution ν on {0, 1}∗ for
which we can compute the probability of a string t in a uniform way. In particular,
fix an enumeration of all strings {tn} and, for each n ∈ N, define the distribution
νn on {tn, tn+1, . . . } by νn = ν/(1 − ν{t1, . . . , tn−1}). If ν is computable in the
sense that for any t, we may compute real ν{t} uniformly in t, then νn is clearly
computable in the same sense, uniformly in n. We may then proceed in order,
deciding whether to output tn (with probability νn{tn}) or to recurse and consider
tn+1. It is straightforward to verify that the above procedure outputs a string t
with probability ν{t}, as desired.

These observations motivate the following definition of a computable probability
measure, which is a special case of notions from computable analysis developed
later; for details of the history see [Wei99, §1].

Definition 3.2 (computable probability measure). A probability measure on {0, 1}∗
is said to be computable when the measure of each string is a computable real, uni-
formly in the string.

The above argument demonstrates that the samplable probability measures —
those distributions on {0, 1}∗ that arise from sampling procedures performed by



16 FREER, ROY, AND TENENBAUM

probabilistic Turing machines that halt a.s. — coincide with computable probability
measures.

While in this paper we will not consider the efficiency of these procedures, it is
worth noting that while the class of distributions that can be sampled by Turing
machines coincides with the class of computable probability measures on {0, 1}∗,
the analogous statements for polynomial-time Turing machines fail. In particu-
lar, there are distributions from which one can efficiently sample, but for which
output probabilities are not efficiently computable (unless P = PP), for suitable
formalizations of these concepts [Yam99].

3.3. Computable probability measures on uncountable spaces. So far we
have considered distributions on the space of finite binary strings. Under a suit-
able encoding, PTMs can be seen to represent distributions on general countable
spaces. On the other hand, many phenomena are naturally modeled in terms of
continuous quantities like real numbers. In this section we will look at the problem
of representing distributions on uncountable spaces, and then consider the problem
of extending QUERY in a similar direction.

To begin, we will describe distributions on the space of infinite binary strings,
{0, 1}∞. Perhaps the most natural proposal for representing such distributions is
to again consider PTMs whose output can be interpreted as representing a random
point in {0, 1}∞. As we will see, such distributions will have an equivalent char-
acterization in terms of uniform computability of the measure of a certain class of
sets.

Fix a computable bijection between N and finite binary strings, and for n ∈ N,
write n̄ for the image of n under this map. Let e be the index of some PTM, and
suppose that ϕe(R, n̄) ∈ {0, 1}n and ϕe(R, n̄) v ϕe(R,n+ 1) almost surely for all
n ∈ N, where r v s for two binary strings r and s when r is a prefix of s. Then the
random point in {0, 1}∞ given by e is defined to be

lim
n→∞

(ϕe(R, n̄), 0, 0, . . . ). (8)

Intuitively, we have represented the (random) infinite object by a program (rela-
tive to a fixed random bit tape) that can provide a convergent sequence of finite
approximations.

It is obvious that the distribution of ϕe(R, n̄) is computable, uniformly in n. As
a consequence, for every basic clopen set A = {s : r v s}, we may compute the
probability that the limiting object defined by (8) falls into A, and thus we may
compute arbitrarily good lower bounds for the measure of unions of computable
sequences of basic clopen sets, i.e., c.e. open sets.

This notion of computability of a measure is precisely that developed in com-
putable analysis, and in particular, via the Type-Two Theory of Effectivity (TTE);
for details see Edalat [Eda96], Weihrauch [Wei99], Schröder [Sch07], and Gács
[Gác05]. This formalism rests on Turing’s oracle machines [Tur39]; for more de-
tails, again see the survey by Avigad and Brattka elsewhere in this volume [AB].
The representation of a measure by the values assigned to basic clopen sets can be
interpreted in several ways, each of which allows us to place measures on spaces
other than just the set of infinite strings. From a topological point of view, the
above representation involves the choice of a particular basis for the topology, with
an appropriate enumeration, making {0, 1}∞ into a computable topological space;
for details, see [Wei00, Def. 3.2.1] and [GSW07, Def. 3.1].



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 17

Another approach is to place a metric on {0, 1}∞ that induces the same topology,
and that is computable on a dense set of points, making it into a computable
metric space; see [Hem02] and [Wei93] on approaches in TTE, [Bla97] and [EH98]
in effective domain theory, and [Wei00, Ch. 8.1] and [Gác05, §B.3] for more details.
For example, one could have defined the distance between two strings in {0, 1}∞
to be 2−n, where n is the location of the first bit on which they differ; instead
choosing 1/n would have given a different metric space but would induce the same
topology, and hence the same notion of computable measure. Here we use the
following definition of a computable metric space, taken from [GHR10, Def. 2.3.1].

Definition 3.3 (computable metric space). A computable metric space is a triple
(S, δ,D) for which δ is a metric on the set S satisfying

(1) (S, δ) is a complete separable metric space;
(2) D = {s(1), s(2), . . . } is an enumeration of a dense subset of S; and,
(3) the real numbers δ(s(i), s(j)) are computable, uniformly in i and j.

We say that an S-valued random variable X (defined on the same space as R) is
an (almost-everywhere) computable S-valued random variable or random point in S
when there is a PTM e such that δ(Xn, X) < 2−n almost surely for all n ∈ N, where
Xn := s(ϕe(R, n̄)). We can think of the random sequence {Xn} as a representation
of the random point X. A computable probability measure on S is precisely the
distribution of such a random variable.

For example, the real numbers form a computable metric space (R, d,Q), where
d is the Euclidean metric, and Q has the standard enumeration. One can show
that computable probability measures on R are then those for which the measure
of an arbitrary finite union of rational open intervals admits arbitrarily good lower
bounds, uniformly in (an encoding of) the sequence of intervals. Alternatively,
one can show that the space of probability measures on R is a computable metric
space under the Prokhorov metric, with respect to (a standard enumeration of) a
dense set of atomic measures with finite support in the rationals. The notions of
computability one gets in these settings align with classical notions. For example,
the set of naturals and the set of finite binary strings are indeed both computable
metric spaces, and the computable measures in this perspective are precisely as
described above.

Similarly to the countable case, we can use QUERY to sample points in un-
countable spaces conditioned on a predicate. Namely, suppose the prior program
P represents a random point in an uncountable space with distribution ν. For any
string s, write P(s) for P with the input fixed to s, and let C be a predicate that
accepts with non-zero probability. Then the PTM that, on input n̄, outputs the
result of simulating QUERY(P(n̄),C) is a representation of ν conditioned on the
predicate accepting. When convenient and clear from context, we will denote this
derived PTM by simply writing QUERY(P,C).

3.4. Conditioning on the value of continuous random variables. The above
use of QUERY allows us to condition a model of a computable real-valued random
variable X on a predicate C. However, the restriction on predicates (to accept with
non-zero probability) and the definition of QUERY itself do not, in general, allow
us to condition on X itself taking a specific value. Unfortunately, the problem is
not superficial, as we will now relate.



18 FREER, ROY, AND TENENBAUM

Assume, for simplicity, that X is also continuous (i.e., P{X = x} = 0 for all
reals x). Let x be a computable real, and for every computable real ε > 0, consider
the (partial computable) predicate Cε that accepts when |X − x| < ε, rejects when
|X − x| > ε, and is undefined otherwise. (We say that such a predicate almost de-
cides the event {|X − x| < ε} as it decides the set outside a measure zero set.) We
can think of QUERY(P,Cε) as a “positive-measure approximation” to conditioning
on X = x. Indeed, if P is a prior program that samples a computable random vari-
able Y and Bx,ε denotes the closed ε-ball around x, then this QUERY corresponds
to the conditioned distribution P(Y | X ∈ Bx,ε), and so provided P{X ∈ Bx,ε} > 0,
this is well-defined and evidently computable. But what is its relationship to the
original problem?

While one might be inclined to think that QUERY(P,Cε=0) represents our origi-
nal goal of conditioning on X = x, the continuity of the random variable X implies
that P{X ∈ Bx,0} = P{X = x} = 0 and so C0 rejects with probability one. It fol-
lows that QUERY(P,Cε=0) does not halt on any input, and thus does not represent
a distribution.

The underlying problem is that, in general, conditioning on a null set is math-
ematically undefined. The standard measure-theoretic solution is to consider the
so-called “regular conditional distribution” given by conditioning on the σ-algebra
generated by X—but even this approach would in general fail to solve our prob-
lem because the resulting disintegration is only defined up to a null set, and so is
undefined at points (including x). (For more details, see [AFR11, §III] and [Tju80,
Ch. 9].)

There have been various attempts at more constructive approaches, e.g., Tjur
[Tju74, Tju75, Tju80], Pfanzagl [Pfa79], and Rao [Rao88, Rao05]. One approach
worth highlighting is due to Tjur [Tju75]. There he considers additional hypotheses
that are equivalent to the existence of a continuous disintegration, which must then
be unique at all points. (We will implicitly use this notion henceforth.) Given
the connection between computability and continuity, a natural question to ask is
whether we might be able to extend QUERY along the lines.

Despite various constructive efforts, no general method had been found for com-
puting conditional distributions. In fact, conditional distributions are not in general
computable, as shown by Ackerman, Freer, and Roy [AFR11, Thm. 29], and it is
for this reason we have defined QUERY in terms of conditioning on the event C = 1,
which, provided that C accepts with non-zero probability as we have required, is
a positive-measure event. The proof of the noncomputability of conditional proba-
bility [AFR11, §VI] involves an encoding of the halting problem into a pair (X,Y )
of computable (even, absolutely continuous) random variables in [0, 1] such that no
“version” of the conditional distribution P(Y | X = x) is a computable function
of x.

What, then, is the relationship between conditioning on X = x and the approxi-
mations Cε defined above? In sufficiently nice settings, the distribution represented
by QUERY(P,Cε) converges to the desired distribution as ε→ 0. But as a corollary
of the aforementioned noncomputability result, one sees that it is noncomputable
in general to determine a value of ε from a desired level of accuracy to the desired
distribution, for if there were such a general and computable relationship, one could
use it to compute conditional distributions, a contradiction. Hence although such



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 19

a sequence of approximations might converge in the limit, one cannot in general
compute how close it is to convergence.

On the other hand, the presence of noise in measurements can lead to com-
putability. As an example, consider the problem of representing the distribution of
Y conditioned on X+ ξ = x, where Y , X, and x are as above, and ξ is independent
of X and Y and uniformly distributed on the interval [−ε, ε]. While conditioning
on continuous random variables is not computable in general, here it is possible. In
particular, note that P(Y | X + ξ = x) = P(Y | X ∈ Bx,ε) and so QUERY(P,Cε)
represents the desired distribution.

This example can be generalized considerably beyond uniform noise (see [AFR11,
Cor. 36]). Many models considered in practice posit the existence of independent
noise in the quantities being measured, and so the QUERY formalism can be used
to capture probabilistic reasoning in these settings as well. However, in general
we should not expect to be able to reliably approximate noiseless measurements
with noisy measurements, lest we contradict the noncomputability of conditioning.
Finally, it is important to note that the computability that arises in the case of
certain types of independent noise is a special case of the computability that arises
from the existence and computability of certain conditional probability densities
[AFR11, §VII]. This final case covers most models that arise in statistical practice,
especially those that are finite-dimensional.

In conclusion, while we cannot hope to condition on arbitrary computable ran-
dom variables, QUERY covers nearly all of the situations that arise in practice,
and suffices for our purposes. Having laid the theoretical foundation for QUERY
and described its connection with conditioning, we now return to the medical di-
agnosis example and more elaborate uses of QUERY, with a goal of understanding
additional features of the formalism.

4. Conditional independence and compact representations

In this section, we return to the medical diagnosis example, and explain the way
in which conditional independence leads to compact representations, and conversely,
the fact that efficient probabilistic programs, like DS, exhibit many conditional
independencies. We will do so through connections with the Bayesian network
formalism, whose introduction by Pearl [Pea88] was a major advancement in AI.

4.1. The combinatorics of QUERY. Humans engaging in common-sense reason-
ing often seem to possess an unbounded range of responses or behaviors; this is
perhaps unsurprising given the enormous variety of possible situations that can
arise, even in simple domains.

Indeed, the small handful of potential diseases and symptoms that our medical
diagnosis model posits already gives rise to a combinatorial explosion of potential
scenarios with which a doctor could be faced: among 11 potential diseases and 7
potential symptoms there are

311 · 37 = 387 420 489

partial assignments to a subset of variables.
Building a table (i.e., function) associating every possible diagnostic scenario

with a response would be an extremely difficult task, and probably nearly impossible
if one did not take advantage of some structure in the domain to devise a more
compact representation of the table than a structureless, huge list. In fact, much of



20 FREER, ROY, AND TENENBAUM

AI can be interpreted as proposals for specific structural assumptions that lead to
more compact representations, and the QUERY framework can be viewed from this
perspective as well: the prior program DS implicitly defines a full table of responses,
and the predicate can be understood as a way to index into this vast table.

This leads us to three questions: Is the table of diagnostic responses induced by
DS any good? How is it possible that so many responses can be encoded so com-
pactly? And what properties of a model follow from the existence of an efficient
prior program, as in the case of our medical diagnosis example and the prior pro-
gram DS? In the remainder of the section we will address the latter two questions,
returning to the former in Section 5 and Section 6.

4.2. Conditional independence. Like DS, every probability model of 18 binary
variables implicitly defines a gargantuan set of conditional probabilities. However,
unlike DS, most such models have no compact representation. To see this, note
that a probability distribution over k outcomes is, in general, specified by k − 1
probabilities, and so in principle, in order to specify a distribution on {0, 1}18, one
must specify

218 − 1 = 262 143

probabilities. Even if we discretize the probabilities to some fixed accuracy, a simple
counting argument shows that most such distributions have no short description.

In contrast, Table 1 contains only

11 + 7 + 11 · 7 = 95

probabilities, which, via the small collection of probabilistic computations per-
formed by DS and described informally in the text, parameterize a distribution
over 218 possible outcomes. What properties of a model can lead to a compact
representation?

The answer to this question is conditional independence. Recall that a collection
of random variables {Xi : i ∈ I} is independent when, for all finite subsets J ⊆ I
and measurable sets Ai where i ∈ J , we have

P
(∧
i∈J

Xi ∈ Ai
)

=
∏
i∈J

P(Xi ∈ Ai). (9)

If X and Y were binary random variables, then specifying their distribution would
require 3 probabilities in general, but only 2 if they were independent. While those
savings are small, consider instead n binary random variables Xj , j = 1, . . . , n, and
note that, while a generic distribution over these random variables would require
the specification of 2n − 1 probabilities, only n probabilities are needed in the case
of full independence.

Most interesting probabilistic models with compact representations will not ex-
hibit enough independence between their constituent random variables to explain
their own compactness in terms of the factorization in (9). Instead, the slightly
weaker (but arguably more fundamental) notion of conditional independence is
needed. Rather than present the definition of conditional independence in its full
generality, we will consider a special case, restricting our attention to conditional
independence with respect to a discrete random variable N taking values in some
countable or finite set N . (For the general case, see Kallenberg [Kal02, Ch. 6].) We
say that a collection of random variables {Xi : i ∈ I} is conditionally independent



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 21

given N when, for all n ∈ N , finite subsets J ⊆ I and measurable sets Ai, for i ∈ J ,
we have

P
(∧
i∈J

Xi ∈ Ai | N = n
)
=
∏
i∈J

P(Xi ∈ Ai | N = n).

To illustrate the potential savings that can arise from conditional independence,
consider n binary random variables that are conditionally independent given a
discrete random variable taking k values. In general, the joint distribution over
these n + 1 variables is specified by k · 2n − 1 probabilities, but, in light of the
conditional independence, we need specify only k(n+ 1)− 1 probabilities.

4.3. Conditional independencies in DS. In Section 4.2, we saw that conditional
independence gives rise to compact representations. As we will see, the variables
in DS exhibit many conditional independencies.

To begin to understand the compactness of DS, note that the 95 variables

{D1, . . . , D11; L1, . . . , L7; C1,1, C1,2, C2,1, C2,2, . . . , C11,7}

are independent, and thus their joint distribution is determined by specifying only
95 probabilities (in particular, those in Table 1). Each symptom Sm is then derived
as a deterministic function of a 23-variable subset

{D1, . . . , D11; Lm; C1,m, . . . , C11,m},

which implies that the symptoms are conditionally independent given the diseases.
However, these facts alone do not fully explain the compactness of DS. In particular,
there are

2223

> 10106

binary functions of 23 binary inputs, and so by a counting argument, most have
no short description. On the other hand, the max operation that defines Sm does
have a compact and efficient implementation. In Section 4.5 we will see that this
implies that we can introduce additional random variables representing interme-
diate quantities produced in the process of computing each symptom Sm from its
corresponding collection of 23-variable “parent” variables, and that these random
variables exhibit many more conditional independencies than exist between Sm and
its parents. From this perspective, the compactness of DS is tantamount to there
being only a small number of such variables that need to be introduced. In order
to simplify our explanation of this connection, we pause to introduce the idea of
representing conditional independencies using graphs.

4.4. Representations of conditional independence. A useful way to represent
conditional independence among a collection of random variables is in terms of a
directed acyclic graph, where the vertices stand for random variables, and the col-
lection of edges indicates the presence of certain conditional independencies. An
example of such a graph, known as a directed graphical model or Bayesian net-
work, is given in Figure 1. (For more details on Bayesian networks, see the survey
by Pearl [Pea04]. It is interesting to note that Pearl cites Good’s “causal calculus”
[Goo61]—which we have already encountered in connection with our medical diag-
nosis example, and which was based in part on Good’s wartime work with Turing
on the weight of evidence—as a historical antecedent to Bayesian networks [Pea04,
§70.2].)



22 FREER, ROY, AND TENENBAUM

S1

⊙

L1

⊙ C11,1
⊙ C10,1
⊙ C9,1
⊙ C8,1
⊙ C7,1
⊙ C6,1
⊙ C5,1
⊙ C4,1
⊙C3,1
⊙C2,1
⊙C1,1
⊙ S2

⊙

L2

⊙ C11,2
⊙ C10,2
⊙ C9,2
⊙ C8,2
⊙ C7,2
⊙ C6,2
⊙ C5,2
⊙ C4,2
⊙C3,2
⊙C2,2
⊙C1,2
⊙ S3

⊙

L3

⊙ C11,3
⊙ C10,3
⊙ C9,3
⊙ C8,3
⊙ C7,3
⊙ C6,3
⊙ C5,3
⊙ C4,3
⊙C3,3
⊙C2,3
⊙C1,3
⊙ S4

⊙

L4

⊙ C11,4
⊙ C10,4
⊙ C9,4
⊙ C8,4
⊙ C7,4
⊙ C6,4
⊙ C5,4
⊙ C4,4
⊙C3,4
⊙C2,4
⊙C1,4
⊙ S5

⊙

L5

⊙ C11,5
⊙ C10,5
⊙ C9,5
⊙ C8,5
⊙ C7,5
⊙ C6,5
⊙ C5,5
⊙ C4,5
⊙C3,5
⊙C2,5
⊙C1,5
⊙ S6

⊙

L6

⊙ C11,6
⊙ C10,6
⊙ C9,6
⊙ C8,6
⊙ C7,6
⊙ C6,6
⊙ C5,6
⊙ C4,6
⊙C3,6
⊙C2,6
⊙C1,6
⊙ S7

⊙

L7

⊙ C11,7
⊙ C10,7
⊙ C9,7
⊙ C8,7
⊙ C7,7
⊙ C6,7
⊙ C5,7
⊙ C4,7
⊙C3,7
⊙C2,7
⊙C1,7
⊙

D1⊙ D2⊙ D3⊙ D4⊙ D5⊙ D6⊙ D7⊙ D8⊙ D9⊙ D10⊙ D11⊙

Figure 1. Directed graphical model representations of the con-
ditional independence underlying the medical diagnosis example.
(Note that the directionality of the arrows has not been rendered
as they all simply point towards the symptoms Sm.)

⊙Lm
⊙Cn,m

⊙
Sm

⊙Dn

symptoms m

diseases n

Figure 2. The repetitive structure Figure 1 can be partially cap-
tured by so-called “plate notation”, which can be interpreted as a
primitive for-loop construct. Practitioners have adopted a number
of strategies like plate notation for capturing complicated struc-
tures.

Directed graphical models often capture the “generative” structure of a collection
of random variables: informally, by the direction of arrows, the diagram captures,
for each random variable, which other random variables were directly implicated
in the computation that led to it being sampled. In order to understand exactly
which conditional independencies are formally encoded in such a graph, we must
introduce the notion of d-separation.

We determine whether a pair (x, y) of vertices are d-separated by a subset of
vertices E as follows: First, mark each vertex in E with a ×, which we will indicate
by the symbol

⊗
. If a vertex with (any type of) mark has an unmarked parent,



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 23

mark the parent with a +, which we will indicate by the symbol
⊕

. Repeat until
a fixed point is reached. Let

⊙
indicate unmarked vertices. Then x and y are

d-separated if, for all (undirected) paths from x to y through the graph, one of the
following patterns appears: ⊙

→
⊗
→
⊙⊙

←
⊗
←
⊙⊙

←
⊗
→
⊙⊙

→
⊙
←
⊙

More generally, if X and E are disjoint sets of vertices, then the graph encodes
the conditional independence of the vertices X given E if every pair of vertices in
X is d-separated given E . If we fix a collection V of random variables, then we
say that a directed acyclic graph G over V is a Bayesian network (equivalently,
a directed graphical model) when the random variables in V indeed posses all of
the conditional independencies implied by the graph by d-separation. Note that a
directed graph G says nothing about which conditional independencies do not exist
among its vertex set.

Using the notion of d-separation, we can determine from the Bayesian network
in Figure 1 that the diseases {D1, . . . , D11} are independent (i.e., conditionally
independent given E = ∅). We may also conclude that the symptoms {S1, . . . , S7}
are conditionally independent given the diseases {D1, . . . , D11}.

In addition to encoding a set of conditional independence statements that hold
among its vertex set, directed graphical models demonstrate that the joint distri-
bution over its vertex set admits a concise factorization: For a collection of binary
random variables X1, . . . , Xk, write p(X1, . . . , Xk) : {0, 1}k → [0, 1] for the prob-
ability mass function (p.m.f.) taking an assignment x1, . . . , xk to its probability
P(X1 = x1, . . . , Xk = xk), and write

p(X1, . . . , Xk | Y1, . . . , Ym) : {0, 1}k+m → [0, 1]

for the conditional p.m.f. corresponding to the conditional distribution

P(X1, . . . , Xk | Y1, . . . , Ym).

It is a basic fact from probability that

p(X1, . . . , Xk) = p(X1) · p(X2 | X1) · · · p(Xk | X1, . . . , Xk−1) (10)

=

k∏
i=1

p(Xi | Xj , j < i).

Such a factorization provides no advantage when seeking a compact representation,
as a conditional p.m.f. of the form p(X1, . . . , Xk | Y1, . . . , Xm) is determined by
2m ·(2k−1) probabilities. On the other hand, if we have a directed graphical model
over the same variables, then we may have a much more concise factorization. In
particular, let G be a directed graphical model over {X1, . . . , Xk}, and write Pa(Xj)
for the set of vertices Xi such that (Xi, Xj) ∈ G, i.e., Pa(Xj) are the parent vertices
of Xj . Then the joint p.m.f. may be expressed as

p(X1, . . . , Xk) =

k∏
i=1

p(Xi | Pa(Xi)). (11)



24 FREER, ROY, AND TENENBAUM

Whereas the factorization given by (10) requires the full set of
∑k
i=1 2i−1 = 2k − 1

probabilities to determine, this factorization requires
∑k
i=1 2|Pa(Xi)| probabilities,

which in general can be exponentially smaller in k.

4.5. Efficient representations and conditional independence. As we saw at
the beginning of this section, models with only a moderate number of variables
can have enormous descriptions. Having introduced the directed graphical model
formalism, we can use DS as an example to explain why, roughly speaking, the
output distributions of efficient probabilistic programs exhibit many conditional
independencies.

What does the efficiency of DS imply about the structure of its output distribu-
tion? We may represent DS as a small boolean circuit whose inputs are random bits
and whose 18 output lines represent the diseases and symptom indicators. Specifi-
cally, assuming the parameters in Table 1 were dyadics, there would exist a circuit
composed of constant-fan-in elements implementing DS whose size grows linearly
in the number of diseases and in the number of symptoms.

If we view the input lines as random variables, then the output lines of the logic
gates are also random variables, and so we may ask: what conditional indepen-
dencies hold among the circuit elements? It is straightforward to show that the
circuit diagram, viewed as a directed acyclic graph, is a directed graphical model
capturing conditional independencies among the inputs, outputs, and internal gates
of the circuit implementing DS. For every gate, the conditional probability mass
function is characterized by the (constant-size) truth table of the logical gate.

Therefore, if an efficient prior program samples from some distribution over a
collection of binary random variables, then those random variables exhibit many
conditional independencies, in the sense that we can introduce a polynomial number
of additional boolean random variables (representing intermediate computations)
such that there exists a constant-fan-in directed graphical model over all the vari-
ables with constant-size conditional probability mass functions.

In Section 5 we return to the question of whether DS is a good model. Here we
conclude with a brief discussion of the history of graphical models in AI.

4.6. Graphical models and AI. Graphical models, and, in particular, directed
graphical models or Bayesian networks, played a critical role in popularizing prob-
abilistic techniques within AI in the late 1980s and early 1990s. Two developments
were central to this shift: First, researchers introduced compact, computer-readable
representations of distributions on large (but still finite) collections of random vari-
ables, and did so by explicitly representing a graph capturing conditional inde-
pendencies and exploiting the factorization (11). Second, researchers introduced
efficient graph-based algorithms that operated on these representations, exploit-
ing the factorization to compute conditional probabilities. For the first time, a
large class of distributions were given a formal representation that enabled the de-
sign of general purpose algorithms to compute useful quantities. As a result, the
graphical model formalism became a lingua franca between practitioners designing
large probabilistic systems, and figures depicting graphical models were commonly
used to quickly communicate the essential structure of complex, but structured,
distributions.

While there are sophisticated uses of Bayesian networks in cognitive science (see,
e.g., [GKT08, §3]), many models are not usefully represented by a Bayesian network.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 25

In practice, this often happens when the number of variables or edges is extremely
large (or infinite), but there still exists special structure that an algorithm can
exploit to perform probabilistic inference efficiently. In the next three sections, we
will see examples of models that are not usefully represented by Bayesian networks,
but which have concise descriptions as prior programs.

5. Hierarchical models and learning probabilities from data

The DS program makes a number of implicit assumptions that would deserve
scrutiny in a real medical diagnosis setting. For example, DS models the diseases
as a priori independent, but of course, diseases often arise in clusters, e.g., as
the result of an auto-immune condition. In fact, because of the independence and
the small marginal probability of each disease, there is an a priori bias towards
mutually exclusive diagnoses as we saw in the “explaining away” effect in (7). The
conditional independence of symptoms given diseases reflects an underlying casual
interpretation of DS in terms of diseases causing symptoms. In many cases, e.g., a
fever or a sore neck, this may be reasonable, while in others, e.g., insulin resistance,
it may not.

Real systems that support medical diagnosis must relax the strong assumptions
we have made in the simple DS model, while at the same time maintaining enough
structure to admit a concise representation. In this and the next section, we show
how both the structure and parameters in prior programs like DS can be learned
from data, providing a clue as to how a mechanical mind could build predictive
models of the world simply by experiencing and reacting to it.

5.1. Learning as probabilistic inference. The 95 probabilities in Table 1 even-
tually parameterize a distribution over 262 144 outcomes. But whence come these
95 numbers? As one might expect by studying the table of numbers, they were de-
signed by hand to elucidate some phenomena and be vaguely plausible. In practice,
these parameters would themselves be subject to a great deal of uncertainty, and
one might hope to use data from actual diagnostic situations to learn appropriate
values.

There are many schools of thought on how to tackle this problem, but a hierar-
chical Bayesian approach provides a particularly elegant solution that fits entirely
within the QUERY framework. The solution is to generalize the DS program in two
ways. First, rather than generating one individual’s diseases and symptoms, the
program will generate data for n + 1 individuals. Second, rather than using the
fixed table of probability values, the program will start by randomly generating a
table of probability values, each independent and distributed uniformly at random
in the unit interval, and then proceed along the same lines as DS. Let DS′ stand
for this generalized program.

The second generalization may sound quite surprising, and unlikely to work very
well. The key is to consider the combination of the two generalizations. To complete
the picture, consider a past record of n individuals and their diagnosis, represented
as a (potentially partial) setting of the 18 variables {D1, . . . , D11; S1, . . . , S7}. We
define a new predicate OS′ that accepts the n + 1 diagnoses generated by the
generalized prior program DS′ if and only if the first n agree with the historical
records, and the symptoms associated with the n + 1’st agree with the current
patient’s symptoms.



26 FREER, ROY, AND TENENBAUM

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

14

Figure 3. Plots of the probability density of Beta(a1, a0) distri-

butions with density f(x;α1, α0) = Γ(α1+α0)
Γ(α1)Γ(α0)x

α1−1 (1 − x)α0−1

for parameters (1, 1), (3, 1), (30, 3), and (90, 9) (respectively, in
height). For parameters α1, α0 > 1, the distribution is unimodal
with mean α1/(α1 + α0).

What are typical outputs from QUERY(DS′,OS′)? For very small values of n,
we would not expect particularly sensible predictions, as there are many tables
of probabilities that could conceivably lead to acceptance by OS′. However, as
n grows, some tables are much more likely to lead to acceptance. In particular,
for large n, we would expect the hypothesized marginal probability of a disease
to be relatively close to the observed frequency of the disease, for otherwise, the
probability of acceptance would drop. This effect grows exponentially in n, and so
we would expect that the typical accepted sample would quickly correspond with
a latent table of probabilities that match the historical record.

We can, in fact, work out the conditional distributions of entries in the table
in light of the n historical records. First consider a disease j whose marginal
probability, pj , is modeled as a random variable sampled uniformly at random
from the unit interval. The likelihood that the n sampled values of Dj match the
historical record is

pkj · (1− pj)n−k, (12)

where k stands for the number of records where disease j is present. By Bayes’
theorem, in the special case of a uniform prior distribution on pj , the density of the
conditional distribution of pj given the historical evidence is proportional to the
likelihood (12). This implies that, conditionally on the historical record, pj has a
so-called Beta(α1, α0) distribution with mean

α1

α1 + α0
=
k + 1

n+ 2

and concentration parameter α1+α0 = n+2. Figure 3 illustrates beta distributions
under varying parameterizations, highlighting the fact that, as the concentration
grows, the distribution begins to concentrate rapidly around its mean. As n grows,
predictions made by QUERY(DS′,OS′) will likely be those of runs where each disease
marginals pj falls near the observed frequency of the jth disease. In effect, the
historical record data determines the values of the marginals pj .

A similar analysis can be made of the dynamics of the posterior distribution of
the latent parameters `m and cn,m, although this will take us too far beyond the



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 27

scope of the present article. Abstractly speaking, in finite dimensional Bayesian
models like this one satisfying certain regularity conditions, it is possible to show
that the predictions of the model converge to those made by the best possible
approximation within the model to the distribution of the data. (For a discussion
of these issues, see, e.g., [Bar98].)

While the original DS program makes the same inferences in each case, DS′

learns to behave from experience. The key to this power was the introduction of
the latent table of probabilities, modeled as random variables. This type of model is
referred to as a hierarchical Bayesian model. The term “Bayesian” refers to the fact
that we have modeled our uncertainty about the unknown probabilities by making
them random and specifying a distribution that reflects our subjective uncertainty,
rather than a frequency in a large random sample of patients. The term “hierarchy”
refers to the fact that in the graphical model representing the program, there is yet
another level of random variables (the table of probabilities) sitting above the rest
of the original graphical model. More complicated models may have many more
layers, or potentially even an infinite number of layers.

An interesting observation is that DS′ is even more compact than DS, as the
specification of the distribution of the random table is logarithmic in the size of
the table. On the other hand, DS′ relies on data to help it reduce its substantial
a priori uncertainty regarding these values. This tradeoff—between, on the one
hand, the flexibility and complexity of a model and, on the other, the amount of
data required in order to make sensible predictions—is seen throughout statistical
modeling. We will return to this point in Section 6.3.

Here we have seen how the parameters in prior programs can be modeled as
random, and thereby learned from data by conditioning on historical diagnoses. In
the next section, we consider the problem of learning not only the parameterization
but the structure of the model’s conditional independence itself.

6. Random structure

Irrespective of how much historical data we have, DS′ cannot go beyond the con-
ditional independence assumptions implicit in the structure of the prior program.
Just as we framed the problem of learning the table of probabilities as a prob-
abilistic inference over a random table, we can frame the problem of identifying
the correct structure of the dependence between symptoms and disease as one of
probabilistic inference over random conditional independence structure among the
model variables.

In Section 4.4, we saw that conditional independence relationships among a
collection of random variables can be captured by a directed acyclic graph. The
approach we will discuss involves treating this graph as a random variable, whose
distribution reflects our uncertainty about the statistical dependence among the
diseases and symptoms before seeing data, and whose posterior distribution re-
flects our updated uncertainty about these relationships once the graph is forced
to explain any evidence of dependence or independence in the historical data.

The model that we describe in this section introduces several additional layers
and many more latent variables. Outside of the Bayesian framework, these latent
variables would typically be additional parameters that one would tune to fit the
data. Typically, when one adds more parameters to a model, this improves the
fit to the data at hand, but introduces a risk of “overfitting”, which leads to poor



28 FREER, ROY, AND TENENBAUM

predictive performance on unseen data. However, as we will see in Section 6.3, the
problem of overfitting is mitigated in this Bayesian approach, because the latent
variables are not optimized, but rather sampled conditionally.

6.1. Learning structure as probabilistic inference. Within AI and machine
learning, the problem of learning a probabilistic model from data is a quintessential
example of unsupervised learning, and the approach of identifying a graph capturing
conditional independence relationships among model variables is known as structure
learning.

In Section 4.4 we saw that every distribution on n binary random variables
X1, . . . , Xn can be expressed in the form

p(X1, . . . , Xk) =

k∏
j=1

pj(Xj | Pa(Xj)). (13)

where G is a directed acyclic graph over the set {X1, . . . , Xk} of model variables;
Pa(Xj) denotes the parent vertices of Xj ; and the pj(· | ·) are conditional prob-
ability mass functions specifying the distribution of each variable in terms of its
parents’ values.

From the perspective of this factorization, the tack we took in Section 5.1 was
to assume that we knew the graphical structure G (given by DS) and learn (the
parameterization of) the conditional mass functions by modeling them as random
variables. We will now consider learning both ingredients simultaneously, and later
pause to critique this strategy.

6.2. A random probability distribution. Let us return to the setting of medical
diagnosis, and in particular the problem of modeling the presence/absence of the 11
diseases and 7 symptoms, represented by the variables {D1, . . . , D11; S1, . . . , S7}.

Towards this end, and with the factorization (13) in mind, consider a prior
program, which we will call RPD (for Random Probability Distribution), that takes
as input two positive integers n and D and produces as output n independent
samples from a random probability distribution on {0, 1}D.

Intuitively, RPD works in the following way: First, RPD generates a random
directed acyclic graph G with D vertices. Next, it generates a random probabil-
ity mass function p, which will specify a distribution over D random variables,
X1, . . . , XD. The probability mass function will be generated so that it satisfies the
conditional independencies implied by the graph G when it is viewed as a directed
graphical model. The probability mass function p is generated by choosing random
conditional probability mass functions p(Xj |Pa(Xj)), one for each variable Xj as
in the factorization (13). Specifically, if a variable Xj has k parents Pa(Xj) (which
collectively can take on 2k possible {0, 1}-assignments), then we must generate 2k

probabilities, one for each {0, 1}-assignment v of the parents, indicating the prob-
ability pj|v that Xj = 1 given that Pa(Xj) = v. In particular, pj(1|v) = pj|v. This
fully determines p. RPD then proceeds to generate n samples from p, each a list of
D binary values with the same distributions as X1, . . . , XD.

More formally, RPD begins by sampling a directed acyclic graph G uniformly
at random from the set GD of all directed acyclic graphs over the vertex set
{X1, . . . , XD}. For every vertex j and every {0, 1}-assignment v to Xi’s parents
Pa(Xj), we sample a probability value pj|v uniformly at random from [0, 1]. Let



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 29

j1, . . . , jD be a topological ordering of the vertices of G. We then repeat the fol-
lowing procedure n times: First, sample Xj1 ∈ {0, 1} with mean pj1|(), and then
for i = 2, . . . , D, sample Xji ∈ {0, 1} with mean pji|v where v = (Xp : p ∈ Pa(ji))
is the {0, 1}-assignment of Xj ’s parents. We then output the variables in order
X1, . . . , XD, and repeat until we have produced n such samples as output.

With RPD fully specified, let us now consider the output of

QUERY(RPD(n+ 1, 18),OS′) (14)

where OS′ is defined as in Section 5.1, accepting n+ 1 diagnoses if and only if the
first n agree with historical records, and the symptoms associated with the n+ 1’st
agree with the current patient’s symptoms. (Note that we are identifying each
output (X1, . . . , X11, X12, . . . , X18) with a diagnosis (D1, . . . , D11, S1, . . . , S7), and
have done so in order to highlight the generality of RPD.)

As a first step in understanding RPD, one can show that, conditioned on the
graphG, the conditional independence structure of each of its n outputs (X1, . . . , XD)
is precisely captured by G, when viewed as a Bayesian network (i.e., the distribution
of the X’s satisfies the factorization (13)). It is then not hard to see that the prob-
abilities pj|v parameterize the conditional probability mass functions, in the sense
that p(Xj = 1 | Pa(Xj) = v) = pj|v. Our goal over the remainder of the section will
be to elucidate the posterior distribution on the graph and its parameterization, in
light of historical data.

To begin, we assume that we know the graph G for a particular output from
(14), and then study the likely values of the probabilities pj|v conditioned on the
graph G. Given the simple uniform prior distributions, we can in fact derive an-
alytical expressions for the posterior distribution of the probabilities pj|v directly,
conditioned on historical data and the particular graph structure G. In much the
same was as our analysis in Section 5.1, it is easy to show that the expected value
of pj|v on those runs accepted by QUERY is

kj|v + 1

nj|v + 2

where nj|v is the number of times in the historical data where the pattern Pa(Xj) =
v arises; and kj|v is the number of times when, moreover, Xj = 1. This is simply
the “smoothed” empirical frequency of the event Xj = 1 given Pa(Xj) = v. In fact,
the pj|v are conditionally Beta distributed with concentration nj|v + 2. Under an
assumption that the historical data are conditionally independent and identically
distributed according to a measure P , it follows by a law of large numbers argu-
ment that these probabilities converge almost surely to the underlying conditional
probability P (Xj = 1|Pa(Xj) = v) as n→∞.

The variance of these probabilities is one characterization of our uncertainty,
and for each probability pj|v, the variance is easily shown to scale as n−1

j|v, i.e., the

number of times in the historical data when Pa(Xj) = v. Informally, this suggests
that, the smaller the parental sets (a property of G), the more certain we are likely
to be regarding the correct parameterization, and, in terms of QUERY, the smaller
the range of values of pj|v we will expect to see on accepted runs. This is our first
glimpse at a subtle balance between the simplicity of the graph G and how well it
captures hidden structure in the data.



30 FREER, ROY, AND TENENBAUM

6.3. Aspects of the posterior distribution of the graphical structure. The
space of directed acyclic graphs on 18 variables is enormous, and computational
hardness results [Coo90, DL93, CSH08] imply there will be no simple way to sum-
marize the structure of the posterior distribution, at least not one that suggests an
efficient method in general for choosing structures with high posterior probability.
It also goes without saying that one should not expect the PTM defined by (14) to
halt within a reasonable time for any appreciable value of n because the probability
of generating the structure that fits the data is astronomically small. However it is
still instructive to understand the conceptual structure of the posterior distribution
of the graph G. On the one hand, there are algorithms that operate quite differ-
ently from the naive mechanism of QUERY and work reasonably well in practice at
approximating the task defined here, despite hardness results. There are also more
restricted, but still interesting, versions of this task for which there exist algorithms
that work remarkably well in practice and sometimes provably so [BJ03].

On the other hand, this example is worth studying because it reveals an im-
portant aspect of some hierarchical Bayesian models with regard to their ability
to avoid “overfitting”, and gives some insight into why we might expect “simpler”
explanations/theories to win out in the short term over more complex ones.

Consider the set of probability distributions of the form (13) for a particular
graph G. We will refer to these simply as the models in G when there is no risk of
confusion. The first observation to make is that if a graph G is a strict subgraph
of another graph G′ on the same vertex set, then the set of models in G is a
strict subset of those in G′. It follows that, no matter the data set, the best-fitting
probability distribution corresponding with G′ will be no worse than the best-fitting
model in G. Given this observation, one might guess that samples from (14) would
be more likely to come from models whose graphs have more edges, as such graphs
always contain a model that fits the historical data better.

However, the truth is more subtle. Another key observation is that the posterior
probability of a particular graph G does not reflect the best-fitting model in G, but
rather reflects the average ability of models in G to explain the historical data. In
particular, this average is over the random parameterizations pj|v of the conditional
probability mass functions. Informally speaking, if a spurious edge exists in a graph
G′, a typical distribution from G′ is less likely to explain the data than a typical
distribution from the graph with that edge removed.

In order to characterize the posterior distribution of the graph, we can study
the likelihood that a sample from the prior program is accepted, assuming that it
begins by sampling a particular graph G. We begin by focusing on the use of each
particular probability pj|v, and note that every time the pattern Pa(Xj) = v arises
in the historical data, the generative process produces the historical value Xj with
probability pj|v if Xj = 1 and 1−pj|v if Xj = 0. It follows that the probability that
the generative process, having chosen graph G and parameters {pj|v}, proceeds to
produce the historical data is

D∏
j=1

∏
v

p
kj|v
j|v (1− pj|v)nj|v−kj|v , (15)

where v ranges over the possible {0, 1} assignments to Pa(Xj) and kj|v and nj|v
are defined as above. In order to determine the probability that the generative
process produces the historical data (and thus is accepted), assuming only that it



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 31

20 40 60 80 100

-1000

-800

-600

-400

-200

20 40 60 80 100

-1

1

2

3

4

Figure 4. Weight of evidence for independence versus depen-
dence (positive values support independence) of a sequence of pairs
of random variables sampled from RPD(n, 2). (left) When pre-
sented with data from a distribution where (X,Y ) are indeed de-
pendent, the weight of evidence rapidly accumulates for the de-
pendent model, at an asymptotically linear rate in the amount of
data. (right) When presented with data from a distribution where
(X,Y ) are independent, the weight of evidence slowly accumulates
for the independent model, at an asymptotic rate that is logarith-
mic in the amount of data. Note that the dependent model can
imitate the independent model, but, on average over random pa-
rameterizations of the conditional probability mass functions, the
dependent model is worse at modeling independent data.

has chosen graph G, we must take the expected value of (15) with respect to the
uniform probability measure on the parameters, i.e., we must calculate the marginal
probability of the historical data conditioned the graph G. Given the independence
of the parameters, it is straightforward to show that this expectation is

score(G) :=

D∏
j=1

∏
v

(nj|v + 1)−1

(
nj|v
kj|v

)−1

(16)

Because the graph G was chosen uniformly at random, it follows that the posterior
probability of a particular graph G is proportional to score(G).

We can study the preference for one graph G over another G′ by studying the
ratio of their scores:

score(G)

score(G′)
.

This score ratio is known as the Bayes factor, which Good termed the Bayes–
Jeffreys–Turing factor [Goo68, Goo75], and which Turing himself called the factor
in favor of a hypothesis (see [Goo68], [Zab12, §1.4], and [Tur12]). Its logarithm is
sometimes known as the weight of evidence [Goo68]. The form of (16), a product
over the local structure of the graph, reveals that the Bayes factor will depend only
on those parts of the graphs G and G′ that differ from each other.

Consider the following simplified scenario, which captures several features of
learning structure from data: Fix two graphs, G and G′, over the same collection
of random variables, but assume that in G, two of these random variables, X and
Y , have no parents and are thus independent, and in G′ there is an edge from X to
Y , and so they are almost surely dependent. From (16), we may deduce that the



32 FREER, ROY, AND TENENBAUM

score ratio is

(n1 + 1)(n0 + 1)

(n+ 1)

(
n1

k1

)(
n0

k0

)(
n
k

) , (17)

where n counts the total number of observations; k counts Y = 1; n1 counts X = 1;
k1 counts X = 1 and Y = 1; n0 counts X = 0; and k0 counts X = 0 and Y = 1.
In order to understand how the Bayes factor (17) for graph G behaves, let us first
consider the case where G′ is the true underlying graph, i.e., when Y is indeed
dependent on X. Using the law of large numbers, and Stirling’s approximation, we
can reason that the evidence for G′ accumulates rapidly, satisfying

log
score(G)

score(G′)
∼ −C · n, a.s.,

for some constant C > 0 that depends only on the joint distribution of X and Y .
As a concrete example, when X and Y have mean 1

2 , the constant is given by

log
(1− d)d−

1
2

(1 + d)d+ 1
2

,

where d = P{Y = 1|X = 1} = 1 − P{Y = 1|X = 0}. For example, C → 0 as
d ↓ 0; C ≈ 0.13 when d = 1/2; and C achieves its maximum, log 2, as d ↑ 1. The
first plot in Figure 4 shows the progression of the weight of evidence when data is
drawn from distributions generated uniformly at random to satisfy the conditional
independencies captured by G′. As predicted, the evidence rapidly accumulates at
a linear rate in favor of G′.

On the other hand, when G is the true underlying graph and Y is independent
and X, one can show using similar techniques to above that

log
score(G)

score(G′)
∼ 1

2
log n, a.s.

The second plot in Figure 4 shows the progression of the weight of evidence when
data is drawn from distributions generated uniformly at random to satisfy the
conditional independencies captured by G. As predicted, the evidence accumulates,
but at a much slower logarithmic rate.

In both cases, evidence accumulates for the correct model. In fact, it can be
shown that the expected weight of evidence is always non-negative for the true
hypothesis, a result due to Turing himself [Goo91, p. 93]. Because the prior prob-
abilities for each graph are fixed and do not vary with the amount of data, the
weight of evidence will eventually eclipse any prior information and determine the
posterior probability. On the other hand, as we have seen, the evidence accumulates
rapidly for dependence and much more slowly for independence and so we might
choose our prior distribution to reflect this imbalance, preferring graphs with fewer
edges a priori.2

6.4. Bayes’ Occam’s razor. In the example above when X and Y are indepen-
dent, we see that evidence accumulates for the simpler graph over the more complex
graph, despite the fact that there is almost always a parameterization of the more
complex graph that assigns a higher likelihood to the data than any parametriza-
tion of the simpler graph. This phenomenon is known as Bayes’ Occam’s razor

2This analysis in terms of Bayes factors also aligns well with experimental findings on human
judgments of evidence for causal structure (see, e.g., [GT05]).



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 33

[Mac03, Ch. 28], and it represents a natural way in which hierarchical models like
RPD with several layers—a random graph, random conditional probability mass
functions generated given the graph, and finally, the random data generated given
the graph and the conditional probability mass functions—end up choosing models
with intermediate complexity.

One way to understand this phenomenon is to note that, if a model has many
degrees of freedom, then each configuration must be assigned, on average, less
probability than it would under a simpler model with fewer degrees of freedom.
Here, a graph with additional edges has more degrees of freedom, and while it can
represent a strictly larger set of distributions than a simpler graph, a distribution
with simple graphical structure G is assigned greater probability density under G
than under a more complex graph. Thus, if fewer degrees of freedom suffice, the
simpler model is preferred.

We can apply this same perspective to DS, DS′ and RPD: The RPD model has
many more degrees of freedom than both DS and DS′. In particular, given enough
data, RPD can fit any distribution on a finite collection of binary variables, as
opposed to DS′, which cannot because it makes strong and immutable assumptions.
On the other hand, with only a small amount of training data, one would expect
the RPD model to have high posterior uncertainty. Indeed, one would expect much
better predictions from DS′ versus RPD, if both were fed data generated by DS,
especially in the low-data regime.

An important research problem is bridging the gap between RPD and DS′.
Whereas DS′ makes an immutable choice for one particular structure, RPD as-
sumes a priori that every graphical structure is equally likely to explain the data.
If, instead, one were uncertain about the structure but expected to find some par-
ticular regular pattern in the graphical structure, one could define an alternative
model RPD′ that placed a non-uniform distribution on the graph, favoring such
patterns, and one could then expect better predictions when that pattern was in-
deed present in the data. However, one often does not know exactly which pattern
might arise. But in this case, we can take the same step we took when defining
RPD and consider a random pattern, drawn from some space of possible patterns.
This would constitute an additional level to the hierarchical model. Examples of
this idea are described by Mansinghka et al. [MKTG06] and Kemp et al. [KSBT07],
and this technique constitutes one aspect of the general approach of “theory-based
Bayesian models” [GT06, TGK06, GKT08, KT08, GT09].

Up until this point, we have considered the problem of reasoning and represent-
ing our own uncertainty in light of evidence. However, in practice, representations
of uncertainty are often useful because they support decision making under uncer-
tainty. In the next section, we show how the QUERY framework can be used to
turn models of our uncertainty, including models of the effects of our own actions,
into decisions.

7. Making decisions under uncertainty

Until now, we have discussed how computational processes can represent un-
certain knowledge, and how these processes can be transformed using QUERY to
reflect our uncertainty after incorporating new evidence. In this section, we con-
sider the problem of making decisions under uncertainty, which will require us to
reason not only about the immediate effects of the actions we take, but also about



34 FREER, ROY, AND TENENBAUM

future decisions and the uncertainty we are likely to face when making them. In the
end, we will give a recursive characterization of an approximately optimal action,
and show how this relates to simple feedback rules that Turing himself proposed.

The solution we describe models decisions as random variables and decision mak-
ing as sampling. Using PTMs and QUERY, we construct distributions over actions
a decision maker might take after reasoning about the effects of those actions and
their likely success in achieving some goal or objective. The particular distributions
we will construct are based in part on the exponentiated choice rule introduced by
Luce [Luc59, Luc77] in the context of modeling human choices.

Our presentation extends that for the “fully observable” case given by Goodman,
Mansinghka, Roy, Bonawitz, and Tenenbaum [GMR+08] and Mansinghka [Man09,
§2.2.3]. In particular, recursion plays a fundamental role in our solution, and thus
pushes us beyond the representational capacity of many formalisms for expressing
complex probabilistic models. Even more so than earlier sections, the computa-
tional processes we define with QUERY will not be serious proposals for algorithms,
although they will define distributions for which we might seek to implement ap-
proximate inference. However, those familiar with traditional presentations may
be surprised by the ease with which we move between problems often tackled by
distinct formalisms and indeed, this is a common feature of the QUERY perspective.

7.1. Diagnosis and Treatment. Returning to our medical diagnosis theme, con-
sider a doctor faced with choosing between one or more treatment plans. What
recommendation should they give to the patient and how might we build a system
to make similar choices?

In particular, imagine a patient in need of an organ transplant and the question
of whether to wait for a human donor or use a synthetic organ. There are a number
of sources of uncertainty to contend with: While waiting for a human donor, the
patient may become too ill for surgery, risking death. On the other hand, the time
before a human organ becomes available would itself be subject to uncertainty.
There is also uncertainty involved post-operation: will the organ be accepted by
the patient’s immune system without complication? How long should the patient
expect to live in both conditions, taking into consideration the deterioration that
one should expect if the patient waits quite a while before undergoing a transplant?

This situation is quite a bit more complicated. The decision as to whether to wait
changes daily as new evidence accumulates, and how one should act today depends
implicitly on the possible states of uncertainty one might face in the future and the
decisions one would take in those situations. As we will see, we can use QUERY,
along with models of our uncertainty, to make decisions in such complex situations.

7.2. A single decision. We begin with the problem of making a single decision
between two alternative treatments. What we have at our disposal are two simula-
tions SIMx and SIMy capturing our uncertainty as to the effects of those treatments.
These could be arbitrarily complicated computational processes, but in the end we
will expect them to produce an output 1 indicating that the resulting simulation



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 35

of treatment was successful/acceptable and a 0 otherwise.3 In this way, both sim-
ulations act like predicates, and so we will say that a simulation accepts when it
outputs 1, and rejects otherwise. In this section we demonstrate the use of PTMs
and QUERY to define distributions over actions—here, treatments—that are likely
to lead to successful outcomes.

Let RT (for Random Treatment) be the program that chooses a treatment Z ∈
{x, y} uniformly at random and consider the output of the program

CT∗ = QUERY(RT,SIMZ),

where SIMZ is interpreted as the program that simulates SIMz when RT outputs
Z = z ∈ {x, y}. The output of CT∗ is a treatment, x or y, and we will proceed by
interpreting this output as the treatment chosen by some decision maker.

With a view towards analyzing CT∗ (named for Choose Treatment), let pz be the
probability that SIMz accepts (i.e., pz is the probability that treatment z succeeds),
and assume that px > py. Then CT∗ “chooses” treatment x with probability

px
px + py

=
ρ

ρ+ 1

where ρ := px/py and ρ > 1 by assumption. It follows that CT∗ is more likely to
choose treatment x and that the strength of this preference is controlled by the
multiplicative ratio ρ (hence the multiplication symbol ∗ in CT∗). If ρ � 1, then
treatment x is chosen essentially every time.

On the other hand, even if treatment x is twice as likely to succeed, CT∗ still
chooses treatment y with probability 1/3. One might think that a person making
this decision should always choose treatment x. However, it should not be surprising
that CT∗ does not represent this behavior because it accepts a proposed action solely
on the basis of a single successful simulation of its outcome. With that in mind, let
k ≥ 0 be an integer, and consider the program

CT∗k = QUERY(RT,REPEAT(k, SIMZ)),

where the machine REPEAT on input k and SIMZ accepts if k independent simula-
tions of SIMZ all accept. The probability that CT∗k chooses treatment x is

ρk

ρk + 1

and so a small multiplicative difference between px and py is exponentiated, and
CT∗k chooses the more successful treatment with all but vanishing probability as
k → ∞. (See the left plot in Figure 5.) Indeed, in the limit, CT∗∞ would always
choose treatment x as we assumed px > py. (For every k, this is the well-known
exponentiated Luce choice rule [Luc59, Luc77].)

The behavior of CT∗∞ agrees with that of a classical decision-theoretic approach,
where, roughly speaking, one fixes a loss function over possible outcomes and seeks
the action minimizing the expected loss. (See [DeG05] for an excellent resource
on statistical decision theory.) On the other hand, classical decision theory, at
least when applied naively, often fails to explain human performance: It is well-
documented that human behavior does not agree with mathematically “optimal”

3Our discussion is couched in terms of successful/unsuccessful outcomes, rather than in terms

of a real-valued loss (as is standard in classical decision theory). However, it is possible to move
between these two formalisms with additional hypotheses, e.g., boundedness and continuity of the

loss. See [THS06] for one such approach.



36 FREER, ROY, AND TENENBAUM

behavior with respect to straightforward formalizations of decision problems that
humans face. (See Camerer [Cam11] for a discussion of models of actual human
performance in strategic situations.)

While we are not addressing the question of designing efficient algorithms, there
is also evidence that seeking optimal solutions leads to computational intractability.
(Indeed, PSPACE-hardness [PT87] and even undecidability [MHC03] can arise in
the general case of certain standard formulations.)

Some have argued that human behavior is better understood in terms of a large
collection of heuristics. For example, Goldstein and Gigerenzer [GG02] propose the
“recognition heuristic”, which says that when two objects are presented to a human
subject and only one is recognized, that the recognized object is deemed to be of
greater intrinsic value to the task at hand. The problem with such explanations
of human behavior (and approaches to algorithms for AI) is that they often do
not explain how these heuristic arise. Indeed, a theory for how such heuristics are
learned would be a more concise and explanatory description of the heuristics than
the heuristics themselves. A fruitful approach, and one that meshes with our pre-
sentation here, is to explain heuristic behavior as arising from approximations to ra-
tional behavior, perhaps necessitated by intrinsic computational hardness. Human
behavior would then give us clues as to which approximations are often successful
in practice and likely to be useful for algorithms.

In a sense, CT∗k could be such a model for approximately optimal behavior.
However, since CT∗k chooses an action on the basis of the ratio ρ = px/py, one
problematic feature is its sensitivity to small differences |px − py| in the absolute
probabilities of success when px, py � 1. Clearly, for most decisions, a 1/10 000
likelihood of success is not appreciably better than a 1/20 000 likelihood. A result
by Dagum, Karp, Luby and Ross [DKLR00] on estimating small probabilities to
high relative accuracy suggests that this sensitivity in CT∗k might be a potential
source of computational hardness in efforts to design algorithms, not to mention
a point of disagreement with human behavior. It stands to reason that it may be
worthwhile to seek models that do not exhibit this sensitivity.

To this end, let SIMx and SIMy be independent simulations and consider the
predicate MAJx (named for Majority) that accepts if SIMx succeeds and SIMy fails,
rejects in the opposite situation, and chooses to accept or reject uniformly at random
otherwise. We then define

CT+ = QUERY(RT,MAJZ),

It is straightforward to show that treatment x is chosen with probability

1 + (px − py)

2
=

1 + α

2

and so the output of CT+ is sensitive to only the additive difference α = px − py
(hence the addition symbol + in CT+). In particular, when px ≈ py, CT+ chooses

an action nearly uniformly at random. Unlike CT∗, it is the case that CT+ is
insensitive to the ratio px/py when px, py ≈ 0.

Similarly to CT∗k, we may define CT+
k by

CT+
k = QUERY(RT,REPEAT(k,MAJZ)),



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 37

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Plots of the sigmoidal curves arising from the probabil-
ity of treatment x under CT∗k (left) and CT+

k (right) as a function
of the log probability difference log ρ = log px − log py and proba-
bility difference α = px− py, respectively, between the treatments.
Here k ∈ {1, 2, 4}. The straight line on the right corresponds to
k = 1, and curvature increases with k.

in which case it follows that CT+
k accepts treatment x with probability

1

1 +
(

1−α
1+α

)k .
Figure 5 shows how this varies as a function of α for several values of k. Again, as
k → ∞, the decision concentrates on the treatment with the greatest probability
of success, although there is always a region around α = 0 where each treatment is
almost equally likely to be chosen.

In this section, we have shown how a model of one’s uncertainty about the likely
success of a single action can be used to produce a distribution over actions that
concentrates on actions likely to achieve success. In the next section, we will see
how the situation changes when we face multiple decisions. There, the likely success
of an action depends on future actions, which in turn depend on the likely success
of yet-more-distant actions. Using recursion, we can extend strategies for single
decisions to multiple decisions, defining distributions over sequences of actions that,
under appropriate limits, agree with notions from classical decision theory, but also
suggest notions of approximately optimal behavior.

7.3. Sequences of decisions. How can we make a sequence of good decisions over
time, given a model of their effects? Naively, we might proceed along the same lines
as we did in the previous section, sampling now a sequence of actions conditioned on,
e.g., a simulation of these actions leading to a successful outcome. Unfortunately,
this does not lead to a sensible notion of approximately optimal behavior, as the
first action is chosen on the basis of a fixed sequence of subsequent actions that do
not adapt to new observations. Certainly one should react differently when a door
leads not to the next room but to a closet!

In order to recover classical notions of optimality under an appropriate limit,
we need to evaluate exhaustive plans—called policies in the planning literature—
that specify how to act in every conceivable situation that could arise. Indeed, the
optimal action to take at any moment is that which, when followed by optimal
behavior thereafter, maximizes the probability of a successful outcome. As one
might expect, the self-referential nature of optimal behavior will lead us to recursive
definitions.



38 FREER, ROY, AND TENENBAUM

Returning to our transplant scenario, each day we are faced with several possible
options: waiting another day for a human donor match; running further diagnostic
tests; choosing to go with the synthetic organ; etc. As time passes, observations
affect our uncertainty. Observations might include the result of a diagnostic test,
the appearance of the patient, how they feel, news about potential donor matches,
etc. Underlying these observations (indeed, generating these observations) are a
network of processes: the dynamics of the patient’s organ systems, the biophysi-
cal mechanisms underlying the diagnostic tests included in our observations, the
sociodynamics of the national donor list, etc.

Observations are the channel through which we can make inferences about the
state of the underlying processes and, by reducing our uncertainty, make better
decisions. On the other hand, our actions (or inaction) will influence the evolution
of the underlying latent processes, and so, in order to choose good actions, we must
reason not only about future observations (including eventual success or failure)
but our own future actions.

While their may be many details in any particular sequential decision task, we
can abstract away nearly all of them. In particular, at any point, the sequence
of observations and actions that have transpired constitutes our belief state, and
our model of the underlying latent processes and the effects of our actions boils
down to a description of how our belief state evolves as we take actions and make
observations. More concretely, a model for a sequential decision task is captured by
a PTM NEXTSTATE, which takes a belief state and an action as input and returns
the new, random belief state arising from making an additional observation. Certain
belief states are terminal and correspond either with a successful or unsuccessful
outcome.

The internal details of NEXTSTATE can be arbitrarily complex, potentially rep-
resenting faithful attempts at simulating the types of processes listed above, e.g.,
employing detailed models of physiology, diagnostic techniques, the typical progres-
sion of the national donor list, success rates of organ transplants, life expectancy
under various conditions, etc. Our goal is to transform the computational pro-
cess NEXTSTATE characterizing the sequential decision task into a computational
process representing a stochastic policy that maps belief states to distributions on
actions that have a high probability of success.

To begin, we describe a PTM OUTCOME, which uniformly in a belief state b and
index π for a stochastic policy, simulates an outcome resulting from following the
policy π, starting from a belief state b. We may describe the behavior of OUTCOME
inductively as follows: First, a check is made as to whether b is a terminal belief
state. If so, the machine halts and returns 1 (accept) or 0 (reject) depending on
whether b represents a successful or unsuccessful outcome, respectively. Otherwise,
OUTCOME evaluates π(b), producing a random action a, and then performs an
independent simulation of NEXTSTATE(b, a) to produce a new belief state b′, at
which point the process repeats anew. In order to simplify the analysis, we will make
the following assumptions: First, we will assume that there is some positive integer
M such that, for every belief state b and policy π, we have that OUTCOME(b, π)
halts within M iterations. Second, for every non-terminal belief state b and policy
π, we will assume that OUTCOME(b, π) accepts with positive probability.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 39

We can now cast the problem of choosing the first of a sequence of actions
into the single decision framework as follows: Let SIMb,π,z be the PTM that, uni-
formly in a belief state b, index π for a stochastic policy, and action z, simu-
lates NEXTSTATE(b, z), producing an updated belief state b′, and then simulates
OUTCOME(b′, π), randomly accepting or rejecting depending on whether the sim-
ulation of the policy π starting from b′ resulted in a successful outcome or not. Let
RA be a PTM that samples an action uniformly at random. Then

ACT(b, π) := QUERY(RA,SIMb,π,Z) (18)

represents a distribution on actions that concentrates more mass on the action
leading to a higher probability of success under the policy π. Here SIMb,π,z plays
a role similar to that played by SIMz in the single decision framework described
earlier. The two additional inputs are needed because we must assign an action (or
more accurately, a distribution over actions) to every belief state and policy. As
before, we can amplify our preference for the action having the higher probability
of success by asking for k simulations to succeed.

In order to determine a complete policy, we must specify the policy π that governs
future behavior. The key idea is to choose actions in the future according to (18)
as well, and we can implement this idea using recursion. In particular, by Kleene’s
recursion theorem, there is a PTM POLICY satisfying

POLICY(b) = ACT(b,POLICY). (19)

The simplifying assumptions we made above are enough to guarantee that POLICY
halts with probability one on every belief state. Those familiar with Bellman’s
“principle of optimality” [Bel57] will notice that (18) and (19) are related to the
value iteration algorithm for Markov decision processes [How60].

In order to understand the behavior of POLICY, consider the following simple
scenario: a patient may or may not have a particularly serious disease, but if they
do, an special injection will save them. On the other hand, if a patient is given
the same injection but does not have the condition, there is a good chance of dying
from the injection itself. Luckily, there is a diagnostic test that reliably detects the
condition. How would POLICY behave?

More concretely, we will assume that the patient is sick with the disease with
probability 0.5, and that, if the patient is sick, the injection will succeed in curing
the patient with probability 0.95, but will kill them with probability 0.8 if they
are not sick with the disease. If the patient is sick, waiting things out is likely to
succeed with probability 0.1. Finally, the diagnostic is accurate with probability
0.75. In Figure 6, we present the corresponding belief state transition diagram
capturing the behavior of NEXTSTATE.

In order to understand the behavior of POLICY at the initial belief state ε,
we begin by studying its behavior after receiving test results. In particular, hav-
ing received a negative test result, the WAIT action succeeds with probability
0.91 and the INJECT action succeeds with probability 0.275, and so
ACT(Negative Test,POLICY) chooses to WAIT with probability ≈ 0.77. (As k →
∞, WAIT is asymptotically almost always chosen.) On the other hand, having
received a positive test result, ACT(Positive Test,POLICY) chooses to WAIT with
probability ≈ 0.18. (Likewise, as k →∞, INJECT is asymptotically almost always
chosen.) These values imply that SIMε,POLICY,TEST accepts with probability ≈ 0.76,
and so ACT(ε,POLICY) assigns probability 0.40, 0.29, and 0.31 to TEST, WAIT,



40 FREER, ROY, AND TENENBAUM

ε

�

Alive

Dead
0.425

0.575

�

Negative Test

�

Alive

Dead
0.725

0.275

�

Alive

Dead
0.09

0.91
WAIT

INJECT

Positive Test

�

Alive

Dead
0.125

0.875

�

Alive

Dead
0.81

0.19
WAIT

INJECT

0.5

0.5

�

Alive

Dead
0.45

0.55

W
A

IT

TEST

IN
JE

C
T

Figure 6. A visualization of NEXTSTATE for a simple diagnostic
scenario. The initial belief state, ε, corresponds with the distribu-
tion assigning equal probability to the patient having the disease
and not having the disease. Edges corresponding with actions are
labeled with the name of the action in a box. For example, three
actions are initially available: waiting it out, running a diagnostic
test, and deciding to administer the injection. Square nodes (�)
represent the random belief state transitions that follow an action.
Edges leaving these nodes are labeled with the probabilities of the
transitions.

and INJECT, respectively. As k →∞, we see that we would asymptotically almost
always choose to run a diagnostic test initially, as it significantly reduces our un-
certainty. This simple example only hints at the range of behaviors that can arise
from POLICY in complicated sequential decision tasks.

In the definition of ACT, we choose a random action conditioned on future suc-
cess. Although we can find policies that optimize the probability of success by
taking k →∞, there are good reasons to not use a random action and instead use
an initial policy that incorporates one’s prior knowledge about the optimal action,
much like it is advantageous to use a so-called admissible heuristic in search al-
gorithms like A∗. It is interesting to note that if the initial policy succeeds with
very high probability then the QUERY expression above, viewed as algorithms,



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 41

is even efficient. Returning to a quote in Section 1.1, Turing himself noted that
knowing which actions to try first would “make the difference between a brilliant
and a footling reasoner” and that this knowledge might be “produced by the ma-
chine itself, e.g. by scientific induction” [Tur50, p. 458]. Indeed, recent work in
Bayesian reinforcement learning has demonstrated the utility of more informative
prior distributions on policies [DWRT10, WGR+11].

7.4. Turing’s insights. There are a wide range of algorithms that have been de-
veloped to make decisions under uncertainty. Those familiar with economics and
AI may see the connection between our analysis and the Markov Decision Process
(MDP) formalism [How60], where the decision maker has full observability, and the
Partially Observable MDP (POMDP) formalism, where the agent, like above, has
access to only part of the state (see [Mon82] for a classic survey and [KLC98] for an
early AI paper introducing the formalism). In AI, these subjects are studied in an
area known as reinforcement learning, which is in general the study of algorithms
that can learn without receiving immediate feedback on their performance. (For a
classic survey on reinforcement learning, see [KLM96].)

A popular class of reinforcement learning algorithms are collectively called Q-
learning, and were first introduced by Watkins [Wat89]. The simplest variants work
by estimating the probability that an action a leads eventually to success, starting
from a belief state b and assuming that all subsequent actions are chosen optimally.
This function, known as the Q- or action-value function is related to

SIMb,POLICY,a

when viewed as a function of belief state b and action a. In particular, the latter
is an approximation to the former. In Q-learning, estimates of this function are
produced on the basis of experience interacting with the environment. Under cer-
tain conditions, the estimate of the Q-function can be shown to converge to its true
value [WD92].

It is instructive to compare the Q-learning algorithm to proposals that Turing
himself made. In the course of a few pages in his 1950 article, Turing suggests
mechanisms that learn by feedback in ways similar to methods in supervised learning
(immediate feedback) and reinforcement learning (delayed feedback):

We normally associate punishments and rewards with the teach-
ing process. Some simple child machines can be constructed or
programmed on this sort of principle. The machine has to be so
constructed that events which shortly preceded the occurrence of
a punishment signal are unlikely to be repeated, whereas a reward
signal increased the probability of repetition of the events which
led up to it. [Tur50, p. 457]

This quote describes behavior that, in broad strokes, lines up well with how a
reinforcement learning algorithm such as Q-learning chooses which actions to take.
Yet such simple approaches to learning from trial and error, or teaching by reward
and punishment, do not capture the most powerful ways humans learn and teach
each other. The last several decades of research in cognitive development [Car09,
Gop12, Sch12] have emphasized the many ways in which children’s learning is more
driven by intrinsic curiosity and motivation than by immediate external rewards
and punishments, more like the discovery and refinement of scientific theories than
the mechanisms of Q-learning or the process Turing describes above. Indeed, a



42 FREER, ROY, AND TENENBAUM

close analysis of the recursively defined POLICY would show that its behavior is
far more sophisticated than that of Q-learning. In particular, Q-learning does
not take advantage of the model NEXTSTATE, essentially assuming that there is
no predictable structure in the evolution of the belief state. On the other hand,
POLICY will perform information-gathering tasks, which could be construed as
curiosity-driven, but are also rational acts that may themselves improve the agent’s
future ability to act.

Turing himself also realized that more sophisticated learning mechanisms would
be required, that a machine would have to learn from “unemotional” channels
of communication, which, in the language of this section, would correspond with
patterns in the observations themselves not directly linked to eventual success or
failure. This type of unsupervised learning would be useful if the goals or criteria
for success changed, but the environment stayed the same. Turing envisioned that
the memory store of a child-machine

[. . .] would be largely occupied with definitions and propositions.
The propositions would have various kinds of status, e.g. well-
established facts, conjectures, mathematically proved theorems, state-
ments given by an authority, expressions having the logical form of
proposition but not belief-value. [Tur50, p. 457]

The idea of using a logical language as an underlying representation of knowledge
has been studied since the early days of AI, and was even proposed as a means to
achieve common-sense reasoning by contemporaries of Turing, such as McCarthy
[McC68]. The problem of learning logical formulae from data, especially in do-
mains with complex, discrete structure, is actively pursued today by researchers in
Statistical Relational Learning [GT07] and Inductive Logic Programming [Mug91].

Turing imagined that the same collection of logical formulae would also pertain
to decision-making:

Certain propositions may be described as ‘imperatives’. The ma-
chine should be so constructed that as soon as an imperative is
classed as ‘well-established’ the appropriate action automatically
takes place. [Tur50, p. 457]

A similar mechanism would later be used in expert systems, which first appeared in
the 1960s and rose to popularity in the 1980s as they demonstrated their usefulness
and commercial viability. (See [LBFL93] for a retrospective on one of the first
successful expert system.)

Having seen how QUERY can be used to make decisions under uncertainty, we
now conclude with some general thoughts about the use of QUERY in common-sense
reasoning.

8. Towards common-sense reasoning

As we have seen, the QUERY framework can be used to model many common-
sense reasoning tasks, and the underlying formalism owes much to Turing, as do
several details of the approach. In many of the applications we have considered, the
key step is providing QUERY with an appropriate model—a generative description
of the relevant aspects of nature.

In modeling, too, Turing was a pioneer. As evidenced by his diverse body of work
across computation, statistics and even morphogenesis [Tur52], Turing excelled in



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 43

building simple models of complex natural phenomena. In morphogenesis, in partic-
ular, his reaction-diffusion model proposed a particular sort of simplified chemical
interactions as a way to understand visible patterns on animals, but also potentially
leaf arrangements and even aspects of embryo formation [Cop04, p. 509]. Turing
hoped to make progress in understanding these biological phenomena by carefully
analyzing simplified mathematical models of these natural systems.

The medical diagnosis model DS that we examined in Section 2 is a crude attempt
at the same sort of mechanical/computational description of the natural patterns of
co-occurrence of diseases and symptoms. As we have seen, using a generative model
of these patterns as an input to QUERY, we can reason about unseen processes, like
diseases, from observed ones, like symptoms. We expect the inferences produced by
QUERY to be diagnostically more useful when the generative model reflects a deep
scientific understanding of the mechanisms underlying the pattern of diseases and
symptoms that we find in the human population. But we also expect the inferences
produced by QUERY to reflect natural patterns of common-sense reasoning among
lay people when fed a model that, like DS, represents a cruder state of uncertainty.

These explanations typify computational theories in the sense of Marr [Mar82],
and especially the Bayesian accounts developed in Anderson’s rational analyses
[And90], Shepard’s investigations of universal laws [She87], ideal observer models
[Gei84, KY03], and the work of Tenenbaum, Griffiths, and colleagues on con-
cept learning and generalization [TG01]; see also Oaksford and Chater’s notion
of Bayesian rationality [OC98, OC07].

A recent body of literature demonstrates that many human inferences and deci-
sions in natural situations are well predicted by probabilistic inference in models de-
fined by simple generative descriptions of the underlying causal structure. One set of
examples concerns “inverse planning” in social cognition [BGT07, BST09, GBT09,
UBM+09, Bak12] and in language [GS12]. Using the approximate planning/decision-
making framework discussed in Section 7 as part of a generative model for human
behavior, this research considers situations in which a human reasons about the
goals of other agents having only observed their actions—hence the term inverse
planning—by assuming that the other agents are acting nearly optimally in at-
taining their goals. These approaches can lead to models that are good at mak-
ing quantitative predictions of human judgements about the intentions of others.
As another example, the “intuitive physics” research by Hamrick and Battaglia
[HBT11, Ham12] aims to explain human reasoning about the physical world by
positing that we use a crude ability to simulate simple physical models in our
minds. Other examples include pragmatics in language [FG12, SG] and counterfac-
tual reasoning [GGLT12, MUS+12]. With all of these examples, there is a rather
large gap between defining the given problem in that way and being able to compu-
tationally solve it. But still there is substantial clarity brought about by the view
of using QUERY along with a generative description of underlying causal structure.

Of course, this raises the questions: how do we obtain such models? In particular,
how can or should we build them when they are not handed to us? And is there
any hope of automating the process by which we, as scientists, invent such models
upon mental reflection? These are hard scientific problems, and we have addressed
them in only a very narrow sense. In Section 5, we showed how the parameters to
the DS could be learned from data by constructing a larger generative process, DS′,
wherein these parameters are also expressed as being uncertain. We also showed,



44 FREER, ROY, AND TENENBAUM

in Section 6, how the conditional independence structure implicit in the DS model
could itself be learned, via inference in the model RPD.

These examples suggest that one possible approach to learning models is via
a more abstract version of the sort of inference we have been describing, and this
approach is roughly that taken in “theory-based Bayesian models” approach of Grif-
fiths, Kemp, and Tenenbaum [GT06, GKT08, KT08, GT09]. Some examples in-
clude attempts to learn structural forms [TGK06], and to learn a theory of causality
[GUT11]. There are of course many other proposed approaches to learning models,
some with flavors very different from those considered in this paper. Finally, the
question of how to approach common-sense reasoning remains. Perhaps common-
sense involves knowing how to build one’s own models, in a general enough setting
to encompass all of experience. It is clearly far too early to tell whether this, or
any current approach, will succeed.

Although Turing did not frame his AI work in terms of conditioning, his gener-
ative models for morphogenesis did capture one of the key ideas presented here—
that of explaining a natural phenomenon via a detailed stochastic model of the
underlying causal process. More generally, given the wide range of Turing’s ideas
that appear together in the approach to AI we have described, it is fascinating to
speculate on what sort of synthesis Turing might have made, if he had had the
opportunity.

A tantalizing clue is offered by his wartime colleague I. J. Good: Near the
end of his life, Turing was a member, along with several prominent neurologists,
statisticians, and physicists, of a small exclusive discussion group known as the
Ratio Club, named in part because of “the dependence of perception on the judging
of ratios” [Goo91, p. 101].

One can only guess at how Turing might have combined his computational in-
sight, statistical brilliance, and passion for modeling natural phenomena into still
further pursuits in AI.

Acknowledgements

The authors would like to thank Nate Ackerman, Chris Baker, Owain Evans,
Leslie Kaelbling, Jonathan Malmaud, Vikash Mansinghka, and Timothy O’Donnell
for very helpful discussions and critical feedback on drafts, and Noah Goodman,
Susan Holmes, Max Siegel, Andreas Stuhlmüller, and Sandy Zabell for useful con-
versations. This publication was made possible through the support of grants from
the John Templeton Foundation and Google. The opinions expressed in this publi-
cation are those of the authors and do not necessarily reflect the views of the John
Templeton Foundation. This paper was partially written while C.E.F. and D.M.R.
were participants in the program Semantics and Syntax: A Legacy of Alan Turing
at the Isaac Newton Institute for the Mathematical Sciences. D.M.R. is supported
by a Newton International Fellowship and Emmanuel College.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 45

References

[AB] J. Avigad and V. Brattka. Computability and analysis: The legacy of
Alan Turing. In R. Downey, editor, Turing’s Legacy. Cambridge University
Press, Cambridge, UK.

[AFR11] N. L. Ackerman, C. E. Freer, and D. M. Roy. Noncomputable con-
ditional distributions. In Proceedings of the 26th Annual IEEE Symposium
on Logic in Computer Science (LICS 2011), pages 107–116. IEEE Computer
Society, 2011.

[And90] J. R. Anderson. The Adaptive Character of Thought. Erlbaum, Hillsdale,
NJ, 1990.

[Bak12] C. L. Baker. Bayesian Theory of Mind: Modeling Human Reasoning about
Beliefs, Desires, Goals, and Social Relations. PhD thesis, Massachusetts In-
stitute of Technology, 2012.

[Bar98] A. R. Barron. Information-theoretic characterization of Bayes performance
and the choice of priors in parametric and nonparametric problems. In J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian
Statistics 6: Proceedings of the Sixth Valencia International Meeting, pages
27–52, 1998.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[BGT07] C. L. Baker, N. D. Goodman, and J. B. Tenenbaum. Theory-based social
goal inference. In Proceedings of the 30th Annual Conference of the Cognitive
Science Society, pages 1447–1452, 2007.

[BJ03] F. R. Bach and M. I. Jordan. Learning graphical models with Mercer
kernels. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15 (NIPS 2002), pages 1009–1016.
The MIT Press, Cambridge, MA, 2003.

[Bla97] J. Blanck. Domain representability of metric spaces. Annals of Pure and
Applied Logic, 83(3):225 – 247, 1997.

[BST09] C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as
inverse planning. Cognition, 113(3):329–349, 2009.

[Cam11] C. F. Camerer. Behavioral Game Theory: Experiments in Strategic Interac-
tion. The Roundtable Series in Behavioral Economics. Princeton University
Press, 2011.

[Car09] S. Carey. The Origin of Concepts. Oxford University Press, New York, 2009.
[Coo90] G. F. Cooper. The computational complexity of probabilistic inference using

Bayesian belief networks. Artificial Intelligence, 42(2-3):393–405, 1990.
[Cop04] B. J. Copeland, editor. The Essential Turing: Seminal Writings in Com-

puting, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus the
Secrets of Enigma. Oxford University Press, Oxford, 2004.

[CP96] B. J. Copeland and D. Proudfoot. On Alan Turing’s anticipation of
connectionism. Synthese, 108(3):pp. 361–377, 1996.

[CSH08] V. Chandrasekaran, N. Srebro, and P. Harsha. Complexity of infer-
ence in graphical models. In Proceedings of the Twenty Fourth Conference
on Uncertainty in Artificial Intelligence (UAI 2008), pages 70–78, Corvalis,
Oregon, 2008. AUAI Press.

[DeG05] M. H. DeGroot. Optimal Statistical Decisions. Wiley Classics Library.
Wiley, 2005.

[DKLR00] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for
Monte Carlo estimation. SIAM Journal on Computing, 29(5):1484–1496, 2000.

[DL93] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.



46 FREER, ROY, AND TENENBAUM

[dMSS56] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Com-
putability by probabilistic machines. In Automata Studies, Annals of Mathe-
matical Studies, no. 34, pages 183–212. Princeton University Press, Princeton,
N. J., 1956.

[DWRT10] F. Doshi-Velez, D. Wingate, N. Roy, and J. Tenenbaum. Nonparamet-
ric Bayesian policy priors for reinforcement learning. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23 (NIPS 2010), pages 532–540. 2010.

[Eda96] A. Edalat. The Scott topology induces the weak topology. In 11th Annual
IEEE Symposium on Logic in Computer Science (LICS 1996), pages 372–381.
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[EH98] A. Edalat and R. Heckmann. A computational model for metric spaces.
Theoretical Computer Science, 193(1-2):53–73, 1998.

[FG12] M. C. Frank and N. D. Goodman. Predicting pragmatic reasoning in
language games. Science, 336(6084):998, 2012.

[Gác05] P. Gács. Uniform test of algorithmic randomness over a general space. The-
oretical Computer Science, 341(1-3):91–137, 2005.

[GBT09] N. D. Goodman, C. L. Baker, and J. B. Tenenbaum. Cause and in-
tent: Social reasoning in causal learning. In Proceedings of the 31st Annual
Conference of the Cognitive Science Society, pages 2759–2764, 2009.

[Gei84] W. S. Geisler. Physical limits of acuity and hyperacuity. Journal of the
Optical Society of America A, 1(7):775–782, 1984.

[GG02] D. G. Goldstein and G. Gigerenzer. Models of ecological rationality:
The recognition heuristic. Psychological Review, 109(1):75–90, January 2002.

[GG12] T. Gerstenberg and N. D. Goodman. Ping pong in Church: Productive
use of concepts in human probabilistic inference. In N. Miyake, D. Peebles, and
R. P. Cooper, editors, Proceedings of the Thirty-Fourth Annual Conference of
the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2012.

[GGLT12] T. Gerstenberg, N. D. Goodman, D. A. Lagnado, and J. B. Tenen-
baum. Noisy Newtons: Unifying process and dependency accounts of causal
attribution. In N. Miyake, D. Peebles, and R. P. Cooper, editors, Proceed-
ings of the Thirty-Fourth Annual Conference of the Cognitive Science Society.
Austin, TX: Cognitive Science Society, 2012.

[GHR10] S. Galatolo, M. Hoyrup, and C. Rojas. Effective symbolic dynamics,
random points, statistical behavior, complexity and entropy. Information and
Computation, 208(1):23–41, 2010.

[GKT08] T. L. Griffiths, C. Kemp, and J. B. Tenenbaum. Bayesian models of cog-
nition. In Cambridge Handbook of Computational Cognitive Modeling. Cam-
bridge University Press, 2008.

[GMR+08] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: A language for generative models. In Proceedings of
the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI
2008), pages 220–229, Corvalis, Oregon, 2008. AUAI Press.

[Goo61] I. J. Good. A causal calculus. I. The British Journal for the Philosophy of
Science, 11:305–318, 1961.

[Goo68] I. J. Good. Corroboration, explanation, evolving probability, simplicity and a
sharpened razor. The British Journal for the Philosophy of Science, 19(2):123–
143, 1968.

[Goo75] I. J. Good. Explicativity, corroboration, and the relative odds of hypotheses.
Synthese, 30(1):39–73, 1975.

[Goo79] I. J. Good. A. M. Turing’s statistical work in World War II. Biometrika,
66(2):393–396, 1979.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 47

[Goo91] I. J. Good. Weight of evidence and the Bayesian likelihood ratio. In C. G. G.
Aitken and D. A. Stoney, editors, The Use Of Statistics In Forensic Science.
Ellis Horwood, Chichester, 1991.

[Goo00] I. J. Good. Turing’s anticipation of empirical Bayes in connection with the
cryptanalysis of the naval Enigma. Journal of Statistical Computation and
Simulation, 66(2):101–111, 2000.

[Gop12] A. Gopnik. Scientific thinking in young children: Theoretical advances, em-
pirical research, and policy implications. Science, 337(6102):1623–1627, 2012.

[GS12] N. D. Goodman and A. Stuhlmüller. Knowledge and implicature: Model-
ing language understanding as social cognition. In N. Miyake, D. Peebles, and
R. P. Cooper, editors, Proceedings of the Thirty-Fourth Annual Conference of
the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2012.

[GSW07] T. Grubba, M. Schröder, and K. Weihrauch. Computable metrization.
Mathematical Logic Quarterly, 53(4-5):381–395, 2007.

[GT05] T. L. Griffiths and J. B. Tenenbaum. Structure and strength in causal
induction. Cognitive Psychology, 51(4):334–384, 2005.

[GT06] T. L. Griffiths and J. B. Tenenbaum. Optimal predictions in everyday
cognition. Psychological Science, 17(9):767–773, 2006.

[GT07] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning.
The MIT Press, 2007.

[GT09] T. L. Griffiths and J. B. Tenenbaum. Theory-based causal induction.
Psychological Review, 116(4):661–716, 2009.

[GT12] N. D. Goodman and J. B. Tenenbaum. The probabilistic language of
thought. In preparation, 2012.

[GTFG08] N. D. Goodman, J. B. Tenenbaum, J. Feldman, and T. L. Griffiths. A
rational analysis of rule-based concept learning. Cognitive Science, 32(1):108–
154, 2008.

[GTO11] N. D. Goodman, J. B. Tenenbaum, and T. J. O’Donnell. Probabilistic
models of cognition. Church wiki, 2011. http://projects.csail.mit.edu/

church/wiki/Probabilistic_Models_of_Cognition.
[GUT11] N. D. Goodman, T. D. Ullman, and J. B. Tenenbaum. Learning a theory

of causality. Psychological Review, 118(1):110–119, 2011.
[Ham12] J. Hamrick. Physical Reasoning in Complex Scenes is Sensitive to Mass.

Master’s thesis, M. Eng., Massachusetts Institute of Technology, Cambridge,
MA, 2012.

[HBT11] J. Hamrick, P. W. Battaglia, and J. B. Tenenbaum. Internal physics
models guide probabilistic judgments about object dynamics. In C. Carlson,
C. Hölscher, and T. Shipley, editors, Proceedings of the Thirty-Third Annual
Conference of the Cognitive Science Society, pages 1545–1550. Austin, TX:
Cognitive Science Society, 2011.

[Hem02] A. Hemmerling. Effective metric spaces and representations of the reals.
Theoretical Computer Science, 284(2):347–372, 2002.

[Hod97] A. Hodges. Turing: A Natural Philosopher. Phoenix, London, 1997.
[How60] R. A. Howard. Dynamic Programming and Markov Processes. The MIT

Press, Cambridge, MA, 1960.
[Kal02] O. Kallenberg. Foundations of modern probability. Probability and its

Applications. Springer, New York, 2nd edition, 2002.
[KGT08] C. Kemp, N. D. Goodman, and J. B. Tenenbaum. Learning and using

relational theories. In Advances in Neural Information Processing Systems 20
(NIPS 2007) , 2008.

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,
101:99–134, 1998.

http://projects.csail.mit.edu/church/wiki/Probabilistic_Models_of_Cognition
http://projects.csail.mit.edu/church/wiki/Probabilistic_Models_of_Cognition


48 FREER, ROY, AND TENENBAUM

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285,
1996.

[KSBT07] C. Kemp, P. Shafto, A. Berke, and J. B. Tenenbaum. Combining causal
and similarity-based reasoning. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19 (NIPS 2006),
pages 681–688. The MIT Press, Cambridge, MA, 2007.

[KT08] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proceed-
ings of the National Academy of Sciences, 105(31):10687–10692, 2008.

[KY03] D. Kersten and A. Yuille. Bayesian models of object perception. Current
Opinion in Neurobiology, 13(2):150–158, 2003.

[LBFL93] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg.
DENDRAL: A case study of the first expert system for scientific hypothesis
formation. Artificial Intelligence, 61(2):209–261, 1993.

[Luc59] R. D. Luce. Individual Choice Behavior. John Wiley, New York, 1959.
[Luc77] R. D. Luce. The choice axiom after twenty years. Journal of Mathematical

Psychology, 15(3):215–233, 1977.
[Mac03] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms.

Cambridge University Press, Cambridge, UK, 2003.
[Man09] V. K. Mansinghka. Natively Probabilistic Computation. PhD thesis, Mas-

sachusetts Institute of Technology, 2009.
[Man11] V. K. Mansinghka. Beyond calculation: Probabilistic computing machines

and universal stochastic inference. NIPS Philosophy and Machine Learning
Workshop, 2011.

[Mar82] D. Marr. Vision. Freeman, San Francisco, 1982.
[McC68] J. McCarthy. Programs with common sense. In Semantic Information

Processing, pages 403–418. The MIT Press, 1968.
[MHC03] O. Madani, S. Hanks, and A. Condon. On the undecidability of proba-

bilistic planning and related stochastic optimization problems. Artificial In-
telligence, 147(1–2):5–34, 2003.

[MJT08] V. K. Mansinghka, E. Jonas, and J. B. Tenenbaum. Stochastic digital
circuits for probabilistic inference. Technical Report MIT-CSAIL-TR-2008-
069, Massachusetts Institute of Technology, 2008.

[MKTG06] V. K. Mansinghka, C. Kemp, J. B. Tenenbaum, and T. L. Griffiths.
Structured priors for structure learning. In Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence (UAI 2006), pages 324–
331, Arlington, Virginia, 2006. AUAI Press.

[Mon82] G. E. Monahan. A survey of Partially Observable Markov Decision Pro-
cesses: Theory, models, and algorithms. Management Science, 28(1):pp. 1–16,
1982.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biology, 5(4):115–133, 1943.

[MR] V. K. Mansinghka and D. M. Roy. Stochastic inference machines. In
preparation.

[Mug91] S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295–318, 1991.

[MUS+12] J. McCoy, T. D. Ullman, A. Stuhlmüller, T. Gerstenberg, and J. B.
Tenenbaum. Why blame Bob? Probabilistic generative models, counterfac-
tual reasoning, and blame attribution. In N. Miyake, D. Peebles, and R. P.
Cooper, editors, Proceedings of the Thirty-Fourth Annual Conference of the
Cognitive Science Society. Austin, TX: Cognitive Science Society, 2012.

[OC98] M. Oaksford and N. Chater, editors. Rational Models of Cognition. Oxford
University Press, Oxford, 1998.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 49

[OC07] M. Oaksford and N. Chater. Bayesian Rationality: The Probabilistic
Approach to Human Reasoning. Oxford University Press, New York, 2007.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Francisco, 1988.

[Pea04] J. Pearl. Graphical models for probabilistic and causal reasoning. In A. B.
Tucker, editor, Computer Science Handbook. CRC Press, 2nd edition, 2004.

[Pfa79] J. Pfanzagl. Conditional distributions as derivatives. The Annals of Proba-
bility, 7(6):1046–1050, 1979.

[PT87] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov
Decision Processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[Rao88] M. M. Rao. Paradoxes in conditional probability. Journal of Multivariate
Analysis, 27(2):434–446, 1988.

[Rao05] M. M. Rao. Conditional measures and applications, volume 271 of Pure and
Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2nd edition,
2005.

[RH11] S. Rathmanner and M. Hutter. A philosophical treatise of universal in-
duction. Entropy, 13(6):1076–1136, 2011.

[Roy11] D. M. Roy. Computability, Inference and Modeling in Probabilistic Program-
ming. PhD thesis, Massachusetts Institute of Technology, 2011.

[Sch07] M. Schröder. Admissible representations for probability measures. Mathe-
matical Logic Quarterly, 53(4-5):431–445, 2007.

[Sch12] L. Schulz. The origins of inquiry: Inductive inference and exploration in
early childhood. Trends in Cognitive Sciences, 16(7):382–389, 2012.

[SG] A. Stuhlmüller and N. D. Goodman. Reasoning about reasoning by
nested conditioning: Modeling theory of mind with probabilistic programs.
Submitted.

[SG92] A. F. M. Smith and A. E. Gelfand. Bayesian statistics without tears: A
sampling-resampling perspective. The American Statistician, 46(2):pp. 84–88,
1992.

[SG12] A. Stuhlmüller and N. D. Goodman. A dynamic programming algorithm
for inference in recursive probabilistic programs. Second Statistical Relational
AI workshop at UAI 2012 (StaRAI-12), 2012.

[She87] R. N. Shepard. Toward a universal law of generalization for psychological
science. Science, 237(4820):1317–1323, 1987.

[SMH+91] M. A. Shwe, B. Middleton, D. E. Heckerman, M. Henrion, E. J.
Horvitz, H. P. Lehmann, and G. F. Cooper. Probabilistic diagnosis us-
ing a reformulation of the INTERNIST-1/QMR knowledge base. Methods of
Information in Medicine, 30:241–255, 1991.

[Sol64] R. J. Solomonoff. A formal theory of inductive inference: Parts I and II.
Information and Control, 7(1):1–22 and 224–254, 1964.

[Teu02] C. Teuscher. Turing’s Connectionism: An Investigation of Neural Network
Architectures. Springer-Verlag, London, 2002.

[TG01] J. B. Tenenbaum and T. L. Griffiths. Generalization, similarity, and
Bayesian inference. Behavioral and Brain Sciences, 24(4):629–640, 2001.

[TGK06] J. B. Tenenbaum, T. L. Griffiths, and C. Kemp. Theory-based Bayesian
models of inductive learning and reasoning. Trends in Cognitive Sciences,
10:309–318, 2006.

[THS06] M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference
for solving (PO)MDPs. Technical Report EDI-INF-RR-0934, University of
Edinburgh, School of Informatics, 2006.

[Tju74] T. Tjur. Conditional Probability Distributions. Lecture Notes, no. 2. Institute
of Mathematical Statistics, University of Copenhagen, Copenhagen, 1974.



50 FREER, ROY, AND TENENBAUM

[Tju75] T. Tjur. A Constructive Definition of Conditional Distributions. Preprint 13.
Institute of Mathematical Statistics, University of Copenhagen, Copenhagen,
1975.

[Tju80] T. Tjur. Probability Based on Radon Measures. Wiley Series in Probability
and Mathematical Statistics. John Wiley & Sons Ltd., Chichester, 1980.

[TKGG11] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman.
How to grow a mind: Statistics, structure, and abstraction. Science,
331(6022):1279–1285, 2011.

[Tur36] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(1):230–
265, 1936.

[Tur39] A. M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 45(1):161–228, 1939.

[Tur48] A. M. Turing. Intelligent Machinery. National Physical Laboratory Report.
1948.

[Tur50] A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460,
1950.

[Tur52] A. M. Turing. The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences,
237(641):37–72, 1952.

[Tur96] A. M. Turing. Intelligent machinery, a heretical theory. Philosophia Mathe-
matica. Philosophy of Mathematics, its Learning, and its Applications. Series
III, 4(3):256–260, 1996. Originally a radio presentation, 1951.

[Tur12] A. M. Turing. The Applications of Probability to Cryptography, c. 1941. UK
National Archives, HW 25/37. 2012.

[UBM+09] T. D. Ullman, C. L. Baker, O. Macindoe, O. Evans, N. D. Goodman,
and J. B. Tenenbaum. Help or hinder: Bayesian models of social goal
inference. In Advances in Neural Information Processing Systems 22 (NIPS
2009), pages 1874–1882, 2009.

[Wat89] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, University of Cambridge, 1989.

[WD92] C. J. C. H. Watkins and P. Dayan. Q-Learning. Machine Learning, 8:279–
292, 1992.

[Wei93] K. Weihrauch. Computability on computable metric spaces. Theoretical
Computer Science, 113(2):191–210, 1993.

[Wei99] K. Weihrauch. Computability on the probability measures on the Borel sets
of the unit interval. Theoretical Computer Science, 219(1-2):421–437, 1999.

[Wei00] K. Weihrauch. Computable Analysis: An Introduction. Texts in Theoretical
Computer Science, An EATCS Series. Springer-Verlag, Berlin, 2000.

[WGR+11] D. Wingate, N. D. Goodman, D. M. Roy, L. P. Kaelbling, and J. B.
Tenenbaum. Bayesian policy search with policy priors. In T. Walsh, editor,
Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI), Menlo Park, CA, 2011. AAAI Press.

[WGSS11] D. Wingate, N. D. Goodman, A. Stuhlmüller, and J. M. Siskind.
Nonstandard interpretations of probabilistic programs for efficient inference.
In Advances in Neural Information Processing Systems 24 (NIPS 2011) , 2011.

[WSG11] D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight im-
plementations of probabilistic programming languages via transformational
compilation. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 15 of Journal of Ma-
chine Learning Research: Workshop and Conference Proceedings, pages 770–
778, 2011.



TOWARDS COMMON-SENSE REASONING VIA CONDITIONAL SIMULATION 51

[Yam99] T. Yamakami. Polynomial time samplable distributions. Journal of Com-
plexity, 15(4):557–574, 1999.

[Zab95] S. L. Zabell. Alan Turing and the central limit theorem. American Mathe-
matical Monthly, 102(6):483–494, 1995.

[Zab12] S. L. Zabell. Commentary on Alan M. Turing: The applications of proba-
bility to cryptography. Cryptologia, 36(3):191–214, 2012.

Massachusetts Institute of Technology, Computer Science and Artificial Intelli-

gence Laboratory

E-mail address: freer@math.mit.edu

University of Cambridge, Department of Engineering

E-mail address: d.roy@eng.cam.ac.uk

Massachusetts Institute of Technology, Department of Brain and Cognitive Sci-

ences

E-mail address: jbt@mit.edu


	1. Introduction
	2. Probabilistic reasoning and QUERY
	3. Computable probability theory
	4. Conditional independence and compact representations
	5. Hierarchical models and learning probabilities from data
	6. Random structure
	7. Making decisions under uncertainty
	8. Towards common-sense reasoning
	Acknowledgements
	References

