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Abstract

If we consider the claim made by some cognitive scientists that the mind performs
Bayesian reasoning, and if we simultaneously accept the Physical Church-Turing
thesis and thus believe that the computational power of the mind is no more than
that of a Turing machine, then what limitations are there to the reasoning abilities
of the mind?

I give an overview of joint work with Nathanael Ackerman (Harvard, Mathe-
matics) and Cameron Freer (MIT, CSAIL) that bears on the computability and
complexity of Bayesian reasoning. In particular, we prove that conditional proba-
bility is in general not computable in the presence of continuous random variables.
However, in light of additional structure in the prior distribution, such as the pres-
ence of certain types of noise, or of exchangeability, conditioning is possible.
These results cover most of statistical practice. At the workshop on Logic and
Computational Complexity, we presented results on the computational complex-
ity of conditioning, embedding #P-complete problems in the task of computing
conditional probabilities for diffuse continuous random variables. This work com-
plements older work. For example, under cryptographic assumptions, the compu-
tational complexity of producing samples and computing probabilities was sepa-
rated by Ben-David, Chor, Goldreich and Luby. In recent work, we also make use
of cryptographic assumptions to show that different representations of exchange-
able sequences may have vastly different complexity. However, when faced with
an adversary that is computational bounded, these different representations have
the same complexity, highlighting the fact that knowledge representation and ap-
proximation play a fundamental role in the possibility and plausibility of Bayesian
reasoning.

1 Characterizing the boundary of intractability

Over the course of several recent articles [1, 4, 5], we have studied the class of computable distribu-
tions and samplable distributions. This work has been carried out in the formalism of computable
analysis, and in particular the type-2 theory of effectivity, which has its roots in Turing’s 1936 pa-
per, On computable numbers, with an application to the Entscheidungsproblem, and later work by
Grzegorczyk and Mazur on computable continuous functions. (See [3] and [15] for introductions.)

Results in this framework pertain to, arguably, the most general setting we might consider, and
in particular to a mind computing probabilities for events, or generating samples (hypothesized
explanations) from posterior distributions, or, more to the point, making rational or approximately
rational decisions in a complex world. In particular, a distribution x4 on a metric space is computable
exactly when there is a Turing machine' that can compute the probabilities for a basis of open balls.
Equivalently, because the class of computable and samplable distributions can be shown to align,

'Recall that an Turing machine is a finite automaton along with an infinite tape, to which it can write and
from which it can read binary digits in the course of its execution. Inputs to the machine are written onto the



4 is computable if and only if there is a probabilistic Turing machine? that halts almost surely and
whose output distribution is .

Given uncertain knowledge represented as a probabilistic program, what prospect is there for updat-
ing one’s knowledge in light of new observations? In the Bayesian setting, this update is performed
by computing a conditional distribution, and so the question is when a mind can update its knowl-
edge about the world if it has the computational power of a Turing machine. We characterize the
computability of conditional probability, showing that there are computable joint distributions with
noncomputable conditional distributions. The offending object that witnesses this gap is an abso-
lutely continuous distribution on the unit square from which we can generate exact samples. This
distribution can be interpreted as a mind reasoning about other minds (Turing machines). In contrast,
no version of the conditional distribution of the first axis given the second axis is computable. Such
objects are pathological but their existence implies the impossibility of general inference algorithms
for the class of computable distributions.

These negative results fly in the face of computational practice and the fact that human minds seem
to perform amazing feats of inductive inference. Need we abandon the idea of the mind performing
Bayesian reasoning? In short, not necessarily. The continuity of the conditioning variable is essential
for proving hardness: conditioning on (computable) discrete random variables is easily seen to be
computable using the idea of rejection sampling and the equivalence of computable distributions
with samplable distributions. There is also hope for the continuous setting, as one would expect
from practice. We prove that the addition of (sufficiently smooth computable and independent)
noise to the conditioned random variable renders conditioning computable. More generally, the
existence of a conditional density (that is computable almost everywhere) of the observed variables
given the remaining variables enables conditioning. However, as all the sensory input that our minds
process is the product of the unavoidable physical stochasticity of our sensing apparatus, it may be
that restricting our attention to either discrete situations or continuous situations with independent
noise is ultimately quite appropriate.

Other types of structure also enable conditioning. In the infinite-dimensional setting, e.g., as in
Bayesian nonparametrics, when there is often no conditional density, we study exchangeable se-
quences of random variables and the prospect of posterior inference on the directing random mea-
sure. We prove that the posterior distribution of this (potentially infinite dimensional) parameter is
computable if and only if the predictive rule® is computable. This last result is a straightforward
corollary of our work characterizing the computability of de Finetti’s well known theorem identi-
fying exchangeable sequences with conditionally i.i.d. sequences. In particular, we prove that an
exchangeable sequence is computable if and only if its de Finetti measure (aka mixing measure) is
computable.

While computability pertains to the possibility of algorithms performing these important operations,
complexity pertains to their plausibility and efficiency. As claimed above, conditional probabilities
are in general not computable. However, calculating conditional probabilities given continuous ran-
dom variables whose distributions are sufficiently diffuse is shown to be in #P, a class that includes
certain forms of integration/counting. More precisely, we show that conditioning polynomially-
diffuse random variables is #P-complete, implying that it is the hardest problem, under polynomial-
time reduction, in #P. The discrete setting has been studied in the setting of average-case analysis

tape before execution begins, and the output of a Turing machine is the content of its tape when the machine
enters its halting state. The details of the underlying finite automata, and the other variations like the number of
tapes the machine has access to are relatively inconsequential: there exists a one-tape universal Turing machine
which can simulate any other Turing machine, while suffering only a polynomially slowdown.

2Probabilistic Turing machines have an additional read-only tape of random bits. It follows that the output of
such a machine is itself a random bit string and thus has some distribution. While such a machine seems to only
have the ability to represent distributions on bit strings, one can interpret the output of these machines by fixing
a surjection from {0, 1}* to a countable space of interest. (This surjection is called a notation.) For uncountable
spaces, one considers the random output of the probabilistic machine on each input n € N (suitably encoded
as a binary string on the input tape). This induces a stochastic process on the index set N whose elements are
random bit strings. This space is uncountable and a suitable surjection (called a representation) can be used to
encode objects like real numbers (e.g., by random Cauchy sequences), functions, distributions, etc. (For more
details on this setting, see [15].)

3The predictive rule is the conditional distribution of the kth element in the exchangeable sequence given
the first & — 1 variables, for all &, i.e., { P[Xk|X1..k—1]}k>1.



and cryptography: e.g., the work of Ben-David, Chor, Goldreich, and Luby [2] implies that, under
the assumption that one-way functions exist, the class of efficiently computable distributions is a
strict subset of the class of efficiently samplable distributions. This suggests that a mind built to
reason by sampling may be able to manipulate a larger space of states of knowledge than one built
to compute probabilities. A related argument in favor of sampling over computing probabilities was
made by Mansinghka [9], although not from the perspective of this separation.

A relatively unstudied question is the role of computational indistinguishability [6, 16] in evaluating
the prospect of a Bayesian mind. Let X = (X, )nen and Y = (Y}, )nen be sequences of random
variables, where each X, and Y,, are binary strings of length n, and let A be a set of (potentially
random, but independent of X and Y’) functions. We say that the process X is .4-indistinguishable
from the process Y when, for all A € A, all polynomials p, and sufficiently large n,
1
Pr{A(X,) =1} - Pr{A(Y,) =1} < —.
{A(Xn) =1} = Pr{A(Y,) = 1} o)

The idea is that Y;, may represent an exact sample for some inference task, but we may be willing to
accept X, as “good enough”, as measured by the set of tests .A. A well-studied special case—that
of computational indistinguishability—takes .4 to be all (randomized) polynomial time algorithms.
Assuming that we are interacting with computational bounded agents, does this give us any leeway
to tackle a wider range of inductive inference problems by making gross approximations that are
nonetheless undetectable? We believe that it is fruitful to study the computational complexity of
generating samples from conditional distributions that are indistinguishable for some class A (e.g.,
polynomial-time functions, but potentially other choices depending on the context). It is also pos-
sible that we may need to invent new notions of indistinguishability to explain the unreasonable
effectiveness of many existing probabilistic models. As one example from recent work, we have
returned to the setting of conditional probability in exchangeable sequences and shown that, under
cryptographic settings, there are efficiently samplable exchangeable sequences whose posterior pre-
dictive distributions are not efficiently samplable. On the other hand, there is an efficiently samplable
and computational indistinguishable version of the predictive distribution.

In closing, if the mind performs Bayesian reasoning yet faces the same limitations as Turing ma-
chines, then the mind cannot solve all instances of these formally intractable problems of inductive
inference. By characterizing this boundary of intractability, we may ultimately shed light on the
mind itself.

2 Aside: relationships to machine learning practice

In light of the rising interest in probabilistic programming languages, these theoretical results make
contact with the coming generation of machine learning practice. Probabilistic programming lan-
guages (e.g., PHA [13], IBAL [12], A\;[11], Church [7], HANSEI [8], Infer. NET [10], Markov Logic
[14], and many more) are an extreme end point of the search for compact representations for spec-
ifying probabilistic models. Many of these languages adopt modern programming language syntax
and thus can handle modeling idioms (like recursion, and in many cases, higher-order functions)
that are difficult to represent with graphical models. There is a substantial effort being invested into
designing general purpose algorithms for computing posterior probabilities or samples using these
representations, and this suggests that there is a need for a clear understanding of the mathematical
limitations of automating probabilistic inference. The limitative results described above imply that
no general algorithm exists for conditioning and that we must instead decide to support a particular
collection of special cases that hopefully cover the space of important (or in the case of the mind,
natural) problems of inductive inference. Which ones we choose remains an interesting, largely
ignored question.

The rising interest in probabilistic programming mirrors the situation with flexible Bayesian models,
and especially nonparametric ones built from stochastic processes. In this setting one is interested in
placing prior distributions on large spaces like function classes. Representational choices becomes
very important in these settings, and the theory of computable metric spaces, computable topological
spaces, etc., can offer some guidance. Moreover, a computational viewpoint provides a perspective
on what one might consider the minimum reasonable requirement of a representation: the likelihood
should be an (efficiently) computable function.
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