
Computability, inference and modeling in

probabilistic programming

by

Daniel M. Roy

S.B., Massachusetts Institute of Technology (2004)
M.Eng., Massachusetts Institute of Technology (2006)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of

Electrical Engineering and Computer Science
April 1, 2011

Certified by .
Leslie P. Kaelbling

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

Computability, inference and modeling in
probabilistic programming

by
Daniel M. Roy

Submitted to the Department of
Electrical Engineering and Computer Science
on April 1, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract. We investigate the class of computable probability dis-
tributions and explore the fundamental limitations of using this class to
describe and compute conditional distributions. In addition to proving
the existence of noncomputable conditional distributions, and thus
ruling out the possibility of generic probabilistic inference algorithms
(even inefficient ones), we highlight some positive results showing that
posterior inference is possible in the presence of additional structure
like exchangeability and noise, both of which are common in Bayesian
hierarchical modeling.

This theoretical work bears on the development of probabilistic
programming languages (which enable the specification of complex
probabilistic models) and their implementations (which can be used to
perform Bayesian reasoning). The probabilistic programming approach
is particularly well suited for defining infinite-dimensional, recursively-
defined stochastic processes of the sort used in nonparametric Bayesian
statistics. We present a new construction of the Mondrian process as
a partition-valued Markov process in continuous time, which can be
viewed as placing a distribution on an infinite kd-tree data structure.

Thesis Supervisor: Leslie P. Kaelbling
Title: Professor of Computer Science and Engineering

Front matter

5

Acknowledgments

I have enjoyed my time at MIT immensely and will always regard
it as a great privilege to have studied and worked here. I would like
to thank everyone who helped to give me this opportunity, as well as
those whose presence made it so enjoyable. Below, I highlight a few
people who have played especially important roles.

I would like to start by thanking my advisor, Leslie Kaelbling,
who has been an incredible mentor and unwavering advocate. Leslie
encouraged me to pursue my own interests and guided me with her
insightful questions and suggestions during our conversations, which
always led me to a deeper understanding of my work. My research—as
well as my ability to describe it to others—has improved greatly as a
result of her perceptive feedback.

I also owe an enormous debt of gratitude to Josh Tenenbaum for
his mentorship and support over the course of my graduate career.
I have benefitted tremendously from the unparalleled collaborative
environment that he has fostered within his lab. Much of the work
presented in this dissertation can be traced back to my collaborations
with Josh and his students.

I would also like to thank Yee Whye Teh and Scott Aaronson for
serving on my doctoral committee along with Leslie and Josh. Yee
Whye Teh has been a long-time collaborator: our discovery of the
Mondrian process in 2007 was an exciting time and I am very much
looking forward to future collaborations. Likewise, I am thankful to
Scott for his enthusiasm and for inspiring me to be less apologetic about
my theoretical interests.

I must thank Martin Rinard for encouraging me to apply to the
PhD program. It is probably fair to say that I would not be earning
my PhD without his support. Martin has never stopped challenging
me and I will forever aspire to fulfill his oft-repeated directive: “be
brilliant!” I would also like to thank Rahul Sarpeshkar for his excellent
advice while I was an undergraduate.

I have learned so much from fellow students and postdocs. To begin,
I would like to thank Cameron Freer for not only being a fantastic
collaborator but also a great friend. Nate Ackerman’s infamous “Nate
attack!” broke us through many an impasse, and his dedication to our
joint work and friendship made our long work sessions that much more
pleasant. I can only hope that Cameron and Nate learned as much
from me as I have from learned from them.

One particular collaboration that inspired many of the questions
posed in this dissertation was joint work on the Church language

with Noah Goodman, Vikash Mansinghka, Keith Bonawitz and Josh
Tenenbaum. Vikash’s world view is dangerously alluring, and his fervent
imagination has been a constant source of interesting questions; many
ideas in this dissertation can be traced back to late night conversations
with Vikash just before and after deadlines. Likewise, Noah Goodman’s
probabilistic language of thought hypothesis has proved fertile ground
for fascinating computer science research. My research has benefitted
from (and I have thoroughly enjoyed) countless conversations with
Chris Baker, Tom Kollar, Timothy O’Donnell, Peter Orbanz, Lorenzo
Rosasco, David Sontag, Andreas Stuhlmüller, and many others.

More broadly, I would like to thank all the members of the LIS and
CoCoSci groups for their friendship over the years. I am also grateful
to the members of the Gatsby Computational Neuroscience Laboratory
at UCL for their hospitality during my many visits.

I would like to extend my gratitude to the innumerable teachers and
mentors who guided me from Yerba Buena and Lindero Canyon, through
Viewpoint and MIT. They will continue to serve as my inspiration in
the years to come.

My mother, Meloney, and father, Donald, consistently made tough
choices and sacrificed much of their time and no doubt some of their
comfort to support my interests and ambitions, and I will remain forever
grateful. I am also grateful for the camaraderie of my brothers growing
up and to my grandparents, for their love and support.

Finally, to Juliet. Thank you for spending the past ten years by my
side.

The work in this dissertation was partially supported by graduate
fellowships from the National Science Foundation, MIT’s Lincoln Lab,
and the Siebel Foundation.

Attribution

The research presented in this dissertation was the product of truly
collaborative work that was completed only through the repeated key
insights of everyone involved.

Chapters 2 and 3 pertain to computable probability theory and the
computability of conditional probability, in particular. This work is
the result of collaborations with Nate Ackerman and Cameron Freer,
and was originally posted as a preprint [AFR10] on the arXiv in 2010,
and then published as an extended abstract [AFR11] in the refereed
proceedings of the 26th annual IEEE Symposium on Logic in Computer
Science.

Chapter 4 pertains to the computability of exchangeable sequences
and their de Finetti measures, and reflects on the problem of computing
conditional distributions in this setting. This work is the result of
collaborations with Cameron Freer and aspects have been published in
various forums. Results on the computability of de Finetti measures
were first published as an extended abstract [FR09b] in the refereed
proceedings of the 5th Conference on Computability in Europe. A sig-
nificantly expanded presentation was then posted as a preprint [FR09a]
on the arXiv in 2009. Implications for conditional probability in the set-
ting of exchangeable sequences were published as an extended abstract
[FR10] appearing in the refereed proceedings of the 13th International
Conference on Artificial Intelligence and Statistics.

Chapter 6 presents a new Markov process perspective on Mondrian
processes, a novel class of stochastic processes discovered by the author
and Yee Whye Teh and first presented at the Neural Information
Processing Systems (NIPS) conference in 2008. The results in this
dissertation extends those first published in the refereed proceeding of
NIPS [RT09]. This work was itself inspired by questions raised during
the development of the ‘annotated hierarchies’ model [RKMT07], joint
work with Charles Kemp, Vikash Mansinghka and Joshua Tenenbaum,
also published in the proceedings of NIPS in 2007.

The theoretical study of the computability of exchangeability and
conditional probability were inspired by practical questions raised during
the development of the Church probabilistic programming language
[GMR+08], joint work with Noah Goodman, Vikash Mansinghka, Keith
Bonawitz, and Joshua Tenenbaum.

The research presented in this dissertation benefitted from the
feedback of many colleagues, including Scott Aaronson, Nate Ackerman,
Jeremy Avigad, Henry Cohn, Quinn Culver, Cameron Freer, Zoubin
Ghahramani, Noah Goodman, Leslie Kaelbling, Charles Kemp, Oleg

Kiselyov, Bjørn Kjos-Hanssen, Vikash Mansinghka, Timothy O’Donnell,
Peter Orbanz, Geoff Patterson, Hartley Rogers, Ruslan Salakhutdinov,
Chung-chieh Shan, David Sontag, Michael Sipser, Yee Whye Teh, Joshua
Tenenbaum, David Wingate, and many anonymous referees.

Contents

Front matter 5
Acknowledgments 6
Attribution 8

Chapter I. Introduction 13
1. Representations of uncertainty 16
2. Outline 21

Chapter II. Computable probability theory 25
1. Basic notions 25
2. Computable metric spaces 28
3. Computable random variables and distributions 31
4. Almost decidable sets 35

Chapter III. Conditional distributions 37
1. Computational limits of probabilistic inference 37
2. Computable conditional distributions 40
3. Computable conditional distributions 43
4. Discontinuous conditional distributions 52
5. Noncomputable almost continuous conditional distributions 54
6. Noncomputable continuous conditional distributions 59
7. Conditioning is Turing jump computable 63
8. Continuity in the setting of identifiability in the limit 64

Chapter IV. Exchangeable sequences and de Finetti’s theorem 69
1. de Finetti’s Theorem 71
2. Computable Representations 75
3. The Computable Moment Problem 82
4. Proof of the Computable de Finetti Theorem 85
5. Exchangeability in Probabilistic Programs 92
6. Predictive distributions and posterior analysis in exchangeable

sequences 100

Chapter V. Distributions on data structures: a case study 107
1. Exchangeable arrays 108
2. Random kd-trees 111

11

12 CONTENTS

3. Guillotine partitions and Mondrian processes 112
4. Conditional Mondrian processes 125
5. Mondrian processes on unbounded spaces 130

Chapter VI. Conclusion 133

Bibliography 135

CHAPTER I

Introduction

The 1989 Report of the ACM Task Force on the Core of Computer
Science characterized the discipline of computing as

the systematic study of algorithmic processes that de-
scribe and transform information: their theory, analy-
sis, design, efficiency, implementation, and application.
The fundamental question underlying all computing
is ‘What can be (efficiently) automated?’ [CGM+89]

This dissertation presents a study of algorithmic processes that describe
and transform uncertain information. In particular, we investigate the
class of probability distributions that can be represented by algorithms
and characterize the fundamental limitations of using this representation
to describe and compute conditional distributions.

The motivation for this work comes from the study of probabilistic
programming and its application to Artificial Intelligence (AI). While
the results presented in this dissertation are theoretical in nature and
concern the computational limits of distributions in complete generality,
the genesis of the ideas and the aesthetics that guided the definitions
and theorems were firmly rooted in an effort to significantly extend our
ability to represent and reason about complex processes in our uncertain
world.

This dissertation studies three important questions at the intersec-
tion of computer science, statistics, and probability theory:

The first pertains to conditional probability, a cornerstone of Bayesian

13

14 I. INTRODUCTION

statistics and a fundamental notion in probability theory. Kolmogorov’s
axiomatization of conditional probability [Kol33] was a major advance-
ment at the time, but Kolmogorov’s definition gives no recipe for
calculation, instead defining conditional probability implicitly by the
properties that it must satisfy. Over the course of the last 80 years,
there have been a number of proposed constructive definitions of condi-
tional probability, but these approaches have been largely insensitive
to computability. Computational issues are paramount in fields like
AI and statistics where practitioners are building ever more complex
probabilistic models. Computability issues, in particular, are critical
to researchers building implementations of probabilistic programming
languages with the goal of providing universal Bayesian inference for
large classes of stochastic processes.

This work takes a different approach: By looking at conditional
probability from a computability-theoretic perspective, we gain new
insights into both the mathematical and computational structure of
conditional probability. In short, we show that there is no possible
algorithm to calculate conditional probabilities in general. The result is
an analogue in Bayesian statistics of the noncomputability of the halting
problem, and can be used to guide extensions of existing probabilistic
programming languages to support a much larger class of probabilistic
inference problems.

The second question is concerned with exchangeability, another fun-
damental notion in Bayesian statistics and an active area of research
in probability theory. Exchangeability underpins a deep relationship
between symmetry and the tractability of inference in probabilistic
programs. One of the most important theorems pertaining to exchange-
ability is de Finetti’s theorem, which states that every exchangeable
process can be described as a conditionally independent process. We
prove a computable version of de Finetti’s theorem and show the sur-
prising fact that it is possible to automatically transform a probabilis-
tic program representing an exchangeable process into a probabilistic
program representing a conditionally independent process. These al-
ternative representations have different computational characteristics:
the generation of the next element in an exchangeable process will
often depend on the state of other elements, forcing the process to
proceed in a serial fashion; in contrast, the generation of a conditionally
independent process can proceed in parallel. The computable de Finetti
theorem also gives us more insight into the computability of conditional
probability; using the result, we are able to prove that a much wider
class of statistical inference problems is computable than was previously

I. INTRODUCTION 15

thought. These results connect the semantics of probabilistic programs
with an important result in probability theory, and motivate the study
of other types of exchangeability that arise in probabilistic programs.

The third and final question pertains to the problem of constructing dis-
tributions on infinite data structures, a computational analogue
of the mathematical problem of constructing stochastic processes.
Within Bayesian statistics, the design, study and application of sto-
chastic processes in probabilistic modeling is the purview of Bayesian
nonparametrics, and the demonstrated success of this approach is lead-
ing to its broader adoption.

Heretofore, a small number of core stochastic processes have served
as the building blocks for nonparametric probabilistic models. Proba-
bilistic programming is likely to disrupt this monopoly, as probabilistic
programming languages, and especially functional ones, make it much
easier to define new and interesting stochastic processes using recursion
and abstractions like higher-order procedures, continuations, and data
structures (see [GMR+08, RMGT08] for examples).

At the same time, this power makes it easy to construct stochastic
processes whose distributions encode nonsensical assumptions about
one’s uncertainty, and so care must be taken. We present a case study
where we construct a stochastic process that satisfies a desired property:
in particular, the problem of constructing a model for relational data
that satisfies a notion of exchangeability is reduced to the problem
of constructing an infinite random partition of a product space. We
show that an essential self-similarity property is achieved by a recursive
algorithm for constructing a random kd-tree data structure. The un-
derlying stochastic process, called a Mondrian process, is connected to
active areas of research in probability theory, in particular combinatorial
stochastic processes and fragmentation processes.

This dissertation works within the formalism for studying the com-
putability of real numbers introduced by Turing in his foundational
paper, “On computable numbers, with an application to the Entschei-
dungsproblem” [Tur36], and the study of computable real functions
and higher-type computability originating in the work by Grzegor-
czyk [Grz57], Kleene [Kle59], Mazur [Maz63], and others.

More recently, a robust theory of computability for measures and
distributions on topological and metric spaces has emerged and several
natural proposals have been shown to be equivalent (see, e.g., [AES00]
and [SS06]). Roughly speaking, it is possible to exactly sample a value
from a distribution on some topological space S if and only if it is

16 I. INTRODUCTION

possible to compute, to arbitrary accuracy, the measures µ(Ai) of some
countable basis {Ai} of open sets in S. The latter property has been
used to develop a theory for computable integration. We build on this
framework to study important operations and objects in probability
theory.

The study of computable distributions has implications beyond
theoretical computer science. Our theoretical results pertain to the
probabilistic programming approach to AI, and so should be of interest
to AI practitioners as well. By studying computational limits in this
abstract setting, we can identify constraints that hold for all proba-
bilistic programming languages. For example, the noncomputability of
conditional probability implies that any implementation of a sufficiently
powerful probabilistic programming language will necessarily have to
choose a number of special cases of conditioning to support, as no
algorithm exists that supports all cases.

More broadly, the increasing role of uncertainty in everyday com-
puting and decision-making is drawing computer science, probability
and statistics into ever closer contact. The work presented in this dis-
sertation takes us a step toward a theory of probabilistic computation
suitable for guiding theoreticians and practitioners alike in the design of
systems that can scale to meet the statistical needs of our increasingly
complex data-driven world.

1. Representations of uncertainty

The flexible and efficient representation of uncertainty is now con-
sidered a central problem of AI. The emphasis on deductive, rule-based
reasoning that characterized the so-called good old fashioned AI gave
way after the realization that inductive reasoning, and in particular
probabilistic inference, was far more useful for building adaptive sys-
tems with access to only partial information. More recently, it has
become clear that in order to model complex phenomena like vision,
communication and planning, we need a representation of uncertainty
that is powerful enough to capture very general stochastic processes.
In particular, the graphical model formalism that ushered in an era of
rapid progress in AI has proven inadequate in the face of these new
challenges. A promising new approach that aims to bridge this gap is
probabilistic programming, which marries probability theory, statistics
and programming languages.

Probability theory provides the necessary mathematical formalism
for representing uncertainty and incorporating new evidence. In par-
ticular, beliefs about a set H of hypotheses and set E of possible

1. REPRESENTATIONS OF UNCERTAINTY 17

observations are encoded as a probability distribution over the product
space H × E, and observed evidence is incorporated by restricting
(and renormalizing) the distribution to the subspace compatible with
the actual observations or, in other words, by forming the conditional
distribution. However, probability theory remains silent on the ques-
tion of what space of hypotheses one should consider when building a
probabilistic model, how best to specify a distribution on that space
in order to reflect one’s uncertainty, and how to efficiently update the
distribution in light of new observations.

Putting aside the question of what space of hypotheses one should
consider, even the task of specifying a probabilistic model over a finite
number of binary random variables is nontrivial. Naively, before any
statistical inferences can take place, a probability must be assigned
to every possible configuration of the random variables. For n binary
variables, there are 2n such configurations, ruling out an exhaustive
tabular representation for all but the smallest models. Furthermore,
such a representation for a distribution can make important operations
very expensive to compute; e.g., calculating a marginal or conditional
probability may require the summation of an exponential number of
entries.

A major advancement in the search for a representation of uncer-
tainty supporting efficient inference was the introduction of the graphical
model formalism (see [Pea88] for more details and a historical sum-
mary). A key insight in the development of graphical models was the
identification of conditional independence structure as useful both for
the compact specification of a probabilistic model and for the efficient
computation of marginal and conditional probabilities.

Given a distribution over a (finitely or countably) indexed collection
{Xv}v∈V of random variables, a directed graphical model (or Bayesian
network) is a directed acyclic graph (V,E) where the vertices V index
the random variables and the edges E ⊆ V × V encode the conditional
independence structure. In particular, let Pa(v) = {u : (u, v) ∈ E}
denote the set of parent vertices of v. Then there exist independent
uniform random variables {ξv}v∈V such that, for all vertices v ∈ V ,

Xv = gv(ξv, {Xu}u∈Pa(v)) a.s. (1)

for some measurable function gv.
The “local relationship” gv is uniquely characterized (up to a mea-

sure preserving transformation) by the conditional distribution of Xv

given its parents {Xu}u∈Pa(v). Returning to the case of binary random
variables, the specification of an arbitrary distribution whose condi-
tional independence structure satisfies a directed graphical model (V,E)

18 I. INTRODUCTION

would require that we specify only
∑

v∈V 2|Pa(v)| conditional probabilities.
Clearly the savings are considerable for many graphs.

The graph structure is also crucial for developing efficient infer-
ence. Given any set C ⊆ V of conditioned variables, a graph-theoretic
condition called d-separation enables one to efficiently decide whether
any particular conditional independence is implied by the graph (see
[Pea88, §3.3.1] for more details). As Jordan [Jor10] has recently argued,
the marriage of graph theory and probability theory has enabled deep
results from combinatorics to be brought to bear on the problem of
efficiently evaluating the exponential sums and products that charac-
terize marginal and conditional probabilities. More broadly, concrete
representational choices have focused research and led to rapid scientific
progress on the relationship between a representation of a probabilis-
tic model and the efficiency with which statistical inference can be
performed.

However, just as probability theory is agnostic to the semantics and
concrete representation of a probability space under consideration, the
theory of graphical models is (relatively) silent on the question of how
to concretely represent the graph (V,E) and the local relationships
gv(ξv, ·) or, equivalently, the local conditional distributions.

A common concrete representation of a graphical model is a finite list
of vertices and edges, along with a specification for a parametric form
for the local conditional distributions. Clearly such a representation
restricts our attention to finite graphical models. And while most
models can be approximated arbitrarily well by a finite model of some
dimension, such an approach is likely to obscure the simplicity of some
processes. Just as it may be possible to write a complex computer
program as a long list of primitive instructions, expressing a graphical
model as a flattened list of its edges obscures any abstract patterns that
aided in its design or discovery or that could aid in its generalization or
implementation.

The pun between a graphical model and its presentation as a literal
graphic has been a significant psychological impediment to the effective
use of graphical models in more general settings. Other authors have
recognized this problem and have proposed new representations and
alternative formalisms. For example, Buntine [Bun94] introduced plate
notation, which can be used to indicate that a subgraph is replicated,
much like a for loop allows repetition in a program. Other formalisms,
such as Probabilistic Relational Models [KP97, FKP99] and Markov
Logic Networks [RD06] go further and enable families of large finite

1. REPRESENTATIONS OF UNCERTAINTY 19

graphical models to be expressed compactly in terms of a finite set of
relational expressions.

New trends in Bayesian nonparametric statistics stress the limits
of these representations. In this setting, classical finite-dimensional
prior distributions are replaced by stochastic processes, i.e., indexed
collections of (possibly infinitely many) random variables. Using sto-
chastic processes, it is possible to put distributions on infinite structures
like functions, graphs, or even distributions. While popular stochas-
tic processes often have compact mathematical descriptions, graphical
models can only represent the high-level structure of these models. As
a result, inference algorithms that use graphical representations cannot
be applied to this new class of models and, often, it is necessary to
create special purpose inference algorithms for each new model.

However, the most challenging models from a representational stand-
point are those of phenomena such as grammatical structure in language,
multi-party communication, and optimal planning as inference. In each
of these cases, the static conditional independence structure corresponds
to an extremely large (if not infinite) graphical model.

20 I. INTRODUCTION

1.1. Probabilistic programs.

But the fundamental reason for [the] inadequacy of tra-
ditional grammars is a more technical one. Although it
was well understood that linguistic processes are in some
sense “creative,” the technical devices for expressing a
system of recursive processes were simply not available
until much more recently. In fact, a real understanding of
how a language can (in Humboldt’s words) ”make infinite
use of finite means” has developed only within the last
thirty years, in the course of studies in the foundations of
mathematics.

Noam Chomsky
Aspects of the Theory of Syntax, 1969.

In the similar way, the inadequacy of probabilistic accounts of com-
plex phenomena is a technical one: Graphical models capture the static
conditional independence structure of a distribution. However, phenom-
ena like communication and planning are fundamentally dynamic, and
their adequate representation requires technical devices for expressing
recursive processes.

Probabilistic programs are such a device.
Probabilistic programming languages have been the subject of in-

tense research since the 1950s in subfields of computer science including
programming languages (e.g., [SD78, MMS96]), domain theory (e.g.,
[JP89, Esc09]) and formal methods (e.g., [MM99, Hur02, HT07]). How-
ever, their use in statistical AI began much more recently with the
introduction of Pfeffer’s IBAL language [Pfe01], and since then a num-
ber of probabilistic functional programming languages (e.g, λ◦[PPT08],
Church [GMR+08], and HANSEI [KS09]) have been proposed within
the AI community.

Many probabilistic programming languages extend existing deter-
ministic programming languages. As a result, they inherit modern
programming language features that were introduced to help mitigate
the complexity of designing large software systems. These same features
can be brought to bear on the task of designing complex probabilistic
models. As a result of powerful means of combination and abstrac-
tion, such languages, especially those built on functional programming
languages, can naturally represent the higher-order objects used in
statistical AI and machine learning (e.g., a distribution on graphs, or a
distribution on distributions).

Probabilistic programs can also support efficient inference. The
syntactical structure of a probabilistic programs and its runtime call
graph expose fine-grained conditional independence structure that be

2. OUTLINE 21

used to implement a wide range of approaches to inference, including,
e.g., exact lazy enumeration using continuations [Rad07], importance
sampling [PPT08], variational message passing [MW08], and Markov
Chain Monte Carlo sampling [GMR+08].

1.2. Limits of probabilistic programming. As exciting as this
new approach is, the application to statistical problems is relatively new
and deserves study. This dissertation explores the theoretical limits
and potential of the probabilistic programming languages approach to
statistical AI.

A fundamental characteristic of any adaptive system is the ability
to update its behavior in light of new observations and data. In a
Bayesian statistical setting, this is achieved by computing conditional
distributions, and as a result, almost all probabilistic programming
languages support conditioning to some degree of generality, although
this degree varies substantially. In particular, every existing language
provides incomplete and ad hoc support for conditioning continuous
random variables. This dissertation explains why such support is
necessarily incomplete.

The probabilistic programming approach has the potential to revo-
lutionize not only statistical modeling, but also statistical computation.
The adoption of the graphical model formalism led to rapid progress
in the theoretical understanding of the complexity of inference and the
development of efficient inference algorithms; probabilistic program-
ming languages extend this research program and offer a challenging yet
tantalizing new target for researchers. However, this generality comes
at a price: we show that there are joint distributions represented as
probabilistic programs whose conditional distributions have no such
representation. Therefore, in order to build a research program that
can focus effort in the way that the graphical model formalism did, we
must first decide how to define the canonical inference problem for prob-
abilistic program inference. In order to do this, we must characterize
when we can compute conditional distributions.

2. Outline

In Chapter II, we introduce existing notions of computability on
topological and metric spaces, and then focus on probability measures
on their Borel σ-algebras. A probabilistic program representation of a
distribution is formalized as a computable random variable from a basic
probability space (which represents a source of randomness). We argue
that the appropriate notion of computability of random variables (and

22 I. INTRODUCTION

measurable functions more generally) requires that they be continuous
outside of a null set.

We then turn to a study of the computability of conditional proba-
bility, a fundamental probabilistic operation of critical importance in
statistical applications. We ask:

“If there is an algorithm for a joint distribution on
a pair (X,Y) of random variables (e.g., representing
our a priori beliefs in a Bayesian setting), is there an
algorithm for the conditional distribution P[X|Y = y]
(representing our a posteriori beliefs given an observa-
tion)?”

This question arose naturally from work on the probabilistic program-
ming language Church [GMR+08]. One of its implementations, MIT-
Church, is an algorithm for producing samples from the conditional
distributions of uncertain (i.e., random) variables given observed data.
What are the inherent limits of this endeavor? How general can such
algorithms be?

We answer these questions by constructing a pair of computable
continuous random variables whose conditional distribution is nonethe-
less not computable. This, in turn, implies that there is no algorithm
for computing conditional probabilities or expectations in the general
case, thereby explaining why existing probabilistic programming lan-
guage systems necessarily have incomplete support for conditioning on
continuous random variables.

In order to begin to square these results with the fact that conditional
distributions are computed regularly in practice, we identify additional
structure which renders conditioning computable. For example, under
mild additional assumptions, conditioning on discrete random variables
or general random variables with bounded joint densities is computable.
We highlight a surprising connection with information theory, whereby
suitably smooth computable noise on the measurement ensures the
computability of the conditional distribution.

In Chapter IV, we turn to the setting of exchangeable sequences
of random variables, where de Finetti’s classic representation theorem
tells us that there always exists a so-called directing random measure
that renders the sequence conditionally i.i.d. In this setting, conditional
densities may not exist, yet computational practice suggests that the
conditional distributions are often computable. We ask:

“If there is an algorithm for an exchangeable sequence,
is there an algorithm for its de Finetti measure?”

2. OUTLINE 23

This question strikes at the heart of what appears to be a natural
affinity between higher-order probabilistic programs and Bayesian non-
parametric statistics. The motivating example was that of the Indian
Buffet Process and its de Finetti measure, the beta process. Existing
algorithms [WI98, TGG07] provide only approximate samples from the
latter process, and there is no known exact algorithm. We prove a com-
putable version of de Finetti’s theorem and then use it to give necessary
and sufficient conditions for the computability of conditional distri-
butions involving exchangeable sequences and their directing random
measures.

In Chapter V, we study the problem of constructing a stochastic
process using a recursive algorithm. We present a novel stochastic
process with a self-similarity property that we use to construct an
infinite kd-tree data structure.

We now turn our attention to the fundamental notions of computability
for distributions and random variables.

CHAPTER II

Computable probability theory

Computable probability theory is a framework for studying proba-
bilistic operations as performed by algorithms. The theory is based
on a long tradition of mathematical work in recursion theory (see,
e.g., [Tur36, Kle59]) and computable analysis (for a survey, see, e.g.,
[Wei00a]) studying the computability of reals, continuous functions
and higher types, and also builds upon work in domain theory and
the semantics of programming languages (see, e.g., [Eda97]). In this
chapter, we present existing notions from computability probability
theory, but also introduce the notion of a computable random variable,
which we take to be a formalization of the notion of a probabilistic
program. We begin with a review of classical computability theory,
and then introduce more recent notions of computability on metric
spaces. In chapters III and IV, we present new results in computability
probability theory.

In examining the computability of probabilistic operations, we are
concerned with tasks that we can perform, sometimes to arbitrary ac-
curacy, and also with what we cannot do, even approximately. Some
results in computable probability theory, such as our computable exten-
sion of de Finetti’s theorem (described in Chapter IV) provide explicit
algorithms. Other results, such as the noncomputability of condition-
ing (described in Chapter III) prove the fundamental nonexistence of
algorithms to perform certain tasks.

In situations where there is provably no exact algorithm to perform
an operation, it is sometimes possible to improve such results, using
techniques from computability theory, to show the impossibility of
always computing non-trivial approximations, let alone arbitrarily good
ones. Hence computable probability is not just about the possibilities
and limitations of exact computation, but is also directly relevant to
floating point and fixed precision calculations.

1. Basic notions

Objects like real numbers and probability measures have, in general,
only infinite descriptions. In contrast, algorithms have finite descriptions,

25

26 II. COMPUTABLE PROBABILITY THEORY

and actual computers can only perform a finite number of operations
in any finite amount of time, although an algorithm may run for an
unbounded amount of time. We are therefore especially interested in
those particular reals, probability measures, and other infinite structures
that admit finite descriptions. We begin by recalling some elementary
definitions from computability theory, which will form the foundation
for suitable theories on more abstract spaces. (For more details on
recursion theory, see Rogers [Rog87, Ch. 5].)

We say that a partial function f : N→ N is partial computable
when there is some Turing machine that, on input n ∈ dom(f), eventu-
ally outputs f(n) on its output tape and halts, and on input n 6∈ dom(f),
never halts. We say that a function f : N→ N is total computable
or simply computable when it is a partial computable function that
is total, i.e., dom(f) = N.

Using this definition, we can define computability on other structures.
For example, a sequence {a0, a1, . . . } of elements in N, or equivalently,
a total function from N to N, is computable when it is total computable
when viewed as a function. Finite sequences (i.e., tuples) can likewise
be viewed as computable when viewed as partial computable functions.

For an arbitrary partial function g, let g(x)↓ denote that g is defined
at x and let g(x)↑ denote that g is undefined at x. A fundamental result
in computability theory is that there exists an enumeration ϕ1, ϕ2, . . .
of the partial computable functions such that the partial function

apply(e, x) =

{
ϕe(x), if ϕe(x)↓
undefined, if ϕe(x)↑

(2)

is computable, where ϕe(x) is the value that the eth partial function
outputs on input x, if defined.

A simple counting argument shows that there must be noncom-
putable functions, as there are uncountably many functions from N
to N and only countably many Turing machines. Turing’s diagonal
argument showing that the halting problem is undecidable implies that
the function

h(e) =

{
1, if ϕe(0)↓
0, if ϕe(0)↑

(3)

is not computable [Tur36].
Having defined computability on the function space NN, we now

study notions of computability on 2N, i.e., subsets of N. A subset D ⊆ N

1. BASIC NOTIONS 27

is said to be computable when its characteristic function

χD(n) =

{
1, if n ∈ D
0, if n 6∈ D

(4)

is computable. The noncomputability of the function h above shows
that the domain of a partial computable function is not necessarily a
computable subset. A set is said to be computably enumerable (or
c.e.) when it is the domain of a partial computable function. A set is
said to be co-c.e. when its complement is c.e. It is easy to show that
a set is computable if and only if it is both c.e. and co-c.e, and that a
set is c.e. iff it is empty or the range of a total computable function
(thereby justifying the term enumerable).

These notions form the foundation of computability on richer spaces.
The above development will be seen to replay itself in more abstract
settings.

To begin, let S and T be countable sets. In order to construct a no-
tion of computability on T S and 2S, we fix an enumeration s0, s1, s2, . . .
of S and t0, t1, t2, . . . of T and then consider the computability of the
corresponding elements in NN and 2N. For example, a partial function
f : S → T is said to be partial computable (relative to the enu-
merations s of S and t of T) when there is a partial computable
function g : N→ N such that tg(n) = f(sn) for every n ∈ N such that
sn ∈ dom(f). As before, a subset D ⊆ S is said to be computable when
its characteristic function χD : S → {0, 1} is computable (relative to
the enumeration of S). Likewise, D is c.e. (relative to the enumeration
of S) when it is the domain of a partial computable function and co-c.e.
(relative to the enumeration of S) when its complement is c.e. (relative
to the enumeration of S). We will elide the mention of the enumeration
when it is clear from context.

Example II.1. A few enumerations are important enough going for-
ward that we pause briefly to highlight them.

(1) For all k ∈ N, there is an enumeration t of Nk such that,
for each i ∈ {1, . . . , k}, the projection πi : Nk → N given by
πi(n1, . . . , nk) = ni is computable relative to t. In particular,
consider the case where k = 2. The Cantor pairing function
〈·, ·〉 : N2 → N given by

〈a, b〉 =
1

2
(a+ b)(a+ b+ 1) + b, (5)

bijectively maps pairs of natural numbers to natural numbers
and renders the projections computable. Iterating the pairing

28 II. COMPUTABLE PROBABILITY THEORY

function enables us to encode tuples of higher (or arbitrary)
arity.

(2) There exists an enumeration of the rationals Q with respect to
which the embedding N ↪→ Q, as well as addition, subtraction,
multiplication, division and most other natural operations are
computable. Concretely, we can represent rationals as tuples
in terms of their representation as (signed) fractions of natural
numbers in reduced form.

Remark II.2. In this chapter and beyond, we will often elide the
enumerations at play when it is straightforward to choose enumerations
that ensure the desired primitive operations are computable. E.g., the
space of finite sequences of integers can easily be represented so as to
allow one to compute the length of such a sequence, extract elements
at particular coordinates, etc.

We now proceed beyond finite and countable sets.

2. Computable metric spaces

In this section, we present basic notions and results for computable
metric spaces. The origins of this theory can be traced back to the
study of the computability of real functions and functionals initiated
by Grzegorczyk [Grz57], Kleene [Kle59], Mazur [Maz63], and others.

More recently, Pour-El and Richards [PER89], Weihrauch [Wei89],
and others have brought in methods from constructive analysis. There
has been much recent work following their approach to computable
analysis, often referred to as the Type-2 Theory of Effectivity (TTE).
In this approach, one typically asks for a continuous real function to
have a computable modulus of continuity. This leads to a robust theory,
which lines up with exact real arithmetic on computers. Furthermore,
with computable continuity, one can perform something like automatic
numerical analysis. These notions extend to more general spaces.

Computable metric spaces, as developed in computable analysis,
provide a convenient and general framework for formulating results
in computable probability theory. For consistency, we largely use
definitions from [HR09] and [GHR10]; imported definitions and results
are clearly cited. Additional details about computable metric spaces
can also be found in [Wei00a, Ch. 8.1] and [Gác05, §B.3], and their
relationship to computable topological spaces is explored in [GSW07].
Computable measures on metric spaces have also been studied using
domain theory [EH98].

We first recall basic notions of computability for real numbers, which
extend back to Turing’s foundational paper [Tur36] (see also [Wei00a,

2. COMPUTABLE METRIC SPACES 29

Ch. 4.2] and [Nie09, Ch. 1.8]). We say that a real r is a c.e. real when
the set of rationals {q ∈ Q : q < r} is c.e. Similarly, a co-c.e. real is
one for which {q ∈ Q : q > r} is c.e. (C.e. reals are sometimes called
left-c.e. or lower-semicomputable reals, while co-c.e. reals are sometimes
called right-c.e. or upper-semicomputable reals.) A real r is computable
when it is both c.e. and co-c.e. Equivalently, a real r is computable
when there is a computable sequence of rationals {qk}k∈N such that
|qk − r| < 2−k for all k ∈ N.

We can now define more abstract notions:

Definition II.3 (Computable metric space [GHR10, Def. 2.3.1]). A
computable metric space is a triple (S, δ,D) for which δ is a metric
on the set S satisfying

(1) (S, δ) is a complete separable metric space;
(2) D = {si}i∈N is an enumeration of a dense subset of S, called

ideal points; and,
(3) δ(si, sj) is computable, uniformly in i and j; i.e., there is a

total computable function f : N3 → Q such that

|f(i, j, k)− δ(si, sj)| < 2−k.

For a point s ∈ S and positive real r, let B(s, r) denote the radius-r
open ball centered at s. We call the set

BS := {B(si, qj) : si ∈ D, qj ∈ Q, qj > 0} (6)

the ideal balls of S, and fix the canonical enumeration induced by
pairing the enumerations of D and Q.

Example II.4. (1) The two-point set {0, 1} is a computable met-
ric space under the discrete metric, given by δ(0, 1) = 1. A
similar approach can be used to make any countable set (like
N) into a computable metric space once we fix an enumeration.
In the case of N, the elementary notions agree with those that
can be derived by treating the space as a computable metric
space.

(2) Cantor space is the set {0, 1}N of infinite binary sequences
under the metric δ{0,1}N(x, y) = 2−k, where k is the index of
first term on which the sequences x and y differ. (The induced
topology is the therefore the product topology.) The set of
eventually constant sequences is dense, and (under, e.g., the
enumeration induced by the standard enumeration of finite
strings) makes {0, 1}N into a computable metric space.

(3) The set R of real numbers is a metric space under the Euclidean
metric. The set Q of rationals is dense in R and (under its

30 II. COMPUTABLE PROBABILITY THEORY

standard enumeration) makes R into a computable metric space.
The same can be shown of Rn, for n ∈ N, and the space R∞ of
infinite sequences of reals.

Definition II.5 (Computable point [GHR10, Def. 2.3.2]). Let (S, δ,D)
be a computable metric space. A point x ∈ S is computable when
there is a computable sequence x0, x1, . . . in D such that d(xn, x) < 2−n

for all n ∈ N. We call such a sequence {xn}n∈N a representation of
the point x.

Remark II.6. A real α ∈ R is computable (as in Section 2) if and
only if α is a computable point of R (as a computable metric space).
Although most of the familiar reals are computable, there are only
countably many computable reals, and therefore, there are uncountably
many noncomputable reals.

Many well-known noncomputable reals, such as the halting probabil-
ity Ω (sometimes called Chaitin’s constant [Cha75]), can be constructed
in terms of universal Turing machines or by explicit diagonalizations.
But noncomputable reals can also arise via general constructions; for
example, the limit of a computable sequence of computable reals is
typically not even c.e. or co-c.e. (for more details, see, e.g., [Zhe02, §9]).

We now consider the computability of sets of reals. The notion of
a c.e. open set is fundamental in classical computability theory, and
admits a simple definition in an arbitrary computable metric space.

Definition II.7 (C.e. open set [GHR10, Def. 2.3.3]). Let (S, δ,D) be a
computable metric space with the corresponding enumeration {Bi}i∈N
of the ideal open balls BS. We say that U ⊆ S is a c.e. open set
when there is some c.e. set E ⊆ N such that U =

⋃
i∈E Bi.

(The c.e. open sets can also be seen as the computable points in
a suitable computable topological space of sets, or equivalently, as
those sets whose characteristic functions are lower semicomputable. We
discuss notions of computability on topological spaces in Chapter IV.)

Note that the class of c.e. open sets is closed under computable
unions and finite intersections.

A computable function can be thought of as a continuous function
whose local modulus of continuity is computable. It is important to
consider the computability of partial functions, since many natural
and important random variables are continuous only on a measure one
subset of their domain.

Definition II.8 (Computable partial function [GHR10, Def. 2.3.6]).
Let (S, δS,DS) and (T, δT ,DT) be computable metric spaces, the latter

3. COMPUTABLE RANDOM VARIABLES AND DISTRIBUTIONS 31

with the corresponding enumeration {Bn}n∈N of the ideal open balls
BT . A function f : S → T is said to be computable on R ⊆ S when
there is a computable sequence {Un}n∈N of c.e. open sets Un ⊆ S such
that f−1(Bn) ∩R = Un ∩R for all n ∈ N.

Note that we will sometimes forego explicitly listing the ideal points
and associated metric.

Remark II.9. Let S and T be computable metric spaces. Then f :
S → T is computable on all of S if and only if the inverse image f−1(V)
of a c.e. open set V is itself a c.e. open set, uniformly in V .

Remark II.10. Let S and T be computable metric spaces. If f : S → T
is computable on some subset R ⊆ S, then for every computable point
x ∈ R, the point f(x) is also computable. One can show that f is
computable on R when there is a program that uniformly transforms
representations of points in R to representations of points in S. (For
more details, see [HR09, Prop. 3.3.2].)

3. Computable random variables and distributions

A relatively recent synthesis of results from computable analysis
and effective domain theory has characterized computable measures
on a wide variety of topological and metric spaces. However, the
computability theory of probability distributions extends back to work
of de Leeuw, Moore, Shannon, and Shapiro [dMSS56].

Within the framework of computable analysis, computable proba-
bility measures have been analyzed by Weihrauch [Wei99], Schröder
[Sch07], and others. Another approach to computable probability comes
from domain theory and an analysis of how computations on continuous
structures are formed from partial information on an appropriate partial
order. Early work is due to Scott [Sco75], Plotkin [Plo76], and many
others, and more recent work on representing probability measures is
due to Edalat [Eda96] and others.

Recently, these two threads have converged on essentially equivalent
definitions of computable probability measures in a wide range of settings
(see, e.g., [AES00] and [SS06]). In the following section, we present this
definition of a computable probability measure on a computable metric
space, which we will use in Chapter III as the basis of our study of the
computability of conditional probability. In Chapter IV, we present our
results using compatible notions for computable topological spaces.

Before we characterize the computable points in the space of Borel
probability measures on a computable metric space, we introduce the

32 II. COMPUTABLE PROBABILITY THEORY

notion of a computable random variable, as it will suggest an appropriate
metric to use for defining computable measures.

Intuitively, a random variable maps an input source of randomness
to an output, inducing a distribution on the output space. Here we will
use a sequence of independent fair coin flips as our source of randomness.
This generates the same rich class of computable distributions as that
generated by more sophisticated sources, such as i.i.d. uniform random
variables. We formalize the notion of independent fair coin flips via a
probability measure P on the space {0, 1}N of infinite binary sequences,
defined to be the product measure of the uniform distribution on {0, 1}.
(For a detailed explicit construction of P, see [Str05, §6.2.1].)

Henceforth we will take ({0, 1}N,P) to be the basic probability
space, unless otherwise stated. (We will later see that this choice is not
especially restrictive.) We will typically use a sans serif font for random
variables.

Definition II.11 (Random variable and its pushforward). Let S be
a computable metric space. A random variable in S is a function
X : {0, 1}N → S that is measurable with respect to the Borel σ-algebras
of {0, 1}N and S. We will denote by PX the probability measure on S
given by

PX(B) := (P ◦ X−1)(B) = P(X−1(B)) = P{X ∈ B}, (7)

for Borel sets B ⊆ S. We say that PX is the distribution of X.

Definition II.12 (Computable random variable). Let S be a com-
putable metric space. Then a random variable X in S is a computable
random variable when X is computable on some P-measure one subset
of {0, 1}N.

(This definition is closely related to that of an almost computable
function [HR09, Def. 5.2] and of a computable almost everywhere func-
tion [Bos08, Def. 3.4]. Another approach to computable random vari-
ables is given in [Sch07, §3.3].)

Remark II.13. Let (S, δS,DS) be a computable metric space. Intu-
itively, X is a computable random variable when there is a program
that, given access to an oracle bit tape ω ∈ {0, 1}N representing an
infinite sequence of random bits, outputs a representation of the point
X(ω) (i.e., enumerates a sequence {xi} in D where δ(xi,X(ω)) < 2−i for
all i), for all but a measure zero subset of bit tapes ω ∈ {0, 1}N (see
Remark II.10).

One of the essential properties of a computable random variable
is that for every finite portion of the output stream, the program has

3. COMPUTABLE RANDOM VARIABLES AND DISTRIBUTIONS 33

consumed only a finite number of input bits. When a random variable
does not produce a valid output representation, this means that after
some finite number of steps, it then consumes its entire remaining input
stream without producing another output.

Even though the source of randomness is a sequence of discrete bits,
there are computable random variables with continuous distributions,
as we now demonstrate by constructing a uniform random variable.

Example II.14 ([FR10, Ex. 3]). Given a bit tape ω ∈ {0, 1}N, for each

k ∈ N define Xk(ω) :=
∑k

i=1 ωi2
−i. Note that, for every ω, we have

|Xk(ω)− Xk+1(ω)| ≤ 2−(k+1), and so X := limk Xk(ω) exists. Thus the
sequence of rationals {Xk(ω)}k∈N is a representation of the real number
X(ω). Furthermore, because each rational Xk(ω) is computed using
only finitely many bits of ω, the random variable X is computable. It
is straightforward to check that the distribution of X (as ω ∈ {0, 1}N
varies according to P) is uniform on [0, 1].

This construction can be extended to define a computable i.i.d.-
uniform sequence, by splitting up each of the given elements of {0, 1}N
into countably many disjoint subsequences and dovetailing the construc-
tions [FR10, Ex. 4].

It is crucial that we consider random variables that are required to be
computable only on a P-measure one subset of {0, 1}N. To understand
why, consider the following example. For a real α ∈ [0, 1], we say
that a binary random variable X : {0, 1}N → {0, 1} is a Bernoulli(α)
random variable when PX{1} = α. There is a Bernoulli(1

2
) random

variable that is computable on all of {0, 1}N, given by the program
that simply outputs the real number corresponding to the first bit of
the input sequence. Likewise, when α is dyadic (i.e., a rational with
denominator a power of 2), there is a Bernoulli(α) random variable that
is computable on all of {0, 1}N. However, this is not possible for any
other choices of α (e.g., 1

3
).

Proposition II.15. Let α ∈ [0, 1] be a nondyadic real number. Every
Bernoulli(α) random variable X : {0, 1}N → {0, 1} is discontinuous,
hence not computable on all of {0, 1}N.

Proof. Assume X is continuous. Let Z0 := X−1(0) and Z1 :=
X−1(1). Then {0, 1}N = Z0 ∪ Z1, and so both are closed (as well as
open). The compactness of {0, 1}N implies that these closed subspaces
are also compact, and so Z0 and Z1 can each be written as the finite
disjoint union of clopen basis elements. But each of these elements
has dyadic measure, hence their sum cannot be either α or 1 − α,
contradicting the fact that P(Z1) = 1−P(Z0) = α. �

34 II. COMPUTABLE PROBABILITY THEORY

On the other hand, for an arbitrary computable α ∈ [0, 1], a more
sophisticated construction [Man73] produces a Bernoulli(α) random
variable that is computable on every point of {0, 1}N other than the
binary expansion of α. These random variables are manifestly com-
putable in an intuitive sense (and can even be shown to be optimal in
their use of input bits, via the classic analysis of rational-weight coins
by Knuth and Yao [KY76]). Moreover, they can in fact be computed
on real computers using this algorithm. Hence it is natural to admit
as computable random variables those measurable functions that are
computable only on a P-measure one subset of {0, 1}N, as we have done.

The notion of a computable measure follows naturally from an
analysis of computable random variables. Let X be a computable
random variable on a computable metric space (S, δS,DS). Consider
what we can learn about its distribution PX from observing the behavior
of X. Note that if a program computing X (on a measure one subset)
outputs an integer i encoding an ideal ball Bi, having read only the
first k bits ω1 · · ·ωk of its bit tape, then PX(Bj) ≥ 2−k for every ideal
ball Bj ⊇ Bi, because for every bit tape beginning with ω1 · · ·ωk, the
program also outputs i. Therefore, given such a program, we can record,
for every ideal ball, those finite bit tape prefixes that are mapped to
subballs, thereby tabulating arbitrarily good rational lower bounds on
its measure. In fact, in a similar manner, we can collect arbitrarily good
rational lower bounds on the the measure of an arbitrary finite union
of ideal balls. This information classically determines the probability
measure PX. Moreover, it computably determines this measure, as we
will see.

Let M1(S) denote the set of (Borel) probability measures on a
computable metric space S. The Prokhorov metric (and a suitably
chosen dense set of measures [Gác05, §B.6.2]) makes M1(S) into a
computable metric space [HR09, Prop. 4.1.1].

Theorem II.16 ([HR09, Thm. 4.2.1]). Let (S, δS,DS) be a computable
metric space. A probability measure µ ∈M1(S) is computable point of
M1(S) (under the Prokhorov metric) if and only if the measure µ(A)
of a c.e. open set A ⊆ S is a c.e. real, uniformly (in the index of) A.

Thus the above analysis of what we learn by simulating a computable
random variable X in S shows that PX is a computable point in the
computable metric space M1(S).

Proposition II.17 (Computable random variables have computable
distributions [GHR10, Prop. 2.4.2]). Let X be a computable random
variable in a computable metric space S. Then its distribution PX =
P ◦ X−1 is a computable point in the computable metric space M1(S).

4. ALMOST DECIDABLE SETS 35

On the other hand, one can show that, given a computable point µ
inM1(S), one can construct an i.i.d.-µ sequence of computable random
variables in S.

Henceforth, we say that a measure µ ∈M1(S) is computable when
it is a computable point in M1(S), considered as a computable metric
space in this way. Note that the measure P on {0, 1}N is a computable
probability measure.

Definition II.18 (Computable probability space [GHR10, Def. 2.4.1]).
A computable probability space is a pair (S, µ) where S is a com-
putable metric space and µ is a computable probability measure on
S.

4. Almost decidable sets

Let (S, µ) be a computable probability space. The measure µ(A) of
a c.e. open set A is always a c.e. real, but is not in general a computable
real. It will be useful to understand those sets A whose measure µ(A)
is a computable real.

Define Ac to be S \ A, i.e., the complement of A in S. Let B be an
ideal ball and note that µ(Bc) = 1− µ(B) is a co-c.e. real.

Definition II.19 (Almost decidable set [GHR10, Def. 3.1.3]). Let S
be a computable metric space and let µ ∈ M1(S) be a probability
distribution on S. A (Borel) measurable subset A ⊆ S is said to be
µ-almost decidable when there are two c.e. open sets U and V such
that U ⊆ A and V ⊆ Ac and µ(U) + µ(V) = 1.

Remark II.20. Let X be a computable random variable in a com-
putable metric space S, and let A ⊆ S be a PX-almost decidable set.
The event {X ∈ A} is a P-almost decidable subset of {0, 1}N.

When µ is a computable measure and A is an arbitrary c.e. open
set, then µ(A) is merely a c.e. real. However, when A is a µ-almost
decidable set, then µ(A) is also a co-c.e. real, and hence a computable
real.

Lemma II.21 ([GHR10, Prop. 3.1.1]). Let (S, µ) be a computable
probability space, and let A be µ-almost decidable. Then µ(A) is a
computable real.

We now show that every c.e. open set is the union of a computable
sequence of almost decidable subsets.

Lemma II.22 (Almost decidable subsets). Let (S, µ) be a computable
probability space and let V be a c.e. open set. Then, uniformly in V , we

36 II. COMPUTABLE PROBABILITY THEORY

can compute a sequence of µ-almost decidable sets {Vk}k∈N such that,
for each k, we have Vk ⊆ Vk+1 and

⋃
k∈N Vk = V .

Proof. Note that the finite union or intersection of almost de-
cidable sets is almost decidable. By [GHR10, Thm. 3.1.2] there is
a computable sequence {rj}j∈N of reals, dense in R+ and for which
the balls {B(di, rj)}i,j∈N form a basis of µ-almost decidable sets. Let
E ⊆ N be a c.e. set such that V =

⋃
i∈E Bi, where {Bi}i∈N is the

enumeration of the ideal balls of S. Consider the set F = {(i, j) : ∃k ∈
E with B(di, rj) ⊆ Bk} of indices (i, j) such that the closure of the
ball B(di, rj) lies strictly within an ideal ball within V . Then F is c.e.
and, by the density of the sequence {rj}, we have V =

⋃
(i,j)∈F B(di, rj).

Consider the finite union Vk :=
⋃
{(i,j)∈F : i,j≤k}B(di, rj), which is al-

most decidable. By construction, for each k, we have Vk ⊆ Vk+1 and⋃
k∈N Vk = V . �

(A notion related to that of an almost decidable set is used for a
purpose similar to Lemma II.22 in [Bos08, Cor. 2.16].)

The following converse to Lemma II.21 follows from Lemma II.22:

Corollary II.23. Let S be a computable metric space and let µ ∈
M1(S) be a probability measure on S. Then µ is computable if the
measure µ(A) of every µ-almost decidable set A is a computable real,
uniformly in A.

Proof. Let V be a c.e. open set of S. By Theorem II.16, it suffices
to show that µ(V) is a c.e. real, uniformly in V . By Lemma II.22, we can
compute a nested sequence {Vk}k∈N of µ-almost decidable sets whose
union is V . Because V is open, µ(V) = supk∈N µ(Vk). By hypothesis,
µ(Vk) is a computable real for each k, and so the supremum is a c.e.
real, as desired. �

Remark II.24. Let V and {Vk}k∈N be as in Lemma II.22. Because V
is open, µ(V) = supk∈N µ(Vk). Hence, when µ(V) > 0, we can compute
a finite index k0 such that µ(Vk) > 0 for all k ≥ k0.

We now proceed to a study of conditional distributions.

CHAPTER III

Conditional distributions

As yet there are no algorithms to calculate conditional
expectations.

M. M. Rao.
Conditional Measures and Applications.

[Rao93, Rao05]

In this chapter, we study the problem of computing conditional
probabilities, a fundamental operation in probability theory and its ap-
plication to statistics and machine learning. In the elementary discrete
setting, a ratio of probabilities defines conditional probability. In the
abstract setting, conditional probability is defined axiomatically and the
search for more constructive definitions is the subject of a rich literature
in probability theory and statistics. In the discrete or dominated setting,
under suitable computability hypotheses, conditional probabilities are
computable. However, we show that in general one cannot compute con-
ditional probabilities. We do this by constructing a pair of computable
random variables in the unit interval whose conditional distribution
encodes the halting problem at every point. We show that this result
is tight, in the sense that given an oracle for the halting problem, one
can compute this conditional distribution. On the other hand, we show
that conditioning in abstract settings is computable in the presence of
certain additional structure, such as independent absolutely continuous
noise with a computable distribution.

1. Computational limits of probabilistic inference

The use of probability to reason about uncertainty is fundamental to
modern science and AI, and the computation of conditional probabilities,
in order to perform evidential reasoning in probabilistic models, is
perhaps its single most important computational problem.

37

38 III. CONDITIONAL DISTRIBUTIONS

In probabilistic programming languages, conditioning is implemented
by an algorithm that accepts as input (1) a probabilistic program that
samples from a joint distribution over some collection of random vari-
ables; and (2) observations for some subset of those random variables.
The aim of the algorithm is to produce samples (exact, or approximate
in some cases) from the conditional distribution of the unobserved
random variables given the observed values. (Note that, for a particular
probabilistic program and set of observations, the resulting conditioning
algorithm is itself a probabilistic program, which represents the condi-
tional distribution.) In this chapter, we focus on the simplest possible
case, where a probabilistic program describes a pair of random vari-
ables, one of which is observed. The goal is to compute the associated
conditional distribution.

For an experiment with a discrete set of outcomes, computing con-
ditional probabilities is straightforward. However, in the probabilistic
programming setting, it is common to place distributions on continuous
or higher-order objects, and so one is already in a situation where
elementary notions of conditional probability are insufficient and more
sophisticated measure-theoretic notions are required. When condition-
ing on a continuous random variable, each particular observation has
probability 0, and the elementary rule that characterizes the discrete
case does not apply. Kolmogorov [Kol33] gave an axiomatic (but non-
constructive) characterization of conditional probabilities. In some
situations, e.g., when joint densities exist, conditioning can proceed
using a continuous version of the classic Bayes’ rule; however, it is not
uncommon in the probabilistic programming setting for these rules to be
inapplicable, and in general it is not decidable whether they are applica-
ble. The probability and statistics literature contains many ad-hoc rules
for calculating conditional probabilities in special circumstances, but
even the most constructive definitions (e.g., those due to Tjur [Tju74],
[Tju75], [Tju80], Pfanzagl [Pfa79], and Rao [Rao88], [Rao05]) are often
not sensitive to issues of computability.

1.1. Summary of results. In Proposition III.28, we construct a
pair (X,C) of computable random variables such that every version of the
conditional distribution P[C|X] is discontinuous even when restricted to
a PX-measure one subset. (We make these notions precise in Section 3.)
Every function computable on a domain D is continuous on D, and
so this construction rules out the possibility of a completely general
algorithm for conditioning. A natural question is whether conditioning is
a computable operation when we restrict to random variables for which

1. COMPUTATIONAL LIMITS OF PROBABILISTIC INFERENCE 39

some version of the conditional distribution is continuous everywhere,
or at least on a measure one set.

Our main result, Theorem III.34, states that conditioning is not a
computable operation on computable random variables, even in this
restricted setting. We construct a pair (X,N) of computable random
variables such that there is a version of the conditional distribution
P[N|X] that is continuous on a measure one set, but no version of
P[N|X] is computable. Moreover, if some oracle A computes P[N|X],
then A computes the halting problem. In Theorem III.40 we strengthen
this result by constructing a pair of computable random variables
whose conditional distribution is noncomputable but has an everywhere
continuous version.

This has direct implications for probabilistic programming languages.
Existing proposals for such languages give algorithms for conditioning
only in special cases, such as on observations of computable discrete
random variables. As a corollary of our main result, there is no possible
algorithm that can extend this functionality to computable continuous
random variables.

We also characterize several circumstances in which conditioning
is a computable operation. Under suitable computability hypotheses,
conditioning is computable in the discrete setting (Lemma III.16) and
where there is a conditional density (Corollary III.24).

Finally, we characterize the following situation in which conditioning
on noisy data is possible. Let U, V and E be computable random vari-
ables, and define Y = U + E. Suppose that PE is absolutely continuous
with a computable density pE (and bound M) and E is independent of
U and V. In Corollary III.25, we show that the conditional distribution
P[U,V | Y] is computable.

1.2. Related work. Conditional probabilities for distributions on
finite sets of discrete strings are manifestly computable, but may not be
efficiently so. In this finite discrete setting, there are already interest-
ing questions of computational complexity, which have been explored
through extensions of Levin’s theory of average-case complexity [Lev86].
If f is a one-way function, then it is difficult to sample from the condi-
tional distribution of the uniform distribution of strings of some length
with respect to a given output of f . This intuition is made precise
by Ben-David, Chor, Goldreich, and Luby [BCGL92] in their theory
of polynomial-time samplable distributions, which has since been ex-
tended by Yamakami [Yam99] and others. Extending these complexity
results to the richer setting considered here is an important problem

40 III. CONDITIONAL DISTRIBUTIONS

for theoretical computer science, with repercussions for the practice of
statistical AI and machine learning.

Osherson, Stob, and Weinstein [OSW88] study learning theory in the
setting of identifiability in the limit (see [Gol67] and [Put85] for more
details on this setting) and prove that a certain type of “computable
Bayesian” learner fails to identify the index of a computably enumerable
set that is otherwise computably identifiable in the limit. From the
perspective of computable analysis, this work can be interpreted as
studying when certain conditional distributions are oracle computable
using the halting set as an oracle, rather than simply computable. We
present a close analysis of their setup that reveals that the conditional
distribution of the set index given the infinite sequence is an everywhere
discontinuous function, hence fundamentally not computable in the same
way as our much simpler example involving a measure concentrated on
the rationals or irrationals. As we argue, the more appropriate operator
to study is that restricted to those random variables whose conditional
distributions admit continuous (or at the least, almost continuous)
versions.

Our work is distinct from the study of conditional distributions with
respect to priors that are universal for partial computable functions (as
defined using Kolmogorov complexity) by Solomonoff [Sol64], Zvonkin
and Levin [ZL70], and Hutter [Hut07]. The computability of conditional
distributions also has a rather different character in Takahashi’s work on
the algorithmic randomness of points defined using universal Martin-Löf
tests [Tak08]. The objects with respect to which one is conditioning in
these settings are typically computably enumerable, but not computable.
In the present work, we are interested in the problem of computing
conditional distributions of random variables that are computable (even
though the conditional distribution may itself be noncomputable).

2. Computable conditional distributions

We refer the reader to Chapter II for basic notions of computability
on metric spaces.

The conditional probability of an event B given another event A
captures the likelihood of the event B occurring given the knowledge
that the event A has already occurred. In modern probability theory,
conditional probability is generally defined with respect to a random
variable (or even more abstractly, a σ-algebra), rather than a single
event. In particular, Kolmogorov’s [Kol33] axiomatic characterization
of conditional expectation can be used to define conditional probability.
For a pair of random variables Y and X in a Borel space and an arbitrary

2. COMPUTABLE CONDITIONAL DISTRIBUTIONS 41

measurable space, respectively, conditional probability can, in turn, be
used to define the conditional distribution of Y given X, whether the
random variable X is discrete, continuous, or otherwise.

The elementary notion of a conditional probability of one event
given another is defined only when the event A has non-zero probability.

Definition III.1 (Conditional probability given an event). Let S be a
measurable space and let µ ∈ M1(S) be a probability measure on S.
Let A,B ⊆ S be measurable sets, and suppose that µ(A) > 0. Then the
conditional probability of B given A, written µ(B|A), is defined
by

µ(B|A) =
µ(B ∩ A)

µ(A)
. (8)

Note that for any fixed measurable A ⊆ S with µ(A) > 0, the
function µ(· |A) is a probability measure. However, this notion of
conditioning is well-defined only when µ(A) > 0, and so is insufficient
for defining the conditional probability given the event that a continuous
random variable takes a particular value, as such an event has measure
zero.

Suppose X is a random variable mapping a probability space S to a
measurable space T . For a measurable subset A ⊆ T , we let {X ∈ A}
denote the inverse image X−1[A] = {s ∈ S : X(s) ∈ A}, and for x ∈ T
we similarly define the event {X = x}. We will sometimes elide some
brackets and parentheses; e.g., we will use the expression P{Y ∈ A |
X = x} to denote the conditional probability P({Y ∈ A} | {X = x}).

Before we define the abstract notion of a conditional distribution,
we must define the notion of a probability kernel. For more details, see,
e.g., [Kal02, Ch. 3].

Suppose T is a metric space. We let BT denote the Borel σ-algebra of
T , i.e., the σ-algebra generated by the open balls of T (under countable
unions and complements). In this chapter, measurable functions will
always be with respect to the Borel σ-algebra of a metric space.

Definition III.2 (Probability kernel). Let S and T be metric spaces,
and let BT be the Borel σ-algebra on T . A function κ : S ×BT → [0, 1]
is called a probability kernel (from S to T) when

(1) for every s ∈ S, κ(s, ·) is a probability measure on T ; and
(2) for every B ∈ BT , κ(·, B) is a measurable function.

We now give a characterization of conditional distributions. For
more details, see, e.g., [Kal02, Ch. 6].

42 III. CONDITIONAL DISTRIBUTIONS

Definition III.3 (Conditional distribution). Let X and Y be random
variables in metric spaces S and T , respectively, and let PX be the
distribution of X. A probability kernel κ is called a (regular) version
of the conditional distribution P[Y|X] when it satisfies

P{X ∈ A,Y ∈ B} =

∫
A

κ(x,B) PX(dx), (9)

for all measurable sets A ⊆ S and B ⊆ T .

Given any two measurable functions κ1, κ2 satisfying (9), the func-
tions x 7→ κi(x, ·) need only agree PX-almost everywhere. There are
many versions, in this sense, of a conditional distribution. However, the
functions x 7→ κi(x, ·) will agree at points of continuity in the support
of PX.

Definition III.4. Let µ be a measure on a topological space S with
open sets S. Then the support of µ, written supp(µ), is defined to
be the set of points x ∈ S such that all open neighborhoods of x have
positive measure, i.e.,

supp(µ) := {x ∈ S : ∀B ∈ S (x ∈ B =⇒ µ(B) > 0)}. (10)

Lemma III.5. Let X and Y be random variables in topological spaces
S and T , respectively, let PX be the distribution of X, and suppose that
κ1, κ2 are versions of the conditional distribution P[Y|X]. Let x ∈ S be
a point of continuity of both of the maps x 7→ κi(x, ·) for i = 1, 2. If
x ∈ supp(PX), then κ1(x, ·) = κ2(x, ·).

Proof. Fix a measurable set A ⊆ Y and define g(·) := κ1(·, A)−
κ2(·, A). We know that g = 0 PX-a.e., and also that g is continuous
at x. Assume, for the purpose of contradiction, that g(x) = ε > 0. By
continuity, there is an open neighborhood B of x, such that g(B) ∈
(ε

2
, 3ε

2
). But x ∈ supp(PX), hence PX(B) > 0, contradicting g = 0

PX-a.e. �

When conditioning on a discrete random variable, a version of the
conditional distribution can be built using conditional probabilities.

Example III.6. Let X and Y be random variables mapping a proba-
bility space S to a measurable space T . Suppose that X is a discrete
random variable with support R ⊆ S, and let ν be an arbitrary proba-
bility measure on T . Consider the function κ : S × BT → [0, 1] given
by

κ(x,B) := P{Y ∈ B | X = x} (11)

3. COMPUTABLE CONDITIONAL DISTRIBUTIONS 43

for all x ∈ R and κ(x, ·) = ν(·) for x 6∈ R. The function κ is well-defined
because P{X = x} > 0 for all x ∈ R, and so the right hand side of
Equation (11) is well-defined. Furthermore, P{X ∈ R} = 1 and so κ is
characterized by Equation (11) for almost all x. Finally,∫

A

κ(x,B) PX(dx) =
∑

x∈R∩A

P{Y ∈ B | X = x}P{X = x} (12)

=
∑

x∈R∩A

P{Y ∈ B, X = x}, (13)

which is equal to P{Y ∈ B, X ∈ A}, and so κ is a version of the
conditional distribution P[Y|X].

3. Computable conditional distributions

Having defined the abstract notion of a conditional distribution in
Section 2, we now define our notion of computability for conditional
distributions. We begin by defining a notion of computability for
probability kernels.

Definition III.7 (Computable probability kernel). Let S and T be
computable metric spaces and let κ : S × BT → [0, 1] be a probability
kernel from S to T . Then we say that κ is a computable (probability)
kernel when the map φκ : S → M1(T) given by φκ(s) := κ(s, ·) is
a computable function. Similarly, we say that κ is computable on a
subset D ⊆ S when φκ is computable on D.

Recall that for a fixed Borel set B ⊆ T and kernel κ : S×BT → [0, 1],
the function κ(·, B) is measurable. We now prove a corresponding
property of computable probability kernels.

Lemma III.8. Let S and T be computable metric spaces, let κ be a
probability kernel from S to T computable on a subset D ⊆ S, and
let A ⊆ T be a c.e. open set. Then κ(·, A) : S → [0, 1] is lower
semicomputable on D, i.e., for every rational q ∈ (0, 1) there is a c.e.
open set Vq uniformly computable in q and A, such that κ(·, A)−1[(q, 1]]∩
D = Vq ∩D.

Proof. Let φκ be as in Definition III.7, fix a rational q ∈ (0, 1)
and c.e. open set A, and define I = (q, 1]. Then κ(·, A)−1[I] = φ−1

κ [P],
where

P = {µ ∈M1(T) : µ(A) > q}. (14)

This is an open set in the weak topology induced by the Prokhorov
metric (see [Sch07, Lem. 3.2]). We now show that P is, in fact, c.e.
open.

44 III. CONDITIONAL DISTRIBUTIONS

Consider the set D of all probability measures on (T, δT ,DT) that
are concentrated on a finite subset and where the measure of each atom
is rational, i.e., every ν ∈ D can be written as ν =

∑k
i=1 qiδti for some

rationals qi ≥ 0 such that
∑k

i=1 qi = 1 and some points ti ∈ DT . Gács
[Gác05, §B.6.2] shows that D is dense in the Prokhorov metric and
makes M1(T) a computable metric space.

Let ν ∈ D be concentrated on the finite set R. Gács [Gác05,
Prop. B.17] characterizes the ideal ball E centered at ν with rational
radius ε > 0 as the set of measures µ ∈M1(T) such that

µ(Cε) > ν(C)− ε (15)

for all C ⊆ R, where Cε =
⋃
t∈C B(t, ε).

We can write A =
⋃
n∈NB(dn, rn) for a computable sequence of

ideal balls in T with centers dn and rational radii rn. It follows that
E ⊆ P if and only if ν(R ∩A−ε) > q, where A−ε :=

⋃
n∈NB(dn, rn − ε).

Note A−ε is again c.e. open. As ν is concentrated on R, it follows that
ν(R ∩ A−ε) is a c.e. real and so we can semidecide whether E ⊆ P .
Therefore, P is a c.e. open set.

Hence, by the computability of φκ, there is a c.e. open set V ,
uniformly computable in P (and hence I) such that φ−1

κ [P]∩D = V ∩D.
But then, we have that κ(·, A)−1[I] ∩ D = V ∩ D, and so κ(·, A) is
computable on D. �

In fact, the lower semicomputability of κ(·, A) : S → [0, 1] on D ⊆ S
for arbitrary c.e. open sets A ⊆ T is equivalent to being able to compute
φκ : S →M1(T) on D.

Lemma III.9. Let S and T be computable metric spaces, let κ be a
probability kernel from S to T , and let D ⊆ S. Then κ(·, A) is lower
semicomputable on D ⊆ S uniformly in a c.e. open set A if and only if
φκ is computable on D.

Proof. The implication from right to left was shown in Lemma III.8.
Now assume that κ(·, A) is lower semicomputable on D uniformly in A.
In other words, uniformly in s ∈ D and in A, we have that κ(s, A) is a
c.e. real. But by Lemma II.16, this implies that κ(s, ·) is computable
on D. �

Hence one may naturally interpret a computable probability kernel κ
as either a computable probability measure κ(s, ·) for each computable
s ∈ S, or as a lower semicomputable function κ(·, A) for each c.e. open
set A ⊆ T . In fact, when A ⊆ T is a decidable set (i.e., A and T \ A
are both c.e. open), κ(·, A) is a computable function.

3. COMPUTABLE CONDITIONAL DISTRIBUTIONS 45

Corollary III.10. Let S and T be computable metric spaces, let κ be
a probability kernel from S to T computable on a subset D ⊆ S, and let
A ⊆ T be a decidable set. Then κ(·, A) : S → [0, 1] is computable on D.

Proof. If B a c.e. open set, κ(·, B) is lower semicomputable on D
and κ(·, T \B) = 1−κ(·, B) is upper semicomputable on D. Because A
is decidable, both A and T \A are c.e. open, and so κ(·, A) is computable
on D. �

Having pinned down a notion of computability for probability ker-
nels, we now return to the question of computability for conditional
distributions. The first apparent obstacle is the fact that a conditional
distribution may have many different versions. However, their com-
putability as probability kernels does not differ (up to a change in
domain by a null set).

Lemma III.11. Let κ be a version of a conditional distribution P[Y|X]
that is computable on some PX-measure one set. Then any version of
P[Y|X] is also computable on some PX-measure one set.

Proof. Let κ be a version that is computable on a PX-measure one
set D, and let κ′ be any other version. Then Z := {s ∈ S : κ(s, ·) 6=
κ′(s, ·)} is a PX-null set, and κ = κ′ on D \ Z. Hence κ′ is computable
on the PX-measure one set D \ Z. �

These results suggest the following definition of computability for
conditional distributions.

Definition III.12 (Computable conditional distributions). We say
that the conditional distribution P[Y|X] is computable when there is
some version κ that is computable on a PX-measure one subset of S.

Intuitively, a conditional distribution is computable when for some
(and hence for any) version κ there is a program that, given as input a
representation of a point s ∈ S, outputs a representation of the measure
φκ(s) = κ(s, ·) for PX-almost all inputs s.

Suppose that P[Y|X] is computable, i.e., there is a version κ for
which the map φκ is computable on some PX-measure one set S ′ ⊆ S.
(As noted in Definition III.7, we will often abuse notation and say that
κ is computable on S ′.) Because a function is computable on a subset
only if it is continuous on that subset, the restriction of φκ to S ′ is
necessarily continuous (under the subspace topology on S ′). We will say
that κ is PX-almost continuous when the restriction of φκ to some
PX-measure one set is continuous. (Note that this does not necessarily
imply PX-a.e. continuity.) Thus when P[Y|X] is computable, there is
some PX-almost continuous version.

46 III. CONDITIONAL DISTRIBUTIONS

In Section 4 we describe a pair of computable random variables X,Y
for which P[Y|X] is not computable, by virtue of no version being PX-
almost continuous. In Section 5 we describe a pair (X,N) of computable
random variables for which there is a PX-almost continuous version of
P[N|X], yet no version that is computable on a PX-measure one set.

3.1. Discrete setting. First we study situations where condition-
ing on a discrete random variable is computable.

Recall the definition of conditional probability (Definition III.1).
When µ is computable and A is an almost decidable set, the conditional
probability given A is computable.

Lemma III.13 (Conditional probability given an almost decidable set
[GHR10, Prop. 3.1.2]). Let (S, µ) be a computable probability space and
let A be an almost decidable subset of S satisfying µ(A) > 0. Then
µ(·|A) is computable.

Proof. By Corollary II.23, it suffices to show that µ(B∩A)
µ(A)

is com-

putable for an almost decidable set B. But then B ∩ A is almost
decidable and so its measure, the numerator, is a computable real.
The denominator is likewise the measure of an almost decidable set,
hence a computable real. Finally, the ratio of two computable reals is
computable. �

The equation

P{Y ∈ A | X = x} =
P{Y ∈ A, X = x}

P{X = x}
(16)

gives a recipe for calculating the conditional distribution of a discrete
random variable. However, the event {X = x} is not necessarily even
an open set, and so in order to compute the conditional distribution
given a discrete random variable, we need additional computability
hypotheses on its support.

Definition III.14 (Computably discrete set). Let S be a computable
metric space. We say that a (finite or countably infinite) subset D ⊆ S
is computably discrete when, for some enumeration d0, d1, ... of D
(possibly with repetition) there is a computable function f : N → N
such that each dj is the unique point of D in the ideal ball Bf(j).

The following result follows immediately from Lemma II.22.

Lemma III.15. Let (S, µ) be a computable probability space, and let D
be a computably discrete subset of S. Define D+ := {d ∈ D : µ({d}) >
0}. There is a partial function g : S → N, computable on D+, such

3. COMPUTABLE CONDITIONAL DISTRIBUTIONS 47

that for d ∈ D+, the integer g(d) is the index of a µ-almost decidable
set containing d and no other points of D.

Lemma III.16 (Conditioning on a discrete random variable). Let X
and Y be computable random variables in computable metric spaces S
and T , respectively. Assume that PX is concentrated on a computably
discrete set D. Then the conditional distribution P[Y|X] is computable,
uniformly in X, Y and D.

Proof. Define D+ := {d ∈ D : PX(d) > 0}, and let g be a
computable partial function that assigns each point in D+ a PX-almost
decidable set covering it, as in Lemma III.15. Let Ag(d) denote the
PX-almost decidable set coded by g(d).

Because X is also concentrated on D+, a version κ of the conditional
distribution P[Y|X] is an arbitrary kernel κ(·, ·) that satisfies

κ(d, ·) = P{Y ∈ · | X = d} (17)

for every d ∈ D+ (as in Example III.6).
Let d ∈ D+ be arbitrary. The set Ag(d) contains exactly one point

of positive PX-measure, and so the events {X = d} and {X ∈ Ag(d)} are
positive PX-measure sets that differ by a PX-null set. Hence

P{Y ∈ · | X = d} = P{Y ∈ · | X ∈ Ag(d)}. (18)

By Remark II.20, the event {X ∈ Ag(d)} is P-almost decidable, and so
the measure P{Y ∈ · | X ∈ Ag(d)} is computable, by Lemma III.13.

Thus the partial function mapping S →M1(T) by

x 7→ P{Y ∈ · | X ∈ Ag(x)} (19)

is computable on D+, a subset of S of PX-measure one, and so the
conditional distribution P[Y|X] is computable. �

3.2. Continuous, dominated, and other settings. Although
we show that the general case of conditioning on a random variable is
not computable, additional structure can sometimes make conditioning
computable. For example, in Chapter IV, Section 6 we study posterior
inference in the setting of exchangeable sequences, and give a positive
result covering a wide class of Bayesian nonparametric models.

Another common situation where we know the form of the condi-
tional distribution P[Y|X] is when the conditional distribution P[X|Y]
is dominated, i.e., when there exists a conditional density.

We recall the following standard definitions of density and condi-
tional density.

48 III. CONDITIONAL DISTRIBUTIONS

Definition III.17 (Density). Let (Ω,A, ν) be a measure space and let
f : A→ R+ be a measurable function. Then the function µ on A given
by

µ(A) =

∫
A

fdν (20)

for A ∈ A is a measure on (Ω,A) and f is called a density of µ with
respect to ν. Note that g is a density of µ with respect to ν if and
only if f = g ν-a.e.

Definition III.18 (Conditional density). Let X and Y be random
variables in metric spaces S and T , respectively, let κX|Y be a version
of the conditional distribution P[X|Y], and assume that there exists a
measure ν ∈ M(S) and measurable function pX|Y(x|y) : S × T → R+

such that pX|Y(·|y) is a density of κX|Y(y, ·) with respect to ν for PY-a.e.
y. That is,

κX|Y(y, A) =

∫
A

pX|Y(x|y)ν(dx) (21)

for measurable sets A ⊆ S and PY-almost all y. Then pX|Y(x|y) is called
a conditional density (with respect to ν) of X given Y.

Common parametric families of distributions (e.g., exponential fam-
ilies like Gaussian, Gamma, etc.) admit conditional densities, and
in these cases, the well-known Bayes’ rule (22) gives a formula for
expressing the conditional distribution.

Lemma III.19 (Bayes’ rule [Sch95, Thm. 1.13]). Let X and Y be
random variables as in Definition III.3, let κX|Y be a version of the con-
ditional distribution P[X|Y], and assume that there exists a conditional
density pX|Y(x|y) with respect to ν ∈M1(S). Then the function given
by

κY|X(x,B) :=

∫
B
pX|Y(x|y)PY(dy)∫
pX|Y(x|y)PY(dy)

, (22)

is a version of the conditional distribution P[Y|X]. �

Remark III.20. Comparing Equation (21) to (22), we see that

pY|X(y|x) =
pX|Y(x|y)∫

pX|Y(x|y)PY(dy)
(23)

is the conditional density with respect to PY of Y given X.

Lemma III.21. Let R ⊆ S be a PX-measure one subset. If the con-
ditional density pX|Y(x|y) of X given Y is continuous on R × T and

3. COMPUTABLE CONDITIONAL DISTRIBUTIONS 49

bounded, then there is a PX-almost continuous version of the conditional
distribution P[Y|X].

Proof. Fix an open set B ⊆ T . We will show that for fixed B, the
map x 7→ κY|X(x,B) given by Equation (22) is a lower semicontinuous
by demonstrating that the numerator is lower semicontinuous, while
the denominator is continuous.

Let PY be the distribution of Y. By hypothesis, the map φ :
S → C(T,R+) given by φ(x) = pX|Y(x|·) is continuous on R, while the
indicator function 1B is lower semicontinuous. Because the integration
operator f 7→

∫
fdµ of a lower semicontinuous function f with respect

to a probability measure µ is itself lower semicontinuous, the map
x 7→

∫
1Bφ(x)dPY is lower semicontinuous on R.

Now let B = T and note that for every x ∈ R, the function φ(s) is
bounded by hypothesis. Integration of a bounded continuous function
with respect to a probability measure is a continuous operation, and
so the map x 7→

∫
φ(x)dPY is continuous on R. Therefore, κY|X is

PX-almost continuous. �

Example III.22. Let Y be a Gaussian random variable with zero
mean and unit variance, and, conditioned on Y, let X be a Gaussian
random variable with mean Y and unit variance. Then the conditional
density (with respect to Lebesgue measure) is given by pX|Y(x|y) =

(2π)−
1
2 e−

1
2

(x−y)2 . Furthermore, the conditional density of Y given X (with

respect to Lebesgue measure) is given by pY|X(y|x) = (π)−
1
2 e−

1
4

(x−2y)2 ,
which implies that Y, conditioned on X, is Gaussian distributed with
mean X

2
and variance 1

2
.

We now turn to the question of computing conditional distribu-
tions in the dominated setting. We begin by reviewing a well-known
integration result.

Proposition III.23 (Integration of computable functions ([HR09,
Cor. 4.3.2])). Let (S, µ) be a computable probability space. Let f :
S → R+ be a computable function and let M be a bound on f . Then∫
fdµ is a computable real, uniformly in f and M .

Using this result, we can now study when the conditional distribution
characterized by Equation (22) is computable.

Corollary III.24 (Density and independence). Let U, V, and Y be
computable random variables (in computable metric spaces), where Y
is independent of V given U. Assume that there exists a conditional
density pY|U(y|u), and furthermore that pY|U and a bound M for pY|U are
computable. Then the conditional distribution P[(U,V)|Y] is computable.

50 III. CONDITIONAL DISTRIBUTIONS

Proof. Let X = (U,V). The conditional density pY|X(y|x) of Y
given X exists and satisfies

pY|X(y|(u, v)) = c(y) pY|U(y|u), (24)

for some measurable function c. Note that the c(y) term cancels when
the ratio is taken as in Equation (22). Therefore, the computability of
the integrand and the bound imply by Proposition III.23 that a kernel
is computable. �

As an immediate corollary, we obtain the computability of condi-
tioning in the following common situation in probabilistic modeling:
where the observed random variable has been corrupted by independent
absolutely continuous noise.

Corollary III.25 (Independent noise). Let V be a computable random
variable in a computable metric space and let U and E be computable
random variables in R. Define Y = U+E. If PE is absolutely continuous
with a computable density pE (and bound M) and E is independent of
U and V then the conditional distribution P[(U,V) | Y] is computable.

Proof. The conditional density pY|U(y|u) of Y given U exists and
satisfies pY|U(y|u) = pE(y − u). The result then follows from Corol-
lary III.24. �

It follows from our main noncomputability result (Theorem III.34)
that noiseless observations cannot always be computably approximated
by noisy ones. For example, even though an observation corrupted with
zero mean Gaussian noise with standard deviation σ may recover the
original condition as σ → 0, Theorem III.34 implies that one cannot,
in general, compute how small σ must be in order to bound the error
introduced by noise.

By Myhill [Myh71], there is a computable function [0, 1]→ R whose
derivative is continuous, but not computable. However, Pour-El and
Richards [PER89, Ch. 1, Thm. 2] show that all twice continuously
differentiable computable functions from [0, 1]→ R have computable
derivatives. Therefore, noise with a sufficiently smooth probability distri-
bution has a computable density, and by Corollary III.25, a computable
random variable corrupted by such noise still admits a computable
conditional distribution.

This result is analogous to a classical theorem of information theory.
Hartley [Har28] and Shannon [Sha49] show that the capacity of a con-
tinuous real-valued channel without noise is infinite, yet the addition
of, e.g., independent Gaussian noise with ε > 0 variance causes the
channel capacity to become finite. The Gaussian noise prevents an

3. COMPUTABLE CONDITIONAL DISTRIBUTIONS 51

infinite amount of information from being encoded in the bits of the
real number. Similarly, it is not possible in general to incorporate
the information in a continuous observation when computing a condi-
tional probability. However, the addition of sufficiently smooth and
independent computable noise makes conditioning possible on a (finite)
computer.

3.3. Conditional distributions as limits. Without additional
structure like discreteness or a conditional density, one must rely on
the abstract definition of conditional probability. Unfortunately, it does
not immediately suggest a method of computation. We now introduce
a constructive definition of conditional distributions due to Tjur. More
details can found in [Tju80, §9.7]. Pfanzagl [Pfa79] describes a somewhat
similar approach.

Roughly speaking, a set B is near a point x if some neighborhood of
x contains B. By shrinking such neighborhoods, this allows for a notion
of convergence of a directed system of sets to a point x that allows the
sets to vary freely within the shrinking neighborhoods. Given random
variables X,Y, one can then take the limit (according to this notion of
convergence) of the discrete conditional distributions of Y given X ∈ B
to obtain a version of the conditional distribution of Y given X = x.

Definition III.26 (Tjur Property [Tju75]). Let X and Y be random
variables in complete metric spaces, and let x ∈ supp(PX). Let D(x)
denote the set of pairs (V,B) where V is an open neighborhood of x
and B is a measurable subset of V with PX(B) > 0. We say that a pair
(V,B) is closer to x than (V ′, B′) if V ′ ⊇ V . Note that this relation
is a partial ordering on D(x) and makes D(x) a directed set. We say
that x has the Tjur property (for Y given X) when the directed
limit

Px
Y(·) := lim

(V,B)∈D(x)
PY(· | X ∈ B) (25)

exists and is a probability measure.

Many common properties imply that a point is Tjur. For example,
for an absolutely continuous random variable with density f , every
point x of continuity of f such that f(x) > 0 is a Tjur point. Also, any
isolated point mass (e.g., a point in the support of a discrete random
variable) is a Tjur point. On the other hand, nonisolated point masses
are not necessarily Tjur points.

Tjur points sometimes exist even in nondominated settings. Let
G be a Dirichlet process with an absolutely continuous base measure
H on a computable metric space S. That is, G is a random discrete

52 III. CONDITIONAL DISTRIBUTIONS

probability distribution on S. Conditioned on G, let X be G-distributed
(i.e., X is a sample from the random distribution G). Then any point
x ∈ S in the support of H is a Tjur point, yet there does not exist a
conditional density of G given X.

The following lemma is a consequence of Corollary 9.9.2 and Propo-
sition 9.10.1 of [Tju80].

Lemma III.27. Let X and Y be random variables in complete metric
spaces S and T , and suppose that PX-almost all x ∈ S have the Tjur
property (for Y given X). For each Tjur point x, suppose that {Bx

n}n∈N
is a sequence of measurable sets for which each Bx

n is contained in the
2−n-ball around x and P(Bx

n) > 0.
Then the function κ : S × BT → [0, 1] given by

κ(x,A) := lim
n→∞

P{Y ∈ A | X ∈ Bx
n} (26)

for Tjur points x and Borel sets A ⊆ T (and defined by κ(x, ·) = ν
for an arbitrary probability measure ν otherwise) is a version of the
conditional distribution P[Y|X].

For example, if X and Y are real random variables, then taking
Bx
n := (x − 2−n, x + 2−n) in (26) gives a version of the conditional

distribution P[Y|X]. In Section 7, we take Bx
n to be a sequence of almost

decidable sets.
Even when such limits exist, they may not be computable. In

fact, the main construction in Section 5 is an example of a conditional
distribution for which almost all points are Tjur, and yet no version of
the conditional distribution is a computable measure.

Before proceeding to the main construction, in Section 4 we first
present a pair of computable random variables for which no point is
Tjur.

4. Discontinuous conditional distributions

Any attempt to characterize the computability of conditional distri-
butions immediately runs into the following roadblock: a conditional
distribution need not have any version that is continuous or even almost
continuous (in the sense described in Section 3).

Recall that a random variable C is a Bernoulli(p) random variable,
or equivalently, a p-coin, when P{C = 1} = 1−P{C = 0} = p. We call
a 1

2
-coin a fair coin. A random variable N is geometric when it takes

values in N = {0, 1, 2, . . . } and satisfies P{N = n} = 2−(n+1), for n ∈
N. A random variable that takes values in a discrete set is a uniform
random variable when it assigns equal probability to each element. A

4. DISCONTINUOUS CONDITIONAL DISTRIBUTIONS 53

continuous random variable U on the unit interval is uniform when
the probability that it falls in the subinterval [`, r] is r− `. It is easy to
show that the distributions of these random variables are computable.

Let C, U, and N be independent computable random variables, where
C is a fair coin, U is a uniform random variable on [0, 1], and N is a
geometric random variable. Fix a computable enumeration {ri}i∈N of
the rational numbers (without repetition) in (0, 1), and consider the
random variable

X :=

{
U, if C = 1;

rN, otherwise.
(27)

It is easy to verify that X is a computable random variable.

Proposition III.28. No version of the conditional distribution P[C|X]
is PX-almost continuous.

Proof. Note that P{X rational} = 1
2

and, in particular, we have

that P{X = rk} = 1
2k+1 > 0. Therefore, any two versions of the con-

ditional distribution P[C|X] must agree on all rationals in [0, 1]. In
addition, any two versions must agree on almost all irrationals in [0, 1]
because the support of U is all of [0, 1]. An elementary calculation shows
that P{C = 0 | X rational} = 1, while P{C = 0 | X irrational} = 0.
Therefore, all versions κ of P[C|X] satisfy

κ(x, {0}) =

{
1, x rational;

0, x irrational,
a.s., (28)

which, when considered as a function of x, is the nowhere continuous
function known as the Dirichlet function.

Suppose some version κ were continuous when restricted to some
PX-measure one subset D ⊆ [0, 1]. But D must contain every rational
and almost every irrational in [0, 1], and so the inverse image of an open
set containing 1 but not 0 would be the set of rationals, which is not
open in the subspace topology induced on D. �

In some ways this construction is disappointing: a representation of
the unit interval as the disjoint union of the rationals and irrationals, i.e.,
a representation for X which stores whether the value is rational or not,
would make the conditional distribution continuous and computable.
However, this representation of real numbers is very problematic: e.g.,
multiplication becomes discontinuous, hence not computable.

The potential discontinuity of conditional probabilities is a funda-
mental obstacle to the computability of conditional distributions. This
suggests that we focus our attention on settings that admit almost

54 III. CONDITIONAL DISTRIBUTIONS

continuous or continuous versions. We might still hope to be able to
compute the conditional distribution when there is some version that
is almost continuous or even continuous. However we will show that
even this is not possible in general.

5. Noncomputable almost continuous conditional
distributions

In this section, we construct a pair of random variables (X,N)
that is computable, yet whose conditional distribution P[N|X] is not
computable, despite the existence of a PX-almost continuous version.

Let h : N → N ∪ {∞} be the map given by h(n) = ∞ if the nth
Turing machine does not halt (on input 0) and h(n) = k if the nth Turing
machine halts (on input 0) at the kth step. The function h is lower-
semicomputable because we can compute all lower bounds: for all k ∈ N,
we can run the nth TM for k steps to determine whether h(n) < k, or
h(n) = k, or h(n) > k. But h is not computable because any finite
upper bound on h(n) would imply that the nth TM halts, thereby
solving the halting problem. However, we will define a computable
random variable X such that conditioning on its value recovers h.

Let N be a computable geometric random variable, C a computable
1
3
-coin and U and V both computable uniform random variables on

[0, 1], all mutually independent. Let bxc denote the greatest integer
y ≤ x. Note that b2kVc is uniformly distributed on {0, 1, 2, . . . , 2k − 1}.
Consider the derived random variables Xk := 2b2kVc+C+U

2k+1 for k ∈ N.
The limit X∞ := limk→∞ Xk exists with probability one and satisfies
limk→∞ Xk = V a.s. Finally, we define X := Xh(N). The following
proposition gives more insight into the meaning of these definitions.

Proposition III.29. The random variable X is computable.

Proof. Let {Un : n ∈ N} and {Vn : n ∈ N} be the binary
expansions of U and V, respectively. Because U and V are computable
and almost surely irrational, it is not hard to show that their binary
expansions are computable random variables in {0, 1}, uniformly in n.

For each k ≥ 0, define the random variable

Dk =


Vk, h(N) > k;

C, h(N) = k;

Uk−h(N)−1, h(N) < k.

(29)

5. ALMOST CONTINUOUS CONDITIONAL DISTRIBUTIONS 55

Because h is lower-semicomputable, {Dk}k≥0 are computable random
variables, uniformly in k.1 We now show that, with probability one,
{Dk}k≥0 is the binary expansion of X, thus showing that X is itself a
computable random variable.

There are two cases to consider:
First, conditioned on h(N) =∞, we have that Dk = Vk for all k ≥ 0.

In fact, X = V when h(N) =∞, and so the binary expansions match.
Condition on h(N) = m and let D denote the computable random

real whose binary expansion is {Dk}k≥0. We must then show that

D = Xm a.s. Note that b2mXmc = b2mVc =
∑m−1

k=0 2m−1−kVk = b2mDc,
and thus the binary expansions agree for the first m digits. In a similar
fashion, one can show that the next binary digit of Xm is C, followed by
the binary expansion U, thus agreeing with D for all k ≥ 0. �

For a visualization of (X,N), see Figure 1.
We now show that P[N|X] is not computable, despite the existence of

a PX-almost continuous version of P[N|X]. We begin by characterizing
the conditional density of X given N. Note that the constant function
pX∞(x) := 1 is the density of X∞ with respect to Lebesgue measure on
[0, 1].

Lemma III.30. For each k ∈ N, the distribution of Xk admits a density
pXk with respect to Lebesgue measure on [0, 1] given by

pXk(x) =

{
4
3
, b2k+1xc even;

2
3
, b2k+1xc odd.

(30)

Proof. Let k ∈ N. With probability one, the integer part of 2k+1Xk
is 2b2kVc+ C while the fractional part is U. Therefore, the distribution
of 2k+1Xk (and hence Xk) admits a piecewise constant density with
respect to Lebesgue measure.

In particular, b2k+1Xkc ≡ C (mod 2) almost surely and 2b2kVc is
independent of C and uniformly distributed on {0, 2, . . . , 2k+1 − 2}.
Therefore,

P{b2k+1Xkc = `} = 2−k ·

{
2
3
, ` even;

1
3
, ` odd,

(31)

1Informally, one can sample the bits Dk by simulating the Nth Turing machine and
returning a fair coin flip on each stage for which the Turing machine does not halt
or has already halted, and returning a biased coin exactly when the machine halts.
In particular, if the machine never halts, then every bit is a fair coin flip.

56 III. CONDITIONAL DISTRIBUTIONS

n=0

n=1

n=2

n=3
n=4
n=5

0

1

1�2

1�4

1�8

Figure 1. A visualization of the joint distribution of (X,Y),
where Y is uniformly distributed on [0, 1] and satisfies N =
b− log2 Yc. (Recall that N is geometrically distributed.) The
random variables X and Y take values in the unit interval
and so their joint distribution is a distribution on the unit
square. The x-axis corresponds to values taken by X, and the
y-axis corresponds to values taken by Y. The axes on the left
hand side illustrate how an assignment Y = y translates to an
assignment of N = n = b− log2 yc. Note that this is not a plot
of the joint density, even though this density exists. Instead,
consider that each printed pixel corresponds to a rectangular
region (albeit a small one) of the unit square. The gray scale
intensity is proportional to the probability assigned to that
region. Informally, this representation converges to the joint
density as the resolution becomes infinite (i.e., as the pixels
become infinitesimally small). Because the joint distribution
is computable, we can view it at any finite resolution. The
striped pattern is obvious when the corresponding Turing
machine halts quickly. However, the limited resolution of
the printed figure obscures whether, e.g., the row n = 2 is
uniformly distributed (because h(2) =∞) or striped with a
frequency exceeding our resolution (because 1� h(2) <∞).
Sampling from a vertical slice of this figure, i.e., sampling
Y conditioned on a particular value X = x, requires that we
decide whether each pattern is uniform, which is tantamount
to solving the halting problem.

5. ALMOST CONTINUOUS CONDITIONAL DISTRIBUTIONS 57

for every ` ∈ {0, 1, . . . , 2k+1−1}. It follows immediately that the density
p of 2k+1Xk with respect to Lebesgue measure on [0, 2k+1] is given by

p(x) = 2−k ·

{
2
3
, bxc even;

1
3
, bxc odd.

(32)

and so the density of Xk is obtained by rescaling. In particular,

pXk(x) = 2k+1 · p(2k+1x), (33)

completing the proof. �

As Xk admits a density with respect to Lebesgue measure on [0, 1]
for all k ∈ N ∪ {∞}, it follows that the conditional distribution of X
given N admits a conditional density (with respect to Lebesgue measure
on [0, 1]) given by pX|N(x|n) := pXh(n)(x). Each of these densities is
continuous and bounded on the nondyadic reals, and so they can be
combined to form an PX-almost continuous version of the conditional
distribution.

Lemma III.31. There is a PX-almost continuous version of P[N|X].

Proof. By Bayes’ rule (Lemma III.19), the probability kernel κ
given by

κ(x,B) :=

∑
n∈B pX|N(x|n) P{N = n}∑
n∈N pX|N(x|n) P{N = n}

(34)

is a version of the conditional distribution P[N|X]. Every nondyadic
real x ∈ [0, 1] is a point of continuity of pX|N, and so the kernel κ is
PX-almost continuous by Lemma III.21. �

Lemma III.32. For all m,n ∈ N all versions κ of P[N|X], and PX-
almost all x, we have

2m−n · κ(x, {m})
κ(x, {n})

∈


{1

2
, 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3
, 3

4
, 4

3
, 3

2
}, otherwise.

Proof. Let κ be as in Equation (34). Let m,n ∈ N. Then

τ(x) := 2m−n · κ(x, {m})
κ(x, {n})

= 2m−n ·
pX|N(x|m)P{N = m}
pX|N(x|n)P{N = n}

=
pXh(m)

(x)

pXh(n)(x)
.

58 III. CONDITIONAL DISTRIBUTIONS

For k < ∞, pXk(x) ∈ {2
3
, 4

3
} for PX-almost all x. Therefore, for

h(n), h(m) < ∞, τ(x) ∈ {1
2
, 1, 2} for PX-almost all x. As pX∞(x) = 1

for PX-almost all x, we have τ(x) = 1 for PX-almost all x when
h(n) = h(m) =∞ and τ(x) ∈ {2

3
, 3

4
, 4

3
, 3

2
} otherwise. �

Let H = {n ∈ N : h(n) < ∞}, i.e., the indices of the Turing
machines that halt (on input 0). A classic result in computability
theory [Tur36] shows that the halting set H is not computable.

Proposition III.33. The conditional distribution P[N|X] is not com-
putable.

Proof. Suppose the conditional distribution P[N|X] were com-
putable. Let n be the index of some Turing machine that halts (on
input 0), i.e., for which h(n) <∞, and consider any m ∈ N.

Let κ be an arbitrary version of P[N|X], and let R be a PX-measure
one set on which κ is computable. Then the function τ(·) := 2m−n ·
κ(·,{m})
κ(·,{n}) is also computable on R, by Corollary III.10. By Lemma III.32,

there is a PX-measure one subset D ⊆ R on which τ exclusively takes
values in the set T = {1

2
, 2

3
, 3

4
, 1, 4

3
, 3

2
, 2}.

Although PX-almost all reals in [0, 1] are in D, any particular real
may not be. The following construction can be viewed as an attempt
to compute a particular point d ∈ D at which we can evaluate τ . In
fact, we need only a finite approximation to d, because τ is computable
on D and T is finite.

For each t ∈ T , let Bt be an ideal ball centered at t of radius less
than 1

6
, so that Bt∩T = {t}. By Definition II.8, for each t ∈ T , there is

a c.e. open set Ut ⊆ [0, 1] such that τ−1(Bt)∩R = Ut∩R. Because every
open interval has positive PX-measure, if Ut is nonempty, then Ut ∩D
is a positive PX-measure set whose image is {t}. Thus, PX-almost all
x ∈ Ut ∩R satisfy τ(x) = t. As

⋃
t Ut has PX-measure one, there is at

least one t ∈ T for which Ut is nonempty. Because each Ut is c.e. open,
we can compute the index t̂ ∈ T of some nonempty Ut̂.

By Lemma III.32 and the fact that h(n) <∞, there are two cases:

(i) t̂ ∈ {1
2
, 1, 2}, implying h(m) <∞, or

(ii) t̂ ∈ {2
3
, 3

4
, 4

3
, 3

2
}, implying h(m) =∞.

Because m was arbitrary, and because the mth Turing machine halts
if and only if h(m) <∞, we can use τ to compute the halting set H.
Therefore if P[X|N] were computable, then H would be computable, a
contradiction. �

6. NONCOMPUTABLE CONTINUOUS CONDITIONAL DISTRIBUTIONS 59

Because this proof relativizes, we see that if the conditional distri-
bution P[N|X] is A-computable for some oracle A, then A computes the
halting set H.

Computable operations map computable points to computable
points, and so we obtain the following consequence.

Theorem III.34. The operation (X,Y) 7→ P[Y|X] of conditioning a
pair of real-valued random variables, even when restricted to pairs for
which there exists a PX-almost continuous version of the conditional
distribution, is not computable.

It is natural to ask whether this construction can be extended
to produce a pair of computable random variables whose conditional
distribution is noncomputable but has an everywhere continuous version.

6. Noncomputable continuous conditional distributions

As we saw in Section 4, discontinuity poses a fundamental obstacle
to the computability of conditional probabilities. As such, it is natural
to ask whether we can construct a pair of random variables (Z,N)
that are computable and admit an everywhere continuous version of
the conditional distribution P[N|Z], yet for which every version is
noncomputable. In fact, this is possible using a construction similar to
that of (X,N) in Section 5.

In particular, if we think of the construction of the kth bit of X as
an iterative process, we see that there are two distinct stages. During
the first stage, which occurs so long as k < h(N), the bits of X simply
mimic those of the uniform random variable V. Then during the second
stage, once k ≥ h(N), the bits mimic that of 1

2
(C + U).

Our construction of Z will differ in the second stage, where the
bits of Z will instead mimic those of a random variable S specially
designed to smooth out the rough edges caused by the biased coin C.
In particular, S will be absolutely continuous and its density will be
infinitely differentiable.

We will now make the construction precise. We begin by defining
several random variables from which we will construct S.

Lemma III.35. There is a distribution F on [0, 1] with the following
properties:

• F is computable.
• F admits a density pF with respect to Lebesgue measure (on

[0, 1]) which is infinitely differentiable on all of [0, 1].
• pF(0) = 2

3
and pF(1) = 4

3
.

60 III. CONDITIONAL DISTRIBUTIONS

-1 1

e-1

1

2

3

4

3

Figure 2. (left) f(x) = e
− 1

1−x2 , for x ∈ (−1, 1), and 0
otherwise, a C∞ bump function whose derivatives at ±1

are all 0. (right) A density p(y) = 2
3

(
Φ(2y−1)

Φ(1)
+ 1
)
, for

y ∈ (0, 1), of a random variable satisfying Lemma III.35,

where Φ(y) =
∫ y
−1
e
− 1

1−x2 dx is the integral of the bump
function.

• dn+
dxn

pF(0) =
dn−
dxn

pF(1) = 0, for all n ≥ 1 (where
dn−
dxn

and
dn+
dxn

are
the left and right derivatives respectively).

(See Figure 2 for one such random variable.) Note that F is almost
surely nondyadic and so the r-th bit Fr of F is a computable random
variable.

Let t ∈ {0, 1}3. For r ∈ N, define

S000
r :=

{
0, r < 3;

Fr−3, r ≥ 3;

S100
r :=


1, r = 0;

0, 1 ≤ r < 3;

1− Fr−3, r ≥ 3;

Str :=


C, r = 0;

t(r), 1 ≤ r < 3;

Ur−3, otherwise;

when t 6∈ {000, 100}. It is straightforward to show that Str are com-
putable random variables, uniformly in t and r.

Finally, let T be a uniformly random element in {0, 1}3, and let the
r-th bit of S be ST

r .
It is straightforward to show that

6. NONCOMPUTABLE CONTINUOUS CONDITIONAL DISTRIBUTIONS 61

1�8 1�2 5�8 1

2

3

4

3

Figure 3. Graph of the density function pS.

(i) S admits a density pS with respect to Lebesgue measure on
[0, 1].

(ii) pS is infinitely differentiable everywhere with
dn+
dxn

pS(0) =
dn−
dxn

pS(1),
for all n ≥ 0.

(For a visualization of the density pS see Figure 3.)
We say a real x ∈ [0, 1] is valid for S if x ∈ (1

8
, 4

8
) ∪ (5

8
, 8

8
). (For

nondyadic x, this is equivalent to the first 3 bits of the binary expansion
of x not being 000 or 100.) The following are then straightforward
consequences of the construction of S and the definition of valid points:

(iii) If x is valid for S then pS(x) ∈ {2
3
, 4

3
}.

(iv) The Lebesgue measure (and PS-measure) of the collection of
valid x is 3

4
.

Next we define, for every k ∈ N, the random variables Zk mimicking
the construction of Xk. Specifically, for k ∈ N, define

Zk :=
b2kVc+ S

2k
, (35)

and let Z∞ := limk→∞ Zk = V. Then the nth bit of Zk is

(Zk)n =

{
Vn, n < k;

Sn−k, n ≥ k
a.s. (36)

For k < ∞, we say that x ∈ [0, 1] is valid for Zk if the fractional
part of 2kx is valid for S, and we say that x is valid for Z∞ for all x.
Let Ak be the collection of x valid for Zk. It follows from (iv) that the
Lebesgue measure of Ak is 3

4
for all k <∞.

It is straightforward to show from (i) and (ii) above that Zk admits
a density pZk with respect to Lebesgue measure on [0, 1] and that this
density is infinitely differentiable.

62 III. CONDITIONAL DISTRIBUTIONS

To complete the construction, we define Z := Zh(N). The following
results are analogous to those in the almost continuous construction:

Lemma III.36. The random variable Z is computable.

Lemma III.37. There is an everywhere continuous version of P[N|Z].

Proof. The density pZ is everywhere continuous and positive. �

Lemma III.38. For all m,n ∈ N, all version κ of the conditional
distribution P[N|Z] and PZ-almost all x, if x is valid for Zh(n) and for
Zh(m) then

2m−n · κ(x, {m})
κ(x, {n})

∈


{1

2
, 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3
, 3

4
, 4

3
, 3

2
}, otherwise.

We now show that one can compute the halting set from any version
of the conditional distribution.

Proposition III.39. The conditional distribution P[N|Z] is not com-
putable.

Proof. Suppose the conditional distribution P[N|Z] were com-
putable. Let n be the index of some Turing machine that does not halt
(on input 0), i.e., for which h(n) = ∞. Consider any m ∈ N. Notice
that all x ∈ [0, 1] are valid for Zh(n) and so Ah(n) ∩ Ah(m) = Ah(m).

Let κ be an arbitrary version of P[N|Z], and let R be a PZ-measure
one set on which κ is computable. Then the function

τ(·) := 2m−n · κ(·, {m})
κ(·, {n})

(37)

is also computable on R. Define T∞ := {1}, T<∞ := {2
3
, 4

3
} and

T := T∞ ∪ T<∞.
By equation (37), there is a PZ-measure one subset D ⊆ R such

that whenever x ∈ D ∩ Ah(m) then τ(x) is in T .
For t ∈ T , let Bt be an ideal ball of radius less than 1

6
about t,

and let Ut be a c.e. open set such that τ−1(Bt) ∩ R = Ut ∩ R. Define
U∞ := U1 and U<∞ := U 2

3
∪ U 4

3
. Notice these are both c.e. open sets

and D ∩ U∞ ∩ U<∞ = ∅.
We now consider two cases. First, assume h(m) =∞. In this case

Ah(m) = [0, 1] and Ah(m) ∩D ⊆ τ−1(T∞) ∩D = U∞ ∩D. Hence
(a) The Lebesgue measure of U∞ is 1 > 1

2
.

If, however, h(m) < ∞ then Ah(m) has Lebesgue measure 3
4

and
Ah(m) ⊆ τ−1(T<∞) ∩D = U<∞ ∩D. So

7. CONDITIONING IS TURING JUMP COMPUTABLE 63

(b) The Lebesgue measure of U<∞ is at least 3
4
> 1

2
.

In particular, for each m ∈ N exactly one of (a) or (b) must hold.
But it is clear that the collection of m for which (b) holds a c.e. set
and the collection of m for which (b) does not hold (i.e., for which
(a) holds) is also a c.e. set. So, as (b) holds of m if and only if
m ∈ H = {m : h(m) <∞}, we have H is a computable set, which we
know is a contradiction.

Therefore κ must not be computable. �

In conclusion, we obtain the following strengthening of Theorem III.34.

Theorem III.40. Let X and Y be computable real-valued random vari-
ables. Then operation X,Y 7→ P[X|Y] of conditioning a pair of real-
valued random variables, even when restricted to pairs for which there
exists an everywhere continuous version of the conditional distribution,
is not computable.

Despite these fundamental noncomputability results, many impor-
tant questions remain: How badly noncomputable is conditioning, even
restricted to these continuous settings? What is the computational
complexity of conditioning on efficiently computable continuous random
variables? In what restricted settings is conditioning computable? In
the final section, we begin to address the latter of these.

7. Conditioning is Turing jump computable

Having demonstrated a pair of computable random variables for
which conditioning is at least as hard as the halting problem, we now
show that it is no harder. Recall that the Turing jump x′ of a real
x ∈ R is given by the halting set relative to the oracle x. (In particular,
the halting set H is Turing equivalent to 0′.)

Theorem III.41. Let X be a computable random variable in R, and
let Y be a computable random variable in a computable metric space T .
If x ∈ R is a point with the Tjur property (for Y given X) then Px

Y is
x′-computable.

Proof. Begin by x-computing a nested sequence {Vi}i∈N of rational
intervals that converge rapidly to x, i.e., Vi+1 ⊆ Vi and

⋂
i Vi = {x},

and Vi is contained in the 2−i-ball around x. Because x has the Tjur
property, x is in the support of X. Hence, for each i ∈ N, we have
PX(Vi) > 0. Hence, by Lemma II.22 and Remark II.24, for each i we
can compute a PX-almost decidable set Bi ⊆ Vi such that PX(Bi) > 0.
Note that, by Lemma III.13, the sequence {PY(·|Bi)} is a computable
sequence of computable measures, uniformly in i.

64 III. CONDITIONAL DISTRIBUTIONS

By construction, the sequence {(Vi, Bi)}i≥1 is cofinal in D(x), and
so by the Tjur property of x,

Px
Y(A) = lim

i→∞
P(Y ∈ A|X ∈ Bi), (38)

for every measurable set A.
Let A be an arbitrary PY-almost decidable set. For each i, by

Lemma II.21, P(Y ∈ A|X ∈ Bi) is a computable real. Hence the
sequence {P(Y ∈ A|X ∈ Bi)}i≥1 is an x-computable sequence of reals,
uniformly in A. By Eq. (38) and the limit lemma for reals (see, e.g.,
[Zhe02, Thm. 9.4]), Px

Y(A) is an x′-computable real, uniformly in A.
Hence, by Corollary II.23, Px

Y is x′-computable. �

8. Continuity in the setting of identifiability in the limit

Osherson, Stob, and Weinstein [OSW88] study learning theory in the
setting of identifiability in the limit (see [Gol67] and [Put85] for more
details on this setting) and prove that a so-called “computable Bayesian”
learner fails to identify the index of a c.e. set that is otherwise com-
putably identifiable in the limit. From the perspective of computable
analysis, this work can be interpreted as studying when certain condi-
tional distributions are 0′-computable, rather than computable. A close
analysis of their construction reveals that the conditional distribution
they define is an everywhere discontinuous function, hence fundamen-
tally not computable in the same way as our much more elementary
construction involving a mixture of two measures concentrated on the
rationals and irrationals, respectively (see Proposition III.28). As we
have argued, the more appropriate operator to study is that restricted
to those random variables whose conditional distributions admit almost
continuous versions. For the interested reader, we now give a close
analysis of the construction of Osherson, Stob, and Weinstein from the
perspective of the computability of conditional distributions.

Let g : N∗ → N be a “learner”, i.e., a map taking finite prefixes
of integers (of the infinite integer “text” we are trying to “identify”)
to integers (guesses at an index for a c.e. set containing exactly the
numbers in the infinite text). Assuming that the index and sequence
are random, a learner g is “Bayesian” if g(t̄n) is the most likely index
given the evidence “t̄n is a finite prefix of the infinite sequence t”.

[OSW88] give a computable learner g that is Bayesian. But it does
not “solve” the inference problem, because for a positive measure set of
strings, the limit

lim
n
g(tn) (39)

8. CONTINUITY IN THE SETTING OF IDENTIFIABILITY IN THE LIMIT 65

does not exist. In this case, both values that it oscillates between are
“correct” answers, in the sense that they both code the same (c.e.) set.
In order for a learner to recognize when this oscillation is unnecessary,
Osherson, Stob, and Weinstein show that it is necessary and sufficient
to decide whether a certain program has a domain greater than 2. This
property is only semidecidable, and so no computable Bayesian learner
exists.

One might object that oscillating between two correct answers is
satisfactory, however, this property of “confirmation” is a fundamental
one in the philosophical foundations of the learning in the limit frame-
work. However, the authors point out at the end of the paper that the
result relies on this particular definition of learnability and that other
definitions may see the result change. In fact, in [OSW86] they describe
more general settings that include the so-called “intensional” setting.
In this setting, the computable Bayesian learner they describe would
be considered to solve the inductive inference problem.2

How does their construction relate to the problem of computing
conditional distributions or probabilities? Below, we show that the
conditional distribution driving the (maximum a posteriori) decisions
of the “Bayesian learner” is discontinuous on every measure one set. We
have already argued that a more interesting setting is one in which we are
guaranteed the existence of an almost continuous version. However, it
seems likely that other results in the identifiability in the limit literature
might bear on the computability of important operations in statistics.

We now proceed to study the aforementioned conditional distribution
in detail. [OSW86] fix four enumerations of the natural numbers Ei,
i = 1, . . . , 4, and distributions {pn : n ∈ N} and then define the following
random variables:

(1) A geometric random variable N and discrete random variable
D, uniformly distributed on {1, 2, 3, 4};

(2) A derived random variable K := ED(N), corresponding to the
N’th entry in the D’th enumeration;

(3) An i.i.d. sequence T of draws from pK.

The random index K encodes, among other things, a distribution
pK on the symbols {A,B,C, 〈0〉, 〈1〉, 〈2〉, . . . }. In fact, K determines
this distribution by way of coding an enumeration of the support S (K)
of pK. Roughly, the k’th entry in this enumeration is returned with
probability 2−k−1 (the enumeration may repeat itself and in this way

2Historically, the “identifiabilty in the limit” framework was eventually supplanted
by the vastly more productive “probably approximately correct”, or PAC, framework
introduced by Valiant [Val84].

66 III. CONDITIONAL DISTRIBUTIONS

can give some value with nondyadic probability). Let rng(K) = {J :
S (J) = S (K)}. Roughly any answer in rng(K) counts as a correct
answer when identifying a set in the limit.

The “inductive inference problem” that [OSW86] put forth is, given
T, return an integer in rng(K) (i.e., any code for S (K)). In their setting,
a learner receives a finite prefix and returns a guess. The Bayesian is
forced to return a guess k such that P[k ∈ rng(K)|Tn] is maximized.

We will now characterize P[S (K)|T].
By construction of the distribution (see [OSW88] for details), one

learns the value N from observing an almost surely finite prefix of T.
Let η : NN → N be a map such that

η(T) = N a.s. (40)

That is, η is the function that (almost always) reads off the value of N
from T. Given the details in [OSW88], it is easy to see that η is almost
computable (and hence, almost continuous).

Furthermore, by construction, with probability one,

S (E1(N)) = S (E2(N)) (41)

and

S (E3(N)) = S (E4(N)), (42)

and in fact, sometimes

S (E1(N)) = S (E3(N)). (43)

More precisely, S (E1(N)) ⊆ S (E3(N)) a.s., and

S (E3(N)) \S (E2(N)) ⊆ {C}, (44)

i.e., when they differ, the former simply includes the extra symbol C.
To describe when (43) holds, define D(n) to be the cardinality of the
domain of the n’th program. By construction, S (E1(n)) = S (E3(n))
if and only if D(n) ≤ 2.

When D(N) > 2 and C ∈ S (K), then C will appear in T almost
surely (in fact it will appear an infinite number of times). Therefore, a
version κ of P[S (K)|T] is a random delta distribution

κ(t, ·) = δM(t)(·) (45)

whose location M(t) is a.e. unique and given by

M(t) =

{
S (E1(n)) D(n) ≤ 2 or t does not contain a C

S (E3(n)) otherwise,

(46)

8. CONTINUITY IN THE SETTING OF IDENTIFIABILITY IN THE LIMIT 67

where n = η(t). We now discuss the continuity of versions of P[S (K)|T],
or equivalently, M . The set

∆ := {t ∈ NN|D(η(t)) ≤ 2} (47)

is an (almost) open set in Baire space because η is almost continuous
and indicator functions continuous on N (though not computable, in this
case). Note that from (46), we see that, restricted to the set {T ∈ ∆},

S (K) = S (E1(N)) a.s. (48)

and so there exists a computable on {T ∈ ∆} version of M . We now
consider the complement, {T 6∈ ∆}. In this case, M simplifies to

M(t) =

{
S (E1(n)) t does not contain a C

S (E3(n)) otherwise,
(49)

with n = η(t). The set

{t|t contains at least one C} (50)

=
⋃
{t× NN|t is a finite string of integers ending with a C}

is open in Baire space, but not clopen. This implies that M is discon-
tinuous (as well as every restriction of M to a measure one set). To
see this, assume otherwise, and let t be such that M(t) = S (E1(η(t))).
Then

M(t̄m) = {S (E1(η(t))} (51)

for some m-length prefix t̄m of t. But, of course, t̄m, being an open set,
contains strings with C’s in them, so M is discontinuous at t. As t was
arbitrary, it follows that M is discontinuous everywhere. Showing that
M remains discontinuous after restricting its domain to a measure one
subset is straightforward.

To connect this with the question of identifiability in the limit, note
that, because the conditional distribution is a delta distribution, finding
the code k such that

P[k ∈ rng(K)|T] ≥ P[j ∈ rng(K)|T] (52)

for all j is tantamount to computing P[S (K)|T]. It is then easy to see
that any version of the conditional probability on the left is not almost
continuous.

We now turn to the study of exchangeable sequences of random variables.

CHAPTER IV

Exchangeable sequences and de Finetti’s theorem

This chapter examines the computable probability theory of ex-
changeable sequences of real-valued random variables. The notion
of exchangeability, that the probability distribution of (i.e., our prior
knowledge about) a sequence of data X1, X2, . . . does not depend on the
ordering of the data, plays a central role in hierarchical Bayesian model-
ing [BS94]. The classical de Finetti theorem states that an exchangeable
sequence of real random variables is a mixture of independent and iden-
tically distributed (i.i.d.) sequences of random variables. Moreover,
there is an (almost surely unique) measure-valued random variable,
called the directing random measure, conditioned on which the random
sequence is i.i.d. The distribution of the directing random measure is
called the de Finetti measure or the mixing measure.

In statistics and machine learning, we often have a description of
an exchangeable sequence X1, X2, . . . in terms of an algorithm which
samples the elements in order. As an example, two of the most famous
stochastic processes in Bayesian nonparametrics — the Chinese Restau-
rant process and the Indian Buffet process — have such descriptions.
This chapter studies the following question: What can an algorithmic
description tell us about the directing random measure? In particular,
given an algorithm for sampling the exchangeable sequence, is there an
algorithm for sampling the directing random measure? And if so, how
can we find it?

As an example, consider the Indian Buffet process, which has been
applied to the problem of modeling visual scenes, analogical reasoning
and many other phenomena. While its de Finetti measure has been
identified [TJ07, TGG07], no exact algorithm is known for generating
independent samples: both the inverse Levy measure [WI98] and stick
breaking constructions [TGG07] fall short of producing exact samples.
A new representation would suggest new algorithms for this important
modeling tool.

We prove a computable version of de Finetti’s theorem: the distribu-
tion of an exchangeable sequence of real random variables is computable
if and only its de Finetti measure is computable. The classical proofs

69

70 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

are non-constructive and do not immediately suggest a computable
approach; instead, we show how to directly compute the de Finetti
measure (as characterized by the classical theorem) in terms of a com-
putable representation of the distribution of the exchangeable sequence.
Along the way, we prove that a distribution on [0, 1]ω is computable if
and only if its moments are uniformly computable, which may be of in-
dependent interest. The result has some immediate corollaries including
one that explains exactly when we should expect to be able to predict
the directing random measure from observations of the corresponding
exchangeable sequence [FR10], a question that we explore in Section 6.

A key step in the proof is to describe the de Finetti measure in
terms of the moments of a set of random variables derived from the
exchangeable sequence. When the directing random measure is (almost
surely) continuous, we can show that these moments are computable,
which suffices to complete the proof of the main theorem in this case.
In the general case, we give a proof inspired by a randomized algorithm
that, with probability one, computes the de Finetti measure.

Exchangeable sequences play a fundamental role in both statistical
models and their implementation on computers. Given a sequential
description of an exchangeable process, in which one uses previous sam-
ples or sufficient statistics to sample the next element in the sequence,
a direct implementation in these languages would need to use non-local
communication (to access old samples or update sufficient statistics).
This is often implemented by modifying the program’s internal state
directly (i.e., using mutation), or via some indirect method such as a
state monad. The classical de Finetti theorem implies that (for such
sequences over the reals) there is an alternative description in which
samples are conditionally independent (and so could be implemented
without non-local communication), thereby allowing parallel implemen-
tations. But the classical result does not imply that there is a program
that computes the sequence according to this description. Even when
there is such a program, the classical theorem does not provide a method
for finding it. The computable de Finetti theorem states that such a
program does exist. Moreover, the proof itself provides the method for
constructing the desired program. In Section 5 we describe how an
implementation of the computable de Finetti theorem performs a code
transformation that eliminates the use of non-local state in procedures
that induce exchangeable stochastic processes.

This transformation is of interest beyond its implications for pro-
gramming language semantics. In statistics and machine learning, it
is often desirable to know the representation of an exchangeable sto-
chastic process in terms of its de Finetti measure (for several examples,

1. DE FINETTI’S THEOREM 71

see Section 5.3). Many such processes in machine learning have very
complicated (though computable) distributions, and it is not always
feasible to find the de Finetti representation by hand. The computable
de Finetti theorem provides a method for automatically obtaining such
representations.

1. de Finetti’s Theorem

Fix a basic probability space (Ω,F ,P) and let BR denote the Borel
sets of R. Note that we will use ω to denote the set of nonnegative
integers (as in logic), rather than an element of the basic probability
space Ω (as in probability theory). By a random measure we mean a
random element in the space of Borel measures on R, i.e., a kernel from
(Ω,F) to (R,BR). An event A ∈ F is said to occur almost surely (a.s.)
if PA = 1. We denote the indicator function of a set B by 1B. Unlike
previous chapters, we will not use a sans serif font for random variables.

Definition IV.1 (Exchangeable sequence). Let X = {Xi}i≥1 be a
sequence of real random variables. We say that X is exchangeable if, for
every finite set {k1, . . . , kj} of distinct indices, (Xk1 , ..., Xkj) is equal in
distribution to (X1, ..., Xj).

Theorem IV.2 (de Finetti [Kal05, Chap. 1.1]). Let X = {Xi}i≥1 be
an exchangeable sequence of real-valued random variables. There is a
random probability measure ν on R such that {Xi}i≥1 is conditionally
i.i.d. with respect to ν. That is,

P[X ∈ · | ν] = ν∞ a.s. (53)

Moreover, ν is a.s. unique and given by

ν(B) = lim
n→∞

1

n

n∑
i=1

1B(Xi) a.s., (54)

where B ranges over BR.

The random measure ν is called the directing random measure.1

Its distribution (a measure on probability measures), which we denote
by µ, is called the de Finetti measure or the mixing measure. As in
Kallenberg [Kal05, Chap. 1, Eq. 3], we may take expectations on both
sides of (53) to arrive at a characterization

P{X ∈ · } = Eν∞ =

∫
m∞µ(dm) (55)

1 The directing random measure is only unique up to a null set, but it is customary
to refer to it as if it were unique, as long as we only rely on almost-sure properties.

72 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

of an exchangeable sequence as a mixture of i.i.d. sequences.
A Bayesian perspective suggests the following interpretation: ex-

changeable sequences arise from independent observations from a latent
measure ν. Posterior analysis follows from placing a prior distribution
on ν. For further discussion of the implications of de Finetti’s theorem
for the foundations of statistical inference, see Dawid [Daw82] and
Lauritzen [Lau84].

In 1931, de Finetti [dF31] proved the classical result for binary
exchangeable sequences, in which case the de Finetti measure is sim-
ply a mixture of Bernoulli distributions; the exchangeable sequence is
equivalent to repeatedly flipping a coin whose weight is drawn from
some distribution on [0, 1]. In 1937, de Finetti [dF37] extended the
result to arbitrary real-valued exchangeable sequences. We will refer to
this more general version as the de Finetti theorem. Later, Hewitt and
Savage [HS55] extended the result to compact Hausdorff spaces, and
Ryll-Nardzewski [RN57] introduced a weaker notion than exchangeabil-
ity that suffices to give a conditionally i.i.d. representation. Hewitt and
Savage [HS55] provide a history of the early developments, and a discus-
sion of some subsequent extensions can be found in Kingman [Kin78],
Diaconis and Freedman [DF84], and Aldous [Ald85]. A recent book
by Kallenberg [Kal05] provides a comprehensive view of the area of
probability theory that has grown out of de Finetti’s theorem, stressing
the role of invariance under symmetries.

1.1. Examples. Consider an exchangeable sequence of [0, 1]-valued
random variables. In this case, the de Finetti measure is a distribu-
tion on the (Borel) measures on [0, 1]. For example, if the de Finetti
measure is a Dirac measure on the uniform distribution on [0, 1] (i.e.,
the distribution of a random measure which is almost surely the uni-
form distribution), then the induced exchangeable sequence consists of
independent, uniformly distributed random variables on [0, 1].

As another example, let p be a random variable, uniformly dis-
tributed on [0, 1], and let ν := δp, i.e., the Dirac measure concentrated
on p. Then the de Finetti measure is the uniform distribution on Dirac
measures on [0, 1], and the corresponding exchangeable sequence is
p, p, . . . , i.e., a constant sequence, marginally uniformly distributed.

As a further example, we consider a stochastic process {Xi}i≥1

composed of binary random variables whose finite marginals are given

1. DE FINETTI’S THEOREM 73

by

P{X1 = x1, ..., Xn = xn} =

Γ(α + β)

Γ(α)Γ(β)

Γ(α + Sn)Γ(β + (n− Sn))

Γ(α + β + n)
, (56)

where Sn :=
∑

i≤n xi, and where Γ is the Gamma function and α, β
are positive real numbers. (One can verify that these marginals satisfy
Kolmogorov’s extension theorem [Kal02, Theorem 6.16], and so there
is a stochastic process {Xi}i≥1 with these finite marginals.) Clearly
this process is exchangeable, as n and Sn are invariant to order. This
process can also be described by a sequential scheme known as Pólya’s
urn [dF75, Chap. 11.4]. Each Xi is sampled in turn according to the
conditional distribution

P{Xn+1 = 1 | X1 = x1, ..., Xn = xn} =
α + Sn

α + β + n
. (57)

This process is often described as repeated sampling from an urn:
starting with α red balls and β black balls, a ball is drawn at each
stage uniformly at random, and then returned to the urn along with
an additional ball of the same color. By de Finetti’s theorem, there
exists a random variable θ ∈ [0, 1] with respect to which the sequence
is conditionally independent and P{Xi = 1 | θ} = θ for each i. In fact,

P[X1 = x1, ..., Xn = xn | θ] =∏
i≤n

P[Xi = xi | θ] = θSn(1− θ)(n−Sn). (58)

Furthermore, one can show that θ is Beta(α, β)-distributed, and so
the process given by the marginals (56) is called the Beta-Bernoulli
process. Finally, the de Finetti measure is the distribution of the random
Bernoulli measure θδ1 + (1− θ)δ0.

1.2. The Computable de Finetti Theorem. In each of these
examples, the de Finetti measure is a computable measure. (In Section 2,
we make this and related notions precise. For an implementation of the
Beta-Bernoulli process in a probabilistic programming language, see in
Section 5.) A natural question to ask is whether computable exchange-
able sequences always arise from computable de Finetti measures. In
fact, computable de Finetti measures give rise to computable distribu-
tions on exchangeable sequences (see Proposition IV.17). Our main
result is the converse: every computable distribution on real-valued
exchangeable sequences arises from a computable de Finetti measure.

74 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

Theorem IV.3 (Computable de Finetti). Let χ be the distribution of
a real-valued exchangeable sequence X, and let µ be the distribution of
its directing random measure ν. Then µ is computable relative to χ,
and χ is computable relative to µ. In particular, χ is computable if and
only if µ is computable.

The directing random measure is classically given a.s. by the explicit
limiting expression (54). Without a computable handle on the rate of
convergence, the limit is not directly computable, and so we cannot
use this limit directly to compute the de Finetti measure. However, we
are able to reconstruct the de Finetti measure using the moments of
random variables derived from the directing random measure.

Outline of the Proof. Recall that BR denotes the Borel sets of R.
Let IR denote the set of open intervals, and let IQ denote the set of
open intervals with rational endpoints. Then IQ (IR (BR. For k ≥ 1
and β ∈ BkR = BR×· · ·×BR, we write β(i) to denote the ith coordinate
of β.

Let X = {Xi}i≥1 be an exchangeable sequence of real random
variables, with distribution χ and directing random measure ν. For
every γ ∈ BR, we define a [0, 1]-valued random variable Vγ := νγ. A
classical result in probability theory [Kal02, Lem. 1.17] implies that a
Borel measure on R is uniquely characterized by the mass it places on
the open intervals with rational endpoints. Therefore, the distribution
of the stochastic process {Vτ}τ∈IQ determines the de Finetti measure µ
(the distribution of ν).

Definition IV.4 (Mixed moments). Let {xi}i∈C be a family of random
variables indexed by the set C. The mixed moments of {xi}i∈C are the

expectations E
(∏k

i=1 xj(i)
)
, for k ≥ 1 and j ∈ Ck.

We can now restate the consequence of de Finetti’s theorem de-
scribed in Eq. (55), in terms of the finite-dimensional marginals of the
exchangeable sequence X and the mixed moments of {Vβ}β∈BR .

Corollary IV.5. P
(⋂k

i=1{Xi ∈ β(i)}
)

= E
(∏k

i=1 Vβ(i)

)
for k ≥ 1 and

β ∈ BkR.

For k ≥ 1, let LRk denote the set of finite unions of open rectangles in
Rk (i.e., the lattice generated by IkR), and let LQk denote the set of finite
unions of open rectangles in Qk. (Note that IQ (LQ (LR (BR.) As
we will show in Lemma IV.10, when χ is computable, we can enumerate
all rational lower bounds on quantities of the form

P
(⋂k

i=1{Xi ∈ σ(i)}
)
, (59)

2. COMPUTABLE REPRESENTATIONS 75

where k ≥ 1 and σ ∈ LkQ.
In general, we cannot enumerate all rational upper bounds on (59).

However, if σ ∈ LkQ (for k ≥ 1) is such that, with probability one,

ν places no mass on the boundary of any σ(i), then P
(⋂k

i=1{Xi ∈
σ(i)}

)
= P

(⋂k
i=1{Xi ∈ σ(i)}

)
, where σ(i) denotes the closure of σ(i).

In this case, for every rational upper bound q on (59), we have that
1− q is a lower bound on

P
(⋃k

i=1{Xi 6∈ σ(i)}
)
, (60)

a quantity for which we can enumerate all rational lower bounds. If this
property holds for all σ ∈ LkQ, then we can compute the mixed moments

{Vτ}τ∈LQ . A natural condition that implies this property for all σ ∈ LkQ
is that ν is a.s. continuous (i.e., with probability one, ν{x} = 0 for
every x ∈ R).

In Section 3, we show how to computably recover a distribution
from its moments. This suffices to recover the de Finetti measure when
ν is a.s. continuous, as we show in Section 4.1. In the general case,
point masses in ν can prevent us from computing the mixed moments.
Here we use a proof inspired by a randomized algorithm that almost
surely avoids the point masses and recovers the de Finetti measure. For
the complete proof, see Section 4.3.

2. Computable Representations

In this chapter, we take a topological perspective on computability.
For metrizable spaces, these notions align with those described in
Chapter II. We begin by introducing notions of computability on various
topological spaces. These definitions follow from more general notions
studied in the framework of Type-2 effectivity [Wei00b], although we
will sometimes derive simpler equivalent representations for the concrete
spaces we need (such as the real numbers, Borel measures on reals, and
Borel measures on Borel measures on reals). For details, see the original
papers, as noted.

We assume familiarity with standard notions of computability as
briefly outlined in Chapter II. Recall that r ∈ R is a c.e. real (sometimes
called a left-c.e. real) when the set of all rationals less than r is a c.e. set.
Similarly, r is a co-c.e. real (sometimes called a right-c.e. real) when
the set of all rationals greater than r is c.e. A real r is a computable
real when it is both a c.e. and co-c.e. real.

To represent more general spaces, we work in terms of an effectively
presented topology. Suppose that S is a second-countable T0 topological
space with subbasis S. For every point x ∈ S, define the set Sx :=

76 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

{B ∈ S : x ∈ B}. Because S is T0, we have Sx 6= Sy when x 6= y, and
so the set Sx uniquely determines the point x. It is therefore convenient
to define representations on topological spaces under the assumption
that the space is T0. In the specific cases below, we often have much
more structure, which we use to simplify the representations.

We now develop these definitions more formally.

Definition IV.6 (Computable topological space). Let S be a second-
countable T0 topological space with a countable subbasis S. Let s : ω →
S be an enumeration of S. We say that S is a computable topological
space (with respect to s) when the set{

〈m,n〉 : s(m) = s(n)
}

(61)

is a c.e. subset of ω, where 〈 · , · 〉 is a standard pairing function.

This definition of a computable topological space is derived from
Weihrauch [Wei00b, Def. 3.2.1]. (See also, e.g., Grubba, Schröder, and
Weihrauch [GSW07, Def. 3.1].)

It is often possible to pick a subbasis S (and enumeration s) for which
the elemental “observations” that one can computably observe are those
of the form x ∈ B, where B ∈ S. Then the set Sx = {B ∈ S : x ∈ B}
is computably enumerable (with respect to s) when one can eventually
list every basic open set that contains the point x; we will call such
a point x computable. This is one motivation for the definition of
computable point in a T0 space below.

Note that in a T1 space, two computable points are computably
distinguishable, but in a T0 space, computable points will be, in general,
distinguishable only in a computably enumerable fashion. However, this
is essentially the best that is possible, if the open sets are those that
we can “observe”. (For more details on this approach to considering
datatypes as topological spaces, in which basic open sets correspond
to “observations”, see Battenfeld, Schröder, and Simpson [BSS07, §2].)
Note that the choice of topology and subbasis are essential; for example,
we can recover both computable reals and c.e. reals as instances of
“computable point” for appropriate computable topological spaces, as
we describe in Section 2.1.

Definition IV.7 (Names and computable points). Let (S,S) be a
computable topological space with respect to an enumeration s. Let
x ∈ S. The set

{n : s(n) ∈ Sx} (62)

is called the s-name (or simply, name) of x. We say that x is computable
when its s-name is c.e.

2. COMPUTABLE REPRESENTATIONS 77

Note that this use of the term “name” is similar to the notion of a
“complete name” (see [Wei00b, Lem. 3.2.3]), but differs somewhat from
TTE usage (see [Wei00b, Def. 3.2.2]).

Definition IV.8 (Computable functions). Let (S,S) and (T, T) be
computable topological spaces (with respect to enumerations s and t,
respectively). We say that a function f : S → T is computable (with
respect to s and t) when there is a computable functional g : ωω → ωω

such that for all x ∈ dom(f) and enumerations N = {ni}i∈ω of an
s-name of x, we have that g(N) is an enumeration of a t-name of f(x).

(See [Wei00b, Def. 3.1.3] for more details.) Note that an implication
of this definition is that computable functions are continuous.

Recall that a functional g : ωω → ωω is computable if there is a
monotone computable function h : ω<ω → ω<ω mapping finite prefixes
(i.e., finite sequences of integers) to finite prefixes, such that given
increasing prefixes of an input N in the domain of g, the output of
h will eventually include every finite prefix of g(N). (See [Wei00b,
Def. 2.1.11] for more details.) Informally, h can be used to read in an
enumeration of an s-name of a point x and output an enumeration of a
t-name of the point f(x).

Let (S,S) and (T, T) be computable topological spaces. In many
situations where we are interested in establishing the computability
of some function f : S → T , we may refer to the function implicitly
via pairs of points x ∈ S and y ∈ T related by y = f(x). In this case,
we will say that y (under the topology T) is computable relative to x
(under the topology S) when f : S → T is a computable function. We
will often elide one or both topologies when they are clear from context.

2.1. Representations of Reals. We will use both the standard
topology and right order topology on the real line R. The reals under
the standard topology are a computable topological space using the
basis IQ with respect to a straightforward effective enumeration. The
reals under the right order topology are a computable topological space
using the basis

R< :=
{

(c,∞) : c ∈ Q
}
, (63)

under a standard enumeration.
Recall that, for k ≥ 1, the set IkQ is a basis for the (product of

the) standard topology on Rk that is closed under intersection and
makes (Rk, IkQ) a computable topological space (under a straightforward

enumeration of IkQ). Likewise, an effective enumeration of cylinders

σ × Rω, for σ ∈
⋃
k≥1 IkQ, makes Rω a computable topological space.

78 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

Replacing IQ with R< and “standard” with “right order” above gives
a characterization of computable vectors and sequences of reals under
the right order topology.

We can use the right order topology to define a representation for
open sets. Let (S,S) be a computable topological space, with respect
to an enumeration s. Then an open set B ⊆ S is c.e. open when the
indicator function 1B is computable with respect to S and R<. The c.e.
open sets can be shown to be the computable points in the space of open
sets under the Scott topology. Note that for the computable topological
space ω (under the discrete topology and the identity enumeration) the
c.e. open sets are precisely the c.e. sets of integers.

2.2. Representations of Continuous Real Functions. We now
consider computable representations for continuous functions on the
reals.

Let (S,S) and (T, T) each be either of (R, IQ) or (R,R<), and let
s and t be the associated enumerations. For k ≥ 1, the compact-open
topology on the space of continuous functions from Sk to T has a
subbasis composed of sets of the form{

f : f
(
A) ⊆ B

}
, (64)

where A and B are elements in the bases Sk and T , respectively.
An effective enumeration of this subbasis can be constructed in a
straightforward fashion from s and t.

In particular, let k ≥ 1 and let sk be an effective enumeration of
k-tuples of basis elements derived from s. Then a continuous function
f : (Rk,Sk)→ (R, T) is computable (under the compact-open topology)
when {

〈m,n〉 : f
(
sk(m)) ⊆ t(n)

}
(65)

is a c.e. set. The set (65) is the name of f .
A continuous function is computable in this sense if and only if it

is computable according to Definition IV.8. (See [Wei00b, Ch. 6] and
[Wei00b, Thm. 3.2.14]). Note that when S = T = IQ, this recovers the
standard definition of a computable real function. When S = IQ and
T = R<, this recovers the standard definition of a lower-semicomputable
real function [WZ00].

2.3. Representations of Borel Probability Measures. The
following representations for probability measures on computable topo-
logical spaces are devised from more general TTE representations in
Schröder [Sch07] and Bosserhoff [Bos08], and agree with Weihrauch

2. COMPUTABLE REPRESENTATIONS 79

[Wei99] in the case of the unit interval. In particular, the representa-
tion for M1(S) below is admissible with respect to the weak topology,
hence computably equivalent (see Weihrauch [Wei00b, Chap. 3]) to the
canonical TTE representation for Borel measures given in Schröder
[Sch07].

Schröder [Sch07] has also shown the equivalence of this representa-
tion for probability measures (as a computable space under the weak
topology) with probabilistic processes. A probabilistic process (see
Schröder and Simpson [SS06]) formalizes a notion of a program that
uses randomness to sample points in terms of their names of the form
(62).

For a second-countable T0 topological space S with subbasis S, let
M1(S) denote the set of Borel probability measures on S (i.e., the
probability measures on the σ-algebra generated by S). Such measures
are determined by the measure they assign to finite intersections of
elements of S. Note that M1(S) is itself a second-countable T0 space.

Now let (S,S) be a computable topological space with respect to
the enumeration s. We will describe a subbasis for M1(S) that makes
it a computable topological space. Let LS denote the lattice generated
by S (i.e., the closure of S under finite union and intersection), and let
sL be an effective enumeration derived from s. Then, the class of sets

{γ ∈M1(S) : γσ > q}, (66)

where σ ∈ LS and q ∈ Q, is a subbasis for the weak topology on
M1(S). An effective enumeration of this subbasis can be constructed
in a straightforward fashion from the enumeration of S and an effective
enumeration {qn}n∈ω of the rationals, making M1(S) a computable
topological space. In particular, the name of a measure η ∈M1(S) is
the set {〈m,n〉 : η

(
sL(m)

)
> qn}.

Corollary IV.9 (Computable distribution). A Borel probability mea-
sure η ∈M1(S) is computable (under the weak topology) if and only
if ηB is a c.e. real, uniformly in the sL-index of B ∈ LS .

Note that, for computable topological spaces (S,S) and (T, T) with
enumerations s and t, a measure η ∈ M1(T) is computable relative
to a point x ∈ S when ηB is a c.e. real relative to x, uniformly in
the tL-index of B ∈ LT . Corollary IV.9 implies that the measure of
a c.e. open set (i.e., the c.e. union of basic open sets) is a c.e. real
(uniformly in the enumeration of the terms in the union), and that the
measure of a co-c.e. closed set (i.e., the complement of a c.e. open set)
is a co-c.e. real (similarly uniformly); see, e.g., [BP03, §3.3] for details.
Note that on a discrete space, where singletons are both c.e. open and

80 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

co-c.e. closed, the measure of each singleton is a computable real. But
for a general space, it is too strong to require that even basic open
sets have computable measure (see Weihrauch [Wei99] for a discussion;
moreover, such a requirement is stronger than necessary to ensure that
a probabilistic Turing machine can produce exact samples to arbitrary
accuracy).

We will be interested in computable measures in M1(S), where S
is either Rω, [0, 1]k, or M1(R). In order to apply Corollary IV.9 to
characterize concrete notions of computability for M1(S), we will now
describe choices of topologies on these three spaces.

Measures on Real Vectors and Sequences under the Standard Topol-
ogy. Using Corollary IV.9, we can characterize the class of computable
distributions on real sequences using the computable topological spaces
characterized above in Section 2.1. Let ~x = {xi}i≥1 be a sequence of
real-valued random variables (e.g., the exchangeable sequence X, or the
derived random variables {Vτ}τ∈IQ under the canonical enumeration
of IQ), and let η be the joint distribution of ~x. Then η is computable
if and only if η(σ × Rω) = P

{
x ∈ σ × Rω

}
is a c.e. real, uniformly in

k ≥ 1 and σ ∈ LQk . The following simpler characterization was given
by Müller [Mül99, Thm. 3.7].

Lemma IV.10 (Computable distribution under the standard topology).
Let ~x = {xi}i≥1 be a sequence of real-valued random variables with joint
distribution η. Then η is computable if and only if

η(τ × Rω) = P
(⋂k

i=1{xi ∈ τ(i)}
)

(67)

is a c.e. real, uniformly in k ≥ 1 and τ ∈ IkQ.

Therefore knowing the measure of the sets in
⋃
k IkQ (

⋃
k LQk is

sufficient. Note that the right-hand side of (67) is precisely the form of
the left-hand side of the expression in Corollary IV.5. Note also that one
obtains a characterization of the computability of a finite-dimensional
vector by embedding it as an initial segment of a sequence.

Measures on Real Vectors and Sequences under the Right Order
Topology. Borel measures on R under the right order topology play
an important role when representing measures on measures, as Corol-
lary IV.9 portends.

Corollary IV.11 (Computable distribution under the right order topol-
ogy). Let ~x = {xi}ı≥1 be a sequence of real-valued random variables
with joint distribution η. Then η is computable under the (product of

2. COMPUTABLE REPRESENTATIONS 81

the) right order topology if and only if

η
(⋃m

i=1

(
(ci1,∞)× · · · × (cik,∞)× Rω

))
=

P
(m⋃
i=1

k⋂
j=1

{xj > cij}
)

(68)

is a c.e. real, uniformly in k,m ≥ 1 and C = (cij) ∈ Qm×k.

Again, one obtains a characterization of the computability of a
finite-dimensional vector by embedding it as an initial segment of a
sequence. Note also that if a distribution on Rk is computable under
the standard topology, then it is clearly computable under the right
order topology. The above characterization is used in the next section
as well as in Proposition IV.17, where we must compute an integral
with respect to a topology that is weaker than the standard topology.

Measures on Borel Measures. The de Finetti measure µ is the dis-
tribution of the directing random measure ν, anM1(R)-valued random
variable. Recall the definition Vβ := νβ, for β ∈ BR. From Corol-
lary IV.9, it follows that µ is computable under the weak topology if
and only if

µ(
⋃m
i=1

⋂k
j=1{γ ∈M1(R) : γσ(j) > cij}) =

P
(⋃m

i=1

⋂k
j=1{Vσ(j) > cij}

)
(69)

is a c.e. real, uniformly in k,m ≥ 1 and σ ∈ LkQ and C = (cij) ∈ Qm×k.
As an immediate consequence of (69) and Corollary IV.11, we obtain
the following characterization of computable de Finetti measures.

Corollary IV.12 (Computable de Finetti measure). The de Finetti
measure µ is computable relative to the joint distribution of {Vτ}τ∈LQ
under the right order topology, and vice versa. In particular, µ is
computable if and only if the joint distribution of {Vτ}τ∈LQ is computable
under the right order topology.

Integration. The following lemma is a restatement of an integration
result by Schröder [Sch07, Prop. 3.6], which itself generalizes integration
results on standard topologies of finite-dimensional Euclidean spaces by
Müller [Mül99] and the unit interval by Weihrauch [Wei99].

Define

I := {A ∩ [0, 1] : A ∈ IQ}, (70)

which is a basis for the standard topology on [0, 1], and define

I< := {A ∩ [0, 1] : A ∈ R<}, (71)

82 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

which is a basis for the right order topology on [0, 1].

Lemma IV.13 (Integration of bounded lower-semicontinuous func-
tions). Let k ≥ 1 and let S be either IQ or R<. Let

f : (Rk,Sk)→ ([0, 1], I<) (72)

be a continuous function and let µ be a Borel probability measure on
(Rk,Sk). Then∫

f dµ (73)

is a c.e. real relative to f and µ.

The following result of Müller [Mül99] is an immediate corollary.

Corollary IV.14 (Integration of bounded continuous functions). Let

g : (Rk, IkQ)→ ([0, 1], I) (74)

be a continuous function and let µ be a Borel probability measure on
(Rk, IkQ). Then∫

g dµ (75)

is a computable real relative to g and µ.

3. The Computable Moment Problem

One often has access to the moments of a distribution, and wishes
to recover the underlying distribution. Let ~x = (xi)i∈ω be a random
vector in [0, 1]ω with distribution η. Classically, the distribution of ~x is
uniquely determined by the mixed moments of ~x. We show that the
distribution is in fact computable from the mixed moments.

One classical way to pass from the moments of ~x to its distribution is
via the Lévy inversion formula, which maps the characteristic function
φ~x : Rω → C, given by

φ~x(t) := E(ei〈t,~x〉), (76)

to the distribution of ~x. However, even in the finite-dimensional case,
the inversion formula involves a limit for which we have no direct handle
on the rate of convergence, and so the distribution it defines is not
obviously computable. Instead, we use a computable version of the
Weierstrass approximation theorem to compute the distribution relative
to the mixed moments.

To show that η is computable relative to the mixed moments, it
suffices to show that η(σ × [0, 1]ω) = E

(
1σ(x1, . . . , xk)

)
is a c.e. real

3. THE COMPUTABLE MOMENT PROBLEM 83

relative to the mixed moments, uniformly in σ ∈
⋃
k≥1 IkQ. We begin by

building sequences of polynomials that converge pointwise from below
to indicator functions of the form 1σ for σ ∈

⋃
k≥1 LQk (see Figure 1.)

Lemma IV.15 (Polynomial approximations). Let k ≥ 1 and σ ∈ LQk .
There is a sequence{

pn,σ : n ∈ ω
}

(77)

of rational polynomials of degree k, computable uniformly in n, k, and
σ, such that, for all ~x ∈ [0, 1]k, we have

−2 ≤ pn,σ(~x) ≤ 1σ(~x) and lim
m→∞

pm,σ(~x) = 1σ(~x).

(78)

Proof. Let k ≥ 1. For σ ∈ LQk , and ~x ∈ Rk, define d(~x, [0, 1]k \ σ)
to be the distance from ~x to the nearest point in [0, 1]k \ σ. It is
straightforward to show that d(~x, [0, 1]k\σ) is a computable real function
of ~x, uniformly in k and σ.

For n ∈ ω, define fn,σ : Rk → R by

fn,σ(~x) := − 1

n+ 1
+ min{1, n · d(~x, [0, 1]k \ σ)}, (79)

and note that −1 ≤ fn,σ(~x) ≤ 1σ(~x)− 1
n+1

and limm→∞ fm,σ(~x) = 1σ(~x).
Furthermore, fn,σ(~x) is a computable (hence continuous) real function
of ~x, uniformly in n, k, and σ.

By the effective Weierstrass approximation theorem (see Pour-El
and Richards [PER89, p. 45]), we can find (uniformly in n, k, and σ) a
polynomial pn,σ with rational coefficients that uniformly approximates
fn,σ to within 1/(n+ 1) on [0, 1]k. These polynomials have the desired
properties. �

We thank an anonymous referee for suggestions that simplified the
proof of this lemma.

Using these polynomials, we can compute the distribution from
the moments. (See Figure 1 for a depiction of the moment based ap-
proximation.) The other direction follows from computable integration
results.

Theorem IV.16 (Computable moments). Let ~x = (xi)i∈ω be a random
vector in [0, 1]ω with distribution η. Then η is computable relative
to the mixed moments of {xi}i∈ω, and vice versa. In particular, η is
computable if and only if the mixed moments of {xi}i∈ω are uniformly
computable.

84 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

0.2 0.4 0.6 0.8 1.0

!0.2

0.2

0.4

0.6

0.8

1.0

Figure 1. A polynomial approximation (solid curve,
produced by summation of dashed polynomial curves) to
the indicator function for the interval (1

4
, 3

4
). Expecta-

tions of polynomials correspond to linear combinations of
moments, while the expectation of the indicator function
is simply the probability measure of the interval. As the
polynomial approximations improve, so does our estimate
of the interval’s probability. We can construct a sequence
of polynomial approximations (like the solid curve) that
converges pointwise from below to the indicator function.
This shows that the associated interval probability is a c.e.
real, provided that the moments themselves are uniformly
computable.

Proof. Any monic monomial in k variables, considered as a real
function, computably maps [0, 1]k into [0, 1] (under the standard topol-
ogy). Furthermore, as the restriction of η to any k coordinates is
computable relative to η (uniformly in the coordinates), it follows from
Corollary IV.14 that each mixed moment (the expectation of a mono-
mial under such a restriction of η) is computable relative to η, uniformly
in the index of the monomial and the coordinates.

Let k ≥ 1 and σ ∈ IkQ. To establish the computability of η, it
suffices to show that

η(σ × [0, 1]ω) = E
(
1σ×[0,1]ω(~x)

)
= E

(
1σ(x1, . . . , xk)

)
. (80)

is a c.e. real relative to the mixed moments, uniformly in k and σ. By
Lemma IV.15, there is a uniformly computable sequence of polynomi-
als (pn,σ)n∈ω that converge pointwise from below to the indicator 1σ.
Therefore, by the dominated convergence theorem,

E
(
1σ(x1, . . . , xk)

)
= sup

n
E
(
pn,σ(x1, . . . , xk)

)
. (81)

The expectation E
(
pn,σ(x1, . . . , xk)

)
is a Q-linear combination of mixed

moments, hence a computable real relative to the mixed moments,

4. PROOF OF THE COMPUTABLE DE FINETTI THEOREM 85

uniformly in n, k, and σ. Thus the supremum (81) is a c.e. real relative
to the mixed moments, uniformly in k and σ. �

4. Proof of the Computable de Finetti Theorem

For the remainder of the chapter, let X be a real-valued exchangeable
sequence with distribution χ, let ν be its directing random measure,
and let µ be the corresponding de Finetti measure.

Classically, the joint distribution of X is uniquely determined by
the de Finetti measure (see Equation 55). We now show that the
joint distribution of X is in fact computable relative to the de Finetti
measure.

Proposition IV.17. The distribution χ is computable relative to µ.

Proof. Let k ≥ 1 and σ ∈ IkQ. All claims are uniform in k and σ.
In order to show that χ, the distribution of X, is computable relative
to µ, we must show that P

(⋂k
i=1{Xi ∈ σ(i)}

)
is a c.e. real relative to

µ. Note that, by Corollary IV.5,

P
(⋂k

i=1{Xi ∈ σ(i)}
)

= E
(∏k

i=1 Vσ(i)

)
. (82)

Let η be the joint distribution of (Vσ(i))i≤k and let f : [0, 1]k → [0, 1] be
defined by

f(x1, . . . , xk) :=
∏k

i=1 xi. (83)

To complete the proof, we now show that∫
f dη = E

(∏k
i=1Vσ(i)

)
(84)

is a c.e. real relative to µ. Note that η is computable under the
right order topology relative to µ. Furthermore, f is order-preserving
(in each dimension) and lower-semicontinuous, i.e., is a continuous
(and obviously computable) function from ([0, 1]k, Ik<) to ([0, 1], I<).
Therefore, by Lemma IV.13, we have that

∫
f dη is a c.e. real relative

to µ. �

We will first prove the main theorem under the additional hypothesis
that the directing random measure is almost surely continuous. We
then sketch a randomized argument that succeeds with probability one.
Finally, we present the proof of the main result, which can be seen as a
derandomization.

86 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

4.1. Almost Surely Continuous Directing Random Mea-
sures. For k ≥ 1 and ψ ∈ LkR, we say that ψ is a ν-continuity set
when, for i ≤ k, we have ν(∂ψ(i)) = 0 a.s., where ∂ψ(i) denotes the
boundary of ψ(i).

Lemma IV.18. Relative to χ, the mixed moments of {Vτ}τ∈LQ are
uniformly c.e. reals and the mixed moments of {Vτ}τ∈LQ are uniformly

co-c.e. reals; in particular, if σ ∈ LkQ (for k ≥ 1) is a ν-continuity set,

then the mixed moment E
(∏k

i=1 Vσ(i)

)
is a computable real, uniformly

in k and σ.

Proof. Let k ≥ 1 and σ ∈ LkQ. All claims are uniform in k and σ.
By Corollary IV.5,

E
(∏k

i=1 Vσ(i)

)
= P

(⋂k
i=1{Xi ∈ σ(i)}

)
, (85)

which is a c.e. real relative to χ. The set σ is a co-c.e. closed set in
Rk because we can computably enumerate all τ ∈ LkQ contained in the
complement of σ. Therefore,

E
(∏k

i=1 Vσ(i)

)
= P

(⋂k
i=1{Xi ∈ σ(i)}

)
(86)

is the measure of a co-c.e. closed set, hence a co-c.e. real relative to χ.
When σ is a ν-continuity set,

E
(∏k

i=1 Vσ(i)

)
= E

(∏k
i=1 Vσ(i)

)
, (87)

and so the expectation is a computable real relative to χ. �

Proposition IV.19 (Almost surely continuous directing random mea-
sure). Assume that ν is almost surely continuous. Then µ is computable
relative to χ.

Proof. Let k ≥ 1 and σ ∈ LkQ. The almost sure continuity of ν
implies that σ is an ν-continuity set. Therefore, by Lemma IV.18, the
moment E

(∏k
i=1 Vσ(i)

)
is a computable real relative to χ, uniformly in k

and σ. The computable moment theorem (Theorem IV.16) then implies
that the joint distribution of the variables {Vτ}τ∈LQ is computable under
the standard topology relative to χ, and so their joint distribution is
also computable under the (weaker) right order topology relative to χ.
By Corollary IV.12, this implies that µ is computable relative to χ. �

4.2. “Randomized” Proof Sketch. In general, the joint distri-
bution of {Vσ}σ∈LQ is not computable under the standard topology
because the directing random measure ν may, with nonzero probability,
have a point mass on a rational. In this case, the mixed moments of
{Vτ}τ∈LQ are c.e., but not co-c.e., reals relative to χ. As a result, the

4. PROOF OF THE COMPUTABLE DE FINETTI THEOREM 87

computable moment theorem (Theorem IV.16) is inapplicable. For
arbitrary directing random measures, we give a proof of the computable
de Finetti theorem that works regardless of the location of point masses.

Consider the following sketch of a “randomized algorithm”: We
independently sample a countably infinite sequence of real numbers A
from a computable, absolutely continuous distribution that has support
everywhere on the real line (e.g., a Gaussian or Cauchy). Let LA denote
the lattice generated by open intervals with endpoints in A. Note that,
with probability one, A will be dense in R and every ψ ∈ LA will be
a ν-continuity set. If the algorithm proceeds analogously to the case
where ν is almost surely continuous, using LA as our basis, rather than
LQ, then it will compute the de Finetti measure with probability one.

Let A be a dense sequence of reals such that ν(A) = 0 a.s. Consider
the variables Vζ defined in terms of elements ζ of the new basis LA
(defined analogously to LA). We begin by proving an extension of
Lemma IV.18: The mixed moments of the set of variables {Vζ}ζ∈LA are
computable relative to A and χ.

Lemma IV.20. Let k ≥ 1 and ψ ∈ LkA. The mixed moment E
(∏k

i=1 Vψ(i)

)
is a computable real relative to A and χ, uniformly in k and ψ.

Proof. Let k ≥ 1 and ψ ∈ LkA. All claims are uniform in k and ψ.
We first show that, relative to A and χ, the mixed moments of {Vζ}ζ∈LA
are uniformly c.e. reals. We can compute (relative to A) a sequence

σ1, σ2, . . . ∈ LkQ (88)

such that for each n ≥ 1,

σn ⊆ σn+1 and
⋃
m σm = ψ. (89)

Note that if ζ, ϕ ∈ LQ satisfy ζ ⊆ ϕ, then Vζ ≤ Vϕ (a.s.), and so, by the

continuity of measures (and of multiplication),
∏k

i=1 Vσn(i) converges

from below to
∏k

i=1 Vψ(i) with probability one. Therefore, the dominated
convergence theorem gives us

E
(∏k

i=1 Vψ(i)

)
= supn E

(∏k
i=1 Vσn(i)

)
. (90)

Using Corollary IV.5, we see that the expectation E
(∏k

i=1 Vσn(i)

)
is a

c.e. real relative to A and χ, uniformly in n, and so the supremum (90)
is a c.e. real relative to A and χ.

Similarly, the mixed moments of {Vζ}ζ∈LA are uniformly co-c.e. reals
relative to A and χ, as can be seen via a sequence of nested unions
of rational intervals whose intersection is ψ. Thus, because ψ is a
ν-continuity set, the mixed moment E

(∏k
i=1 Vψ(i)

)
is a computable real

relative to A and χ. �

88 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

Lemma IV.21. The de Finetti measure µ is computable relative to A
and χ.

Proof. It follows immediately from Lemma IV.20 and Theorem IV.16
that the joint distribution of {Vψ}ψ∈LA is computable relative to A and
χ. This joint distribution classically determines the de Finetti mea-
sure. Moreover, as we now show, we can compute (relative to A and
χ) the desired representation with respect to the (original) rational
basis. In particular, we prove that the joint distribution of {Vτ}τ∈LQ is
computable under the right order topology relative to A and χ.

Let m, k ≥ 1, let τ ∈ LkQ, and let C = (cij) ∈ Qm×k. We will

express τ as a union of elements of LkA. Note that τ is an c.e. open
set (relative to A) with respect to the basis LkA. In particular, we can
computably enumerate (relative to A, and uniformly in k and τ) a
sequence σ1, σ2, ... ∈ LkA such that ∪nσn = τ and σn ⊆ σn+1. Note
that Vτ(j) ≥ Vσn(j) (a.s.) for all n ≥ 1 and j ≤ k. By the continuity of
measures (and of union and intersection),

P
(⋃m

i=1

⋂k
j=1{Vτ(j) > cij}

)
= supn P

(⋃m
i=1

⋂k
j=1{Vσn(j) > cij}

)
.

(91)

The probability P
(⋃m

i=1

⋂k
j=1{Vσn(j) > cij}

)
is a c.e. real relative to A

and χ, uniformly in n, m, k, τ , and C, and so the supremum (91) is a
c.e. real relative to A and χ, uniformly in m, k, τ , and C. �

Let Φ denote the map taking (A,χ) to µ, as described in Lemma IV.21.
Recall that A is a random dense sequence with a computable dis-

tribution, as defined above, and let µ̂ = Φ(A, χ). Then µ̂ is a random
variable, and moreover, µ̂ = µ almost surely. However, while A is
almost surely noncomputable, the distribution of A is computable, and
so the distribution of µ̂ is computable relative to χ. Expectations with
respect to the distribution of µ̂ can then be used to (deterministically)
compute µ relative to χ.

A proof along these lines could be made precise by making

M1(M1(M1(R))) (92)

into a computable topological space. Instead, in Section 4.3, we complete
the proof by explicitly computing µ relative to χ in terms of the standard
rational basis. This construction can be seen as a “derandomization”
of the above algorithm.

Alternatively, the above sketch could be interpreted as a degenerate
probabilistic process (see Schröder and Simpson [SS06]) that samples
a name of the de Finetti measure with probability one. Schröder

4. PROOF OF THE COMPUTABLE DE FINETTI THEOREM 89

[Sch07] shows that representations in terms of probabilistic processes
are computably reducible to representations of computable distributions.

The structure of the derandomized argument occurs in other proofs
in computable analysis and probability theory. Weihrauch [Wei99,
Thm. 3.6] proves a computable integration result via an argument that
could likewise be seen as a derandomization of an algorithm that densely
subdivides the unit interval at random locations to find continuity sets.
Bosserhoff [Bos08, Lem. 2.15] uses a similar argument to compute a
basis for a computable metric space, for which every basis element is
a continuity set; this suggests an alternative approach to completing
our proof. Müller [Mül99, Thm. 3.7] uses a similar construction to
find open hypercubes such that for any ε > 0, the probability on their
boundaries is less than ε. These arguments also resemble the proof
of the classical Portmanteau theorem [Kal02, Thm. 4.25], in which an
uncountable family of sets with disjoint boundaries is defined, almost
all of which are continuity sets.

4.3. “Derandomized” Construction. Let m, k ≥ 1 and C =
(cij) ∈ Qm×k. By an abuse of notation, we define

1C : [0, 1]k → [0, 1] (93)

to be the indicator function for the set⋃m
i=1(ci1, 1]× · · · × (cik, 1]. (94)

For n ∈ ω, we denote by pn,C the polynomial pn,σ (as defined in
Lemma IV.15), where

σ :=
⋃m
i=1(ci1, 2)× ·· ·× (cik, 2) ∈ LQk . (95)

Here, we have arbitrarily chosen 2 > 1 so that the sequence of polyno-
mials {pn,C}n∈ω converges pointwise from below to 1C on [0, 1]k.

Let ~x = (x1, ..., xk) and ~y = (y1, . . . , yk). We can write

pn,C(~x) = p+
n,C(~x)− p−n,C(~x), (96)

where p+
n,C and p−n,C are polynomials with positive coefficients. Define

the 2k-variable polynomial

qn,C(~x, ~y) := p+
n,C(~x)− p−n,C(~y). (97)

We denote

qn,C(Vϕ(1), ..., Vϕ(k), Vζ(1), ..., Vζ(k)) (98)

by qn,C(Vϕ, Vζ), and similarly with pn,C .

90 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

Proposition IV.22. Let n ∈ ω, let k,m ≥ 1, let σ ∈ LkQ, and let

C ∈ Qm×k. Then Eqn,C(Vσ, Vσ) is a c.e. real relative to χ, uniformly in
n, k, m, σ, and C.

Proof. By Lemma IV.18, relative to χ, and uniformly in n, k, m,
σ, and C, each monomial of p+

n,C(Vσ) has a c.e. real expectation, and

each monomial of p−n,C(Vσ) has a co-c.e. real expectation, and so by the
linearity of expectation Eqn,C(Vσ, Vσ) is a c.e. real. �

In the final proof we use the following dense partial order on products
of LR.

Definition IV.23. Let k ≥ 1. We call ψ ∈ LkR a refinement of ϕ ∈ LkR,
and write ψ C ϕ, when

ψ(i) ⊆ ϕ(i) (99)

for all i ≤ k.

We are now ready to prove the main theorem.

Proof of Computable de Finetti Theorem IV.3. The dis-
tribution χ (of the exchangeable sequence X) is computable relative to
the de Finetti measure µ by Proposition IV.17. We now give a proof
of the other direction, showing that the joint distribution of {Vσ}σ∈LQ
is computable under the right order topology relative to χ, which by
Corollary IV.12 will complete the proof.

Let k,m ≥ 1, let π ∈ LkQ, and let C = (cij) ∈ Qm×k. For ζ ∈ LkR,
let Vζ denote the k-tuple (Vζ(1), . . . , Vζ(k)) and similarly for Vζ. Take
1C to be defined as above in (93) and (94). It suffices to show that

P
(⋃m

i=1

⋂k
j=1{Vπ(j) > cij}

)
= E1C(Vπ) (100)

is a c.e. real relative to χ, uniformly in k, m, π, and C. We do this by
a series of reductions, which results in a supremum over quantities of
the form Eqn,C(Vσ, Vσ) for σ ∈ LkQ.

By the density of the reals and the continuity of measures, we have
that

Vπ = sup
ψCπ

Vψ a.s., (101)

where ψ ranges over LkR. It follows that

1C(Vπ) = sup
ψCπ

1C(Vψ) a.s., (102)

4. PROOF OF THE COMPUTABLE DE FINETTI THEOREM 91

because 1C is lower-semicontinuous and order-preserving (in each di-
mension), as (94) is an open set in the right order topology on [0, 1]k.
Therefore, by the dominated convergence theorem, we have that

E1C(Vπ) = sup
ψCπ

E1C(Vψ). (103)

Recall that the polynomials {pn,C}n∈ω converge pointwise from below
to 1C in [0, 1]k. Therefore, by the dominated convergence theorem,

E1C(Vψ) = sup
n

Epn,C(Vψ). (104)

As Vψ(i) ≥ Vψ(i) a.s. for i ≤ k, we have that

Epn,C(Vψ) = Ep+
n,C(Vψ)− Ep−n,C(Vψ) (105)

≥ Ep+
n,C(Vψ)− Ep−n,C(Vψ). (106)

Note that if ψ is a ν-continuity set, then Vψ(i) = Vψ(i) a.s., and so

Epn,C(Vψ) = Ep+
n,C(Vψ)− Ep−n,C(Vψ). (107)

Again, dominated convergence theorem gives us

E
(∏k

i=1 Vψ(i)

)
= sup

σCψ
E
(∏k

i=1 Vσ(i)

)
and (108)

E
(∏k

i=1 Vψ(i)

)
= inf

τBψ
E
(∏k

i=1 Vτ(i)

)
, (109)

where σ and τ range over LkQ. Therefore, by the linearity of expectation,

Ep+
n,C(Vψ) = sup

σCψ
Ep+

n,C(Vσ) and (110)

Ep−n,C(Vψ) = inf
τBψ

Ep−n,C(Vτ), (111)

and so, if ψ is a ν-continuity set, we have that

Epn,C(Vψ) = sup
σCψ

Ep+
n,C(Vσ)− inf

τBψ
Ep−n,C(Vτ) (112)

= sup
σCψCτ

Eqn,C(Vσ, Vτ). (113)

Because ν has at most countably many point masses, those ψ ∈ IkR that
are ν-continuity sets are dense in IkQ. On the other hand, for those ψ
that are not ν-continuity sets, (113) is a lower bound, as can be shown
from (106). Therefore,

sup
ψCπ

Epn,C(Vψ) = sup
ψCπ

sup
σCψCτ

Eqn,C(Vσ, Vτ). (114)

92 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

Note that {(σ, τ) : (∃ψ C π) σ C ψ C τ} = {(σ, τ) : σ C π and σ C
τ}. Hence

sup
ψCπ

sup
σCψ

sup
τBψ

Eqn,C(Vσ, Vτ) = sup
σCπ

sup
τBσ

Eqn,C(Vσ, Vτ). (115)

Again by dominated convergence we have

sup
τBσ

Eqn,C(Vσ, Vτ) = Eqn,C(Vσ, Vσ). (116)

Combining (100), (103), (104), (114), (115), and (116), we have

E1C(Vπ) = sup
n

sup
σCπ

Eqn,C(Vσ, Vσ). (117)

Finally, by Proposition IV.22, the expectation

Eqn,C(Vσ, Vσ) (118)

is a c.e. real relative to χ, uniformly in σ, n, k, m, π, and C. Hence the
supremum (117) is a c.e. real relative to χ, uniformly in k, m, π, and
C. �

5. Exchangeability in Probabilistic Programs

The computable de Finetti theorem has implications for the seman-
tics of probabilistic functional programming languages, and in particular,
gives conditions under which it is possible to remove uses of mutation
(i.e., code that modifies a program’s internal state). Furthermore, an
implementation of the computable de Finetti theorem itself performs
this code transformation automatically.

For context, we provide some background on probabilistic functional
programming languages. We then describe the code transformation
performed by the computable de Finetti theorem, using the example of
the Pólya urn and Beta-Bernoulli process discussed earlier. Finally, we
discuss partial exchangeability and its role in recent machine learning
applications.

5.1. Probabilistic Functional Programming Languages. Func-
tional programming languages with probabilistic choice operators have
recently been proposed as universal languages for statistical model-
ing (e.g., IBAL [Pfe01], λ◦[PPT08], Church [GMR+08], and HANSEI
[KS09]). Within domain theory, researchers have considered idealized
functional languages that can manipulate exact real numbers, such as Es-
cardó’s RealPCF+ [ES99] (based on Plotkin [Plo77]), and functional
languages have also been extended by probabilistic choice operators
(e.g., by Escardó [Esc09] and Saheb-Djahromi [SD78]).

5. EXCHANGEABILITY IN PROBABILISTIC PROGRAMS 93

The semantics of probabilistic programs have been studied exten-
sively in theoretical computer science in the context of randomized
algorithms, probabilistic model checking, and other areas. However, the
application of probabilistic programs to universal statistical modeling
has a somewhat different character from much of the other work on
probabilistic programming languages.

In Bayesian analysis, the goal is to use observed data to understand
unobserved variables in a probabilistic model. This type of inductive
reasoning, from evidence to hypothesis, can be thought of as inferring
the hidden states of a program that generates the observed output. One
speaks of the conditional execution of probabilistic programs, in which
they are “run backwards” to sample from the conditional probability
distribution given the observed data.

Another important difference from earlier work is the type of al-
gorithms used for conditional inference. Goodman et al. [GMR+08]
describe the language Church, which extends a pure subset of Scheme,
and whose implementation MIT-Church performs approximate condi-
tional execution via Markov chain Monte Carlo (which can be thought of
as a random walk over the execution of a Lisp machine). Park, Pfenning,
and Thrun [PPT08] describe the language λ◦, which extends OCaml,
and they implement approximate conditional execution by Monte Carlo
importance sampling. Ramsey and Pfeffer [RP02] describe a stochastic
lambda calculus whose semantics are given by measure terms, which
support the efficient computation of conditional expectations.

Finally, in nonparametric Bayesian statistics, higher-order distri-
butions (e.g., distributions on distributions, or distributions on trees)
arise naturally, and so it is helpful to work in a language that can
express these types. Probabilistic functional programming languages
are therefore a convenient choice for expressing nonparametric Bayesian
statistical models.

The idea of representing distributions by randomized algorithms
that produce samples can highlight algorithmic issues. For example,
a distribution will, in general, have many different representations as
a probabilistic program, each with its own time, space, and entropy
complexity. For example, both ways of sampling a Beta-Bernoulli pro-
cess described in Section 1.1 can be represented in, e.g., the Church
probabilistic programming language. One of the questions that moti-
vated the present work was whether there is always an algorithm for
sampling from the de Finetti measure when there is an algorithm for
sampling the exchangeable sequence. This question was first raised by
Roy et al. [RMGT08]. The computable de Finetti theorem answers this
question in the affirmative, and, furthermore, shows that one can move

94 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

between these representations automatically. In the following section,
we provide a concrete example of the representational change made
possible by the computable de Finetti transformation, using the syntax
of the Church probabilistic programming language.

5.2. Code Transformations. Church extends a pure subset of
Scheme (a dialect of Lisp) with a stochastic, binary-valued2 flip pro-
cedure, calls to which return independent, Bernoulli(1

2
)-distributed

random values in {0, 1}. Using the semantics of Church, it is possible
to associate every closed Church expression (i.e., one without free vari-
ables) with a distribution on values. For example, evaluations of the
expression

(+ (flip) (flip) (flip))

produce samples from the Binomial(n = 3, p = 1
2
) distribution, while

evaluations of

(λ (x) (if (= 1 (flip)) x 0))

always return a procedure, applications of which behave like the prob-
ability kernel x 7→ 1

2
(δx + δ0), where δr denotes the Dirac measure

concentrated on the real r. Church is call-by-value and so evaluations
of

(= (flip) (flip))

return true and false with equal probability, while the application of
the procedure

(λ (x) (= x x))

to the argument (flip), written

((λ (x) (= x x)) (flip)),

always returns true. (For more examples, see [GMR+08].)
In Scheme, unlike Church, one can modify the state of a non-

local variable using mutation via the set! procedure. (In functional
programming languages, non-local state may be implemented via other
methods. For example, in Haskell, one could use the state monad.) If
we consider introducing a set! operator to Church, thereby allowing
a procedure to modify its environment using mutation, it is not clear
that one can associate procedures with probability kernels and closed
expressions with distributions. For example, using mutation to maintain
and update a counter variable, a procedure could return an increasing
sequence of integers on repeated calls. Such a procedure would not
correspond with a probability kernel.

2The original Church paper defined the flip procedure to return true or false,
but it is easy to move between these two definitions.

5. EXCHANGEABILITY IN PROBABILISTIC PROGRAMS 95

A generic way to translate code with mutation into code without
mutation is to perform a state-passing transformation, where the state
is explicitly threaded throughout the program. In particular, a variable
representing state is passed into all procedures as an additional argu-
ment, transformed in lieu of set! operations, and returned alongside
the original return values at the end of procedures. Under such a
transformation, the procedure in the counter variable example would be
transformed into one that accepted the current count and returned the
incremented count. One downside of such a transformation is that it ob-
scures conditional independencies in the program, and thus complicates
inference from an algorithmic standpoint.

An alternative transformation is made possible by the computable
de Finetti theorem, which implies that a particular type of exchangeable
mutation can be removed without requiring a state-passing transfor-
mation. Furthermore, this alternative transformation exposes the con-
ditional independencies. The rest of this section describes a concrete
example of this alternative transformation, and builds on the mathe-
matical characterization of the Beta-Bernoulli process and the Pólya
urn scheme as described in Section 1.1.

Recall that the Pólya urn scheme induces the Beta-Bernoulli process,
which can also be described directly as a sequence of independent
Bernoulli random variables with a shared parameter sampled from a
Beta distribution. In Church it is possible to write code corresponding
to both descriptions, but expressing the Pólya urn scheme without the
use of mutation requires that we keep track of the counts and thread
these values throughout the sequence. If instead we introduce the set!

operator and track the number of red and black balls by mutating
non-local state, we can compactly represent the Pólya urn scheme in
a way that mirrors the form of the more direct description using Beta
and Bernoulli random variables.

Let a, b be positive computable reals (one can think of them as pa-
rameters). We then define sample-beta-coin and sample-pólya-coin

as follows:

(i)

(define (sample-beta-coin)

(let ((weight (beta a b)))

(λ () (flip weight))))

(ii)

(define (sample-pólya-coin)

(let ((red a)

(total (+ a b)))

(λ () (let ((x (flip red
total

)))

(set! red (+ red x))

(set! total (+ total 1))

x)))

96 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

In order to understand these expressions, recall that, given a Church
expression E, the evaluation of the (λ () E) special form in an
environment ρ creates a procedure of no arguments whose application
results in the evaluation of the expression E in the environment ρ.
The application of either sample-beta-coin or sample-pólya-coin

returns a procedure of no arguments whose application returns (random)
binary values. In particular, if we sample two procedures my-beta-coin
and my-pólya-coin via

(define my-beta-coin (sample-beta-coin))

(define my-pólya-coin (sample-pólya-coin))

then repeated applications of both my-beta-coin and my-pólya-coin

produce random binary sequences that are Beta-Bernoulli processes.
Evaluating (my-beta-coin) returns 1 with probability weight and

0 otherwise, where the shared weight parameter is itself drawn from
a Beta(a, b) distribution on [0, 1]. The sequence induced by repeated
applications of my-beta-coin is exchangeable because applications of
flip return independent samples. Note that the sequence is not i.i.d.;
for example, an initial sequence of ten 1’s would lead one to predict
that the next application is more likely to return 1 than 0. However,
conditioned on weight (a variable hidden within the opaque procedure
my-beta-coin) the sequence is i.i.d. If we sample another procedure,
my-other-beta-coin, via

(define my-other-beta-coin (sample-beta-coin))

then its corresponding weight variable will be independent, and so
repeated applications will generate a sequence that is independent of
that generated by my-beta-coin.

The code in (ii) implements the Pólya urn scheme with a red balls
and b black balls (see [dF75, Chap. 11.4]), and so the sequence of return
values from repeated applications of my-pólya-coin is exchangeable.
Therefore, de Finetti’s theorem implies that the distribution of the
sequence is equivalent to that induced by i.i.d. draws from the directing
random measure. In the case of the Pólya urn scheme, we know that
the directing random measure is a random Bernoulli whose parameter
has a Beta(a, b) distribution. In fact, the (random) distribution of
each sample produced by my-beta-coin is such a random Bernoulli.
Informally, we can therefore think of sample-beta-coin as producing
samples from the de Finetti measure of the Beta-Bernoulli process.

Although the distributions on sequences induced by my-beta-coin

and my-pólya-coin are identical, there is an important semantic
difference between these two implementations caused by the use of
set!. While applications of sample-beta-coin produce samples from

5. EXCHANGEABILITY IN PROBABILISTIC PROGRAMS 97

the de Finetti measure in the sense described above, applications of
sample-pólya-coin do not; successive applications of my-pólya-coin
produce samples from different distributions, none of which is the di-
recting random measure for the sequence (a.s.). In particular, the
distribution on return values changes each iteration as the sufficient
statistics are updated (using the mutation operator set!). Perhaps
the most obvious difference is that while the sequence produced by
repeated applications of my-pólya-coin has the same distribution as
that produced by repeated applications of my-beta-coin, applications
of my-pólya-coin depend on the non-local state of earlier applications.
In contrast, applications of my-beta-coin do not depend on non-local
state; in particular, the sequence produced by such applications is i.i.d.
conditioned on the variable weight, which does not change during the
course of execution.

The proofs given in this chapter describe an algorithm for computing
the de Finetti measure from a representation of the distribution of an
exchangeable sequence. We now ask what an implementation of this
algorithm would produce in the case of the Beta-Bernoulli example,
and more generally.

An implementation of the computable de Finetti theorem (Theo-
rem IV.3), specialized to the case of binary sequences (in which case
the de Finetti measure is a distribution on Bernoulli measures and is
thus determined by the distribution on [0, 1] of the random probability
assigned to the value 1), could transform (ii) into a mutation-free pro-
cedure whose return values have the same distribution as that of the
samples produced by evaluating (beta a b).

In the general case, given a program that generates an exchangeable
sequence of reals, an implementation of the computable de Finetti
theorem would produce a mutation-free procedure, which we will name
generated-code, such that applications of the following procedure
named sample-directing-random-measure and defined by

(define (sample-directing-random-measure)

(let ((shared-randomness (uniform 0 1)))

(λ () (generated-code shared-randomness))))

generate samples from the de Finetti measure in the sense described
above. In particular, (ii) would be transformed into a procedure
generated-code such that the sequence produced by repeated ap-
plications of the procedure returned by sample-beta-coin and the
procedure returned by sample-directing-random-measure have the
same distribution.

98 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

In addition to their simpler semantics, mutation-free procedures
are often desirable for practical reasons. For example, having sampled
the directing random measure, an exchangeable sequence of random
variables can be efficiently sampled in parallel without the overhead
necessary to communicate sufficient statistics. Mansinghka [Man09]
describes some situations where one can exploit conditional indepen-
dence and exchangeability in probabilistic programming languages for
improved parallel execution.

5.3. Partial Exchangeability of Arrays and Other Struc-
tures. The example above involved binary sequences, but the com-
putable de Finetti theorem can be used to transform implementations
of real exchangeable sequences. Consider the following exchangeable
sequence whose combinatorial structure is known as the Chinese restau-
rant process (see Aldous [Ald85]). Let α > 0 be a computable real
and let H be a computable distribution on R. For n ≥ 1, each Xn is
sampled in turn according to the conditional distribution

P[Xn+1 | X1, . . . , Xn] =
1

n+ α

(
αH +

n∑
i=1

δXi

)
. (119)

The sequence {Xn}n≥1 is exchangeable and the directing random mea-
sure is a Dirichlet process whose “base measure” is αH. Given such a
program, we can automatically recover the underlying Dirichlet process
prior, samples from which are random measures whose discrete struc-
ture was characterized by Sethuraman’s “stick-breaking construction”
[Set94]. Note that the random measure is not produced in the same
manner as Sethuraman’s construction and certainly is not of closed
form. But the resulting mathematical objects have the same structure
and distribution.

Exchangeable sequences of random objects other than reals can
often be given de Finetti-type representations. For example, the Indian
buffet process, defined by Griffiths and Ghahramani [GG05], is the
combinatorial process underlying a set-valued exchangeable sequence
that can be written in a way analogous to the Pólya urn in (ii). Just as
the Chinese restaurant process gives rise to the Dirichlet process, the
Indian buffet process gives rise to the Beta process (see Thibaux and
Jordan [TJ07] for more details).

In the case where the “base measure” of the underlying Beta process
is discrete, the resulting exchangeable sequence of sets can be trans-
formed into an exchangeable sequence of integer indices (encoding finite
multisets of the countable support of the discrete base measure). If

5. EXCHANGEABILITY IN PROBABILISTIC PROGRAMS 99

we are given such a representation, the computable de Finetti theorem
implies the existence of a computable de Finetti measure.

However, the case of a continuous base measure is more complicated.
Unlike in the Chinese restaurant process example, which was a sequence
of random reals, the computable de Finetti theorem is not directly
applicable to exchangeable sequences of random sets, although there
is an embedding such that a version of the computable de Finetti
theorem for computable Polish spaces might suffice. A “stick-breaking
construction” of the Indian buffet process given by Teh, Görür, and
Ghahramani [TGG07] is analogous to the code in (i), but samples only a
∆1-index for the (a.s. finite) sets, rather than a canonical index (see Soare
[Soa87, II.2]); however, many applications depend on having a canonical
index. This observation was first noted by Roy et al. [RMGT08]. Similar
problems arise when using the Inverse Lévy Measure method [WI98].
The computability of the de Finetti measure in the continuous case
remains open.

Combinatorial structures other than sequences have been given
de Finetti-type representational theorems based on notions of partial
exchangeability. For example, an array of random variables is called
separately (or jointly) exchangeable when its distribution is invariant
under (simultaneous) permutations of the rows and columns and their
higher-dimensional analogues. Nearly fifty years after de Finetti’s result,
Aldous [Ald81] and Hoover [Hoo79] showed that the entries of an infinite
array satisfying either separate or joint exchangeability are conditionally
i.i.d. These results have been connected with the theory of graph limits
by Diaconis and Janson [DJ08] and Austin [Aus08] by considering the
adjacency matrix of an exchangeable random graph.

As we have seen with the Beta-Bernoulli process and other examples,
structured probabilistic models can often be represented in multiple
ways, each with its own advantages (e.g., representational simplicity,
compositionality, inherent parallelism, etc.). Extensions of the com-
putable de Finetti theorem to partially exchangeable settings could
provide analogous transformations between representations on a wider
range of data structures, including many that are increasingly used in
practice. For example, the Infinite Relational Model [KTG+06] can
be viewed as an urn scheme for a partially exchangeable array, while
the hierarchical stochastic block model constructed from a Mondrian
process in [RT09] is described in a way that mirrors the Aldous-Hoover
representation, making the conditional independence explicit.

100 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

6. Predictive distributions and posterior analysis in
exchangeable sequences

While conditioning is not computable in the general case, we can
sometimes exploit additional structure to compute conditional distribu-
tions. In this section, we continue our study of exchangeable sequences,
but from the perspective of computing conditional distributions of di-
recting random measures. In particular, for an exchangeable sequence
{Xk}k∈N with directing random measure ν, we show that there is an
algorithm for computing the posterior distributions {P[ν|X1:k]}k≥1 if
and only if there is an algorithm for sampling from the predictive
distributions {P[Xk+1|X1:k]}k≥1.

Note that ν is, in general, an infinite dimensional object. However, in
many settings, the directing random measure corresponds to a particular
member of a parametrized family of distributions, and in this case, the
de Finetti measure corresponds to a distribution on parameters. Note
that while the de Finetti measure is often interpreted as a prior in the
Bayesian setting, it is uniquely determined by the distribution of the
exchangeable sequence, which itself may be described without reference
to any such prior.

Example IV.24. Consider the sequence {Yk}k≥1 where, for each k ≥
1, the conditional distribution of Yk given Y1, . . . , Yk−1 is normally

distributed with mean 1
k

∑k−1
i=1 Yi and variance 1 + 1

k
. The sequence

{Yk}k≥1 can be shown to be exchangeable and its directing random
measure is a random Gaussian with unit variance but random mean, and
so each realization of the directing random measure is associated with
(and completely characterized by) a corresponding mean parameter. Let
Z be the mean of the directing random measure. The sequence {Yk}k≥1

is conditionally i.i.d. given Z. Furthermore, it can be shown that the
distribution PZ of Z is a standard normal distribution. The de Finetti
measure can be derived from PZ , as follows: Let M : R → M1(R)
be the map that takes a real m to the Gaussian distribution with
mean m and unit variance. Then the de Finetti measure µ is given by
µ(B) = PZ(M−1(B)), where B is a (Borel measurable) subset ofM1(R)
and M−1(B) is the inverse image of B under the map M . In summary,
while a random Gaussian distribution renders the sequence conditionally
i.i.d., the latent mean parameter Z of the random Gaussian captures
the structure of the sequence.

Remark IV.25. Recall the Dirichlet process example in Chapter IV.
The computable de Finetti’s theorem shows that an exchangeable se-
quence is computable if and only if its de Finetti measure is computable,

6. POSTERIOR ANALYSIS IN EXCHANGEABLE SEQUENCES 101

and in this example, the computability of the Blackwell-MacQueen urn
scheme implies the computability of the Dirichlet process prior. While
the most common way of sampling a Dirichlet process is via the stick
breaking representation given by Sethuraman [Set94], we should not
expect the output of the computable de Finetti theorem to make any
use of this representation (just as it would not identify the mean of
the random Gaussian as the one-dimensional quantity of interest in the
Gaussian case).

Recall that the stick breaking representation is the list of atoms
(and their masses) that comprise the Dirichlet process. We note the
following fact about computably recovering this representation from a
discrete computable probability measure. First, recall the elementary
computability fact that the equality of two computable reals is only
co-semidecidable, meaning that we can eventually recognize two reals
are unequal, but cannot in general recognize when they are the same.
Likewise, given a representation of a distribution that is known to be
discrete, although we can compute a list of the atoms (as a point in R∞),
it is not possible to recover their masses. Therefore, the function taking
a discrete measure to its stick breaking representation is not computable.
Thus, even in settings where the computable de Finetti theorem tells us
that the directing random measure is computably distributed, it may
(as in Example IV.24) or may not (as described here) be possible to
transform the random measure into another random variable that also
renders the sequence conditionally i.i.d. Of course, the stick breaking
prior is obviously computable; we simply cannot expect it to read it off
from output we receive from the computable de Finetti theorem.

6.1. Posterior analysis in exchangeable sequences. Let X =
{Xi}i≥1 be an exchangeable sequence of real-valued random variables.
Even if the distribution of X is computable, P[Xk+1|X1:k] is not necessar-
ily computable. To see this, let ν0 and ν1 be distributions concentrated
on the rationals and irrationals such that the function w : {ν0, ν1} ⊆
M1(R) → {0, 1} given by w(νi) = i is computable (i.e., we can com-
putably distinguish the distributions). Let ν be a random measure which
with equal probability is either ν0 or ν1 and let Xi be a conditionally
i.i.d. sequence with directing random measure ν. Then

P[X2|X1] =

{
ν0, if X1 rational

ν1, if X1 irrational
a.s. (120)

102 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

If some version of the conditional distribution were computable, we
would be able to decide rationality on R, which is undecidable. Hence,
no version is computable.3

However, in most cases, our knowledge of an exchangeable sequence
is, in fact, precisely of this form: an algorithm (or predictive rule) which,
given samples for a prefix X1:k, describes the conditional distribution
of the next element, Xk+1. By induction, we can use the predictive rule
to subsequently sample from the conditional distribution of Xk+2 given
X1:k+1, and so on, sampling an entire infinite exchangeable sequence
given the original prefix. The following result shows that the ability to
sample consistently (i.e., from the true posterior predictive) is equiva-
lent to being able to compute the posterior distribution of the latent
distribution that is generating the sequence.

Theorem IV.26. Let X = {Xi}i≥1 be an exchangeable sequence of
random variables with directing random measure ν. There is a program
that, given a representation of the sequence of posterior predictives
{P[Xk+1|X1:k]}k≥0, outputs a representation of the sequence of posterior
distributions {P[ν|X1:k]}k≥0, and vice-versa.

Proof sketch. Suppose we are given (a representation of) {P[ν|X1:k]}k≥0.
Fix j ≥ 0 and an observation x1:j ∈ Rj. We can compute (a represen-
tation of) P[Xj+1|X1:j] by computing samples from the distribution
P[Xj+1|X1:j = x1:j], given x1:j. But by assumption, we can sample

ν̂ ∼ P[ν|X1:j = x1:j], and then sample X̂k+1 ∼ ν̂.
To prove the converse, fix j ≥ 0 and observe that, conditioned

on X1:j, the sequence {Xj+1, Xj+2, . . . } is an exchangeable sequence
whose de Finetti measure is P[ν|X1:j]. We show how to compute the
conditional distribution of this exchangeable sequence, and then invoke
the computable de Finetti theorem to compute the posterior P[ν|X1:j].

Suppose we are given (a representation of) {P[Xk+1|X1:k]}k≥0. Given
observed values x1:j for a prefix X1:j, we can sample

X̂j+1 ∼ P[Xk+1|X1:k = x1:k]. (121)

Then, treating {x1:j, X̂j+1} as observed values for X1:j+1, we can sample

X̂j+2 ∼ P[Xj+2|X1:j+1 = {x1:j, X̂j+1}].
By an inductive argument, we can therefore sample from the condi-

tional distribution of the exchangeable sequence Xj+1:∞ given X1:j =

3Note that every version is discontinuous on every measure one set, like the dis-
continuous counterexample to computability in Chapter III. It may be possible to
construct an exchangeable sequence whose predictive and posterior distributions
are almost continuous despite being noncomputable using the computable random
variables (N,X) developed in the same chapter.

6. POSTERIOR ANALYSIS IN EXCHANGEABLE SEQUENCES 103

x1:j, and so we can compute the conditional distribution of the ex-
changeable sequence.

Finally, by the Computable de Finetti Theorem (Chapter IV, Theo-
rem IV.3), we can compute the de Finetti measure, P[ν|X1:k], from the
distribution of the conditionally exchangeable sequence Xj+1:∞. �

Note that the “natural” object here is the directing random measure
ν itself, which is not necessarily the natural parameter Θ for which
ν = P[X1|Θ]. While a particular parametrization may be classically
unidentifiable or noncomputable, the directing random measure is always
identifiable and computable.

The hypothesis of Theorem IV.26 captures a common setting in
nonparametric modeling, where a model is given by a prediction rule.
Such representations can exist even when there is no Bayes’ rule.

Example IV.27. Recall the Dirichlet process example in Chapter IV.
Note that the Blackwell-MacQueen prediction rule satisfies the hypothe-
ses of Theorem IV.26. The proof of Theorem IV.26 (if implemented as
code) automatically transforms the prediction rule into the (computable)
posterior distribution

{xi}i≤k 7→ DP(αH +
∑k

i=1 δxi). (122)

Posterior computation for many other species sampling models
[Pit96] is likewise possible because these models are generally given
by computable predictive distributions. As another example, exact
posterior analysis for traditional Pólya trees, a flexible class of random
distributions, is possible. In contrast, nearly all existing inference
techniques for Pólya trees make truncation-based approximations. For
arbitrary Pólya trees, the noncomputability result implies that there
is no algorithm that can determine the error introduced by a given
truncation.

Note that, trivially, any model for which someone has constructed
an exact posterior algorithm necessarily has a computable predictive,
and so the hypotheses of the algorithm are quite general. In particular,
note that exchangeable structure need not be evident for Theorem IV.26
to apply. Let G be a distribution on M1(R); sample F ∼ G, and then
sample an observation X ∼ F from the random distribution F . Can we
compute P[F |X]? Theorem IV.26 implies that if we introduce nuisance
variables X2, X3, ... that are themselves independent draws from F ,
then P[F |X] is computable if the sequence P[X2|X],P[X3|X,X2], ...
is computable. So even though the model only invokes a single sample
from F , the ability to do posterior analysis on F given X is linked to
our ability to sample the sequence X2, X3, ... given X.

104 IV. EXCHANGEABLE SEQUENCES AND DE FINETTI’S THEOREM

6.2. Related work. Orbanz [Orb10] proves a version of Kolmogorov’s
extension theorem for families of conditional distributions, providing a
way to construct nonparametric Bayesian models. In particular, Orbanz
shows how to construct a (countable-dimensional) nonparametric model
as the limit of a conditionally projective family of finite dimensional
conditional distributions, and shows that the limiting nonparametric
prior will be conjugate exactly when the projective family is.

Essentially, in order to obtain a closed form expression (in terms
of sufficient statistics) for the posterior of a nonparametric model, one
must construct the nonparametric model as the projective limit of
models that admit both sufficient statistics and a conjugate posterior
(the main examples of which are the projective limits of exponential
family models).

We now give a related statement: in order to computably recover
the posterior distribution from sufficient statistics of the observations,
it is necessary and sufficient to be able to computably sample new
observations given sufficient statistics of past observations.

For simplicity, we restrict our attention to sufficient statistics of the
form

∑k
i=1 T (Xi), where T : R → Rm is a continuous function. This

setting covers essentially all natural exponential family likelihoods.
When the sufficient statistic and the conditional distributions

P[Xk+1|
∑k

i=1 T (Xi)], (123)

for k ≥ 1, are computable (and hence their composition is a computable
predictive distribution), we get as an immediate corollary that we can
compute the posterior from the sufficient statistic, and therefore, the
sufficiency for the predictive carries over to the posterior.

Corollary IV.28. Let X and ν be as above, and let
∑k

i=1 T (Xi) for
T : R → Rm be a sufficient statistic for Xk+1 given X1:k. Then

the sequence of posterior distributions P[ν|
∑k

i=1 T (Xi)] for k ≥ 1
is computable if and only if the sequence of conditional distributions
P[Xk+1|

∑k
i=1 T (Xi)], for k ≥ 1, and the sufficient statistic T are com-

putable.

Corollary IV.28 and Theorem IV.26 provide a framework for ex-
plaining why ad-hoc methods for computing conditional distributions
have been successful in the past, even though the general task is not
computable.

The classical focus on closed form solutions has necessarily steered
the field into studying a narrow and highly constrained subspace of
computable distributions. The class of computable distributions includes

6. POSTERIOR ANALYSIS IN EXCHANGEABLE SEQUENCES 105

many objects for which we cannot find (or for which there does not
even exist) a closed form. On the other hand, computable distributions
provide, by definition, a mechanism for computing numerical answers
to any desired accuracy.

Massive computational power gives us the freedom to seek more
flexible model classes. Armed with general inference algorithms and
the knowledge of fundamental limitations, we may begin to explore new
frontiers along the interface of computation and statistics.

As a practical matter, the algorithm (given by the proof of the
Computable de Finetti Theorem) that transforms from the law of an
exchangeable sequence to its de Finetti measure can be very inefficient.
It is an open challenge to identify circumstances where the de Finetti
measure can be computed efficiently. There are many intriguing nonuni-
form questions as well: do efficiently samplable exchangeable sequences
have efficiently samplable de Finetti measures? Do efficiently samplable
exchangeable sequences have efficiently samplable predictive rules?

CHAPTER V

Distributions on data structures: a case study

Data structures are foremost a representation of knowledge, either of
a program’s own state or of the state of the world with which a program
is interacting. While the study of data structures can be traced back to
the early days of the field of computer science, data structures, and in
particular random data structures representing uncertain structure in
the real world, have a new and important role to play in probabilistic
programming and machine learning more generally.

From a Bayesian point of view, the way to discover (and subsequently
take advantage of) structure in data is to first define a hypothesis space
H of possible structures and then place a distribution on the joint space
of hypotheses and observable data, encoding one’s beliefs about the
relative likelihoods of an unobserved structure and observed data. The
conditional distribution on H given actual data encodes our updated
beliefs as to the relative likelihoods of competing structures.

When such models are implemented in actual systems, the abstract
structures in H often become literal instances of data structures and,
in these cases, the abstract distribution on H can be interpreted as a
distribution on data structures. This connection is even stronger in the
probabilistic programming setting, wherein a structured probabilistic
model is specified by a probabilistic program that literally constructs a
random data structure in the course of generating hypothesized data.

The trend in Bayesian statistics towards the use of nonparametric
models can be understood as a shift in the types of data structures
and other abstractions one finds in the corresponding probabilistic
programs. Classic finite-dimensional models (e.g., linear regression)
can be implemented with simple array data structures to store model
parameters and primitive forms of recursion to generate a data set. In
contrast, the burgeoning field of Bayesian nonparametric statistics has
at its core a number of stochastic processes (e.g., Dirichlet process) that
are best described using unbounded recursion, and implemented using
linked lists, streams and higher-order procedures. A similar observation
was made by Jordan [Jor10].

107

108 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

A central thesis of my work is that the probabilistic programming
perspective can vastly simplify the ever-expanding landscape of Bayesian
nonparametric statistics. In particular, many nonparametric constructs
have simple interpretations in suitably flexible probabilistic program-
ming languages. One example is the Dirichlet process, which from a
probabilistic programming perspective can be viewed as performing a
stochastic variant of memoization [GMR+08, RMGT08]. The usefulness
of this perspective has been demonstrated by O’Donnell [O’D11], who
significantly expands on the idea of stochastic memoization in order
to define state of the art models of productivity and reuse in natural
language.

As we search for new nonparametric processes, we can use the prob-
abilistic programming perspective to guide us. This chapter presents a
case study where the problem of placing an exchangeable distribution
on an array of random variables leads to the problem of defining a
distribution on the space of infinite kd-tree data structures.

1. Exchangeable arrays

Relational data sets capture the interactions between objects. For
example, hyperlinks are a relation on pairs of websites, and large data
sets capturing the relational hyperlink structure of the web are critical
to modern Internet search algorithms. Other examples of (binary)
relations include friendship in social networks, and movie ratings by
users. A natural way to represent a relation between sets of objects is
as an array. In order to build probabilistic models of relational data,
we will therefore be interested in arrays of random variables.

The notion of exchangeability plays a central role in hierarchical
Bayesian modeling of sequences. Related notions of symmetry are
central in the relational setting: a priori, our uncertainty about an
array representing a relation may be invariant to the ordering of the
rows and columns—i.e., the particular way we index into the objects.
In other words, a natural notion of exchangeability for relational data
is that objects (not individual relationships) are exchangeable.

The theory of exchangeable arrays developed by Aldous [Ald81] and
Hoover [Hoo79], and extended by Kallenberg (see [Kal05, Sec. 7.6] for
details) gives a natural representation for exchangeable relational data.
Roughly speaking, each object is represented by a latent variable taking
values in a latent space and a relation is a random function on the
product of the latent spaces. The relation between two objects is simply
the value of the function evaluated at the latent representations of the
two objects.

1. EXCHANGEABLE ARRAYS 109

Formally, we say that an infinite array (Ri,j)i,j≥1 is separately
exchangeable if its distribution is invariant to separate permutations
on its rows and columns. That is, for all n,m ≥ 1 and permutations
π ∈ Sn and σ ∈ Sm, we have

(Ri,j : i ≤ n, j ≤ m) d
= (Rπ(i),σ(j) : i ≤ n, j ≤ m). (124)

Aldous [Ald81] and Hoover [Hoo79] showed that all separately exchange-
able arrays taking values in a space S satisfy

Ri,j = f(θ, ξi, ηj, δi,j) a.s. (125)

for some measurable function f : [0, 1]4 → S and independent uniformly
distributed random variables θ, (ξi), (ηj), (δi,j), i, j ∈ N. In order to
understand this representational result, we will study the special case
S = {0, 1} of binary-valued binary relations.

Let

h(t, x, y) := P{f(t, x, y, δ) = 1}, (126)

where δ ∼ U [0, 1], and define Hθ(x, y) := h(θ, x, y), i.e., Hθ is a random
function from [0, 1]2 → [0, 1]. Then the entries (Ri,j) are mutually
independent given Hθ, (ξi), (ηj), i, j ∈ N, and

P[Ri,j = 1 | Hθ, ξi, ηj] = Hθ(ξi, ηj). (127)

Put simply, the relationship between object i and j is conditionally
independent of all other relationships given the “link” function H := Hθ

and “representations” ξi and ηj for each column i and row j, respectively.
Therefore, a separately exchangeable distribution on an array encodes a
prior distribution on the unknown representations of rows and columns,
as well as a prior distribution on the unknown link function.

1.1. Bayesian models of exchangeable arrays. Just as the
de Finetti representation theorem serves as the theoretical foundation
for hierarchical Bayesian models of exchangeable sequences, the Aldous-
Hoover representation theorem serves as the foundation for models of
exchangeable relational data (see [Hof08] and [RT09] for further discus-
sion). In particular, the central problem of modeling an exchangeable
binary-valued array is choosing an appropriate function space and prior
distribution for the link function H. (Note that the choice of a uniform
random variable as a representation is not essential as any random
element ξ on a Borel space satisfies ξ = f(θ) a.s. for some uniform
random variable θ and measurable function f .)

One of the most popular probabilistic models for relational data is
the stochastic block model. Stochastic block models were introduced
by Holland, Laskey and Leinhardt [HLL83], although more recent

110 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

incarnations (see [KTG+06, XTYK06, RKMT07]) descend from work
by Waserman and Anderson [WA87] and Nowicki and Snijders [NS01].
At a high level, stochastic block models assume that every object has a
type and that each relationship is determined (up to independent noise)
by the types of objects interacting, not the identity of the individual
objects. For example, a crude model of politics might posit that the
relationship between two members of Congress is characterized by their
party membership. Stochastic block models can be seen as an extension
of the paradigm of clustering to the relational setting.

A formal description of a particular stochastic block model called
the Infinite Relational Model [KTG+06, XTYK06] (henceforth, IRM)
reveals a shortcoming that we will attempt to address. Note that
following presentation is specialized to the binary case.) Let δ1 > δ2 >
· · · > 0 denote the jump times of a nonhomogeneous Poisson process on
(0, 1] whose rate measure is the so-called beta Lévy measure µ(dx) =
αx−1dx, and put δ0 = 1. (See [Kin93] for an excellent introduction
to nonhomogeneous Poisson processes.) Teh, Görür, and Ghahramani
[TGG07] show that the inter-jump wait times δn − δn+1 have the same
distribution as the “stick lengths” in the stick-breaking construction of
the Dirichlet process [Set94].

Let (δ′n) be an independent copy of (δn), and let (θi,j) be an i.i.d.
array of Beta random variables. Then the random link function H
corresponding to an IRM distribution is given by

H(x, y) = θn,m, (128)

where n,m are the unique indices such that x ∈ (δn, δn−1] and y ∈
(δ′m, δ

′
m−1]. In particular, the entries (Ri,j) of an array with an IRM

distribution are conditionally independent and satisfy (127) for some
pair of independent sequences (ξi) and (ηj) of i.i.d. uniform random
variables.

It is clear from (128) that the row and column objects are first
separately and independently clustered, and that each pair (n,m) of
clusters has a prototypical probability θn,m of interacting. Therefore,
stochastic block models can been seen to place a distribution on a
partition of the product space by forming the product of the partitions
on the row and column space. The problem with such an approach
is that there is rarely a single partition of the objects into types that
accounts for the variability of the data. One can visualize this draw-
back: the “resolution” needed to model fine detail in one area of the
array necessarily causes other parts of the array to be dissected into
unnecessarily distinct clusters, even if the data suggest there is no such
structure (see Figure 1).

2. RANDOM kD-TREES 111AnowadyaAnowadya (IRM)

Figure 1. (left) Under a suitable permutation of the
rows and columns, stochastic block models like the IRM
[KTG+06] induce a regular partition on the product space,
introducing structure where the data do not support
it. (right) More flexible partitions, such as guillotine
partitions, can provide resolution where it is needed.

2. Random kd-trees

The approach we will take is to consider a richer class of functions
corresponding to a richer set of partitions, and in particular, nested,
axis-aligned, binary partitions of a space. Within computer science,
such structures are known as multidimensional binary search trees,
or simply, kd-trees [Ben75]. Within combinatorics and other areas of
mathematics, such structures are known as guillotine partitions.

A kd-tree data structure can be defined inductively as either 1) a
leaf (representing the trivial partition where all points are in the same
equivalence class) or 2) an axis-aligned cut, composed of two children
kd-tree data structures.

Given the recursive definition of kd-trees, it is natural to consider
distributions corresponding with probabilistic programs of the form:

SampleP(D), D ⊆ RD

1. with some probability
2. return empty-leaf.
3. otherwise
4. Sample an axis-aligned partition {D0, D1} of D
5. return 〈c,SampleP(D0),SampleP(D1)〉.

Does a process with this structure produce distributions with desir-
able properties? With what probability should the procedure stop and
return a leaf? If a random cut is made, from what distribution should a
cut be drawn? These choices determine the properties of the resulting
distribution.

112 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

Figure 2. (a-d) Floorplan partitions of the unit square.
(c) and (d) are also guillotine partitions. (d) is an atomic
refinement of (c).

A process of the above form makes several ontological assumptions
that deserve consideration. In particular, assuming that the procedure
halts with probability one, it will always return finite partitions, and
moreover, the choice of the stopping probabilities will implicitly define
a distribution on the size and shape of the partition. However, a finite
partition may be an inappropriate assumption when the amount of data
we wish to model is potentially unbounded.

In order to consider partitions of potentially unbounded complexity,
we will need a way to generate infinite partitions. The key tool at
our disposal are projective limits and in order for these methods to be
applicable, we will need a procedure with the following key property:
that it should produce distributions on partitions that are invariant
under the operation of restricting the partition to a subset. That is,
if we partition a space X and then look at the induced partition on a
subset A ⊆ X, this distribution should match the distribution that we
would have produced starting from A directly.

In the remainder of the chapter we present a construction of a
random guillotine partition that achieves this property.

3. Guillotine partitions and Mondrian processes

The basic constituent of the partitions we will be considering is an
axis-aligned cuboid or simply box. In particular, a box is a subset
A ⊆ RD of the form A = I1×· · ·×ID for left-open/right-closed intervals
Id ∈ R, i.e., Id ∈ {(−∞, b], (a, b], (a,∞) : a, b ∈ R, a < b}. Note that
the whole of RD is considered a box by this definition.

Let X be a box in RD. A floorplan partition (of X) is a partition
of X into disjoint boxes. We denote the set of all floorplan partitions of
X by FX . The set of floorplan partitions and its combinatorial structure
is the subject of a large literature (see, e.g., [Sto83] and [WL89]).

Let π be a floorplan partition of a box X. We call a floorplan
partition η ∈ FX a refinement of π, written η � π, when η =

⋃
A∈π βA

for some floorplan partitions βA ∈ FA. It is straightforward to show

3. GUILLOTINE PARTITIONS AND MONDRIAN PROCESSES 113

R0

R1

Figure 3. The structure of a guillotine partition can
be represented by a rooted hierarchy of cuts. Note that
this identification is not unique; the partition � can be
achieved starting with a vertical or horizontal cut.

that the relation � is a complete partial order on FX . We write the
irreflexive relation η � π when η 6= π and η � π.

We call η an atomic refinement of π, written η �1 π, when η � π
and |η \ π| = 2 (see Figure 2d) and write η �1 π when η �1 π or η = π.
An atomic refinement of a floorplan partition is generated by “cutting”
a box into two subboxes. The set of partitions generated by sequences
of cuts are known as guillotine partitions:

Definition V.1 (Finite guillotine partition). The set of finite guillo-
tine partitions on X is the smallest set G 0

X , such that

(1) {X} ∈ G 0
X ; and

(2) η ∈ FX , π ∈ G 0
X , η �1 π implies η ∈ G 0

X .

That is, G 0
X is the transitive closure of {X} under �1. We de-

fine G 0 :=
⋃
X G 0

X , where the union is over subboxes X ⊆ RD. (Like
floorplan partitions, guillotine partitions, and in particular their combi-
natorial structure, have been the subject of much research. See, e.g.,
[GZ89] and [AM10].)

Guillotine partitions can be seen to have hierarchical structure. Let π
be a finite guillotine partition. Then there is at least one finite sequence
of atomic refinements π = πk �1 πk−1 �1 · · · �1 π1 �1 π0 = {X}
connecting π and the trivial partition {X}, each resulting from a cut
to some box creating two sub-boxes. These refinements can be seen to
form a rooted, binary tree. In particular, let Ri ∈ πi \ πi+1 denote the
box cut on the ith step, and associate each such set Ri with children

114 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

πi+1 \ πi. Then the {Ri} comprise the internal nodes of a binary tree
with root R0 and leaves A ∈ π (see Figure 3).

A partition of a set naturally induces a partition on any subset. To
make this notion precise, we define:

Definition V.2 (Restriction). Let A ⊆ X and let π ⊆ P(X)\{∅}. We
call the subset of P(A) given by

ΠAπ := {A ∩B : B ∈ π} \ {∅} (129)

the restriction of π to A.

It is straightforward to show that a restriction of a partition is again
a partition. As the intersection of two overlapping boxes is again a box,
it follows easily that floorplan partitions are closed under restriction
to subboxes, i.e., the restriction of a floorplan partition to a subbox is
again a floorplan partition of that subbox. The same is true of guillotine
partitions:

Lemma V.3 (Closed under restriction). Let X be a box and π ∈ G 0
X

a finite guillotine partition. For all subboxes A ⊆ X, we have that
ΠAπ ∈ G 0

A. In particular, G 0
A = {ΠAπ : π ∈ G 0

X}.

Proof. By the definition of finite guillotine partitions, it is the
case that π = πk �1 πk−1 �1 · · · �1 π1 �1 π0 = {X}, for some finite
sequence of guillotine partitions (πn). Note that η �1 ν implies that
ΠAη �1 ΠAν. Therefore, ΠAπ = ΠAπk �1 · · · �1 ΠAπ0 = ΠA{X} =
{A}, hence ΠAπ ∈ G 0

A. �

Many useful operations on sets and partitions can be described by
element-wise transformations. For a function f : X → Y , we write f ‘
to denote the function from P(X)→ P(Y) given by

f ‘(A) = {f(x) : x ∈ A}, A ⊆ X. (130)

We will write f“ to denote (f ‘)‘, i.e., the operator is left associative.1

As an example, consider the translation τ(x) = x+v, where v ∈ RD.
Then τ ‘ takes sets in RD to sets in RD. In particular, τ ‘A = {v + x :
x ∈ A} for A ⊆ RD; informally, A is translated by v. It follows that
τ“ acts on sets of sets (and in particular, partitions), translating each
constituent set by v. E.g., if π is a partition of a box X, then τ“π is a
partition of the box τ ‘X. As another example, Lemma V.3 shows that
ΠY ‘G 0

X = G 0
Y .

1We apologize to set theorists who use double apostrophes “ to denote the operator
that we have chosen to represent by a single apostrophe ‘. However, ““ seemed
cumbersome.

3. GUILLOTINE PARTITIONS AND MONDRIAN PROCESSES 115

3.1. Random guillotine cut. Let X be a box, let π ∈ G 0
X be a

guillotine partition of X, and let

Rπ := {η ∈ G 0
X : η �1 π} (131)

be the set of atomic refinements of π. We would like to define a “uniform”
distribution on Rπ.

There is no standard notion of a uniformly distributed refinement,
and it is not hard to generate distinct distributions on Rπ that could
all be justifiably called uniform. We will take an axiomatic approach,
and instead consider consistency properties on an entire family

{νπ : π ∈ G 0} (132)

of measures on atomic refinements. In particular, we will restrict our
attention to families such that, for all π ∈ G 0, we have invariance under:

(1) translation, i.e., νπ = ντ“π ◦ τ“, for all τ(x) = x + v and
v ∈ RD;

(2) permutation (of dimensions), i.e. νπ = νρ“π ◦ ρ“, for
all ρ(y1, . . . , yD) = (yσ(1), . . . , yσ(D)) and permutations σ of
{1, . . . , D}; and finally

(3) restriction, i.e., νπ(A) = (νΠY π ◦ ΠY ‘)(A), for all subboxes
Y ⊆ X and measurable subsets A ⊆ {ξ ∈ Rπ : ΠY ξ 6= ΠY π}.

In fact, as we will show, these three invariances pin down νπ up to
a constant.

To begin, note that every atomic refinement η ∈ Rπ can be associated
with a unique triple (A, d, x) where A ∈ π \ η and

{y ∈ A : yd ≤ x}, {y ∈ A : yd > x} ∈ η \ π. (133)

We call the triple (A, d, x) a guillotine cut (or simply cut) and denote
by Cπ the set of cuts associated with all atomic refinements Rπ, and
denote by cutπ the isomorphism mapping Cπ onto Rπ.

Consider the ring (of subsets of Cπ) containing the null set as well
as sets of the form

{(A, d, x) : x ∈ I}, (134)

where A = I1 × · · · × ID ∈ π, d ∈ {1, . . . , D}, and I ⊆ Id is a left-
open/right-closed subinterval, and consider the real-valued set function

λ̃π defined on this ring and given by λ̃π∅ := 0 and

λ̃π{(A, d, x) : x ∈ I} := |I|. (135)

It is straightforward to show that λ̃π is a σ-finite pre-measure and
therefore, by Caratheodory’s extension theorem, that there exists a

116 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

unique extension λπ to the σ-algebra generated by the ring. Let

νπ := λπ ◦ cut−1
π (136)

denote the induced measure on Rπ.

Lemma V.4. A family {ζπ : π ∈ G 0} of measures on atomic refine-
ments is invariant under translation, permutation, and restriction if
and only if there exists a constant c ≥ 0 such that for all π ∈ G 0, we
have ζπ = c · νπ.

Proof. It is straightforward to show that, for all c ≥ 0, a family
satisfying ζπ = c · νπ for all π ∈ G 0 is invariant under translation,
permutation, and restriction.

In the other direction, assume that a family {ζπ : π ∈ G 0} is
invariant under translation, permutation, and restriction. Let X ⊆ RD

be a box, let π ∈ G 0
X , and let

D1 = cutπ‘{(A1, d1, x) : x ∈ I1} and, (137)

D2 = cutπ‘{(A2, d2, x) : x ∈ I2} (138)

be any two subsets of Rπ such that |I1| = |I2|. We will show that

ζπD1 = ζπD2, (139)

and thus by the additivity of measures, there exists a constant cπ ≥ 0
such that ζπ = cπ · νπ. Moreover, by invariance under restriction, it
follows that cπ = cη for all π, η ∈ G 0. Therefore, the result follows
assuming we can show (139).

Let ρ be a permutation that takes d2 to d1 and let τ be a translation
such that

D′2 := τ“‘(ρ“‘D2) = cutτ“(ρ“π)‘{(A′2, d1, x) : x ∈ I1}, (140)

and

A′2 ∩ A1 6= ∅, (141)

where A′2 := τ ‘(ρ‘A2). Informally, after the permutation ρ, the transla-
tion τ takes I2 to I1 along dimension d1 and enforces some overlap in
all other dimensions. By invariance under translation and permutation,
we have that

ζπD2 = ζτ“(ρ“π)D
′
2. (142)

Let Y = A′2 ∩ A1. Then

ΠY π = {Y } = ΠY (τ“(ρ“π)) (143)

and

ΠY ‘D′2 = ΠY ‘D1. (144)

3. GUILLOTINE PARTITIONS AND MONDRIAN PROCESSES 117

Therefore,

ζπD1 = ζΠY πΠY ‘D1 restriction (145)

= ζΠY πΠY ‘D′2 Eq. (144) (146)

= ζΠY (τ“(ρ“π))ΠY ‘D′2 Eq. (143) (147)

= ζτ“(ρ“π)D
′
2 restriction (148)

= ζπD2, Eq. (142) (149)

completing the proof. �

Let X be a bounded box. By a uniformly random guillotine
cut of π we mean a random element in Cπ with distribution

λ̄π := λπ/λπ(Cπ), (150)

and by a uniformly random refinement we mean a random element
in Rπ with distribution

ν̄π := νπ/νπ(Rπ) = λ̄π ◦ cut−1
π . (151)

(Note that λπ(Cπ) <∞ if and only if X is a bounded box.)
It follows trivially from (135) that a uniformly random refinement

of π splits a subbox A ∈ π with probability proportional to
∑

d |Id|,
where A = I1 × · · · × ID, and, conditioned on splitting A ∈ π, cuts the
d’th dimension with probability proportional to |Id|.

3.2. Mondrian process. We now construct a Markov process in
continuous time that takes values in the space of guillotine partitions.
The name was suggested by Matthias Seeger, who thought that the
partitions produced by the process resembled the grid-based artwork of
the painter Piet Mondrian.

By a pure jump-type Markov process on a measurable space
(S,S) we mean a Markov process M defined on the index set R+ that
takes values in S and is a.s. right continuous and constant apart from
isolated jumps. We will think of M as a random element in the function
space SR+ and write Mt = M(t). The distribution of M is completely
determined by 1) the distribution of its initial state M0 and 2) its
so-called rate kernel α : S × S → [0, 1], which satisfies

α(x,B) = lim
h↓0

h−1P{Mt+h ∈ B | Mt = x} (152)

for all t > 0, all x ∈ S and all measurable subsets B ⊆ S such that
x 6∈ B. (See [Kal97, Thm. 10.24] for a discussion of the backward
equations of pure jump-type Markov processes.)

We begin by defining a Mondrian process on a bounded box:

118 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

Definition V.5 (Finite Mondrian process). Let X be a bounded box
and let M be a pure jump-type Markov process on G 0

X with rate kernel
α. Then M is a finite Mondrian process on X when M0 = {X} a.s.
and

α(π,B) := νπ(B ∩Rπ) (153)

for all π ∈ G 0
X and measurable subsets B ⊆ G 0

X such that π 6∈ B.

We now proceed to the question of the existence of such a process.
For π ∈ G 0

X , let c(π) := νπ(Rπ) denote the rate function. Then the
rate kernel of a Mondrian process can be written

α(π,B) = c(π) ν̄π(B ∩Rπ). (154)

We will write ᾱ to denote the transition kernel given by ᾱ(π,B) :=
ν̄π(B ∩Rπ).

It is well known that a pure jump-type Markov process can be
expressed as a discrete-time Markov chain embedded in continuous
time. In particular, let Y be a G 0

X-valued Markov chain in discrete time
with initial state {X} and transition kernel ᾱ, and let (γn) be an i.i.d.
sequence of exponentially distributed random variables with mean 1.
Define

Nt := Yn for t ∈ [τn, τn+1), (155)

where

τn :=
n∑
j=1

γj
c(Yj−1)

. (156)

Note that Nt is well-defined if and only if

τ∞ := lim
n→∞

tn =∞ a.s. (157)

The event {τ∞ < ∞} is called explosion. From (156), we see that
τ∞ =∞ a.s. if and only if∑

n

{c(Yn)}−1 =∞ a.s. (158)

It follows from elementary results on pure jump-type Markov processes
(see [Kal97, Thm. 10.19]), that N is a Mondrian process on X if and
only if explosion occurs with probability 0.

The possibility of explosion is not obviously ruled out: Note that

c(π) =
∑
A∈π

c({A}) (159)

3. GUILLOTINE PARTITIONS AND MONDRIAN PROCESSES 119

where

c({A}) =
D∑
d=1

|Ad| (160)

for A = A1 × · · · × AD ∈ π. (Here |Ad| is the length of the interval
corresponding to an edge of the box A, and so we will refer to the
quantity (160) as the linear dimension of the box A.) It follows that
c(η) > c(π) if η � π. That is, the rate c(Yn) almost surely increases.
Moreover,

sup{c(π) : π ∈ G 0
X} =∞, (161)

and so the rate is unbounded. However, one can show that the rate does
not increase too quickly. (See Bertoin [Ber06, Lem. 1.2] for a similar
argument.) We begin with a technical lemma:

Lemma V.6 (Bounded growth). Fix a bounded box X. There is a
constant a > 0 such that, for all π ∈ G 0

X ,∫
Rπ

ν̄π(dη) c(η) < c(π) + a. (162)

Proof. Let π ∈ G 0
X . By its construction, νπ concentrates on the

atomic refinements Rπ of π. An atomic refinement of π results in a
box in π being split in two along some dimension d. The corresponding
increase in the total linear dimension equals the additional length of a
duplicate edge in all dimensions other than the dth. Every box in π is
contained in X, therefore, for η �1 π,

c(η) < c(π) + c({X}). (163)

It follows that a = c({X}) suffices. �

Theorem V.7 (Existence of a finite Mondrian process). Let X be a
bounded box. Then there exists a Mondrian process on X.

Proof. Let Y and (τn) be the embedded Markov chain and jump
times, respectively, as defined above. It suffices to show that Condi-
tion (158) holds.

By the law of iterated expectations and Lemma V.6, we have

E{c(Yn)} = E{E[c(Yn) | Yn−1]} (164)

< E{c(Yn−1)}+ a. (165)

120 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

Therefore, E{c(Yn)} = E{c(Y0)}+ an. It follows from Fatou’s lemma
that

E lim inf
n→∞

c(Yn)

n
≤ lim inf

n→∞
E
c(Yn)

n
(166)

< lim inf
n→∞

E{c(Y0)}+ an

n
(167)

<∞, (168)

and so

lim inf
n→∞

c(Yn)

n
<∞ a.s. (169)

Because c(Yn) is almost surely increasing,
∑∞

n=1{c(Yn)}−1 = ∞ a.s.,
completing the proof. �

Let M be a Mondrian process in one-dimension on an interval X ⊆ R.
Then for all t ≥ 0, Mt is an a.s. finite partition of the interval that
we can represent by the set of points at the boundaries of the interval
partitions. Each atomic refinement introduces an additional interval
boundary point, and so we can therefore think of a Mondrian process
in one-dimension as a (pure jump-type Markov) point process. There
is a close connection between the Mondrian process and the Poisson
process, the canonical point process.

Theorem V.8. Let M be a Mondrian process in one-dimension on an
interval X. Then the point process associated with the boundaries of
the interval partitions is a homogeneous Poisson point process on X.

Proof. Note that for any partition π ∈ G 0
X of the interval X, the

rate satisfies c(π) = |X|. Therefore, the wait time between jumps are
independent and exponentially distributed with rate |X|. Moreover,
ν̄π is equal in distribution to the uniform distribution on X, and so
conditioned on the number of cuts, they are uniformly distributed on
X. It is an elementary fact that these two properties imply that the
boundaries are a Poisson point process (see [Kal97, Cor. 10.10]). �

Remark V.9. Consider a Mondrian process M on the unit interval
and, for each time t ≥ 0, let L1(t) ≥ L2(t) ≥ · · · be the sorted lengths
of the intervals comprising the partition Mt, where Lk(t) = 0 when
there are fewer than k intervals at time t. The sequence-valued process
L = (L1, L2, . . .) is an example of a fragmentation chain (see [Ber06,
§1.1.3 and §2.1.2] for more details on this “Poissonian rain” process).

A fragmentation chain is a Markov process in continuous time
whose state is a (possibly countably infinite) population of particles,
each entirely characterized by its mass, a nonnegative real quantity.

3. GUILLOTINE PARTITIONS AND MONDRIAN PROCESSES 121

0.0

0.5

1.0

Figure 4. (top) Mondrian process on the unit square
at time t = 1. (bottom) A visualization of the same
Mondrian process for t ∈ [0, 1]. Note: the colors are
chosen at random.

Fragmentation chains are one example of a more general class of frag-
mentation processes, which have been fruitfully applied in various areas
of physics, chemistry, biology, statistics and computer science (see
[Ber06] for an introduction).

The particles in a fragmentation chain evolve independently, ran-
domly fragmenting into subpopulations of particles of smaller mass.
In the Poissonian rain process describe above, the subintervals can be
considered to be particles in a fragmentation chain and their lengths
play the role of their mass.

Bertoin [Ber06] presents various generalizations of Poissonian rain
that are also fragmentation chains, including higher-dimensional ana-
logues. We will show that Mondrian processes can also be viewed as a
non-interacting particle systems, in the sense that each box (particle)

122 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

evolves independently of the other boxes. One might wonder whether
the volume of each box could play the role of a particle’s mass in a
fragmentation chain. However, the evolution of the ranked volumes of
a Mondrian process is not Markovian. On the other hand, a Mondrian
processes in D dimensions can be thought of as a multi-dimensional
generalizations of a fragmentation process, where a one-dimensional
mass is replaced by a D-dimensional quantity, in this case representing
the length of the box along each dimension. We believe that multi-
dimensional generalizations of fragmentation processes are likely to be
useful for constructing other kinds of random data structures.

We now proceed to characterize the structure of Mondrian processes:
Henceforth, we will consider a Mondrian process M defined on an

underlying probability space. For all π ∈ G 0, we will denote by Pπ

the probability measure for which M0 = π a.s. (i.e., under Pπ, the
Mondrian process starts from π rather than the trivial partition).

Proposition V.10 (Recursive construction). Let π ∈ G 0
X and let

{NA}A∈π be independent Mondrian processes on A ∈ π. Then the
G 0
X-valued stochastic process M on R+ given by

Mt :=
⋃
A∈π

NAt (170)

is a Mondrian process under Pπ.

Before we proceed with the proof, we state two important properties
of exponential random variables upon which we will rely:

Lemma V.11 (Memoryless). Let ζ be an exponential random variable.
Then for s, t ≥ 0, we have that P{ζ ≥ t | ζ ≥ s} = P{ζ ≥ t− s}. �

Lemma V.12 (Poisson splitting). Fix a positive integer k and let (ζn :
n ≤ k) be independent exponentially distributed random variables with
rates rn > 0, respectively. Then ζ = minn ζn is exponentially distributed
with rate

∑
n rn. Moreover, the events {ζ = ζn} are independent of ζ,

a.s. disjoint, and occur with probability P{ζ = ζn} = rn∑
n rn

. �

Proof of Proposition V.10. Note that ΠA ◦M = NA by con-
struction. Let Y A and τA1 < τA2 < · · · be the embedded Markov chain
and jump times of NA, respectively. For t ≥ 0, define nAt to be the (a.s.
unique) index such that t ∈ [τA

nAt
, τA
nAt +1

). Then

Mt =
⋃
A∈π

Y A
nAt
. (171)

3. GUILLOTINE PARTITIONS AND MONDRIAN PROCESSES 123

It is clear from the independence of the chains and jump times that M
is a.s. right continuous and constant apart from isolated jumps.

For t ≥ 0, define

ζAt := τAnAt +1 − t (172)

to be the wait time until the next jump to NA = ΠA ◦M after time t
Then the wait time until the next jump to M after time t is

ζt = min
A∈π

ζAt . (173)

Conditioned on Ft := σ{Ms : s ≤ t}, it follows from the memoryless
property of exponential random variables that ζAt is exponentially dis-
tributed with rate c(Y A

nAt
) = c{ΠA(Mt)}. By the mutual independence

of {(Y A, τA)}A∈π, it follows that ζt is Ft-conditionally exponentially
distributed with rate∑

A∈π

c{ΠA(Mt)} = c(Mt). (174)

Moreover, conditioned on Ft, the (a.s. unique) set αt ∈ π that achieves
the minimum in (173) is independent of ζt and equal to A ∈ π with
probability

c{ΠA(Mt)}
c{Mt)

. (175)

Conditioning on {αt = A} and Ft, we have that

ΠA(Mt+ζt) = Y A
nAt +1 (176)

is independent of ζt and thus has distribution

ν̄Y A
nAt

= ν̄ΠAMt . (177)

Therefore, conditioned on Ft, Mt+ζt is independent of ζt and has distri-
bution

ν̄Mt . (178)

Along with the trivial observation that M0 = π a.s., it follows that M is
a pure jump-type Markov process with initial state π and rate kernel
given by (153), completing the proof. �

The previous proof shows that we can construct a Mondrian process
from independent Mondrian processes defined on the boxes of a partition.
We can use this generative construction to gain representational insight
into Mondrian processes using a so-called transfer argument (see [Kal97,
Thm. 5.10] for more details).

124 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

Theorem V.13 (Transfer). Fix any measurable space S and Borel space

T , and let ξ d
= ξ̃ and η be random elements in S and T , respectively.

Then there exists a random element η̃ in T with (ξ̃, η̃) d
= (ξ, η). �

The next result shows that, in fact, all Mondrian processes are
composed from independent Mondrian processes.

Theorem V.14 (Branching property). Let π ∈ G 0
X , and let M be a

Mondrian process on X under Pπ. Then {ΠA ◦M}A∈π are independent
Mondrian processes.

Proof. Let {N̂A}A∈π be independent Mondrian processes on A ∈ π,

respectively. By Proposition V.10, there is a Mondrian process M̂ on X,

and in particular M̂ d
=M. Hence, by Theorem V.13, there are processes

NA for each A ∈ π such that

(M̂, N̂A : A ∈ π) d
= (M,NA : A ∈ π). (179)

As {NA} are independent Mondrian processes and ΠAM̂t = N̂At a.s. for
all t ≥ 0 and A ∈ π, the same properties and relationships hold of M
and {NA}, completing the proof. �

Remark V.15. It is tempting to consider a direct proof. We present
an informal but direct argument in the proof of Theorem V.24.

Let M be a Mondrian process on a bounded boxX, and define θt(s) =
s+ t. Then M ◦ θt is a Mondrian process shifted ahead in time by an
amount t, i.e., a Mondrian process under PMt . This property also holds
for an optional time τ . In particular, by the strong Markov property,
conditioned on the process up until τ , the evolution of M ◦ θτ is given
by PMτ . Therefore, conditioning on Mτ , it follows from Theorem V.14
that the time-shifted restrictions {ΠA ◦M ◦ θτ}A∈Mτ are conditionally
independent Mondrian processes.

In particular, taking the optional time τ to be the first jump time
of M, this observation suggests the follow recursive construction of
a Mondrian process: Let ξ be an exponential random variable with
rate c({X}), let {X0, X1} be a uniformly random refinement of {X},
and let M0 and M1 be independent Mondrian processes on X0 and
X1, respectively. Then the process whose first jump is the atomic
refinement {X0, X1} at time ξ, and subsequent evolution is given by
t 7→

⋃
i∈2 M

i
t−ξ is itself a Mondrian process. (Here 2 stands for the

two point set {0, 1}.) Moreover, the independent Mondrian processes
can themselves be generated recursively. This leads to the following
algorithm for sampling Mt on a box X ⊆ RD:

4. CONDITIONAL MONDRIAN PROCESSES 125

SampleM(t, X)
1. ξ ∼ Exponential(c({X}))
2. if t < ξ
3. return trivial partition {X}
4. otherwise
5. Sample an atomic refinement {X0, X1} ∼ ν̄{X}
6. return

⋃
i∈2 SampleM(t− ξ,Xi).

This recursive procedure highlights one of the computational impli-
cations of conditional independence, and in particular, the branching
property: the future evolution of one part of the partition depends
only on a local structure of the partition. In the next section we study
conditional distributions of Mondrian processes. We use these results
to show that a Mondrian process is self-similar under restriction, i.e.,
the restriction of a Mondrian process to an arbitrary subbox is itself a
Mondrian process. This property will allow us to construct a Mondrian
process on an infinite space. Again, the branching property is useful
because it allows us to extend a Mondrian process locally.

4. Conditional Mondrian processes

Let A ⊆ X be bounded boxes and let M be a Mondrian process on
X. We are interested in characterizing the conditional distribution of
M given its restriction ΠA ◦M to A. We will begin by describing a way
to extend a Mondrian process to a larger space.

Let N be a Mondrian process on A, and let Z and σ1 < σ2 < · · ·
be the embedded Markov chain and jump times of N, respectively. For
t ≥ 0, define mt to be the (a.s. unique) index such that t ∈ [σmt , σmt+1).
That is, for all t ≥ 0, Nt = Zmt .

Given an atomic refinement η to ΠAπ, there is a unique atomic
refinement to π that agrees with η by restriction. Formally, for all
π ∈ G 0

X and η �1 ΠA(π), let liftπ,A(η) denote the unique atomic
refinement to π such that ΠA(liftπ,A(η)) = η.

Finally, for π ∈ G 0
X and a uniformly distributed random variable θ in

[0, 1], let gencutA(π, θ) be a random refinement of π equal in distribution
to that of a uniformly random refinement η conditioned on the event
{ΠA(η) = ΠA(π)}. Put simply, gencutA(π, θ) is a uniformly random
refinement of π whose associated cut does not cross the subbox A.

We now define an embedded Markov chain on G 0
X and jump times.

Put τ0 := 0 and Y0 := {X} and for n ∈ N, define τn+1 and Yn+1

126 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

inductively by

τn+1 := min{σmτn+1, τn +
ξn

c(Yn)− c(Zmτn)
}, (180)

and

Yn+1 :=

{
liftYn,A(Zmτn+1) if τn+1 = σmτn+1

gencutA(Yn, θn) otherwise,
(181)

where (ξn : n ∈ N) is an independent sequence of i.i.d. exponential
random variables with mean 1, and (θn : n ∈ N) is an independent
sequence of i.i.d. U [0, 1] random variables.

Proposition V.16 (Well-definedness). The processes (Yn : n ∈ N)
and (τn : n ∈ N) are well-defined.

Proof. A sufficient condition for these equations to be well-defined
is that

Zmτn+1 �1 ΠA(Yn), ∀n ∈ N. (182)

First note that Zmτn+1 �1 Zmτn holds for all n ∈ N. In order to establish
(182), we will show that

Zmτn = ΠA(Yn) (183)

holds for all n ∈ N. To begin, observe that

ΠA(Y0) = {A} = Z0 = Zmτ0 . (184)

Assume that (183) holds for all m ≤ n ∈ N. If τn+1 6= σmτn+1, then
mτn+1 = mτn and, by (181) and the inductive hypothesis,

ΠA(Yn+1) = ΠA(Yn) = Zmτn = Zmτn+1
, (185)

as desired. Now assume that τn+1 = σmτn+1. By the inductive hypothe-
sis,

Zmτn+1 �1 Zmτn = ΠA(Yn) (186)

and so, by (181) and the definition of lift , we have

ΠA(Yn+1) = ΠA(liftYn,A(Zmτn+1)) = Zmτn+1. (187)

Yet mτn+1 = mτn + 1 and so

ΠA(Yn+1) = Zmτn+1
, (188)

completing the proof. �

4. CONDITIONAL MONDRIAN PROCESSES 127

For t ≥ 0, define nt to be the (a.s. unique) index such that t ∈
[τnt , τnt+1), and consider the G 0

X-valued stochastic process M̂ on R+

given by

M̂t := Ynt . (189)

Theorem V.17 (Conditional Mondrian process). Let A ⊆ X be
bounded boxes and let N be a Mondrian process on A. Then a pro-
cess M̂ as defined by (189) is a Mondrian process on X and ΠA ◦ M̂ = N
a.s.

Proof. We begin by establishing the well-definedness of nt, which
requires that τn → ∞ a.s. One can see from (181) that Yn+1 �1 Yn,
and so the chain Y is a sequence of atomic refinements starting with
Y0 = {X} and thus an element in G 0

X . Therefore, by Lemma V.6, it
follows that c(Yn) ≤ c(Y0) + an a.s. for some constant a > 0, and so∑

n

1

c(Yn)− c(Zmτn)
≥
∑
n

1

c(Yn)
≥
∑
n

1

c(Y0) + an
=∞.

(190)

Combined with the independence of (ξn) and the fact that σn → ∞,

it follows that τn →∞ a.s. We may then also conclude that M̂ is a.s.
right continuous and constant apart from isolated jumps.

Let t ≥ 0. Then the wait time until the next jump in M̂ is

ζt := τnt+1 − t. (191)

Conditioned on Ft = σ{M̂s : s ≤ t}, ζt is exponentially distributed

with rate c(Zmτnt) + c(Ynt)− c(Zmτnt) = c(Ynt) = c(M̂t). Moreover, the
event

{τnt+1 = σmτnt+1} (192)

is independent of ζt and occurs with probability

c(Zmτnt)

c(M̂t)
=
c(Nt)

c(M̂t)
. (193)

Moreover, conditioned on F and (192), the restriction of the refinement
is a uniformly random refinement; likewise, conditioned on F and the
complement of (192), the refinement is uniformly random outside of A.
Taking expectations conditioned on F , the distribution of the refinement
is ν̄M̂t

, and this distribution is independent of ζt. Finally, we note that

M̂0 = {X} a.s.

Therefore, M̂ is a Mondrian process on X. Moreover, by construction
ΠA(M̂t) = ΠA(Ynt) = Zmt = Nt a.s. �

128 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

Remark V.18. Informally, the next jump to M comes from a race
between 1) jumps inside A, i.e., jumps in N and 2) jumps outside A.
As both are independent, exponential random variables, their minimum
is exponentially distributed with a rate given by the sum of the rates of
jumps coming from both sources. When a jump occurs in N, there is
a unique cut to the current refinement which achieves that cut when
restricted to A. Otherwise, a uniformly random cut is made outside A.

Let A ⊆ X ⊆ RD be boxes, and let N be a Mondrian process on
A. As before, the branching property (Theorem V.14) of the Mondrian
process allows us to give a recursive construction of a Mondrian process
M on X extending N, i.e., satisfying ΠA ◦ N = M. This leads to the
following recursive algorithm for sampling Mt given N:

Let t1 and Y1 be the first jump time and transition of N, and recall
that N′ := N ◦ θs is a time-shifted version of N, satisfying N′t = Ns+t.

SampleCM(t, X | N, A),
1. ξ ∼ Exponential(c({X})− c({A}))
2. if min{t, t1} < ξ
3. if t < t1
4. return trivial partition {X}
5. otherwise
6. {X0, X1} := liftY1,A({X})
7. otherwise
8. {X0, X1} ∼ P{gencutA({X}, θ) ∈ ·}
9. return

⋃
i∈2 SampleCM(t− ξ, Xi | ΠXi ◦ N ◦ θξ, A ∩Xi)

As with Proposition V.10 and Theorem V.14, this generative result
can give us representational insight via the use of a transfer argument.
In particular, recall that guillotine partitions are closed under restriction,
and that our notion of a uniformly random cut was based on the desired
property of invariance under restriction. Mondrian processes enjoy a
similar closure property under restriction:

Theorem V.19 (Self-similarity under restriction). Let A ⊆ X be
bounded boxes and let M be a Mondrian process on X. Then ΠA ◦M is
a Mondrian process on A.

Proof. Let N̂ be Mondrian process on A. By Theorem V.17, there

exists a Mondrian process M̂ on X such that ΠA ◦M̂ = N̂ a.s. As M̂ d
=M,

it follows from Theorem V.13, that there exists a process N′ such that

(M̂, N̂) d
= (M,N′). In particular, N̂ d

=N′ and N′ = ΠA ◦M a.s., and so
ΠA ◦M is a Mondrian process on A. �

4. CONDITIONAL MONDRIAN PROCESSES 129

Remark V.20. Theorem V.17 and Theorem V.19 give us a complete
characterization of the conditional distribution of a Mondrian process
given a restriction of that process.

Recall that the class of guillotine partitions are closed under restric-
tion. Here we see that Mondrian processes enjoy a similar property. It
is straightforward to show that the Mondrian process is also self-similar
under translation and permutation.

Heretofore, representational results were derived from generative
results. Another approach is to characterize directly the representation.
The following are informal arguments that give additional insight into
the structure of Mondrian processes.

Definition V.21. Let X be a box, let A ⊆ P(X), and let π ∈ G 0
X . We

say that A is π-separated when A is a collection of boxes in X such
that A ⊆ B ∈ π for all A ∈ A and, for all η �1 π, there is at most one
element A ∈ A such that η|A 6= π|A.

The following results are immediate from the definition of an atomic
refinement:

Proposition V.22. Let π ∈ G 0
X . Then π is π-separated. �

Proposition V.23. Let A,B ⊆ X ⊆ RD be boxes. Then {A,B} is
{X}-separated if and only if Ad ∩Bd = ∅ for all d ∈ {1, . . . , D}. �

Theorem V.24 (Independence of separated restrictions). Let π ∈
G 0
X and let A ⊆ P(X) be π-separated. Under Pπ, {ΠA ◦ M}A∈A are

independent Mondrian processes.

Before we proceed to sketch a proof of Theorem V.24, we will pause
to point out two key facts concerning the rate kernel of a Mondrian
process: For each partition η ∈ G 0

X and box B ⊆ X, define

RB
η := {η′ �1 η : ΠB(η′) 6= ΠB(η)} (194)

to be the set of atomic refinements of η resulting from a cut through B.
Note that, by invariance under restriction, the νη-measure of cuts to η
that cross B is

νη(R
B
η) = νΠB(η)(RΠB(η)) = c(ΠB(η)), (195)

which does not depend on η other than through its restriction ΠB(η).
Moreover, if η′ is a uniformly random refinement of η, then conditioned
on the event {η′ ∈ RB

η }, invariance under restriction also implies that
the distribution of ΠB(η′) is ν̄ΠB(η).

130 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

Proof Sketch of Theorem V.24. LetA ∈ A, and define NA :=
ΠA ◦M. Then NA0 = ΠA(π) = {A} with Pπ-probability 1. Moreover, it
follows from (195) that, conditioned on the process up until time t, the
rate of jumps to NA is c(NAt). Therefore, conditioned on NAt , the wait
time until the next jump is exponentially distributed with inverse mean
c(NAt). Moreover, when the jump occurs, it is independent of the wait
time and distributed according to ν̄NAt . Therefore, NA is a Mondrian
process on A.

Recall that A is π-separated. It follows that NA does not interact
with any other restriction NB, for B ∈ A \ {A}, because an atomic re-
finement that crosses NA leaves NB unchanged. Therefore, the processes
{NA}A∈A are independent. �

Remark V.25. The previous theorem is a slight generalization of
the transfer results in that the earlier results imply the result in the
special case that no two sets A,A′ ∈ A are subsets of the same box
B ∈ π. In order to close the gap, it would be necessary to extend the
conditional Mondrian construction from a restriction to a π-separated
collection of restrictions. We will not pursue this here, as it is a relatively
straightforward extension of the presented results.

5. Mondrian processes on unbounded spaces

The fact that any restriction of a finite Mondrian process is itself a
finite Mondrian process hints at the interesting possibility that there
is a partition-valued Markov process on RD, every bounded restriction
of which is a finite Mondrian process. In fact, we can give an explicit
construction of such a process. We begin by defining a suitable space
of partitions:

Definition V.26 (σ-finite guillotine partitions). The set GX of σ-finite
guillotine partitions on X is defined to be the subset of floorplan
partitions π ∈ FX such that, for all bounded boxes A ⊆ X, we have
ΠA(π) ∈ G 0

A.

Remark V.27 (Rootlessness of σ-finite guillotine partitions). Every
guillotine partition has at least one root cut as there is at least one finite
sequence of cuts that generates the partition. The same is not true of
σ-finite guillotine partitions in general. Some may have no root cut, in
which case the hierarchy of atomic refinements will be an infinite tree
where each restriction of the σ-finite guillotine partition to a bounded
box corresponds with a particular finite subtree.

Just as closedness under restriction motivated our definition of
σ-finite guillotine partitions, self-similarity under restriction of finite

5. MONDRIAN PROCESSES ON UNBOUNDED SPACES 131

Mondrian processes motivates the following definition of σ-finite Mon-
drian processes.

Definition V.28 (σ-finite Mondrian process). Let X ⊆ RD be a box.
A FX-valued Markov process M in continuous time is a σ-finite Mon-
drian process on X when, for all bounded boxes A ⊆ X, ΠA ◦M is a
finite Mondrian process on A.

We now demonstrate the existence of such a process by constructing
it explicitly:

Theorem V.29 (Existence of σ-finite Mondrian processes). Let X be a
(possibly unbounded) box. Then there exists a σ-finite Mondrian process
on X.

Proof. Let X0 ⊆ X1 ⊆ X2 ⊆ · · · be a nested sequence of bounded
boxes such that

⋃
nXn = X, and let M0 be a finite Mondrian process on

X0. For all n ∈ N, construct Mn+1 from Mn as in (189). It is then the
case that Mn is a finite Mondrian process on Xn and ΠXm ◦Mn = Mm

a.s. for all m ≤ n ∈ N.
For all t ≥ 0, define

M∞t :=
{ ⋃
n≥n0

Bn : ∃n0 ∈ N, ∀n ≥ n0,

Bn ∈ Mn
t and Bn ⊂ Bn+1}. (196)

It remains to be shown that M∞t is a floorplan partition and that, for
all bounded boxes A, ΠA ◦Mn is a finite Mondrian process on A.

We begin by arguing that M∞t is a floorplan partition. For all n ∈ N
and t ≥ 0, B ∈ Mn

t implies that, for all m ≥ n, there exists an a.s.
unique Bm ∈ Mm

t such that B ⊆ Bm, and in particular B ∪Bm = Bm.
Given that

⋃
nXn is a box (namely, X), it follows that, with probability

one, the elements of M∞t are themselves boxes. Moreover, these boxes
are a.s. disjoint. To see this, note that if distinct B,B′ ∈ M∞t and
B ∩ B′ 6= ∅, then there exists a finite n ∈ N such that there exist
distinct C,C ′ ∈ Mn

t with C ⊆ B and C ′ ⊆ B′, but C ∩ C ′ 6= ∅, a null
event given that Mn

t is a guillotine-partition. Finally, M∞ is exhaustive
(and thus a floorplan partition) as every point x is eventually included
in some box B ∈ Mn

t and thus is included in some box B′ ∈ M∞t where
B ⊆ B′.

Let m ∈ N. We now argue that ΠXm(M∞t) = Mm
t . Let B ∈ Mm

t .
Then B ⊆ C :=

⋃
n≥mBn ∈ M∞t where, for all n ≥ m, Bn is the unique

set in Mn
t such that Bm ⊆ Bn. Let B′ = Xn ∩ C. Clearly B ⊆ B′. If

D := B′ \B 6= ∅ then there exists some n ≥ m such that D ⊆ Bn. But

132 V. DISTRIBUTIONS ON DATA STRUCTURES: A CASE STUDY

ΠXn(Mn
t) = Mm

t and so B ∩ Bn = B, a contradiction. It follows that
ΠXm(M∞t) = Mm

t .
For any bounded box A, there exists an n such that A ⊆ Xn. Then,

ΠA ◦M∞ = ΠA ◦ ΠXn ◦M∞ = ΠA ◦Mn. (197)

By construction, Mn is a finite Mondrian process on Xn, and so by
Theorem V.19, ΠA ◦Mn is a finite Mondrian process on A, completing
the proof. �

As a final remark, note that, while a Mondrian process is composed
of isolated jumps, this is not the case for a σ-finite Mondrian process
on the entirety of RD; it is a Markov process but not a pure jump-type
Markov process. In particular, at every point in time, c(Mt) =∞ and so,
during every interval of time, an infinite number of atomic refinements
will occur. Nevertheless, we can sample the restriction of a σ-finite
Mondrian process on any bounded box, and then extend the process to
a larger, enclosing box as needed.

CHAPTER VI

Conclusion

In this dissertation, we have studied two core concepts in probability
theory and Bayesian statistics through the lens of computability theory.
In the first case, we characterized the computability of conditional
probability by giving examples of computable joint distributions with
noncomputable conditional distributions, and by proving the sufficiency
of certain types of structure, like computable densities and sufficiently
smooth computable noise, for computing conditional distributions. In
the second case, we studied exchangeable sequences and their de Finetti
measures, showing that one is computable exactly when the other is
computable. This result allowed us to give necessary and sufficient
conditions for the computability of posterior distributions of directing
random measures. Despite the noncomputability of conditional probabil-
ity in general, these various positive results cover a considerable fraction
of the kinds of probabilistic models studied within finite-dimensional
and nonparametric Bayesian statistics.

The question of the existence of algorithms, i.e., the question of
computability, is fundamental to the development, study and use of
probabilistic programming languages within AI and Bayesian statistics.
With our negative results on conditional distributions presented in
Chapter III, we have demonstrated fundamental limitations on the
generality of probabilistic programming inference algorithms that aim
to support inductive reasoning. On the other hand, the various positive
results that we have shown can be used by language designers to add
inferential support for continuous random variables in limited settings.

We have also connected stochastic processes and random data struc-
tures and presented a case study where we construct an infinite random
kd-tree data structure, motivated by the problem of modeling relational
data. Specifically, in Chapter V, we presented a new construction of the
Mondrian process as a pure jump-type Markov process in continuous
time, allowing us to use many classical results to study its properties.
In particular, by employing a “transfer” argument, we proved that
Mondrian processes enjoy a “self-similarity” property, which we used
to define and construct infinite versions of Mondrian processes. The

133

134 VI. CONCLUSION

structure of these so-called σ-finite Mondrian processes is that of an
infinite kd-tree data structures. In addition, we demonstrated a close
connection between Poisson processes and Mondrian processes in one
dimension, and have argued that the Mondrian process can be seen as
one example of a new class of multidimensional fragmentation processes.
As fragmentation processes underlie many Bayesian nonparametric pri-
ors, this connection between Mondrian processes and fragmentation
processes suggests that we are likely to find further applications of
multidimensional fragmentation processes.

There are many avenues that deserve further investigation. One in
particular is the study of the computability and complexity of partial
exchangeability, which will likely elucidate deep connections between
representation and efficiency, and enable us to answer questions such
as, which random data structures admit efficient inference? Other
computability results that we have presented have analogues in the
polynomial-time setting, and there is a rich literature on probabilistic in-
ference in graphical models; average-case complexity and cryptographic
hardness; as well as recent work on the complexity of real continuous
functions that can serve as a foundation for further study.

This dissertation has explored the boundary of computability, infer-
ence and modeling in probabilistic programming. In closing, we believe
that an understanding of the inherent limitations and possibilities of a
probabilistic programming approach to AI will be increasingly relevant
in a world populated by complex systems that must manage their own
uncertainty.

Bibliography

[AES00] M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djahromi.
An extension result for continuous valuations. J. London Math.
Soc. (2), 61(2):629–640, 2000. (See pgs. 15 and 31.)

[AFR10] N. L. Ackerman, C. E. Freer, and D. M. Roy. On the com-
putability of conditional probability, 2010, math.LO/1005.3014.
(See pg. 8.)

[AFR11] N. L. Ackerman, C. E. Freer, and D. M. Roy. Noncom-
putable conditional distributions. In Proc. of the 26th Ann. Symp.
on Logic in Comp. Sci. IEEE Press, 2011. (See pg. 8.)

[Ald81] D. J. Aldous. Representations for partially exchangeable arrays
of random variables. J. Multivariate Anal., 11(4):581–598, 1981.
(See pgs. 99, 108 and 109.)

[Ald85] D. J. Aldous. Exchangeability and related topics. In École
d’été de probabilités de Saint-Flour, XIII—1983, volume 1117
of Lecture Notes in Math., pages 1–198. Springer, Berlin, 1985.
(See pgs. 72 and 98.)

[AM10] A. Asinowski and T. Mansour. Separable d-permutations
and guillotine partitions. Ann. Comb., 14(1):17–43, 2010. (See
pg. 113.)

[Aus08] T. Austin. On exchangeable random variables and the statistics
of large graphs and hypergraphs. Probab. Surv., 5:80–145, 2008.
(See pg. 99.)

[BCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On
the theory of average case complexity. J. Comput. System Sci.,
44(2):193–219, 1992. (See pg. 39.)

[Ben75] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18:509–517, September
1975. (See pg. 111.)

[Ber06] J. Bertoin. Random fragmentation and coagulation processes,
volume 102 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, 2006. (See pgs. 119, 120
and 121.)

[Bos08] V. Bosserhoff. Notions of probabilistic computability on
represented spaces. J.UCS, 14(6):956–995, 2008. (See pgs. 32,
36, 78 and 89.)

[BP03] V. Brattka and G. Presser. Computability on subsets

135

136 Bibliography

of metric spaces. Theoret. Comput. Sci., 305(1-3):43–76, 2003.
Topology in computer science (Schloß Dagstuhl, 2000). (See
pg. 79.)

[BS94] J. M. Bernardo and A. F. M. Smith. Bayesian theory. John
Wiley & Sons, 1994. (See pg. 69.)

[BSS07] I. Battenfeld, M. Schröder, and A. Simpson. A conve-
nient category of domains. In Computation, meaning, and logic:
articles dedicated to Gordon Plotkin, volume 172 of Electron.
Notes Theor. Comput. Sci., pages 69–99. Elsevier, Amsterdam,
2007. (See pg. 76.)

[Bun94] W. L. Buntine. Operations for learning with graphical models.
Journal of Artificial Intelligence Research, 2:159–225, 1994. (See
pg. 18.)

[CGM+89] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young. Computing as a discipline. Com-
mun. ACM, 32(1):9–23, 1989. (See pg. 13.)

[Cha75] G. J. Chaitin. A theory of program size formally identical to
information theory. J. ACM., 22:329–340, 1975. (See pg. 30.)

[Daw82] A. P. Dawid. Intersubjective statistical models. In Exchange-
ability in probability and statistics (Rome, 1981), pages 217–232.
North-Holland, Amsterdam, 1982. (See pg. 72.)

[dF31] B. de Finetti. Funzione caratteristica di un fenomeno aleatorio.
Atti della R. Accademia Nazionale dei Lincei, Ser. 6. Memorie,
Classe di Scienze Fisiche, Matematiche e Naturali, 4:251–299,
1931. (See pg. 72.)

[dF37] B. de Finetti. La prévision : ses lois logiques, ses sources
subjectives. Ann. Inst. H. Poincaré, 7(1):1–68, 1937. (See
pg. 72.)

[dF75] B. de Finetti. Theory of probability. Vol. 2. John Wiley &
Sons Ltd., London, 1975. (See pgs. 73 and 96.)

[DF84] P. Diaconis and D. Freedman. Partial exchangeability and
sufficiency. In Statistics: applications and new directions (Cal-
cutta, 1981), pages 205–236. Indian Statist. Inst., Calcutta, 1984.
(See pg. 72.)

[DJ08] P. Diaconis and S. Janson. Graph limits and exchangeable
random graphs. Rend. Mat. Appl. (7), 28(1):33–61, 2008. (See
pg. 99.)

[dMSS56] K. de Leeuw, E. F. Moore, C. E. Shannon, and
N. Shapiro. Computability by probabilistic machines. In Au-
tomata studies, Annals of Math. Studies, no. 34, pages 183–212.
Princeton Univ. Press, Princeton, N. J., 1956. (See pg. 31.)

[Eda96] A. Edalat. The Scott topology induces the weak topology. In
11th Ann. IEEE Symp. on Logic in Comput. Sci. (New Brunswick,
NJ, 1996), pages 372–381. IEEE Comput. Soc. Press, Los Alami-
tos, CA, 1996. (See pg. 31.)

Bibliography 137

[Eda97] A. Edalat. Domains for computation in mathematics, physics
and exact real arithmetic. Bull. Symbolic Logic, 3(4):401–452,
1997. (See pg. 25.)

[EH98] A. Edalat and R. Heckmann. A computational model for
metric spaces. Theoret. Comput. Sci., 193(1-2):53–73, 1998. (See
pg. 28.)

[ES99] M. Escardó and T. Streicher. Induction and recursion on
the partial real line with applications to Real PCF. Theoret.
Comput. Sci., 210(1):121–157, 1999. (See pg. 92.)

[Esc09] M. Escardó. Semi-decidability of may, must and probabilistic
testing in a higher-type setting. Electron. Notes in Theoret.
Comput. Sci., 249:219–242, August 2009. (See pgs. 20 and 92.)

[FKP99] N. Friedman, D. Koller, and A. Pfeffer. Structured
representation of complex stochastic systems. In Proc. 15th Nat.
Conf. on Artificial Intelligence, pages 157–164. AAAI Press, 1999.
(See pg. 18.)

[FR09a] C. E. Freer and D. M. Roy. Computable de Finetti measures,
2009, math.LO/0912.1072. (See pg. 8.)

[FR09b] C. E. Freer and D. M. Roy. Computable exchangeable
sequences have computable de Finetti measures. In K. Ambos-
Spies, B. Löwe, and W. Merkle, editors, Mathematical Theory
and Computational Practice (CiE 2009), Proc. of the 5th Conf.
on Computability in Europe, volume 5635 of Lecture Notes in
Comput. Sci., pages 218–231. Springer, 2009. (See pg. 8.)

[FR10] C. E. Freer and D. M. Roy. Posterior distributions are
computable from predictive distributions. In Proc. of the 13th
Int. Conf. on Artificial Intelligence and Statistics (AISTATS
2010) (Y. W. Teh and M. Titterington, eds.), JMLR: W&CP 9,
pages 233–240, 2010. (See pgs. 8, 33 and 70.)

[Gác05] P. Gács. Uniform test of algorithmic randomness over a general
space. Theoret. Comput. Sci., 341(1-3):91–137, 2005. (See pgs. 28,
34 and 44.)

[GG05] T. L. Griffiths and Z. Ghahramani. Infinite latent feature
models and the Indian buffet process. In Adv. in Neural Inform.
Processing Syst. 17, pages 475–482. MIT Press, Cambridge, MA,
2005. (See pg. 98.)

[GHR10] S. Galatolo, M. Hoyrup, and C. Rojas. Effective symbolic
dynamics, random points, statistical behavior, complexity and
entropy. Inform. and Comput., 208(1):23–41, 2010. (See pgs. 28,
29, 30, 34, 35, 36 and 46.)

[GMR+08] N. D. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum. Church: a language for
generative models. In Uncertainty in Artificial Intelligence, 2008.
(See pgs. 8, 15, 20, 21, 22, 92, 93, 94 and 108.)

[Gol67] E. M. Gold. Language identification in the limit. Information

138 Bibliography

and Control, 10(5):447–474, 1967. (See pgs. 40 and 64.)
[Grz57] A. Grzegorczyk. On the definitions of computable real con-

tinuous functions. Fund. Math., 44:61–71, 1957. (See pgs. 15
and 28.)

[GSW07] T. Grubba, M. Schröder, and K. Weihrauch. Computable
metrization. Math. Log. Q., 53(4-5):381–395, 2007. (See pgs. 28
and 76.)

[GZ89] T. Gonzalez and S.-Q. Zheng. Improved bounds for rectangu-
lar and guillotine partitions. J. Symbolic Comput., 7(6):591–610,
1989. (See pg. 113.)

[Har28] R. Hartley. Transmission of information. Bell System Technical
J., page 535563, July 1928. (See pg. 50.)

[HLL83] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochas-
tic blockmodels: First steps. Social Networks, 5(2):109 – 137,
1983. (See pg. 109.)

[Hof08] P. D. Hoff. Modeling homophily and stochastic equivalence in
symmetric relational data. In Adv. in Neural Inform. Processing
Syst. 21, pages 657–664. MIT Press, Cambridge, MA, 2008. (See
pg. 109.)

[Hoo79] D. N. Hoover. Relations on probability spaces and arrays
of random variables. Preprint, Institute for Advanced Study,
Princeton, NJ, 1979. (See pgs. 99, 108 and 109.)

[HR09] M. Hoyrup and C. Rojas. Computability of probability mea-
sures and Martin-Löf randomness over metric spaces. Inform.
and Comput., 207(7):830–847, 2009. (See pgs. 28, 31, 32, 34
and 49.)

[HS55] E. Hewitt and L. J. Savage. Symmetric measures on Carte-
sian products. Trans. Amer. Math. Soc., 80:470–501, 1955. (See
pg. 72.)

[HT07] O. Hasan and S. Tahar. Formalization of the standard uniform
random variable. Theor. Comput. Sci., 382(1):71–83, 2007. (See
pg. 20.)

[Hur02] J. Hurd. A formal approach to probabilistic termination. In
V. Carreño, C. Muñoz, and S. Tahar, editors, TPHOLs, vol-
ume 2410 of Lecture Notes in Computer Science, pages 230–245.
Springer, 2002. (See pg. 20.)

[Hut07] M. Hutter. On universal prediction and Bayesian confirmation.
Theoret. Comput. Sci., 384(1):33–48, 2007. (See pg. 40.)

[Jor10] M. I. Jordan. Bayesian nonparametric learning: Expressive
priors for intelligent systems. In R. Dechter, H. Geffner, and
J. Halpern, editors, Heuristics, Probability and Causality: A
Tribute to Judea Pearl. College Publications, 2010. (See pgs. 18
and 107.)

[JP89] C. Jones and G. Plotkin. A probabilistic powerdomain of
evaluations. In Proc. of the Fourth Ann. Symp. on Logic in Comp.

Bibliography 139

Sci., pages 186–195. IEEE Press, 1989. (See pg. 20.)
[Kal97] O. Kallenberg. Foundations of modern probability. Probability

and its Applications (New York). Springer-Verlag, New York,
1997. (See pgs. 117, 118, 120 and 123.)

[Kal02] O. Kallenberg. Foundations of modern probability. Springer,
New York, 2nd edition, 2002. (See pgs. 41, 73, 74 and 89.)

[Kal05] O. Kallenberg. Probabilistic symmetries and invariance prin-
ciples. Probability and its Applications (New York). Springer,
New York, 2005. (See pgs. 71, 72 and 108.)

[Kin78] J. F. C. Kingman. Uses of exchangeability. Ann. Probability,
6(2):183–197, 1978. (See pg. 72.)

[Kin93] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies
in Probability. The Clarendon Press Oxford University Press,
New York, 1993. Oxford Science Publications. (See pg. 110.)

[Kle59] S. C. Kleene. Recursive functionals and quantifiers of finite
types. I. Trans. Amer. Math. Soc., 91:1–52, 1959. (See pgs. 15,
25 and 28.)

[Kol33] A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeit-
srechnung. Springer, 1933. (See pgs. 14, 38 and 40.)

[KP97] D. Koller and A. Pfeffer. Object-oriented bayesian net-
works. In Proc. 13th Ann. Conf. on Uncertainty in Artificial
Intelligence (UAI), pages 302–313. Morgan Kaufmann, 1997. (See
pg. 18.)

[KS09] O. Kiselyov and C. Shan. Embedded probabilistic program-
ming. In W. M. Taha, editor, Domain-Specific Languages, vol-
ume 5658 of Lecture Notes in Computer Science, pages 360–384.
Springer, 2009. (See pgs. 20 and 92.)

[KTG+06] C. Kemp, J. Tenenbaum, T. Griffiths, T. Yamada, and
N. Ueda. Learning systems of concepts with an infinite relational
model. In Proc. of the 21st Nat. Conf. on Artificial Intelligence,
2006. (See pgs. 99, 110 and 111.)

[KY76] D. E. Knuth and A. C. Yao. The complexity of nonuniform
random number generation. In Algorithms and complexity (Proc.
Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1976), pages
357–428. Academic Press, New York, 1976. (See pg. 34.)

[Lau84] S. L. Lauritzen. Extreme point models in statistics. Scand. J.
Statist., 11(2):65–91, 1984. (See pg. 72.)

[Lev86] L. A. Levin. Average case complete problems. SIAM J. Comput.,
15(1):285–286, 1986. (See pg. 39.)

[Man73] I. Mann. Probabilistic recursive functions. Trans. Amer. Math.
Soc., 177:447–467, 1973. (See pg. 34.)

[Man09] V. K. Mansinghka. Natively Probabilistic Computing. PhD
thesis, Massachusetts Institute of Technology, 2009. (See pg. 98.)

[Maz63] S. Mazur. Computable analysis. Rozprawy Mat., 33:110, 1963.
(See pgs. 15 and 28.)

140 Bibliography

[MM99] C. Morgan and A. McIver. pGCL: formal reasoning for
random algorithms. South African Comput. J., 22:14–27, 1999.
(See pg. 20.)

[MMS96] C. Morgan, A. McIver, and K. Seidel. Probabilistic predi-
cate transformers. ACM Trans. Program. Lang. Syst., 18(3):325–
353, 1996. (See pg. 20.)

[Mül99] N. T. Müller. Computability on random variables. Theoret.
Comput. Sci., 219(1-2):287–299, 1999. Computability and com-
plexity in analysis (Castle Dagstuhl, 1997). (See pgs. 80, 81, 82
and 89.)

[MW08] T. Minka and J. Winn. Gates: a graphical notation for mixture
models. In Adv. in Neural Inform. Processing Syst., volume 21,
2008. (See pg. 21.)

[Myh71] J. Myhill. A recursive function, defined on a compact interval
and having a continuous derivative that is not recursive. Michigan
Math. J., 18:97–98, 1971. (See pg. 50.)

[Nie09] A. Nies. Computability and randomness, volume 51 of Oxford
Logic Guides. Oxford University Press, Oxford, 2009. (See
pg. 29.)

[NS01] K. Nowicki and T. A. B. Snijders. Estimation and prediction
for stochastic blockstructures. J. Amer. Stat. Assoc., 96:1077–
1087(11), 2001. (See pg. 110.)

[O’D11] T. J. O’Donnell. Productivity and reuse in language. PhD
thesis, Harvard University, 2011. (See pg. 108.)

[Orb10] P. Orbanz. Construction of nonparametric Bayesian models
from parametric Bayes equations. In Adv. in Neural Inform.
Processing Syst. 22, 2010. (See pg. 104.)

[OSW86] D. N. Osherson, M. Stob, and S. Weinstein. Systems
that learn: an introduction to learning theory for cognitive and
computer scientists. MIT Press, Cambridge, MA, USA, 1986.
(See pgs. 65 and 66.)

[OSW88] D. N. Osherson, M. Stob, and S. Weinstein. Mechan-
ical learners pay a price for Bayesianism. J. Symbolic Logic,
53(4):1245–1251, 1988. (See pgs. 40, 64 and 66.)

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988. (See pgs. 17 and 18.)

[PER89] M. B. Pour-El and J. I. Richards. Computability in analysis
and physics. Perspectives in Mathematical Logic. Springer-Verlag,
Berlin, 1989. (See pgs. 28, 50 and 83.)

[Pfa79] J. Pfanzagl. Conditional distributions as derivatives. Ann.
Probab., 7(6):1046–1050, 1979. (See pgs. 38 and 51.)

[Pfe01] A. Pfeffer. IBAL: A probabilistic rational programming lan-
guage. In Proc. of the 17th Int. Joint Conf. on Artificial In-
telligence, pages 733–740. Morgan Kaufmann Publ., 2001. (See

Bibliography 141

pgs. 20 and 92.)
[Pit96] J. Pitman. Some developments of the Blackwell-MacQueen urn

scheme. In Statistics, probability and game theory, volume 30
of IMS Lecture Notes Monogr. Ser., pages 245–267. Inst. Math.
Statist., Hayward, CA, 1996. (See pg. 103.)

[Plo76] G. D. Plotkin. A powerdomain construction. SIAM J. Comput.,
5(3):452–487, 1976. Semantics and correctness of programs. (See
pg. 31.)

[Plo77] G. D. Plotkin. LCF considered as a programming language.
Theoret. Comput. Sci., 5(3):223–255, 1977. (See pg. 92.)

[PPT08] S. Park, F. Pfenning, and S. Thrun. A probabilistic language
based on sampling functions. ACM Trans. Program. Lang. Syst.,
31(1):1–46, 2008. (See pgs. 20, 21, 92 and 93.)

[Put85] H. Putnam. Mathematics, Matter and Method, volume 1 of
Philosophical Letters. Cambridge University Press, 1985. (See
pgs. 40 and 64.)

[Rad07] A. Radul. Report on the probabilistic language Scheme. Tech-
nical Report MIT-CSAIL-TR-2007-059, Massachusetts Institute
of Technology, 2007. (See pg. 21.)

[Rao88] M. M. Rao. Paradoxes in conditional probability. J. Multivariate
Anal., 27(2):434–446, 1988. (See pg. 38.)

[Rao93] M. M. Rao. Conditional measures and applications, volume 177
of Monographs and Textbooks in Pure and Applied Mathematics.
Marcel Dekker Inc., New York, 1993. (See pg. 37.)

[Rao05] M. M. Rao. Conditional measures and applications, volume 271
of Pure and Applied Mathematics. Chapman & Hall/CRC, Boca
Raton, FL, second edition, 2005. (See pgs. 37 and 38.)

[RD06] M. Richardson and P. Domingos. Markov logic networks.
Mach. Learn., 62(1-2):107–136, 2006. (See pg. 18.)

[RKMT07] D. M. Roy, C. Kemp, V. K. Mansinghka, and J. B. Tenen-
baum. Learning annotated hierarchies from relational data.
In Adv. in Neural Inform. Processing Syst., 2007. (See pgs. 8
and 110.)

[RMGT08] D. M. Roy, V. K. Mansinghka, N. D. Goodman, and
J. B. Tenenbaum. A stochastic programming perspective on
nonparametric Bayes. Nonparametric Bayesian Workshop, Int.
Conf. on Machine Learning, 2008. (See pgs. 15, 93, 99 and 108.)

[RN57] C. Ryll-Nardzewski. On stationary sequences of random
variables and the de Finetti’s equivalence. Colloq. Math., 4:149–
156, 1957. (See pg. 72.)

[Rog87] H. Rogers, Jr. Theory of recursive functions and effective
computability. MIT Press, Cambridge, MA, second edition, 1987.
(See pg. 26.)

[RP02] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and
monads of probability distributions. Proc. of the 29th ACM

142 Bibliography

SIGPLAN-SIGACT Symp. on Principles of Program. Lang.,
pages 154–165, 2002. (See pg. 93.)

[RT09] D. M. Roy and Y. W. Teh. The Mondrian process. In Adv.
in Neural Inform. Processing Syst. 21, 2009. (See pgs. 8, 99
and 109.)

[Sch95] M. J. Schervish. Theory of statistics. Springer Series in Statis-
tics. Springer-Verlag, New York, 1995. (See pg. 48.)

[Sch07] M. Schröder. Admissible representations for probability mea-
sures. Math. Log. Q., 53(4-5):431–445, 2007. (See pgs. 31, 32, 43,
78, 79, 81 and 89.)

[Sco75] D. Scott. Data types as lattices. In �ISILC Logic Conference
(Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974),
pages 579–651. Lecture Notes in Math., Vol. 499. Springer, Berlin,
1975. (See pg. 31.)

[SD78] N. Saheb-Djahromi. Probabilistic LCF. In Mathematical Foun-
dations of Comput. Sci., 1978 (Proc. Seventh Sympos., Zakopane,
1978), volume 64 of Lecture Notes in Comput. Sci., pages 442–451.
Springer, Berlin, 1978. (See pgs. 20 and 92.)

[Set94] J. Sethuraman. A constructive definition of Dirichlet priors.
Statist. Sinica, 4(2):639–650, 1994. (See pgs. 98, 101 and 110.)

[Sha49] C. E. Shannon. Communication in the presence of noise. Proc.
I.R.E., 37:10–21, 1949. (See pg. 50.)

[Soa87] R. I. Soare. Recursively enumerable sets and degrees. Perspec-
tives in Mathematical Logic. Springer-Verlag, Berlin, 1987. (See
pg. 99.)

[Sol64] R. J. Solomonoff. A formal theory of inductive inference II.
Inform. and Control, 7:224–254, 1964. (See pg. 40.)

[SS06] M. Schröder and A. Simpson. Representing probability
measures using probabilistic processes. J. Complexity, 22(6):768–
782, 2006. (See pgs. 15, 31, 79 and 88.)

[Sto83] L. Stockmeyer. Optimal orientations of cells in slicing floorplan
designs. Inform. and Control, 57(2-3):91–101, 1983. (See pg. 112.)

[Str05] D. W. Stroock. An introduction to Markov processes, volume
230 of Graduate Texts in Math. Springer-Verlag, Berlin, 2005.
(See pg. 32.)

[Tak08] H. Takahashi. On a definition of random sequences with respect
to conditional probability. Inform. and Comput., 206(12):1375–
1382, 2008. (See pg. 40.)

[TGG07] Y. W. Teh, D. Görür, and Z. Ghahramani. Stick-breaking
construction for the Indian buffet process. In Proc. of the 11th
Conf. on A.I. and Stat., 2007. (See pgs. 23, 69, 99 and 110.)

[TJ07] R. Thibaux and M. I. Jordan. Hierarchical beta processes
and the Indian buffet process. In Proc. of the 11th Conf. on A.I.
and Stat., 2007. (See pgs. 69 and 98.)

[Tju74] T. Tjur. Conditional probability distributions. Lecture Notes, no.

Bibliography 143

2. Institute of Mathematical Statistics, University of Copenhagen,
Copenhagen, 1974. (See pg. 38.)

[Tju75] T. Tjur. A Constructive Definition of Conditional Distributions.
Preprint 13. Institute of Mathematical Statistics, University of
Copenhagen, Copenhagen, 1975. (See pgs. 38 and 51.)

[Tju80] T. Tjur. Probability based on Radon measures. Wiley Series
in Probability and Mathematical Statistics. John Wiley & Sons
Ltd., Chichester, 1980. (See pgs. 38, 51 and 52.)

[Tur36] A. M. Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proc. London Math. Soc., 42(1):230–
265, 1936. (See pgs. 15, 25, 26, 28 and 58.)

[Val84] L. G. Valiant. A theory of the learnable. In Proc. of the
16th Ann. ACM Symp. on Theory of Comput., STOC ’84, pages
436–445, New York, NY, USA, 1984. ACM. (See pg. 65.)

[WA87] S. Wasserman and C. Anderson. Stochastic a posteriori
blockmodels: Construction and assessment. Social Networks,
9(1):1 – 36, 1987. (See pg. 110.)

[Wei89] K. Weihrauch. Constructivity, computability, and computa-
tional complexity in analysis. In Fundamentals of computation
theory (Szeged, 1989), volume 380 of Lecture Notes in Comput.
Sci., pages 480–493. Springer, New York, 1989. (See pg. 28.)

[Wei99] K. Weihrauch. Computability on the probability measures
on the Borel sets of the unit interval. Theoret. Comput. Sci.,
219(1-2):421–437, 1999. (See pgs. 31, 79, 80, 81 and 89.)

[Wei00a] K. Weihrauch. Computable analysis: an introduction. Springer-
Verlag, Berlin, 2000. (See pgs. 25 and 28.)

[Wei00b] K. Weihrauch. Computable analysis: an introduction. Springer,
Berlin, 2000. (See pgs. 75, 76, 77, 78 and 79.)

[WI98] R. L. Wolpert and K. Ickstadt. Simulation of Lévy random
fields. In Practical nonparametric and semiparametric Bayesian
statistics, volume 133 of Lecture Notes in Statist., pages 227–242.
Springer, New York, 1998. (See pgs. 23, 69 and 99.)

[WL89] D. F. Wong and C. L. Liu. Floorplan design of VLSI circuits.
Algorithmica, 4(2):263–291, 1989. (See pg. 112.)

[WZ00] K. Weihrauch and X. Zheng. Computability on continuous,
lower semi-continuous and upper semi-continuous real functions.
Theoret. Comput. Sci., 234(1-2):109–133, 2000. (See pg. 78.)

[XTYK06] Z. Xu, V. Tresp, K. Yu, and H.-P. Kriegel. Infinite
Hidden Relational Models. In Proc. 22nd Conf. on Uncertainty
in Artificial Intelligence, 2006. (See pg. 110.)

[Yam99] T. Yamakami. Polynomial time samplable distributions. J.
Complexity, 15(4):557–574, 1999. (See pg. 39.)

[Zhe02] X. Zheng. Recursive approximability of real numbers. Math.
Log. Q., 48(suppl. 1):131–156, 2002. (See pgs. 30 and 64.)

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite

144 Bibliography

objects and the basing of the concepts of information and ran-
domness on the theory of algorithms. Uspehi Mat. Nauk, 25(6
(156)):85–127, 1970. (See pg. 40.)

	Front matter
	Acknowledgments
	Attribution

	Chapter I. Introduction
	1. Representations of uncertainty
	2. Outline

	Chapter II. Computable probability theory
	1. Basic notions
	2. Computable metric spaces
	3. Computable random variables and distributions
	4. Almost decidable sets

	Chapter III. Conditional distributions
	1. Computational limits of probabilistic inference
	2. Computable conditional distributions
	3. Computable conditional distributions
	4. Discontinuous conditional distributions
	5. Noncomputable almost continuous conditional distributions
	6. Noncomputable continuous conditional distributions
	7. Conditioning is Turing jump computable
	8. Continuity in the setting of identifiability in the limit

	Chapter IV. Exchangeable sequences and de Finetti's theorem
	1. de Finetti's Theorem
	2. Computable Representations
	3. The Computable Moment Problem
	4. Proof of the Computable de Finetti Theorem
	5. Exchangeability in Probabilistic Programs
	6. Predictive distributions and posterior analysis in exchangeable sequences

	Chapter V. Distributions on data structures: a case study
	1. Exchangeable arrays
	2. Random kd-trees
	3. Guillotine partitions and Mondrian processes
	4. Conditional Mondrian processes
	5. Mondrian processes on unbounded spaces

	Chapter VI. Conclusion
	Bibliography

