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Abstract

In this paper, we show how using the Dirichlet Pro-
cess mixture model as a generative model of data
sets provides a simple and effective method for
transfer learning. In particular, we present a hierar-
chical extension of the classic Naive Bayes classi-
fier that couples multiple Naive Bayes classifiers by
placing a Dirichlet Process prior over their parame-
ters and show how recent advances in approximate
inference in the Dirichlet Process mixture model
enable efficient inference. We evaluate the result-
ing model in a meeting domain, in which the sys-
tem decides, based on a learned model of the user’s
behavior, whether to accept or reject the request on
his or her behalf. The extended model outperforms
the standard Naive Bayes model by using data from
other users to influence its predictions.

Introduction

must be evaluated on real data, and, to that end, we evaluate
the resulting model in a meeting domain. The learned system
decides, based on training data for a user, whether to accept
or reject the request on his or her behalf. The model that
shares data outperforms its no-sharing counterpart bygusin
data from other users to influence its predictions.

When faced with a classification task on a single data set,
well-studied techniques abound (Boser et al., 1992; Liffer
et al., 2001). A popular classifier that works well in praetic
despite its simplicity, is the Naive Bayes classifier (Maron
1961). We can extend this classifier to the multi-task sgttin
by training one classifier for each cluster in the latent par-
tition. To handle uncertainty in the number of clusters and
their membership, we define a generative process for data
sets that induces clustering. At the heart of this process is
a non-parametric prior known as the Dirichlet Process. This
prior couples the parameters of the Naive Bayes classifiers
attached to each data set. This approach extends the applica
bility of the Naive Bayes classifier to the domain of multsita
learning when the tasks are defined over the same input space.

Bayesian inference under tlalustered\aive Bayes model

related data sets and asked to make predictions. For exampfmbines the contribution of every partition of the data set
in spam filtering, a typical data set consists of thousanésof Weighing each by the partition's posterior probability. iro

beled emails belonging to a collection of users. In this sgns EVer, the sum over partitions is intractable and, therefoes
we have multiple data sets—one for each user. Should weMploy recent work by Heller and Ghahramani (2005a) to
combine the data sets and ignore the prior knowledge that difplement an approximate inference algorithm. The result i
ferent users labeled each email? If we combine the data frof@fficient, task-level transfer learning.

a group of users who roughly agree on the definition of spam,

we will have increased the available training data from Wwhic 2 Models

to make predictions. However, if the preferences within a ] o ]
population of users are heterogeneous, then we shouldtexpée this paper, we concentrate on classification settinggevhe
that simply collapsing the data into an undifferentiateti co the featuresYy, f = 1,..., F and labels\” are drawn from
lection will make our predictions worse.

lated tasks is known asansfer learningor multi-task learn- ¢ ! okl
ing and has a growing literature (Baxter, 2000; Guestrin et al., ConsiderU tasks, each withV, training examples com-
2003; Thrun, 1996; Xue et al., 2005). While humans effort-posed of a label” and a feature vectok'. To make the dis-
|ess|y use experience from related tasks to improve their peCUS_SIOﬂ more concrete, _assume each task is associated with
formance at novel tasks, machines must be given precise i different user performing some common task. Therefore,
structions on how to make such connections. In this papekye will write D() to represent the feature vector$*? and

we introduce such a set of instructions, based on the statigorresponding labels (“%) i = 1,..., N,, associated with

tical assumption that there exists some partition of thkstas the u-th user. ThenD is the entire collection of data across
into clusters such that the data for all tasks in a cluster arall users, and(*7) = (X (%) y (%)) is the;j-th data point
identically distributed. Ultimately, any such model of shg

finite setsVy, £, respectively. Our goal is to learn the rela-

The process of using data from unrelated or partiaiiy re_tionShip between the inpUt features and output labels irrord

to predict a label given an unseen combination of features.

for theu-th user.



Let m, , denote the number of data points labeled £ @
in the data set associated with theh user and let, . ¢ »

denote the number of instances in th¢h data set where the
f-thfeature takes the valuec V; when its parent label takes

valuey € L. Letfy, , ;. = ]P’(X](c“) =z | Y™ =y), and
buy 2 P(Y™ = y). We can now write the general form of

the probability mass function of the data conditioned on the
parameterg and¢ of the Naive Bayes model:
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= H P(Y(u n)|¢u,y) H P(Xf |Y(u)v Ouy.s) tered Naive Bayegright) models. Each user has its own parame-
u=1n=1 f=1 terization in the no-sharing model. The parameters of thust€ted
@ U F Naive Bayes model are drawn from a Dirichlet Process. Hée, t
© , My, fo intermediate measuxg has been integrated out.
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] ] assumption of independence, training the entire collaaifo
In (a),p(D|6, ¢) is expanded into a product of terms, one for models is identical to training each model separately on its
each data set, reflecting that the data sets are indepematent ¢ gyn data set. We therefore call this model thesharing
ditioned on the parameterization. Step (b) assumes the dajgodel.
points are exchangeable; in particular, the label/fegtans — y5ying specified that the prior factors into parameter dis-
are independent of one another given thg parameterizatiofptions for each user, we must specify the actual paramet
In step (c), we have made use of the Naive Bayes assumpstributions for each user. A reasonabie (and tractatdessc
tion that the features are conditionally independent gthen s gistributions over multinomial parameters are the Ditét

label. Finally, in step (d), we have used the fact that thieis gistriputions which are conjugate to the multinomials. fEhe
butions are multinomials. The maximum likelihood parame-tore the distribution ovep,, which takes values in the|-

terizations are simplex, is
o My Ouy foo = Ny, f,x
wy ’ w,y,/,r — .
Zyeﬂ My Zmevf Ny, f.x f(d) = F(Zyéﬁ O‘“vy) H ¢au,y*1
: . - “ I, T(cu,) wy
Because each data set is parameterized separately, it is no yeL Y yer

surprise that the maximum likelihood parameterization for_, . o . .
each data set depends only on the data in that data set. fimilarly, the distribution oved., s, which takes values in
order to induce sharing, we must somehow constrain the paYf|-Simplex, is

rameterization across users. In the Bayesian settingribe p (Y 3 )
distribution F'(6, ¢) can be used to enforce such constraints. FOu, ) = zeVy Puy.fow Puy.fo=1
Given a prior, the resulting joint distribution on the data i v Hzevf T(Buy,f.z) Vs wy S
p(D) = / p(D|0,¢) dF (6, ¢). We can write the resulting model compactly as a generative
Ox® process:
Both models introduced in this section are completely spec- Gu ~ Dir([auy : y € L]) (1)
ified by a prior distribution over the parameters of the Naive h
Bayes model. As we will see, different priors result in diffe Y (@) | ¢, ~ Discretde, )

ent types of sharing.

2.1 No-Sharing Baseline Model Ousy.s ~ OV ([Buy 0 2 0 € Vy])

We have already seen that a ML parameterization of the Naivq}um) | Y™ (0,5 : ¥y € L} ~ Discreté, y.m).f)
Bayes model ignores related data sets. In the Bayesian set-

ting, any prior densityf over the entire set of parameters that The No-Sharing model will function as a baseline against
factors into densities for each user’s parameters willltésu  which we can compare alternative models that induce shar-
no sharing. In particular, ing. We turn now to specifying a model that induces sharing.

U -
f(0,9) = H — f(Ous Pu), 1The ~ symbol denotes that the variable to the left is distributed
] ] u=l according to the distribution specified on the right. It dddae noted
is equivalentto the statement that the parameters for esrh u that the Dirichlet distribution requires an ordered setarigmeters.
are independent of the parameters for other users. Undger thive therefore define an arbitrary ordering of the elements, of;.



2.2 The Clustered Naive Bayes Model 0, = (eu,y,f)l;.e‘ P~ G

=1,2,...,

A plausible assumption about a collection of related da& se - (u,n) wn ] .
is F;)hat they can bepclustered into closely-related grous. 77 [ Y0 {00y 2 ¥y € L} ~ Discretdly, y..) )
make this more precise, we will consider two taskandt, The discrete measurg is a draw from the Dirichlet Process;
over some spac& x Y to be related if the data associated in practice, this random variable is marginalized over. Be-
with both tasks are identically distributed. While thisigery =~ cause the tasks are being clustered, we have named this model
coarse model of relatedness, it leads to improved predictivthe Clustered Naive Bayes model (and denote its distributio
performance with limited training data. function over the parameters &sys). We now explain how

As a first step we must specify a distribution over parti-to use the model to make predictions given training data.
tions of tasks. There are several properties we would like )
this distribution to have: first, we want exchangeability of 3 Approximate Inference
tasks.(use.rs);.e.g.,_ the probability should not depend en thgiyen labelled training dat®(® = {y (), X}, oy
ordering (i.e. identity) of the tasks (users); second, watwa ¢, 5| tasksy € {1,2, ..., U} and an unlabeled feature vec-

exchangeability of clusters; e.g., the probability shoodd « & v (v,Not1) .
depend on the ordering/naming of the clusters; finally, WetorX =X for some taslo, we would like to com-

; - ; ; ior distributi i ¥ £y (v,Notl)
wan consisency: .. 3 prior e (polheica) mnss * DS he poseror derbuton ofe T 0
of an unobserved task should not affect the probability tha{’J g bay ' 9 9 '

any group of tasks are clustered together. p(Y* =y|X* D) x p(X*|Y* =y,D)p(Y* =y, D)
The Chinese Restaurant Process (CRP) is a stochastic pro-
cess that induces a distribution over partitions that fiasisill o / p(D'16, ¢) dFens (6, ¢),
Ox®

these requirements (Aldous, 1985). The following metaphor
was used to define the process: imagine a restaurant withvahereD’ is the data set where we imagine that theN,, +
countably infinite number of indistinguishable tables. Thel)-th data point has label. Therefore, Bayesian inference
first customer sits at an arbitrary empty table. Subsequentquires that we marginalize over the parameters, inctudin
customers sit at an occupied table with probability proporthe latent partitions of the Dirichlet process. Having cho-
tional to the number of customers already seated at tha tabken conjugate priors, the base distribution can be anallytic
and sit at an arbitrary, new table with probability proponél  marginalized. However, the sum over all partitions makes
to a parametecr > 0. The resulting “seating chart” parti- exact inference under the Dirichlet Process mixture model
tions the customers. It can be shown that, in expectati@n, thintractable. While Markov Chain Monte Carlo and varia-
number of occupied tables aftecustomers i® (logn) (An-  tional techniques are the most popular approaches, thex pap
toniak, 1974; Navarro et al., 2006). uses a simple, recently-proposed approximation to the DPM
The tasks within each cluster of the partition will shareknown as Bayesian Hierarchical Clustering (BHC) (Heller
the same parameterization. Extending our generative modednd Ghahramani, 2005a), which approximates the sum over
imagine that when a new user enters the restaurant and sitsalt partitions by first greedily generating a hierarchidaise
a new table, they draw a complete parameterization of theitering of the tasks and then efficiently summing over the ex-
Naive Bayes model from some base distribution. This paramponential number of partitions “consistent” with this taer
eterization is then associated with their table. If a udsrati  chy. This approach leads to a simple, yet efficient, algorith
an occupied table, they adopt the parameterization alresdy for achieving task-level transfer.
sociated with the table. Therefore, everyone at the sanie tab Consider a rooted binary tr§éwhere each task is associ-
uses the same rules for predicting. ated with a leaf. It will be convenient to identify each intal
This generative process corresponds with the well knowmode,T,,, with the set of leaves descending from that node. A
Dirichlet Process mixture model (DPM) and has been usetree-consistent partition of the tasks is any partitiorhsthat
very successfully to model latent groups (Ferguson, 1973)ach subset corresponds exactly with a node in the graph (Fig
The underlying Dirichlet process has two parameters, a mixure 2). It can seen that, given any rooted tree over more than
ing parametety, which corresponds to the same parameter otwo objects, the set of all tree-consistent partitions itriats
the CRP, and a base distribution, from which the parametersubset of the set of all partitions. Exact inference under th
are drawn at each new table. It is important to specify that wPM requires that we marginalize over the latent partition,
draw a complete parameterization of all the feature distrib requiring a sum over the super-exponential number of parti-
tions, 0, ¢, at each table. We have decided not to share théions. The BHC approximation works by efficiently comput-
marginal distributionsg, because we are most interested ining the sum over the exponential number of tree-consistent

knowledge relating the features and labels. partitions, using a divide-and-conquer approach to combin
Again, we can represent the model compactly by specifythe results from each subtree. Intuitively, if the tree issdm
ing the generative process: carefully, then the set of tree-consistent partitions wép-
u ~ Dir([orny : y € L)) ture most of the mass in the posterior. BHC tries to find such
v a tree by combining Bayesian model selection with a greedy
Yy () | ¢ ~ Discretde,,) heuristic.
F Just as in classic, agglomerative clustering (Duda et al.,
G ~ DP(a, H H Dir([By.7.z : © € Vy]) 2001), BHC starts with all objects assigned to their own-clus

Folgel ter and then merges these clusters one by one, implicitly



9 3 Heller and Ghahramani (2005a) show that a specific choice

8 7 of the priorm;, = p(Hy) leads to an approximate inference
103458 scheme for the DPM. Let be the corresponding parameter
(9} ————1 [12345] from the DPM. Then, we can calculate the prior probability
(6,8} ——mmmmm [12][345] for each clustef’; in the tree built by BHC.
{3,6,7} =1 [12][3][45] o
(3,4,5,6) C—=—mm [12][3][4][5] initialize each leaf to haved; = o, m; =1
{1{;%% [ — E}%Eﬁﬂ&] for each internal nodk do
,2,3, 7y I _ .
{1,2,3,4,5) C=r—mmm [1][2][3][4][5] di = aalg((ilﬁ)) + diett, drigh,
Inconsistent ———T——] [123][45] Tk = —q,
end for

Figure 2: All tree-consistent partitions represented both as sets ofyaying puilt a tree that approximates the posterior distrib
nodes (left) and collection of leaves (right), and one fiartithatis  jon gyer partitions, we can use the tree to compute the pos-
not_tree-cclms,lgtent (the sets of leaves [123] is not reptabke by terior probability of an unseen label. Assume we have an
an internal node). . o

) unlabeled exampl&;, associated with thg-th task. LetAy

forming a tree that records which merges were performed?€ the set of nodes along the path from the nbétethe root
However, instead of using a distance metric and merging thi&! the tree generated by the BHC algorithm (e.g. in Figure 2,
nearest clusters, BHC merges the two clusters that maximiz&s = 19, 7,8,9}). Note that the elements; € Aj, corre-

a statistical hypothesis test. At each step, the algorithrstm SPond to all clusters that tagkparticipates in across all tree-
determine which pair in the set of clustéFs, T T to  Cconsistent partitions. Our predictive distribution fgrwill
ooy T

merge next. Consider two particular clustdisand7; and then be the \_N_eighted average of the predictive distribgtion
let D; and D; be the set of tasks in each respectively. ThefOr each partition:

BHC algorithm calculates the posterior probability thaga w;

two clusters are in fact a single clus®r = T; + T;. Specif- p(Yr| Xy, D, T) =
ically, the hypothesis{;, is that the data irD,, = D; U D;

are identically distributed with respect to the base moitel ( _ _ :

this case, some Naive Bayes model). The probability of thavherews = ri i, /(i) (1 — 74) andp(Yi| X, Dy) is the -
data in this new cluster undety, p(Dx|H;) is simply the predictive distribution unde_r the base model after cormigjni
marginal likelihood of the data. the da}ta from all the tgsks in clustler_ .

The alternative hypothesi#(;, is that the datd; andD; _ W_hlle the co_mputatlonal complexity of posterior computa-
are, in fact, split into two or more clusters. Computing thetion is guadratic in the number of tasks, Heller and Ghahra-
probability associated with this hypothesis would norgall Mani (2005b) have proposed(n logn) and O(n) random-
require a sum over the super-exponential number of partitio 12€d variants.
associated with the tasks i; and D;. However, the clever
trick of the BHC algorithm is to restrict its attention toére 4 Results
consistent partitions. Therefore, the probability of treted
Dy = D; U Dj underHy, p(Dx[Hy) = p(D;|T;) p(D;|T5),
wherep(D;|T;) is the probability of the data associated with
the treeT;. Letn, = p(H;) be the prior probability of the
clusterTy. Then, we can write(Dy|T};) recursively

= p(YlXk, Di), (4)
TieA, ZjeAk wj

The utility of the type of sharing that the Clustered Naive
Bayes supports can only be assessed on real data sets. To that
end, we evaluated the model’s predictions on a meeting clas-
sification data set collected by Rosenstein et al. (2005 Th
data set is split across 21 users from multiple universitas
p(Di|Tk) = mep(Dr|He)+(1—mk)p(D;|T;)p(D;1T;). (2)  industry lab and a military training exercise. In total, e
Then the posterior probability d{; is are 3966 labeled meeting requests, with 100-400 meetin_g re-
quests per user. In the meeting acceptance task, we aim to
7kp( Dy [Hy) 3 predict whether a user wouttcept orr ej ect anunseen
p(Dg|Ty) (3) meeting request based on a small set of features that describ
various aspects of the meeting.
To evaluate the clustered model, we assessed its predictive
performance in a transfer learning setting, predictinglab

p(Hi|Dk) =

We now present the BHC algorithm, whose output is suffi-
cient for approximate Bayesian predictions under our model

input dataD = {DW, ..., D} for a user with sparse data, having observed all the labeled
modelp(X|Y, #) and prior densityf (¢) data for the remaining users. In particular, we calculaied t
initialize number of clusters ¢c=n, and receiver-operator characteristic (ROC) curve havinghedi
D; ={DW}fori=1,...,n on 1,2,4,8,16,32,64, and 128 training examples for each use
while ¢ > 1do (conditioned on knowledge of all labels for the remaining
Find the pairD; andD; with the highest posterior users). Each curve was generated according to results from
probability of H;, whereT}, = T; + T}. twenty random partitions of the users’ data into trainind an
MergeDy, «— Dy, U D;, Ty, — (T;,T;) testing sets. Figure 3 plots the area under the ROC curve as
DeleteD; andD;,c «—c—1 a measure of classification performance versus the number of

end while training examples.



User #1: AB (Mil) User #3: ED (Mil) User #20: TD (Oregon S.)  User #17: TLP (MIT) User #7: NH (Mil)
1 1 1

1 5 | i = -
o 0.9 =~ NP1 09 09 _« 8109 ~1 009
- — ) —a ! N ~
Q —_ Y= Ll oL e
OC 0.8f ©sr, | 0.8 —. 0.8 . 1 _~ 0.8 = ~= 0.8 A
5 |00 ] . o - =
Ro7 = 07 —— 7 | o7 /—// 07l 2 U
> L . 0 - L
$ 06 0.6 K 06| .- 0.6 /
© »_// - -
0.5 0.5 -~ 0.5 0.5
---- NS
01234567 01234567 01234567 01234567 01234567
2" samples 2" samples 2" samples 2" samples 2" samples

Figure 3: Area under the curve (AUC) vs. training size for five repréative users. The AUC varies between 1 (always correct)iviaies
wrong), and 0.5 (chance). For each experiment we label tieP)\Mluster of users to which the user belongs. If the clusterains the same
for several experiments, we omit all but the first mentione Tihst three examples illustrate improved predictive panfance. The last two
examples demonstrate that it is possible for performandedp below that of the baseline model.
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g~ AUROC,
°
8

AUROC,,

SS 2 o . | . | | L

2" Training Samples

Figure 4: Progression of trees found by BHC for 16, 32, 64 and

128 examples per user. Short vertical edges indicate tlmatasks  Figure 5: The clustered model has more area under the ROC curve

are strongly related. Long vertical edges indicate thatdisks are  than the standard model when there is less data availabter 22

unrelated. Key: (M)ilitary, (P)rofessor, (S)RI reseanche training examples, the standard model has enough data t rifest
performance of the clustered model. Dotted lines are stdretfeor.

From the 21 users, we have selected five representative . .
g}ost often grouped with other military personnel, and pro-
e

samples. The first three examples (users 1, 3 and 20) sho .
how the model performs when it is able to use related user’ ssors and SR researchers_ are grouped together unél ther
s enough data to warrant splitting them apart.

data to make predictions. With a single labeled data pomt’, Figure 5 shows the relative performance of the clustered

the model groups user 1 with two other military personnel ) .
(users 5 and 8). While at each step the model makes prd€'SuS standard Naive Bayes model. The clustered variant

dictions by averaging over all tree-consistent partitiche outperflormsAtfhe sgtgndard nlwodelhwhen dfalced V‘f’ith very fﬁ‘l’v
MAP partition listed in the figure has the largest contribati examples. Alter 32 examples, the models perform roughly

For user 1, the MAP partition changes at each step, provid‘?qu'valently’ although the Sta.”dafd model enjoys a slight a
ing superior predictive performance. However, for thechir vantage that does not grow with more examples.
user in the second figure, the model chooses and sticks with
the MAP partition that groups the first and third user. In theS Related Work
third example, User 20 is grouped with user 9 initially, and5ome of the earliest work related to transfer learning fedus
then again later on. Roughly one third of the users witnesseg, sequential transfer in neural networks, using weiglosifr
improved initial performance that tapered off as the numbenepworks trained on related data to bias the learning of net-
of examples grew. works on novel tasks (Caruana, 1997; Pratt, 1993). More re-
The fourth example (user 17) illustrates that, in some ¢asegently, these ideas have been applied to modern supervised
the initial performance for a user with very few samples is no |earning algorithms, like support vector machines (Wu and
improved because there are no good candidate related usépgetterich, 2004). More work must be done to understand the
with which to cluster. Finally, the last example shows oneconnection between these approaches and the kind of sharing
of the four cases where predictions using the clustered mod@ne can expect from the Clustered Naive Bayes model.
leads to worse performance. In this specific case, the model This work is related to a large body of transfer learning
groups the user 7 with user 1. It is not until 128 samplesesearch conducted in the hierarchical Bayesian framework
that the model recovers from this mistake and achieves equ@i which common prior distributions are used to tie together
performance. model components across multiple data sets. The clustered
Figure 4 shows the trees and corresponding partitions reanodel can be seen as an extension of the model first pre-
covered by the BHC algorithm as the number of training ex-sented by Rosenstein et al. (2005) for achieving transfir wi
amples for each user is increased. Inspecting the padijtionthe Naive Bayes model. In that work, they fit a Dirichlet dis-
they fall along understandable lines; military personrrel a tribution for each shared parameter across all users. tnfor



nately, because the Dirichlet distribution cannot fit agsit  improved generalization bounds using this technique. A log
bimodal distributions, the model cannot handle more than onical next step is to investigate this model of sharing on more
cluster, i.e. each parameter is shared completely on not abphisticated base models and to relax the assumption that
all. The model presented in this paper can handle any nunusers are exactly identical.

ber of users by modelling the density over parameters using
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