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Abstract

The objects in many real-world domains can be organized intohierarchies, where
each internal node picks out a category of objects. Given a collection of fea-
tures and relations defined over a set of objects, anannotatedhierarchy includes a
specification of the categories that are most useful for describing each individual
feature and relation. We define a generative model for annotated hierarchies and
the features and relations that they describe, and develop aMarkov chain Monte
Carlo scheme for learning annotated hierarchies. We show that our model discov-
ers interpretable structure in several real-world data sets.

1 Introduction

Researchers in AI and cognitive science [1, 7] have proposedthat hierarchies are useful for rep-
resenting and reasoning about the objects in many real-world domains. One of the reasons that
hierarchies are valuable is that they compactly specify categories at many levels of resolution, each
node representing the category of objects at the leaves below the node. Consider, for example, the
simple hierarchy shown in Figure 1a, which picks out five categories relevant to a typical university
department: employees, staff, faculty, professors, and assistant professors.

Suppose that we are given a large data set describing the features of these employees and the in-
teractions among these employees. Each of the five categories will account for some aspects of
the data, but different categories will be needed for understanding different features and relations.
“Faculty,” for example, is the single most useful category for describing the employees that publish
papers (Figure 1b), but three categories may be needed to describe the social interactions among the
employees (Figure 1c). In order to understand the structureof the department, it is important not
only to understand the hierarchical organization of the employees, but to understand which levels in
the hierarchy are appropriate for describing each feature and each relation. Suppose, then, that an
annotated hierarchyis a hierarchy along with a specification of the categories inthe hierarchy that
are relevant to each feature and relation.

The idea of an annotated hierarchy is one of the oldest proposals in cognitive science, and researchers
including Collins and Quillian [1] and Keil [7] have argued that semantic knowledge is organized
into representations with this form. Previous treatments of annotated hierarchies, however, usually
suffer from two limitations. First, annotated hierarchiesare usually hand-engineered, and there
are few proposals describing how they might be learned from data. Second, annotated hierarchies
typically capture knowledge only about the features of objects: relations between objects are rarely
considered. We address both problems by defining a generative model for objects, features, relations,
and hierarchies, and showing how it can be used to recover an annotated hierarchy from raw data.

Our generative model for feature data assumes that the objects are located at the leaves of a rooted
tree, and that each feature is generated from a partition of the objects “consistent” with the hierarchy.
A tree-consistent partition(henceforth, t-c partition) of the objects is a partition ofthe objects into
disjoint categories, i.e. each class in the partition is exactly the set of leaves descending from some
node in the tree. Therefore, a t-c partition can be uniquely encoded as the set of these nodes whose
leaf descendants comprise the classes (Figure 1a,b). The simplest t-c partition is the singleton set
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Figure 1: (a) A hierarchy over 15 members of a university department: 5staff members, 5 professors and
5 assistant professors. (b) Three binary features, each of which is associated with a different t-c partition of
the objects. Each class in each partition is labeled with thecorresponding node in the tree. (c) Three binary
relations, each of which is associated with a different t-c partition of the set of object pairs. Each class in each
partition is labeled with the corresponding pair of nodes.

containing the root node, which places all objects into a single class. The most complex t-c partition
is the set of all leaves, which assigns each object to its own class. We assume that the features of
objects in different classes are independent, but that objects in the same class tend to have similar
features. Therefore, finding the categories in the tree mostrelevant to a feature can be formalized
as finding the simplest t-c partition that best accounts for the distribution of the feature (Figure 1b).
We define an annotated hierarchy as a hierarchy together witha t-c partition for each feature.

Although most discussions of annotated hierarchies focus on features, much of the data available
to human learners comes in the form of relations. Understanding the structure of social groups, for
instance, involves inferences about relations likeadmires(·, ·), friend-of(·, ·) and brother-of(·, ·).
Like the feature case, our generative model for relational data assumes that each (binary) relation
is generated from a t-c partition of the set of allpairs of objects. Each class in a t-c partition now
corresponds to a pair of categories (i.e. pair of nodes) (Figure 1c), and we assume that all pairs in a
given class tend to take similar values. As in the feature case, finding the categories in the tree most
relevant to a relation can be formalized as finding the t-c partition that best accounts for the distribu-
tion of the relation. The t-c partition for each relation canbe viewed as an additional annotation of
the tree. The final piece of our generative model is a prior over rooted trees representing hierarchies.
Roughly speaking, the best hierarchy will then be the one that provides the best categories with
which to summarize all the features and relations.

Like other methods for discovering structure in data, our approach may be useful both as a tool
for data analysis and as a model of human learning. After describing our approach, we apply it to
several data sets inspired by problems faced by human learners. Our first analysis suggests that the
model recovers coherent domains given objects and featuresfrom several domains (animals, foods,
tools and vehicles). Next we show that the model discovers interpretable structure in kinship data,
and in data representing relationships between ontological kinds.

2 A generative model for features and relations

Our approach is organized around a generative model for feature data and relational data. For sim-
plicity, we present our model for feature and relational data separately, focusing on the case where
we have a single binary feature or a single binary relation. After presenting our generative model,
we describe how it can be used to recover annotated hierarchies from data.

We begin with the case of a single binary feature and define a joint distribution over three entities:
a rooted, weighted, binary treeT with O objects at the leaves; a t-c partition of the objects; and
feature observations,d. For a feature, a t-c partitionπ is a set of nodes{n1, n2, . . . , nk}, such that
each object is a descendant of exactly one node inπ. We will identify each node with the category
of objects descending from it. We denote the data for all objects in the categoryn asdn. If o is a
leaf (single object category), thendo is the value of the feature for objecto. In Figure 1b, three t-c
partitions associated with the hierarchy are represented and each class in each partition is labeled
with the corresponding category.

The joint distributionP (T, w, π,d|λ, γf ) is induced by the following generative process:



i. Sample a treeT from a uniform distribution over rooted binary trees withO leaves (each
leaf will represent an object and there areO objects). Each noden represents a category.

ii. For each categoryn, sample its weight,wn, according to an exponential distribution with
parameterλ, i.e. p(wn|λ) = λe−λwn .

iii. Sample a t-c partitionπf = {n1, n2, . . . , nk} ∼ Π(root-of(T )), whereΠ(n) is a
stochastic, set-valued function:

Π(n) =

{

{n} n is a leaf, or w.p.φ(wn)

∪iΠ(ni) otherwise
(1)

whereφ(x) = 1−e−x andni are the children ofn. Intuitively, categories with large weight
are more likely to be classes in the partition. For thepublishesfeature in Figure 1b, the t-c
partition is{F, S}.

iv. For each categoryn ∈ πf , sampleθn ∼ Beta(γf , γf ), whereθn is the probability that
objects in categoryn exhibit the featuref . Returning to thepublishesexample in Figure 1b,
two parameters,θF andθS , would be drawn for this feature.

v. For each objecto, sample its feature valuedo ∼ Bernoulli(θn), wheren ∈ πf is the
category containingo.

Consider now the case where we have a single binary relation defined over all ordered pairs of
objects{(oi, oj)}. In the relational case, our joint distribution is defined over a rooted, weighted,
binary tree; a t-c partition ofordered pairsof objects; and observed, relational data represented as a
matrixD whereDi,j = 1 if the relation holds betweenoi andoj .

Given a pair of categories(ni, mj), let ni ×mj be the set of all pairs of objects(oi, oj) such thatoi

is an object in the categoryni andoj is an object in the categorymj . With respect to pairs of trees, a
t-c partition,π, is a set of pairs of categories{(n1, m1), (n2, m2), . . . , (nk, mk)} such that, for every
pair of objects(oi, oj), there exists exactly one pair(nk, mk) ∈ π such that(oi, oj) ∈ nk × mk.
To help visualize these 2D t-c partitions, we can reorder thecolumns and rows of the matrixD
according to an in-order traversal of the binary treeT . Each t-c partition now splits the matrix
into contiguous, rectangular blocks (see Figure 1c, where each rectangular block is labeled with its
category pair). Assuming we have already generated a rooted, weighted binary tree, we now specify
the generative process for a single binary relation (c.f. steps iii through v in the feature case):

iii. Sample a t-c partitionπr = {(n1, m1), . . . , (nk, mk)} ∼ Π(root-of(T ), root-of(T )),
whereΠ(n, m) is a stochastic, set-valued function:

Π(n, m) =







{(n, m)} w.p. φ(wn) · φ(wm)

∪iΠ(ni, m) otherwise, w.p.12
∪jΠ(n, mj) otherwise

(2)

whereni/mj are the children ofn/m. To handle special cases, if bothn, m are leaves,
Π(n, m) = {n, m}; if only one of the nodes is a leaf, we default to the feature case on the
remaining tree, halting with probabilityφ(wn) · φ(wm). Intuitively, if a pair of categories
(n, m) both have large weight, the process is more likely to group all pairs of objects in
n × m into a single class. In Figure 1c, the t-c partition for theworks with relation is
{(S, S), (S, F ), (F, S), (F, F )}.

iv. For each pair of categories(n, m) ∈ πr, sampleθn,m ∼ Beta(γr, γr), whereθn,m is the
probability that the relation holds between any pair of objects in n × m. For theworks
with relation in Figure 1c, parameters would be drawn for each of the four classes in the t-c
partition.

v. For each pair of objects(oi, oj), sample the relationDi,j ∼ Bernoulli(θn,m), where
(n, m) ∈ πr and (oi, oj) ∈ (n, m). That is, the probability that the relation holds is
the same for all pairs in a given class.

For data sets with multiple relations and features, we assume that all relations and features are
conditionally independent given the weighted treeT .



2.1 Inference

Given observations of features and relations, we can use thegenerative model to ask various ques-
tions about the latent hierarchy and its annotations. We start by determining the posterior distribution
on the weighted tree topologies,(T, w), given dataD = ({d(f)}Ff=1, {D

(r)}Rr=1) overO objects,
F features andR relations and hyperparametersλ andγ = ({γf}

F
f=1, {γr}

R
r=1). By Bayes’ rule,

P (T, w|D, λ, γ) ∝ P (T ) P (w|T, λ) P (D|T, w, γ)

∝
(

1
) (

∏

n

λe−λwn

) (

∏F

f=1
P (d(f)|T, w, γf )

∏R

r=1
P (D(r)|T, w, γr)

)

.

But P (d(f)|T, w, γf ) =
∑

π P (π|T, w)P (d(f)|π, γf ), whereP (π|T, w) is the distribution over
t-c partitions induced by the stochastic functionΠ and P (d(f)|π, γf ) is the likelihood given
the partition, marginalizing over the feature probabilities,θn. Because the classes are indepen-
dent, P (d(f)|π, γf ) =

∏

n∈π P (d
(f)
n |n ∈ π, γf ), whereMf (n) = P (d

(f)
n |n ∈ π, γf ) is the

marginal likelihood ford(f)
n , the features for objects in categoryn. For our binary-valued data

sets,Mf (n) is the standard marginal likelihood for the beta-binomial model. Because there are
an exponential number of t-c partitions, we present an efficient dynamic program for calculating
Tf (n) = P (d

(f)
n |T, w, γf ). Then,Tf (root-of(T )) = P (d(f)|T, w, γf ) is the desired quantity.

First observe that, for all objects (i.e. leaf nodes)o, Tf (o) = Mf (o). Letn be a node and assume no
ancestor ofn is in π. With probabilityφ(wn) = 1− e−wn , categoryn will be a single class and the
contribution toTf will be Mf (n). Otherwise,Π(n) splits categoryn into its children,n1 andn2.
Now the possible partitions of the objects in categoryn are every t-c partition of the objects belown1

paired with every t-c partition belown2. By independence, this contributesTf (n1)Tf (n2). Hence,

Tf (n) =

{

φ(wn)Mf (n) + (1 − φ(wn)) Tf (n1)Tf (n2) if n is an internal node
Mf (n) otherwise.

For the relational case, we describe a dynamic programTr(n, m) that calculatesP (D
(r)
n,m|T, w, γr),

the probability of all relations between objects inn×m, conditioned on the tree, having marginalized
out the t-c partitions and relation probabilities. LetMr(n, m) = P (D

(r)
n,m|(n, m) ∈ π, γr) be the

marginal likelihood of the relations inn × m. For relations,Mf (n, m) is also the beta-binomial. If
n andm are both leaves, thenTr(n, m) = Mr(n, m). Otherwise,

Tr(n, m) = φ(wn)φ(wm)Mr(n, m)

+ (1 − φ(wn)φ(wm))







Tr(n, m1)Tr(n, m2) n is a leaf
(Tr(n1, m)Tr(n2, m) m is a leaf
1
2 · (Tr(n, m1)Tr(n, m2) + Tr(n1, m)Tr(n2, m)) otherwise

The above dynamic programs have linear and quadratic complexity in the number of objects, re-
spectively. Because we can efficiently compute the posterior density of a weighted tree, we can
search for the maximuma posteriori(MAP) weighted tree. Conditioned on the MAP tree, we can
efficiently compute the MAP t-c partition for each feature and relation. We find the MAP tree first,
rather than jointly optimizing for both the topology and partitions, because marginalizing over the
t-c partitions produces more robust trees; marginalization has a (Bayesian) ”Occam’s razor” effect
and helps avoid overfitting. MAP t-c partitions can be computed by a straightforward modification
of the above dynamic programs, replacing sums with max operations and maintaining a list of nodes
representing the MAP t-c partition at each node in the tree.

We chose to implement global search by building a Markov chain Monte Carlo (MCMC) algorithm
with the posterior as the stationary distribution and keeping track of the best tree as the chain mixes.
For all the results in this paper, we fixed the hyperparameters of all beta distributions toγ = 0.5
(i.e. the asymptotically least informative prior) and report the (empirical) MAP tree and MAP t-c
partitions conditioned on the tree. The MCMC algorithm searches for the MAP tree by cycling
through three Metropolis-Hastings (MH) moves adapted from[14]:

i. Subtree Pruning and Regrafting: Choose a noden uniformly at random (except the root).
Choose a non-descendant nodem. Detachn from its parent and collapse the parent (remove



node, attaching the remaining child to the parent’s parent and adding the parent’s weight to
the child’s). Sampleu ∼ Uniform(0, 1) and then insert a new nodem′ betweenm and its
parent. Attachn to m′, setwm′ := (1 − u)wm and setwm := uwm.

ii. Edge Weight Adjustment: Choose a noden uniformly at random (including the root) and
propose a new weightwn (e.g. letx be Normal(log(wt), 1) and let new weight beex).

iii. Subtree Swapping: Choose a noden uniformly at random (except the root). Choose another
noden′ such that neithern norn′ is a descendant of the other, and swapn andn′.

The first two moves suffice to make the chain ergodic; subtree swapping is included to improve
mixing. The first and last moves are symmetric. We initialized the chain on a random tree with
weights set to one, ran the chain for approximately one million iterations and assessed convergence
by comparing separate chains started from multiple random initial states.

2.2 Related Work

There are several methods that discover hierarchical structure in feature data. Hierarchical clustering
[4] has been successfully used for analyzing both biological data [18] and psychological data, but
cannot learn the annotated hierarchies that we consider. Bayesian hierarchical clustering (BHC) [6]
is a recent alternative which constructs a tree as a byproduct of approximate inference in a flat
clustering model, but lacks any notion of annotations. It ispossible that a BHC-inspired algorithm
could be derived to find approximate MAP annotated hierarchies. Our model for feature data is most
closely related to methods for Bayesian phylogenetics [14]. These methods typically assume that
features are generated directly by a stochastic process over a tree. Our model adds an intervening
layer of abstraction by assuming that partitions are generated by a stochastic process over a tree, and
that features are generated from these partitions. By introducing a partition for each feature, we gain
the ability to annotate a hierarchy with the levels most relevant to each feature.

There are several methods for discovering hierarchical structure in relational data [5, 13], but none
of these methods provides a general purpose solution to the problem we consider. Most of these
methods take a single relation as input, and assume that the hierarchy captures an underlying com-
munity structure: in other words, objects that are often paired in the input are assumed to lie nearby
in the tree. Our approach handles multiple relations simultaneously, and allows a more flexible map-
ping between each relation and the underlying hierarchy. Different relations may depend on very
different regions of the hierarchy, and some relations may establish connections between categories
that are quite distant in the tree (see Figure 4).

Many non-hierarchical methods for relational clustering have also been developed [10, 16, 17]. One
family of approaches is based on the stochastic blockmodel [15], of which the Infinite Relational
Model (IRM) [9] is perhaps the most flexible. The IRM handles multiple relations simultaneously,
and does not assume that each relation has underlying community structure. The IRM, however,
does not discover hierarchical structure; instead it partitions the objects into a set of non-overlapping
categories. Our relational model is an extension of the blockmodel that discovers a nested set of
categories as well as which categories are useful for understanding each relation in the data set.

3 Results

We applied our model to three problems inspired by tasks thathuman learners are required to solve.
Our first application used data collected in a feature-listing task by Cree and McRae [2]. Participants
in this task listed the features that came to mind when they thought about a given object: when asked
to think about a lemon, for example, subjects listed features like “yellow,” “sour,” and “grows on
trees.”1 We analyzed a subset of the full data set including 60 common objects and the 100 features
most commonly listed for these objects. The 60 objects are shown in Figure 2, and were chosen to
represent four domains: animals, food, vehicles and tools.

Figure 2 shows the MAP tree identified by our algorithm. The model discovers the four domains
as well as superordinate categories (e.g. “living things”,including fruits, vegetables, and animals)
and subordinate categories (e.g. “wheeled vehicles”). Figure 2 also shows MAP partitions for 10

1Note that some of the features are noisy — according to these data, onions are not edible, since none of the
participants chose to list this feature for onion.
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Figure 2: MAP tree recovered from a data set including 60 objects from four domains. MAP partitions for
several features are shown: the model discovers, for example, that “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportional to its vertical extent.
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Figure 3: MAP tree recovered from 49 relations between entities in a biomedical data set. Four relations are
shown (rows and columns permuted to match in-order traversal of the MAP tree). Consider the circled subset of
the t-c partition forcauses. This block captures the knowledge that “chemicals”cause“diseases.” The Infinite
Relational Model (IRM) does not capture the appropriate structure in the relationcausebecause it does not
model the latent hierarchy, instead choosing a single partition to describe the structure acrossall relations.

representative features. The model discovers that some features are associated only with certain
parts of the tree: “is juicy” is associated with the fruits, and “is metal” is associated with the man-
made items. Discovering domains is a fundamental cognitiveproblem that may be solved early
in development [11], but that is ignored by many cognitive models, which consider only carefully
chosen data from a single domain (e.g. data including only animals and only biological features). By
organizing the 60 objects into domains and identifying a subset of features that are associated with
each domain, our model begins to suggest how infants may parse their environment into coherent
domains of objects and features.

Our second application explores the acquisition of ontological knowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that our model discovers a simple biomedical
ontology given data from the Unified Medical Language System(UMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where the entities are ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relations include verbs likecauses, analyzes
andaffects. We applied our model to a subset of the data including the 30 entities shown in Figure 3.
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Figure 4: MAP tree recovered from kinship relations between 64 members of the Alyawarra tribe. Individuals
have been labelled with their age, gender and kinship section (e.g. “YF1” is a young female from section 1).
MAP partitions are shown for four representative relations: the model discovers that different relations depend
on the tree in very different ways; hierarchical structure allows for a compact representation (c.f. IRM).

The MAP tree is an ontology that captures several natural groupings, including a category for “living
things” (plant, bird, animal and mammal), a category for “chemical substances” (amino acid, lipid,
antibiotic, enzyme etc.) and a category for abnormalities.The MAP partitions for each relation
identify the relevant categories in the tree relatively cleanly: the model discovers, for example, that
the distinction between “living things” and “abnormalities” is irrelevant to the first place of the
relationcauses, since neither of these categories can cause anything (according to the data set). This
distinction, however, is relevant to the second place ofcauses: substances can cause abnormalities
and dysfunctions, but cannotcause“living things”. Note that the MAP partitions forcausesand
analyzesare rather different: one of the reasons why discovering separate t-c partitions for each
relation is important is that different relations can depend on very different parts of an ontology.

Our third application is inspired by the problem children face when learning the kinship structure
of their social group. This problem is especially acute for children growing up in Australian tribes,
which have kinship systems that are more complicated in manyways than Western kinship systems,
but which nevertheless display some striking regularities. We focus here on data from the Alyawarra
tribe [3]. Denham [3] collected a large data set by asking 104tribe members to provide kinship terms
for each other. Twenty-six different terms were mentioned in total, and four of them are represented
in Figure 4. More than one kinship term may describe the relationship between a pair of individuals
— since the data set includes only one term per pair, some of the zeros in each matrix represent
missing data rather than relationships that do not hold. Forsimplicity, however, we assume that
relationships that were never mentioned do not exist.

The Alyawarra tribe is divided into four kinship sections, and these sections are fundamental to
the social structure of the tribe. Each individual, for instance, is permitted only to marry individuals
from one of the other sections. Whether a kinship term applies between a pair of individuals depends
on their sections, ages and genders [3, 8]. We analyzed a subset of the full data set including 64
individuals chosen to equally represent all four sections,both genders, and people young and old.
The MAP tree divides the individuals perfectly according tokinship section, and discovers additional
structure within each section. Group three, for example, issplit by age and then by gender. The MAP
partitions for each relation indicate that different relations depend very differently on the structure
of the tree.Adiadyarefers to a younger member of one’s own kinship section. The MAP partition
for this relation contains fine-level structure only along the diagonal, indicating that the model has
discovered that the term only applies between individuals from the same kinship section.Umbaidya
can be used only between members of sections 1 and 3, and members of sections 2 and 4. Again
the MAP partition indicates that the model has discovered this structure. In some places the MAP
partitions appears to overfit the data: the partition forUmbaidya, for example, appears to capture
some of the noise in this relation. This result may reflect thefact that our generative process is not
quite right for these data: in particular, it does not capture the idea that some of the zeroes in each
relation represent missing data.



4 Conclusions

We developed a probabilistic model that assumes that features and relations are generated over an
annotated hierarchy, and showed how this model can be used torecover annotated hierarchies from
raw data. Three applications of the model suggested that it is able to recover interpretable structure
in real-world data, and may help to explain the computational principles which allow human learners
to acquire hierarchical representations of real-world domains.

Our approach opens up several avenues for future work. A hierarchy specifies a set of categories,
and annotations indicate which of these categories are important for understanding specific features
and relations. A natural extension is to learn sets of categories that possess other kinds of structure,
such as factorial structure [17]. For example, the kinship data we analyzed may be well described
by three sets of overlapping categories where each individual belongs to a kinship section, a gender,
and an age group. We have already extended the model to handlecontinuous data and can imag-
ine other extensions, including higher-order relations, multiple trees, and relations between distinct
sets of objects (e.g. given information, say, about the book-buying habits of a set of customers, this
extension of our model could discover a hierarchical representation of the customers and a hierar-
chical representation of the books, and discover the categories of books that tend to be preferred by
different kinds of customers). We are also actively exploring variants of our model that permit accu-
rate online approximations for inference; e.g., by placingan exchangeable prior over tree structures
based on a Polya-urn scheme, we can derive an efficient particle filter.

We have shown that formalizing the intuition behind annotated hierarchies in terms of aprior on
trees and partitions and anoise-robust likelihoodenabled us to discover interesting structure in real-
world data. We expect a fruitful area of research going forward will involve similar marriages be-
tweenintuitions about structured representationfrom classical AI and cognitive science andmodern
inferential machineryfrom Bayesian statistics and machine learning.
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