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Abstract

The objects in many real-world domains can be organizediigi@rchies, where
each internal node picks out a category of objects. Givenlleatmn of fea-
tures and relations defined over a set of objectgrarotatechierarchy includes a
specification of the categories that are most useful forrileiag each individual
feature and relation. We define a generative model for atewtserarchies and
the features and relations that they describe, and devditgriov chain Monte
Carlo scheme for learning annotated hierarchies. We shawotir model discov-
ers interpretable structure in several real-world data set

1 Introduction

Researchers in Al and cognitive science [1, 7] have proptsadhierarchies are useful for rep-

resenting and reasoning about the objects in many reabvaminains. One of the reasons that
hierarchies are valuable is that they compactly specifggmies at many levels of resolution, each
node representing the category of objects at the leavew/libbbnode. Consider, for example, the
simple hierarchy shown in Figure 1a, which picks out five gatés relevant to a typical university

department: employees, staff, faculty, professors, asidtast professors.

Suppose that we are given a large data set describing thedsatf these employees and the in-
teractions among these employees. Each of the five categsilieaccount for some aspects of
the data, but different categories will be needed for urtdating different features and relations.
“Faculty,” for example, is the single most useful categanydescribing the employees that publish
papers (Figure 1b), but three categories may be neededdolethe social interactions among the
employees (Figure 1c). In order to understand the structiitee department, it is important not
only to understand the hierarchical organization of thelegges, but to understand which levels in
the hierarchy are appropriate for describing each featudesach relation. Suppose, then, that an
annotated hierarchys a hierarchy along with a specification of the categorigbénhierarchy that
are relevant to each feature and relation.

The idea of an annotated hierarchy is one of the oldest patpscognitive science, and researchers
including Collins and Quillian [1] and Keil [7] have argudtbt semantic knowledge is organized
into representations with this form. Previous treatmehtmotated hierarchies, however, usually
suffer from two limitations. First, annotated hierarch@e usually hand-engineered, and there
are few proposals describing how they might be learned frata.dSecond, annotated hierarchies
typically capture knowledge only about the features of otsjerelations between objects are rarely
considered. We address both problems by defining a genenatidel for objects, features, relations,
and hierarchies, and showing how it can be used to recoverrstated hierarchy from raw data.

Our generative model for feature data assumes that thetslgiexlocated at the leaves of a rooted
tree, and that each feature is generated from a partitidreadlvjects “consistent” with the hierarchy.
A tree-consistent partitiohenceforth, t-c partition) of the objects is a partitiontleé objects into
disjoint categories, i.e. each class in the partition iscydhe set of leaves descending from some
node in the tree. Therefore, a t-c partition can be uniquetypded as the set of these nodes whose
leaf descendants comprise the classes (Figure 1a,b). iipdest t-c partition is the singleton set
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Figure 1. (a) A hierarchy over 15 members of a university departmernstaf members, 5 professors and

5 assistant professors. (b) Three binary features, eachichvis associated with a different t-c partition of

the objects. Each class in each partition is labeled wittctiteesponding node in the tree. (c) Three binary
relations, each of which is associated with a different &ifion of the set of object pairs. Each class in each
partition is labeled with the corresponding pair of nodes.

containing the root node, which places all objects into glsiclass. The most complex t-c partition
is the set of all leaves, which assigns each object to its dassc We assume that the features of
objects in different classes are independent, but thatthje the same class tend to have similar
features. Therefore, finding the categories in the tree mabstant to a feature can be formalized
as finding the simplest t-c partition that best accountstferdistribution of the feature (Figure 1b).
We define an annotated hierarchy as a hierarchy togetheawithpartition for each feature.

Although most discussions of annotated hierarchies foouteatures, much of the data available
to human learners comes in the form of relations. Undersgtarttie structure of social groups, for
instance, involves inferences about relations Bkkmires-, -), friend-of(-, -) and brother-of(-, -).
Like the feature case, our generative model for relatioath dissumes that each (binary) relation
is generated from a t-c partition of the set of @dlirs of objects Each class in a t-c partition now
corresponds to a pair of categories (i.e. pair of nodesl€id.c), and we assume that all pairs in a
given class tend to take similar values. As in the feature dasling the categories in the tree most
relevant to a relation can be formalized as finding the t-tifgan that best accounts for the distribu-
tion of the relation. The t-c partition for each relation dmviewed as an additional annotation of
the tree. The final piece of our generative model is a prior oveted trees representing hierarchies.
Roughly speaking, the best hierarchy will then be the oné fihavides the best categories with
which to summarize all the features and relations.

Like other methods for discovering structure in data, oyrapch may be useful both as a tool
for data analysis and as a model of human learning. Afterribésg our approach, we apply it to
several data sets inspired by problems faced by human lsarm@er first analysis suggests that the
model recovers coherent domains given objects and fedtarasseveral domains (animals, foods,
tools and vehicles). Next we show that the model discoveespnetable structure in kinship data,
and in data representing relationships between ontolbigivds.

2 A generative mode for features and relations

Our approach is organized around a generative model fanriedata and relational data. For sim-
plicity, we present our model for feature and relationabdstparately, focusing on the case where
we have a single binary feature or a single binary relatiofter’presenting our generative model,
we describe how it can be used to recover annotated hieegrfrioim data.

We begin with the case of a single binary feature and definenaddstribution over three entities:

a rooted, weighted, binary tréé with O objects at the leaves; a t-c partition of the objects; and
feature observationgl. For a feature, a t-c partition is a set of node$ny, no, ..., nk}, such that
each object is a descendant of exactly one node /e will identify each node with the category
of objects descending from it. We denote the data for allabja the category. asd,,. If ois a
leaf (single object category), theh, is the value of the feature for objeet In Figure 1b, three t-c
partitions associated with the hierarchy are representdceach class in each partition is labeled
with the corresponding category.

The joint distributionP (7', w, m, d| A, v¢) is induced by the following generative process:



i. Sample a tre€” from a uniform distribution over rooted binary trees withleaves (each
leaf will represent an object and there &abjects). Each node represents a category.

ii. For each categoryt, sample its weightyw,,, according to an exponential distribution with
parameten, i.e. p(w,|\) = Ae= .

ii. Sample a t-c partitionr; = {ni1,n2,...,nx} ~ I(root-of (T')), whereIl(n) is a
stochastic, set-valued function:

~ [{n} n is a leaf, or w.pgp(w,,)
() = {UiH(ni) otherwise (1)
whereg(z) = 1—e~* andn; are the children of.. Intuitively, categories with large weight
are more likely to be classes in the partition. Forplublisheseature in Figure 1b, the t-c
partition is{ F, S}.

iv. For each category € m¢, sampled,, ~ Betavy,v¢), whered, is the probability that
objects in category exhibit the featurg’. Returning to th@ublishesexample in Figure 1b,
two parameterg)r andfgs, would be drawn for this feature.

v. For each objecb, sample its feature valué, ~ Bernoulli(6,,), wheren € = is the
category containing.

Consider now the case where we have a single binary relatéinedl over all ordered pairs of
objects{(0;,0,)}. In the relational case, our joint distribution is definecoa rooted, weighted,
binary tree; a t-c partition afrdered pairsof objects; and observed, relational data represented as a
matrix D whereD, ; = 1 if the relation holds betweesy ando,.

Given a pair of categorigs:;, m;), letn; x m; be the set of all pairs of objects;, o;) such thab;

is an object in the category; ando; is an object in the category ;. With respect to pairs of trees, a
t-c partition,r, is a set of pairs of categori¢sn,, m1), (n2, m2), ..., (nk, mi)} such that, for every
pair of objects(o;, 0;), there exists exactly one pdiny, my) € « such that(o;, 0;) € ni x my.
To help visualize these 2D t-c partitions, we can reorderctiemns and rows of the matrik
according to an in-order traversal of the binary tflée Each t-c partition now splits the matrix
into contiguous, rectangular blocks (see Figure 1c, whach eectangular block is labeled with its
category pair). Assuming we have already generated a roetadhted binary tree, we now specify
the generative process for a single binary relation (ospstii through v in the feature case):

iii. Sample a t-c partitiorr,, = {(n1,m1),..., (ng, mg)} ~ I(root - of (T'),r oot - of (T')),
wherell(n,m) is a stochastic, set-valued function:

II(n,m) = < U;ll(n;,m) otherwise, w.p4 ()
U,;II(n,m;) otherwise

wheren; /m; are the children ofi/m. To handle special cases, if bothm are leaves,
II(n,m) = {n,m}; if only one of the nodes is a leaf, we default to the featuseam the
remaining tree, halting with probability(w,, ) - ¢(w., ). Intuitively, if a pair of categories
(n,m) both have large weight, the process is more likely to groupaits of objects in
n X m into a single class. In Figure 1c, the t-c partition for therks withrelation is

{(S’ S)v (Sv F)v (F7 S)a (Fa F)}

iv. For each pair of categorids, m) € =, sampled,, ,,, ~ Betav,,v.), wheref,, ,, is the
probability that the relation holds between any pair of ot§enn x m. For theworks
with relation in Figure 1c, parameters would be drawn for each®faur classes in the t-c
partition.

v. For each pair of objectéo;, 0;), sample the relatioD; ; ~ Bernoulli(#,, ,,), where
(n,m) € m and(o;,0;) € (n,m). Thatis, the probability that the relation holds is
the same for all pairs in a given class.

For data sets with multiple relations and features, we assinat all relations and features are
conditionally independent given the weighted tiée



2.1 Inference

Given observations of features and relations, we can usgeherative model to ask various ques-
tions about the latent hierarchy and its annotations. Welsgaletermining the posterior distribution
on the weighted tree topologie,, w), given dataD = ({dV}7_,,{D}X ) overO objects,

F features an relations and hyperparameterandy = ({'yf}ff:l, {7}%,). By Bayes' rule,

P(T,w|D,\,v) x P(T) P(w|T,\) P(D|T,w,~)
) (D) ([T, P IT°, P01 )

But P(dV|T,w,v;) = > P(x|T,w) P(dV)|r,~s), where P(n|T,w) is the distribution over
t-c partitions induced by the stochastic functibhand P(d/)|x, ;) is the likelihood given
the partition, marginalizing over the feature probatsbti¢,,. Because the classes are indepen-
dent, P(AD|m,vf) = [I,c, PA |0 € m,7;), whereM;(n) = P(dY|n € m,~;) is the

marginal likelihood ford%f), the features for objects in categany For our binary-valued data
sets,M(n) is the standard marginal likelihood for the beta-binomiald®l. Because there are
an exponential number of t-c partitions, we present an efficdynamic program for calculating

T(n) = P(d|T, w,vs). ThenTs(r oot - of (T')) = P(dP)|T,w,~) is the desired quantity.

First observe that, for all objects (i.e. leaf nodes] s (o) = My (o). Letn be a node and assume no
ancestor o is in 7. With probability¢(w,,) = 1 — e~%», category: will be a single class and the
contribution toT ¢ will be M, (n). OtherwiseIl(n) splits category: into its children,n; andns.
Now the possible partitions of the objects in categoare every t-c partition of the objects belaw
paired with every t-c partition below.. By independence, this contribut®s(n,)Ts(n2). Hence,

T [ o(wp)My(n) + (1 = p(wy)) Ty(n1)Ty(ne) if nis aninternal node
(n) = {Mf(n) otherwise

For the relational case, we describe a dynamic prodfaim, m) that calculate?(Dﬁ{MT, W, Yr )

the probability of all relations between objectsir m, conditioned on the tree, having marginalized
out the t-c partitions and relation probabilities. . (n,m) = P(Dﬁf}n (n,m) € m,7,) be the
marginal likelihood of the relations in x m. For relationsM(n, m) is also the beta-binomial. If
n andm are both leaves, théf,.(n, m) = M,.(n, m). Otherwise,

T, (nv m) = ¢(wn) ¢(wm)M7‘ (TL, m)

T, (n,m1)T,(n, ma) n is a leaf
+ (1 = d(wn) p(wm)) {(Tr(nh m)T,(ng, m) mis a leaf
% - (Ty(n,m1)Ty(n,m2) + Tr(n1,m)Ty(n2,m)) otherwise

The above dynamic programs have linear and quadratic coihpla the number of objects, re-
spectively. Because we can efficiently compute the postdeasity of a weighted tree, we can
search for the maximura posteriori(MAP) weighted tree. Conditioned on the MAP tree, we can
efficiently compute the MAP t-c partition for each featurg aalation. We find the MAP tree first,
rather than jointly optimizing for both the topology and {iiézns, because marginalizing over the
t-c partitions produces more robust trees; marginalinati@as a (Bayesian) "Occam’s razor” effect
and helps avoid overfitting. MAP t-c partitions can be coreguty a straightforward modification
of the above dynamic programs, replacing sums with max tipessand maintaining a list of nodes
representing the MAP t-c partition at each node in the tree.

We chose to implement global search by building a MarkovrchMante Carlo (MCMC) algorithm
with the posterior as the stationary distribution and kegpiack of the best tree as the chain mixes.
For all the results in this paper, we fixed the hyperpararaetkall beta distributions te¢ = 0.5
(i.e. the asymptotically least informative prior) and regghe (empirical) MAP tree and MAP t-c
partitions conditioned on the tree. The MCMC algorithm skas for the MAP tree by cycling
through three Metropolis-Hastings (MH) moves adapted fibi:

i. Subtree Pruning and Regrafting: Choose a nedmiformly at random (except the root).
Choose a non-descendant nadeDetachn from its parentand collapse the parent (remove



node, attaching the remaining child to the parent’s panedtalding the parent’s weight to
the child’s). Sample. ~ Uniform(0, 1) and then insert a new noae’ betweenn and its
parent. Attach: to m/, setw,,,s := (1 — u)w,, and setw,, := uwy,.

ii. Edge Weight Adjustment: Choose a nodeiniformly at random (including the root) and
propose a new weight,, (e.g. letz be Norma(log(w,), 1) and let new weight be®).

iii. Subtree Swapping: Choose a nadeniformly at random (except the root). Choose another
noden’ such that neither norn’ is a descendant of the other, and swiagndn’.

The first two moves suffice to make the chain ergodic; subtneping is included to improve
mixing. The first and last moves are symmetric. We initiaizkee chain on a random tree with
weights set to one, ran the chain for approximately one aniliterations and assessed convergence
by comparing separate chains started from multiple ranchitrali states.

2.2 Related Work

There are several methods that discover hierarchicaltateim feature data. Hierarchical clustering
[4] has been successfully used for analyzing both bioldgiata [18] and psychological data, but
cannot learn the annotated hierarchies that we considgedimn hierarchical clustering (BHC) [6]
is a recent alternative which constructs a tree as a byptamfuapproximate inference in a flat
clustering model, but lacks any notion of annotations. fiassible that a BHC-inspired algorithm
could be derived to find approximate MAP annotated hierasHDur model for feature data is most
closely related to methods for Bayesian phylogenetics. [T4lese methods typically assume that
features are generated directly by a stochastic processadvee. Our model adds an intervening
layer of abstraction by assuming that partitions are ge¢eeétay a stochastic process over a tree, and
that features are generated from these partitions. Bydantiimg a partition for each feature, we gain
the ability to annotate a hierarchy with the levels mostvaté to each feature.

There are several methods for discovering hierarchicatsire in relational data [5, 13], but none
of these methods provides a general purpose solution tortitdgm we consider. Most of these
methods take a single relation as input, and assume thatdter¢hy captures an underlying com-
munity structure: in other words, objects that are oftemgzhin the input are assumed to lie nearby
in the tree. Our approach handles multiple relations samalously, and allows a more flexible map-
ping between each relation and the underlying hierarchffei2int relations may depend on very
different regions of the hierarchy, and some relations nsgt#ish connections between categories
that are quite distant in the tree (see Figure 4).

Many non-hierarchical methods for relational clusteriagdialso been developed [10, 16, 17]. One
family of approaches is based on the stochastic blockmddig| pf which the Infinite Relational
Model (IRM) [9] is perhaps the most flexible. The IRM handlegltiple relations simultaneously,
and does not assume that each relation has underlying coitynstnucture. The IRM, however,
does not discover hierarchical structure; instead it fiant the objects into a set of non-overlapping
categories. Our relational model is an extension of thelsimzlel that discovers a nested set of
categories as well as which categories are useful for utatetimg each relation in the data set.

3 Reaults

We applied our model to three problems inspired by taskshiaian learners are required to solve.
Our first application used data collected in a featurerigstask by Cree and McRae [2]. Participants
in this task listed the features that came to mind when theyght about a given object: when asked
to think about a lemon, for example, subjects listed featlike “yellow,” “sour,” and “grows on
trees.® We analyzed a subset of the full data set including 60 comnbjects and the 100 features
most commonly listed for these objects. The 60 objects ave/slin Figure 2, and were chosen to
represent four domains: animals, food, vehicles and tools.

Figure 2 shows the MAP tree identified by our algorithm. Thedelaliscovers the four domains
as well as superordinate categories (e.g. “living thingstluding fruits, vegetables, and animals)
and subordinate categories (e.g. “wheeled vehicles”)urgi@ also shows MAP partitions for 10

INote that some of the features are noisy — according to thetse onions are not edible, since none of the
participants chose to list this feature for onion.
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Figure 2. MAP tree recovered from a data set including 60 objects froor lomains. MAP partitions for
several features are shown: the model discovers, for exariat “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportianis tvertical extent.
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Figure 3: MAP tree recovered from 49 relations between entities inoanleidical data set. Four relations are
shown (rows and columns permuted to match in-order traveftae MAP tree). Consider the circled subset of
the t-c partition forcauses This block captures the knowledge that “chemicalalise‘diseases.” The Infinite
Relational Model (IRM) does not capture the appropriatacstire in the relatiortausebecause it does not
model the latent hierarchy, instead choosing a singletfmartio describe the structure acragdkrelations.

representative features. The model discovers that sontgrésaare associated only with certain
parts of the tree: “is juicy” is associated with the fruitagd'is metal” is associated with the man-
made items. Discovering domains is a fundamental cognireblem that may be solved early
in development [11], but that is ignored by many cognitivedals, which consider only carefully
chosen data from a single domain (e.g. data including orimals and only biological features). By
organizing the 60 objects into domains and identifying asstibf features that are associated with
each domain, our model begins to suggest how infants mag plaeg environment into coherent
domains of objects and features.

Our second application explores the acquisition of onticllcknowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that oudehaiscovers a simple biomedical
ontology given data from the Unified Medical Language SystgMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where theiegtire ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relas include verbs likeausesanalyzes
andaffects We applied our model to a subset of the data including thenBfes shown in Figure 3.
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Figure4: MAP tree recovered from kinship relations between 64 membgthe Alyawarra tribe. Individuals
have been labelled with their age, gender and kinship se¢ig. “YF1" is a young female from section 1).
MAP partitions are shown for four representative relatidhe model discovers that different relations depend
on the tree in very different ways; hierarchical structuteves for a compact representation (c.f. IRM).

The MAP tree is an ontology that captures several naturalgings, including a category for “living
things” (plant, bird, animal and mammal), a category foréwtical substances” (amino acid, lipid,
antibiotic, enzyme etc.) and a category for abnormalitieee MAP partitions for each relation
identify the relevant categories in the tree relativelyadly: the model discovers, for example, that
the distinction between “living things” and “abnormalgfeis irrelevant to the first place of the
relationcausessince neither of these categories can cause anythingr(iegdo the data set). This
distinction, however, is relevant to the second placeanfses substances can cause abnormalities
and dysfunctions, but cannoause“living things”. Note that the MAP partitions focausesand
analyzesare rather different: one of the reasons why discoveringusge t-c partitions for each
relation is important is that different relations can degpen very different parts of an ontology.

Our third application is inspired by the problem childrendavhen learning the kinship structure
of their social group. This problem is especially acute fuitdren growing up in Australian tribes,
which have kinship systems that are more complicated in meaayg than Western kinship systems,
but which nevertheless display some striking regularitiés focus here on data from the Alyawarra
tribe [3]. Denham [3] collected a large data set by askingtlibé members to provide kinship terms
for each other. Twenty-six different terms were mentiomegbtal, and four of them are represented
in Figure 4. More than one kinship term may describe theigeiahip between a pair of individuals
— since the data set includes only one term per pair, someeoféhos in each matrix represent
missing data rather than relationships that do not hold. sifaplicity, however, we assume that
relationships that were never mentioned do not exist.

The Alyawarra tribe is divided into four kinship sectionsidathese sections are fundamental to
the social structure of the tribe. Each individual, for arste, is permitted only to marry individuals
from one of the other sections. Whether a kinship term applween a pair of individuals depends
on their sections, ages and genders [3, 8]. We analyzed atsobthe full data set including 64
individuals chosen to equally represent all four sectidmugh genders, and people young and old.
The MAP tree divides the individuals perfectly accordingittship section, and discovers additional
structure within each section. Group three, for exampllis by age and then by gender. The MAP
partitions for each relation indicate that different redlat depend very differently on the structure
of the tree.Adiadyarefers to a younger member of one’s own kinship section. TA&Martition

for this relation contains fine-level structure only alohg tliagonal, indicating that the model has
discovered that the term only applies between individualsfthe same kinship sectiodmbaidya
can be used only between members of sections 1 and 3, and meeaftsections 2 and 4. Again
the MAP partition indicates that the model has discovereidtiucture. In some places the MAP
partitions appears to overfit the data: the partitionBonbaidya for example, appears to capture
some of the noise in this relation. This result may reflectfétee that our generative process is not
quite right for these data: in particular, it does not captine idea that some of the zeroes in each
relation represent missing data.



4 Conclusions

We developed a probabilistic model that assumes that fesamd relations are generated over an
annotated hierarchy, and showed how this model can be useddeer annotated hierarchies from
raw data. Three applications of the model suggested thatlblie to recover interpretable structure
in real-world data, and may help to explain the computatipriaciples which allow human learners
to acquire hierarchical representations of real-world dims

Our approach opens up several avenues for future work. Aittiey specifies a set of categories,
and annotations indicate which of these categories arertapdor understanding specific features
and relations. A natural extension is to learn sets of categthat possess other kinds of structure,
such as factorial structure [17]. For example, the kinskitadve analyzed may be well described
by three sets of overlapping categories where each indivisiongs to a kinship section, a gender,
and an age group. We have already extended the model to heortiauous data and can imag-
ine other extensions, including higher-order relationsltiple trees, and relations between distinct
sets of objects (e.g. given information, say, about the Hangling habits of a set of customers, this
extension of our model could discover a hierarchical regmesgtion of the customers and a hierar-
chical representation of the books, and discover the categof books that tend to be preferred by
different kinds of customers). We are also actively expignariants of our model that permit accu-
rate online approximations for inference; e.g., by pla@ngxchangeable prior over tree structures
based on a Polya-urn scheme, we can derive an efficient |pditiier.

We have shown that formalizing the intuition behind anreddatierarchies in terms of @rior on
trees and partitions andnmise-robust likelihoo@&nabled us to discover interesting structure in real-
world data. We expect a fruitful area of research going fodaaill involve similar marriages be-
tweenintuitions about structured representatifmom classical Al and cognitive science am@édern
inferential machinerfrom Bayesian statistics and machine learning.
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