
A stochastic programming perspective on nonparametric Bayes

Daniel Roy, Vikash Mansinghka, Noah Goodman, Josh Tenenbaum droy,vkm,ndg,jbt@mit.edu

Massachusetts Institute of Technology

Abstract: We use Church, a Turing-universal lan-
guage for stochastic generative processes and the prob-
ability distributions they induce, to study and extend
several objects in nonparametric Bayesian statistics.
We connect exchangeability and de Finetti measures
with notions of purity and closures from functional
programming. We exploit delayed evaluation to pro-
vide finite, machine-executable representations for var-
ious nonparametric Bayesian objects. We relate com-
mon uses of the Dirichlet process to a stochastic gener-
alization of memoization, and use this abstraction to
compactly describe and extend several nonparamet-
ric models. Finally, we briefly discuss issues of com-
putability and inference.

The Church language is a stochastic generalization of
the lambda calculus [3] based on a lexically-scoped,
applicative order Lisp [7]. Due to space constraints,
we refer to [4] for the detailed syntax and semantics
of Church. Here, we focus on the novel perspective
Church offers on several nonparametric Bayesian ob-
jects, and the connections between foundational issues
in functional programming and mathematical issues in
the theory of stochastic processes.

Church expressions formally specify stochastic gener-
ative processes: programs that, when executed, gener-
ate random values. If a Church expression describes a
process that halts with probability 1, it induces a well-
defined (marginal) distribution on values. Church pro-
cedures are first-class, i.e. they can be returned by and
passed as arguments to procedures. Therefore, pro-
cedures that return procedures represent computable
random measures. This makes Church particularly
well suited to the study of Bayesian nonparametrics.

Our starting point is the notion of pure expressions in
functional programming. An expression is pure if it
causes no side effects during evaluation (such as writ-
ing to disk). An essential property that purity guar-
antees is independence from the order of evaluation.
In Church, the random procedure flip has detectable
side effects: multiple coin (flip)s will not in gen-
eral yield the same value, because different random
bits were used to generate each one. However, despite
these side effects, a set of (flip)s is still exchange-
able: the order of evaluation does not matter. In fact,
a set of (flip)s is simply i.i.d.. However, consider the
Beta-Bernoulli model:

(define (sample-coin)

(let ((coin-weight (random-beta 1 1))) ;; sample a coin weight Beta(1,1)

(lambda () (flip coin-weight)))) ;; return a procedure that flips it

(define my-coin (sample-coin)) ;; construct a coin

(my-coin) ;; flip it. flips are exchangeable,

(my-coin) ;; but i.i.d. conditioned on the

(my-coin) ;; (marginalized) coin weight.

(define your-coin (sample-coin)) ;; construct a second coin, with

(your-coin) ;; (in general) different weight

This Church program makes explicit the de Finetti
representation of the exchangeable sequence of coin
flips. A functional programmer would say the con-
structed coins are closures containing their weights: a
caller cannot reach inside the my-coin procedure to
discover (or depend on) the weight of the coin from
which i.i.d. flips are being generated. A statistician
would say that a caller can only reason about any se-
quence of flips via their marginal, in which the in-
dividual flips are not i.i.d., but are exchangeable.
Any sequence of calls to a pure thunk is clearly ex-
changeable. This makes the construction of Daniell-
Kolmogorov consistent distributions – often desirable
in data modeling – straightforward. Furthermore, this
criterion yields a sound (but not complete) program
analysis for verifying exchangeability, which could be
automatically exploited during inference.

Functions of no arguments are traditionally called
thunks. Our example suggests that procedures which
return pure thunks correspond to computable de
Finetti representations. The infinitely exchangeable
sequence of random variables being represented is the
sequence of repeated calls to the thunk being returned.
The central challenge in extending this to nonparamet-
ric objects is to deal with countably infinite de Finetti
representations using only finite computation time and
memory. To address this challenge, we employ delayed
evaluation, a central idea in functional programming.

The value of a delayed expression is computed only
if some other evaluation depends on it. We support
delays via the use of the primitive mem, which imple-
ments memoization. mem accepts any procedure as its
sole argument, and behaves as though it evaluates (i.e.
samples from) the procedure (distribution) for every
possible collection of argument values, returning a pro-
cedure that produces the corresponding sampled value
for each argument when called.

We can implement mem using finite computation by
having it immediately return a stateful procedure
closed over an initially empty mapping from argument
values to samples. When the procedure is called, it

A stochastic programming perspective on nonparametric Bayes

checks to see if the mapping for its given arguments
already exists, and if so, returns that cached value.
Otherwise, it applies the underlying procedure, stores
the result in the map, and returns it. This stateful-
ness allows us to delay countably many computations
while preserving exchangeability. Using mem, we can
implement the Dirichlet process, following [12]:

(define (DP concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1))

(if (flip (sticks j)) ;; with probability (stick j)

(atoms j) ;; return j’th sample from base measure

(loop (+ j 1))))))) ;; otherwise move to (j+1)’th stick

In fact, DP lets us generalize memoization to a form
more useful in the stochastic setting. On repeated
calls with the same arguments, we want a stochasti-
cally memoized procedure that sometimes returns old
values, but sometimes samples new values.

(define (DPmem alpha proc)

(let ((restaurants (mem (lambda args (DP alpha

(lambda () (apply proc args)))))))

(lambda args ((apply restaurants args)))))

DPmem with alpha set to 0 recovers mem, and with
alpha set to ∞ recovers no memoization (wasting
space). This idiom lets us compactly describe a wide
range of Dirichlet process based models in the liter-
ature, in particular recursively structured models not
easily describable in graphical terms (see Figure 1).
Many other higher order procedures play important
roles in functional programming, and may suggest new
stochastic processes.

We also provide a Church program that uses the stick
breaking representation of the Indian Buffet Process
[16, 5] introduced in [15]:

(define (ibp-stick-breaking-process concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1) (dualstick (sticks 1))}

(append (if (flip dualstick) ;; with prob. dualstick

(atoms j) ;; add feature j

’()) ;; otherwise, next stick

(loop (+ j 1) (* dualstick (sticks (+ j 1))))))))))

This procedure does not halt, and therefore does not
induce a well-defined distribution on values, although
the original IBP does. This raises the question of
whether the IBP has a computable de Finetti represen-
tation and may have implications for sampler design.

Church also introduces (query <expr> <pred>),
which samples a value v from the marginal distribu-
tion on values of <expr> given that (<pred> v) re-
turns true. This provides a Turing-universal target
for exact and approximate inference, and exposes fur-
ther connections between probability and computing.
For example, a Church representation of a distribution
also has well-defined time, space and entropy complex-
ity, which interacts with the complexity of inference

!0.4 !0.2 0.2 0.4

0.5

1.0

1.5

2.0

!0.4 !0.2 0.2 0.4

0.5

1.0

1.5

Figure 1. Exact posterior samples from a DP mixture of
Gaussians (with Gaussian mean and inverse gamma vari-
ance), using the collapsed rejection algorithm for query.

schemes that use forward simulation (including our
MH algorithm). Different Church representations of a
given nonparametric object may thus be more or less
suitable for different inference algorithms. Further-
more, although our generic inference algorithms are
currently less efficient than special-purpose alterna-
tives, techniques for functional program analysis and
transformation between marginally equivalent repre-
sentations could yield significant improvements. For
example, we think exploiting the dynamic program-
ming ideas from [9] in the general context of Church (or
programmatically identifying the subset of programs
to which those techniques apply) will implicate flow
analysis techniques [13].

Figure 1 Examples of stochastic transition models.

This deterministic higher-order function defines the basic
structure of stochastic transition models:
(define (unfold expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (unfold expander x))

(expander symbol))))

A Church model for a PCFG transitions via a fixed multi-
nomial over expansions for each symbol:
(define (PCFG-productions symbol)

(cond ((eq? symbol ’S) (multinomial ’((S a) (T a)) (0.2 0.8)))

((eq? symbol ’T) (multinomial ’((T b) (a b)) (0.3 0.7)))))

(define (sample-pcfg) (unfold PCFG-productions ’S))

The HDP-HMM [2, 14] uses memoized symbols for states
and memoizes transitions. Fresh symbols are generated by
the exchangeable (but stateful) primitive gensym, which
returns distinct symbols on each call:
(define get-symbol (DPmem 1.0 gensym))

(define get-observation-model (mem (lambda (symbol) (make-100-sided-die))))

(define ihmm-transition (DPmem 1.0 (lambda (state)

(if (flip) ’stop (get-symbol)))))

(define (ihmm-expander symbol)

(list ((get-observation-model symbol)) (ihmm-transition symbol)))

(define (sample-ihmm) (unfold ihmm-expander ’S))

The HDP-PCFG [8] is also straightforward:
(define terms ’(a b c d))

(define term-probs ’(.1 .2 .2 .5))

(define rule-type (mem (lambda symbol)

(if (flip) ’terminal ’binary-production))

(define ipcfg-expander (DPmem 1.0 (lambda (symbol)

(if (eq? (rule-type symbol) ’terminal)

(multinomial terms term-probs)

(list (get-symbol) (get-symbol))))))

(define (sample-ipcfg) (unfold ipcfg-expander ’S))

Making adapted versions of any of these models [6] only
requires stochastically memoizing unfold:
(define adapted-unfold

(DPmem 1.0 (lambda (expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (adapted-unfold expander x))

(expander symbol))))))

A stochastic programming perspective on nonparametric Bayes

References

[1] H. Abelson and G. J. Sussman. Structure and
Interpretation of Computer Programs. MIT Press,
Cambridge, MA, USA, 1996.

[2] M. Beal, Z. Ghahramani, and C. Rasmussen. The
infinite hidden Markov model. NIPS 14, 2002.

[3] A. Church. A Set of Postulates for the Foundation
of Logic. The Annals of Mathematics, 33(2):346–
366, 1932.

[4] N. Goodman, V. Mansinghka, D. M. Roy,
K. Bonawitz, and J. Tenenbaum. Church: a lan-
guage for generative models with non-parametric
memoization and approximate inference. In Un-
certainty in Artificial Intelligence, 2008.

[5] T. L. Griffiths and Z. Ghahramani. Infinite latent
feature models and the indian buffet process. In
Advances in Neural Information Processing Sys-
tems 18, 2006.

[6] M. Johnson, T. Griffiths, and S. Goldwater.
Adaptor grammars: A framework for specify-
ing compositional nonparametric Bayesian mod-
els. NIPS 19, 2007.

[7] R. Kelsey, W. Clinger, and J. R. (eds.). Revised5

Report on the Algorithmic Language Scheme.
Higher-Order and Symbolic Computation, 11(1):
7–105, 1998.

[8] P. Liang, S. Petrov, M. Jordan, and D. Klein.
The Infinite PCFG using Hierarchical Dirichlet
Processes. Proc. EMNLP-CoNLL, 2007.

[9] I. P. Max Welling and E. Bart. Infinite State
Bayesian Networks For Structured Domains. In
Neural Information Processing Systems, 2007.

[10] J. L. McCarthy. Recursive Functions of Symbolic
Expressions and Their Computation by Machine,
Part I. Communications of the ACM, 3(4):184–
195, 1960.

[11] J. C. Reynolds. Definitional interpreters for
higher-order programming languages. In ACM
’72: Proceedings of the ACM annual conference,
pages 717–740, New York, NY, USA, 1972. ACM.
doi: http://doi.acm.org/10.1145/800194.805852.

[12] J. Sethuraman. A Constructive definition of
Dirichlet priors. Statistica Sinica, 4, 1994.

[13] O. G. Shivers. Control-flow analysis of higher-
order languages or taming lambda. PhD thesis,
Carnegie Mellon University, 1991.

[14] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M.
Blei. Hierarchical Dirichlet processes. Journal
of the American Statistical Association, 101(476):
1566–1581, 2006.

[15] Y. W. Teh, D. Görür, and Z. Ghahramani. Stick-
breaking construction for the Indian buffet pro-
cess. In Proceedings of the International Confer-
ence on Artificial Intelligence and Statistics, vol-
ume 11, 2007.

[16] R. Thibaux and M. I. Jordan. Hierarchical beta
processess and the indian buffet process. In Pro-
ceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, 2007.

