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Abstract

We consider the task of statistical inference for data in the form of a relational
database comprising multiple relations acting on heterogenous sets of objects. We
define a notion of exchangeability for databases generalizing that of arrays, based
on the idea that the objects over which the relations act are themselves exchange-
able. When the data are encoded in the form of several multi-dimensional arrays
this assumption corresponds to invariance to the simultaneous permutation of cer-
tain rows and columns across the multiple arrays. Recent work in Bayesian statis-
tics has connected representation theorems due to Aldous, Hoover and Kallenberg
to the modeling of individual exchangeable arrays. In particular, Hoff (2007),
Roy and Teh (2009) and Lloyd et al. (2012) use these representational results to
inspire statistical models of networks and other relational data. We extend this
work by deriving corollaries of the representation theorems that are applicable to
exchangeable databases and discuss the implications for modeling such data.

1 Introduction

Relational databases are an extremely common data structure so it is natural to want to perform
statistical tasks with such data e.g., predicting unobserved data or identifying latent structure. In
particular, network data is rarely encountered in isolation e.g., in a social network one will often have
access to side information about each user. To perform a statistical analysis of such data we need
to estimate parameters of a probabilistic model, but it is not immediately clear what an appropriate
parameter space for such a model is. The choice of parameter space is important because it indicates
the targets of statistical inference and shows where we can share statistical strength between different
aspects of the data.

We demonstrate that the weak assumption of an appropriate form of exchangeability can provide a
natural parameter space. This form of exchangeability is appropriate when the order of the objects
underlying a relational database (e.g., users and movies in a database of ratings data) is arbitrary or
unimportant. For example, the left hand side of figure 1 shows the same network but with differently
labeled nodes. If the labeling is unimportant, then any probabilistic model of such data should assign
them the same probability.
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Figure 1: Left: Networks with equivalent structure but different node labels. Right: Corresponding
adjacency matrix representations of these networks

Relational data are typically stored in arrays; the right hand side of figure 1 shows the corresponding
adjacency matrix representations of the networks on the left. We demonstrate that exchangeability
of the objects underlying a relational database can be expressed in terms of array exchangeability.
Prior work on array exchangeability, both theoretical [e.g. 4, 5, 7–9, 15, 16, 18, 38] and applied [e.g.
13, 24, 30], has focused on single exchangaeble arrays. We show that the representation theorems
for single arrays can be used to derive representations for collections of exchangeable arrays i.e.,
exchangeable databases.

2 Exchangeable databases

We abstractly define a database following the entity-relationship formalism [e.g. 36] where the val-
ues of attributes are the result of evaluating a function (relation) over a collection of entities / objects.
Definition 2.1 (types, signatures, relation). Fix a finite set T of types. By a signature we mean a
finite sequence s ∈ Tn of types. By a relation r of signature s ∈ Tn with values in a space S we
mean a function from Nn to S.

We may encode a relation r with signature s ∈ Tn as an array Xr := (Xr
i )i∈Nn given by

Xr
i = r(i1, . . . , in), for i = (i1, . . . , in) ∈ Nn. (2.1)

Example 2.1. Let T = {users,movies}. Then a relation r of signature (users,movies) taking values
in {1, 2, 3, 4, 5} might store movie ratings with rows corresponding to some enumeration of users,
and columns corresponding to some enumeration of movies. A relation r′ of signature (users, users)
taking values in {0, 1} might store the symmetric friendship relations in a social network.
Definition 2.2 (database). By a database we mean a collection ofR relations r1, . . . , rR of signature
s1, . . . , sR, respectively, taking values in S1, . . . , SR, respectively.

We may encode a database as a collection of arrays (Xrj )Rj=1, where Xrj encodes the relation rj .
For notational simplicity, we will often refer to the collection of arrays (Xrj )Rj=1 as if it were the
database itself.

Permuting the ordering of objects within a database results in a permutation of the indices of several
of the arrays encoding its relations. We will now make this precise: For each type t ∈ T , let pt ∈ S∞
be a permutation of N, i.e., pt : N→ N is one-to-one and onto. Write p = (pt; t ∈ T ) ∈ ST∞ for the
collection of such permutations. Given a signature s ∈ Tn, define ps to be the map from Nn to Nn

such that

ps(i) := (ps1(i1), . . . , psn(in)), for i ∈ Nn. (2.2)

In other words, ps maps a sequence i1, . . . , in of indices (into the set of objects of type s1, . . . , sn,
respectively) to the sequence where each index is permuted by the permutation corresponding to its
type.

If Xr is the encoding of a relation r with signature s ∈ Tn, then the permuted relation r ◦ p is
represented by the array Xr◦p given by

Xr◦p
i = Xr

ps(i), for i ∈ Nn. (2.3)

Definition 2.3 (exchangeable database). We say that a random database (Xrj )Rj=1 is exchangeable
when it has the same distribution as (Xrj◦p)Rj=1 for every p ∈ ST∞.
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The following result characterizes the distribution of any exchangeable database to arbitrary accu-
racy. Let (U t

i )i∈N,t∈T be a collection of i.i.d. Uniform[0, 1] random variables.

Theorem 2.4 (functional representation for exchangeable databases). Let (Xrj )Rj=1 be an exchange-
able random database. Then there exists a sequence of random measurable functions F j,1, F j,2, . . .
for every j = 1 . . . R such that the random databases (Xrj ,m)Rj=1 converge in distribution to
(Xrj )j=1...R as m→∞, where

X
rj ,m
i := F j,m(U

sj(1)
i1

, . . . , U
sj(n)
in

), for i ∈ Nn. (2.4)

The proof is based on a reduction to the representation theorem for π-exchangeable arrays presented
in [18] but omitted for brevity. The theorem can be strengthened to state that the law of fixed sub-
arrays are mutually absolutely continuous and the associated Radon-Nikodym derivatives converge
uniformly to 1 as n → ∞. An almost-sure representational result can also be given at the expense
of heavy notation.

Because the notation is somewhat involved, we present a special case of this theorem applicable to
e.g., modeling a network with side information for each node.
Corollary 2.5. Consider an exchangeable database with one object type, one unary relationship,
and one binary relationship; denote the binary relationship by the array X = (Xi,j)i,j∈N and
the unary relationship with the sequence C = (Ci)i∈N. Then there exists a sequence of pairs of
random measurable functions (Fn, Gn)n∈N and a collection of i.i.d. Uniform[0, 1] random variables
(Ui)i∈N such that if we define the arrays X1, X2, . . . and sequences C1, C2, . . . by

Xn
i,j := Fn(Ui, Uj), for i, j, n ∈ N, (2.5)

Cn
i,j := Gn(Ui), for i, n ∈ N, (2.6)

then (Xn, Cn) converges in distribution to (X,C) as n→∞.
Remark 2.6 (uniform distributions). The uniform distributions in the theorem are canonical but
the theorem still holds with any non-atomic probability measure on a Borel space e.g., Gaussian
distributions.

2.1 Intepretation and examples

Theorem 2.4 states that the joint distribution of an exchangeable database can be arbitrarily well
approximated by a collection of random measurable functions and uniform random variables. This
functional form provides a set of parameters to be estimated that are naturally hierarchical. The func-
tions (F j,n) capture properties of entire relations whilst the (U t

i ) represent randomness associated
with particular objects underlying the relational data.

2.1.1 Example : Exchangeable networks

Consider modeling a single binary relation which indicates whether or not two nodes in a network
are connected or not. This data is typically represented in the form of an adjacency matrix (Xij)
whereXij = 1 if and only if node i is connected to node j. Theorem 2.4 states that if the distribution
of X is exchanegable then it can be arbitrarily well approximated by

(F (Ui, Uj)) (2.7)

where F is a random measurable function and (Ui) are i.i.d. Uniform[0, 1] random variables. This
special case has been used previously by [13, 24, 30] to inspire probabilistic models of networks of
the form

(Ui) ∼iid e.g., Gaussian (2.8)
F ∼ e.g., Gaussian process, bilinear function . . . (2.9)

Wij := F (Ui, Uj) (2.10)
Xij |Wij ∼ Bernoulli(σ(Wij)). (2.11)

This is demonstrated pictorially in figure 2; in this case F can be interpreted as a blurred adjacency
matrix.
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Figure 2: A pictorial representation of a model for network data inspired by the Aldous–Hover
representation theorem. The left shows a random sample of a binary network (represented by an
adjacency matrix) generated by a model of the form given by equation (2.11). This figure is adapted
from [24] with permission.

2.1.2 Example : A simple database

Consider the simple database shown on the left hand side of figure 3. There are two objects, students
and courses, and three relations, the unary relation ‘age’ acting on students, the binary relation
‘friends’ acting on pairs of students and the binary relation ‘grade’ that acts on students and courses.
Sample data encoded in arrays is shown at the bottom of this figure.

Exchangeability of this database means that the entries of the leftmost table, the rows and columns
of the second table and the rows of the third table can be arbitrarily permuted without changing
the distribution of the database when viewed as a random variable. Similarly the columns of the
rightmost table may be independently arbitrarily permuted.

The functional form resulting from the application of theorem 2.4 to this data structure is shown
on the right hand side of figure 3. The two objects are represented by i.i.d. random variables, (Ui)
for students, (Vi) for courses and the three relations are represented by three random functions
F (Ui), G(Ui, Uj) andH(Ui, Vj) whose inputs are the random variables representing the objects the
relations act upon.

Student Course

Observed Takes

Friends GradeAge

XXXXX
X
X
X
X
X

×
×

X

X

A
A

B

B

C

C

D
D

E
F

15
15
15
14
14
16

(Ui) (Vi)

Observed Takes

Friends GradeAge

(G(Ui, Uj)) (H(Ui, Vj))(F (Ui))

Figure 3: Left: A pictorial representation of a relational database. Right: The functional represen-
tation of the distribution of data of this form guaranteed to be an arbitrarily good approximation by
theorem 2.4

3 A generic generative model

In analogy to the work of [13, 24, 30] on exchangeable arrays, theorem 2.4 naturally inspires a
generic generative model of exchangeable databases. Each object in the database is associated with
an i.i.d. sample, U t

i , from some distribution U e.g., Uniform, Gaussian. For each relation r1, . . . , rR
we independently sample a random function F j from some distribution F j , e.g., Gaussian process,
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random (bi/tri/. . . )linear function. We denote the evaluation of these functions at the corresponding
values of (U t

i ) by W j . W j can then be used to index into a family of observation distribution L(·),
e.g., Gaussian distributions, to model the value of the relation rj .

(U t
i ) ∼iid U (3.1)
F r ∼ Fr (3.2)

W j
i := F j(U

sj(1)
i1

, · · · , Usj(n)
in

) (3.3)

X
rj
i |W ∼ L(W

j
i ) independently across j and i. (3.4)

3.1 Prior work using models of this form

It was demonstrated in [24] that many models of single 2-arrays fit the form of the generic model
presented above. In particular there are models that assume F is linear [e.g. 13, 25, 26, 31, 44], that
F is Gaussian process distributed [e.g. 22, 24, 42] and other non-linear forms for F [e.g. 14, 30].
In addition to this there has been a line of work that uses increasingly more expressive forms of the
distribution U [e.g. 20, 25, 26, 28, 29, 37, 40].

Many, but not all, of these models have been extended to model d-arrays. A summary of models
using linear forms of F is given in [21]; non-linear models include [41].

For full databases, the literature is limited to clustering models [20] and models using linear forms
for the F r [e.g. 1–3, 6, 10–12, 17, 23, 27, 32–35, 39, 43].

4 Discussion

We have demonstrated how the concept of exchangeability can be applied to databases and used to
derive a natural parameter space for statistical models of such data. Identifying a parameter space
is the first step in any statistical analysis, allowing either frequentist estimation of the parameters or
Bayesian prior specification. This concept is well established for exchanegable sequences where de
Finetti’s theorem [e.g. 19] applies. For exchangeable arrays, the relevant representation theorems
were presented by Aldous and Hoover [4, 15] over 30 years ago but it is only recently that these
results are being used to inspire Bayesian models [13, 24, 30] and frequentist estimation procedures
[8, 18, 38]. We hope that this work will continue and be extended to the analysis of exchangeable
databases.
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