Nonparametric Bayesian statistics with exchangeable random structures

Daniel M. Roy

University of Cambridge

October 2014

Thanks to

Nate Ackerman (Harvard)
Cameron Freer (MIT/Analog)
Peter Orbanz (Columbia)
James R. Lloyd (Cambridge)
Zoubin Ghahramani (Cambridge)
Sara Wade (Cambridge)

Influenced especially by work of Aldous, de Finetti, Kallenberg, Lovász, Schervish, and others,

Daniel M. Roy 1/54

Statistical Machine Learning

Given some data X_1,X_2,\ldots identify hidden structure/patterns in order to predict future or missing data.

Daniel M. Roy 2/54

1. (height, weight, age) of students

$$X = \begin{array}{cccc} 171 \mathrm{cm} & 65 \mathrm{kg} & 21 \\ 182 \mathrm{cm} & 70 \mathrm{kg} & 19 \\ 170 \mathrm{cm} & ? & 20 \\ \vdots & \vdots & \vdots \end{array}$$

2. daily average (temperature, humidity, rainfall) in Guanajuato

$$X = \begin{array}{cccc} 21^{\circ}\text{C} & 40\% & 0\text{cm} \\ 27^{\circ}\text{C} & 50\% & 0\text{cm} \\ 30^{\circ}\text{C} & 60\% & ? \\ \vdots & \vdots & & \\ \end{array}$$

3. $X = \frac{\text{scores}}{\text{ratings for movies by users}}$

Is there structure in the data?

Daniel M. Roy 3/54

What structure is in the data?

1. { \(\daggerightarrow \daggerightarrow

2.

 $\square \to \square \to \square \to \square \to \square \quad \cdots$

3.

Daniel M. Roy 4/54

Is there even more structure in the data?

1.
$$\mathbb{P}\left(\begin{array}{cccc} 171\text{cm} & 65\text{kg} & 21\\ 182\text{cm} & 70\text{kg} & 19\\ 170\text{cm} & ? & 20 \end{array}\right)\stackrel{?}{=}\mathbb{P}\left(\begin{array}{cccc} 182\text{cm} & 70\text{kg} & 19\\ 171\text{cm} & 65\text{kg} & 21\\ 170\text{cm} & ? & 20 \end{array}\right)$$

(Swapped top and middle row.)

$$2. \quad \mathbb{P} \left(\begin{array}{ccc} 21^{\circ}C & 40\% & 0cm \\ 27^{\circ}C & 50\% & 0cm \\ 30^{\circ}C & 60\% & ? \end{array} \right) \stackrel{?}{=} \mathbb{P} \left(\begin{array}{ccc} 27^{\circ}C & 50\% & 0cm \\ 21^{\circ}C & 40\% & 0cm \\ 30^{\circ}C & 60\% & ? \end{array} \right)$$

(Swapped top and middle row.)

(Swapped top and middle row.)

$$\stackrel{?}{=} \mathbb{P} \left(\begin{array}{ccccc} 1 & 2 & 2 & 5 & 5 \\ 5 & 5 & 5 & 3 & 2 \\ 4 & 5 & 5 & 2 & 3 \end{array} \right)$$

(Swapped first and second columns.)

(Sorted each row.)

Daniel M. Roy 5/54

Probabilistic symmetries

1. Exchangeable sequence

$$\mathbb{P}[(X_1, X_2, \dots, X_n)] = \mathbb{P}[(X_4, X_n, \dots, X_1)] = \mathbb{P}[(X_{\pi(1)}, \dots, X_{\pi(n)})]$$
Invariance to permutation.

2. Stationary sequence

$$\mathbb{P}[(X_1, X_2, \dots)] = \mathbb{P}[(X_4, X_5, \dots)] = \mathbb{P}[(X_{k+1}, X_{k+2}, \dots)]$$

3. Exchangeable array

$$\mathbb{P} \left[\begin{pmatrix} X_{1,1} & X_{1,2} & \cdots \\ X_{2,1} & X_{2,2} & \cdots \\ X_{3,1} & X_{3,2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \right] = \mathbb{P} \left[\begin{pmatrix} X_{\pi(1),\tau(1)} & X_{\pi(1),\tau(2)} & \cdots \\ X_{\pi(2),\tau(1)} & X_{\pi(2),\tau(2)} & \cdots \\ X_{\pi(3),\tau(1)} & X_{\pi(3),\tau(2)} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \right]$$

Invariance to separate permutation of rows and columns.

What is the most general way to model data assuming these symmetries?

Daniel M. Roy 6/54

Goals of this tutorial

- 1. Give a review of exchangeability in several forms.
- 2. Link each type of exchangeability to a representation theorem.
- 3. Explain how to interpret these representation theorems in their various forms.
- Convey that probabilistic symmetries are an important consideration when constructing a statistical model.

Tutorial Outline

- 1. Exchangeable sequences.
- 2. Exchangeable graphs and arrays.

Daniel M. Rov 7/54

CAVEATS

A rigorous account requires measure theory.

- 1. All spaces are complete, separable metric spaces, equipped with their Borel σ -algebras.
- 2. All functions and sets are measurable.
- Some necessary details will appear in a light gray color like this. Ignore these for now, and go back and study them later to understand the material at a greater depth.
- 4. I will define the "naturals" to be $\mathbb{N}:=\{1,2,\dots\}$.

Daniel M. Roy 8/54

EXCHANGEABLE SEQUENCES

Definition (exchangeable sequences)

Let X_1, X_2, \ldots be a sequence of random variables taking values in a space S. We say the sequence is **exchangeable** when, for every permutation π of \mathbb{N} ,

$$(X_1, X_2, \dots) \stackrel{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \dots)$$
 (1)

What does Eq. (1) mean?

$$\iff \text{ for all } n \in \mathbb{N}, \\ (X_1, \dots, X_n) \stackrel{\text{d}}{=} (X_{\pi(1)}, \dots, X_{\pi(n)}). \tag{2}$$

$$\iff \text{ for all } n \in \mathbb{N}, \text{ and distinct } k_1, \dots, k_n \in \mathbb{N}, \\ (X_1, \dots, X_n) \stackrel{\text{d}}{=} (X_{k_1}, \dots, X_{k_n}). \tag{3}$$

$$\iff \text{ for all } n \in \mathbb{N}, \text{ and permutations } \pi \text{ of } [n] := \{1, 2, \dots, n\}, \\ (X_1, \dots, X_n) \stackrel{\text{d}}{=} (X_{\pi(1)}, \dots, X_{\pi(n)}). \tag{4}$$

Daniel M. Roy 9/54

EXCHANGEABLE SEQUENCES

Definition (exchangeable sequences)

Let X_1,X_2,\ldots be a sequence of random variables taking values in a space S. We say the sequence is **exchangeable** when, for every $n\in\mathbb{N}$ and permutation π of [n],

$$(X_1, \dots, X_n) \stackrel{d}{=} (X_{\pi(1)}, \dots, X_{\pi(n)})$$
 (1)

What does Eq. (1) mean?

$$\iff \text{ for all subsets } A_1, \dots, A_n \subseteq S,$$

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \mathbb{P}\{X_{\pi(1)} \in A_1, \dots, X_{\pi(n)} \in A_n\}. \tag{2}$$

$$\iff \text{ for all subsets } A_1,\ldots,A_n\subseteq S,\\ \mathbb{P}\{X_1\in A_1,\ldots,X_n\in A_n\}=\mathbb{P}\{X_1\in A_{\pi(1)},\ldots,X_n\in A_{\pi(n)}\}. \tag{3}$$

Invariance of the distribution.

Daniel M. Roy 10/54

i.i.d. sequences are exchangeable

Recall that a sequence X_1, X_2, \ldots of random variables is **independent** when

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \prod_{i=1}^n \mathbb{P}\{X_i \in A_i\},\tag{4}$$

for all $n \in \mathbb{N}$ and subsets $A_1, \ldots, A_n \subseteq S$, and is **independent and identically distributed (i.i.d.)** when

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \prod_{i=1}^n \mathbb{P}\{X_1 \in A_i\} = \prod_{i=1}^n \mu(A_i), \tag{5}$$

where $\mu=\mathbb{P}\{X_1\in\cdot\}$ is the marginal distribution of every element. We will say that X_1,X_2,\dots is i.i.d.- μ .

For every permutation π of $[n] = \{1, 2, \dots, n\}$.

$$\prod_{i=1}^{n} \mu(A_{\pi(i)}) = \prod_{i=1}^{n} \mu(A_i)$$
(6)

Daniel M. Roy 11/54

conditionally i.i.d. sequences are exchangeable

Recall that a sequence X_1, X_2, \ldots of random variables is **conditionally independent** when there is a random variable θ such that a.s.

$$\mathbb{P}[X_1 \in A_1, \dots, X_n \in A_n \,|\, \theta] = \prod_{i=1}^n \mathbb{P}[X_i \in A_i \,|\, \theta],\tag{7}$$

for all $n \in \mathbb{N}$ and $A_1, \ldots, A_n \subseteq S$, and is **conditionally i.i.d.** given θ when a.s.

$$\mathbb{P}[X_1 \in A_1, \dots, X_n \in A_n \mid \theta] = \prod_{i=1}^n \mathbb{P}[X_1 \in A_i \mid \theta] = \prod_{i=1}^n \nu(A_i), \tag{8}$$

where $\nu:=\mathbb{P}[X_1\in\cdot\mid\theta]$ is the (random) marginal distribution, conditioned on θ . Note that the sequence is also conditionally i.i.d.- ν given ν .

Let X_1, X_2, \ldots be conditionally i.i.d.- ν given ν . Let $n \in \mathbb{N}$, π a permutation of [n].

$$\mathbb{P}\{X_{\pi(1)} \in A_1, \dots, X_{\pi(1)} \in A_n\}$$
(9)

$$= \mathbb{E}\Big(\mathbb{P}[X_{\pi(1)} \in A_1, \dots, X_{\pi(1)} \in A_n \mid \nu]\Big) = \mathbb{E}\Big(\prod_{i=1}^n \nu(A_i)\Big)$$
 (10)

Daniel M. Roy

Pólya's urn

Let $S = \{0, 1\}$.

Let
$$\mathbb{P}\{X_1 = 1\} = \mathbb{P}\{X_1 = 0\} = 1/2$$
. In other words,

$$X_1 \sim \text{Bernoulli}(1/2)$$
 (11)

Let $S_n = X_1 + \cdots + X_n$.

$$\mathbb{P}[X_{n+1} = 1 \mid X_1, \dots, X_n] = \frac{S_n + 1}{n+2}.$$
 (12)

In other words.

$$X_{n+1} \mid X_1, \dots, X_n \sim \operatorname{Bernoulli}\left(\frac{S_n+1}{n+2}\right)$$
 (13)

$$1\ 0\ 1\ 1\ 0\ ? \qquad \mathbb{P}\{1\ \mathsf{next}\,|\,\mathsf{seen}\ 10110\} = \tfrac{3+1}{5+2}.$$

Daniel M. Roy 13/54

Pólya's urn

 $\mathbb{P}\{X_1 = x_1\}$

$$X_1 \sim \text{Bernoulli}(1/2)$$
 (14)

 $\mathbb{P}\{X_n = x_n \mid X_1 = x_1, \dots, X_{n-1} = x_{n-1}\}$

$$X_{n+1} \mid X_1, \dots, X_n \sim \text{Bernoulli}(\frac{S_n+1}{n+2}), \quad \text{for } n \in \mathbb{N}.$$
 (15)

Note that each element X_{n+1} depends on all previous elements. No independence!

Let
$$x_1, ..., x_n \in \{0, 1\}$$
 and define $s_i = x_1 + ... + x_i$.

 $\mathbb{P}\{X_2=x_2 \mid X_1=x_1\}$

$$\mathbb{P}\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\}
= \mathbb{P}\{X_1 = x_1\} \cdot \mathbb{P}\{X_2 = x_2 \mid X_1 = x_1\} \cdots \mathbb{P}\{X_n = x_n \mid X_1 = x_1, \dots, X_{n-1} = x_{n-1}\}$$

$$= \underbrace{\left(\frac{1}{2}\right) \cdot \left(\frac{s_1+1}{3}\right)^{x_2} \left(\frac{2-s_1}{3}\right)^{1-x_2} \cdot \cdot \left(\frac{s_{n-1}+1}{n+1}\right)^{x_n} \left(\frac{n-1-s_{n-1}}{n+1}\right)^{1-x_n}}_{}$$

$$= \frac{(s_n)!(n-s_n)!}{(s_n+1)!}$$
 this is invariant to permutation, hence exchangeable! (19)

Daniel M. Roy

(18)

EXCHANGEABLE SEQUENCES

Theorem (de Finetti; Hewitt-Savage)

Let $X=(X_1,X_2,\dots)$ be an infinite sequence of random variables in a space S. The following are equivalent:

- 1. X is exchangeable.
- 2. X is conditionally i.i.d.

Exchangeable:

$$(X_1, X_2, \dots) \stackrel{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \dots), \quad \text{for } \pi \in S_{\infty}$$
 (20)

Conditionally i.i.d.: \exists random variable θ s.t., for all n and A_i ,

$$\mathbb{P}[X_1 \in A_1, \dots, X_n \in A_n \,|\, \theta] = \prod_{i=1}^n \mathbb{P}[X_1 \in A_i \,|\, \theta] \text{ a.s.}$$
 (21)

Equivalently, \exists random probability measure ν s.t., for all n and A_i ,

$$\mathbb{P}[X_1 \in A_1, \dots, X_n \in A_n | \nu] = \prod_{i=1}^n \nu(A_i) \text{ a.s.}$$
 (22)

Taking expectations,
$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \mathbb{E}\left(\prod_{i=1}^n \nu(A_i)\right)$$
. (23)

Mixed i.i.d.: \exists distribution μ (the de Finetti mixing measure) s.t., for all n and A_i ,

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \int \prod_{i=1}^n v(A_i) \, \mu(\mathrm{d}v)$$
 (24)

Daniel M. Roy

PÓLYA'S URN

$$X_1 \sim \text{Bernoulli}(1/2)$$
 (25)

$$X_{n+1} \mid X_1, \dots, X_n \sim \text{Bernoulli}(\frac{S_n+1}{n+2}), \quad \text{for } n \in \mathbb{N}.$$
 (26)

Exchangeable:

$$\mathbb{P}\{X_1 = x_1, \dots, X_n = x_n\} = \frac{(s_n)!(n-s_n)!}{(n+1)!}$$
(27)

Conditionally i.i.d.: There is a random variable θ s.t. a.s.

$$\mathbb{P}[X_1 = x_1, \dots, X_n = x_n \mid \theta] = \prod_{i=1}^n \mathbb{P}[X_1 = x_i \mid \theta]$$
 (28)

$$= \mathbb{P}[X_1 = 1 \,|\, \theta]^{s_n} \mathbb{P}[X_1 = 0 \,|\, \theta]^{n-s_n} \tag{29}$$

$$=\nu_1^{s_n}(1-\nu_1)^{n-s_n} \tag{30}$$

16/54

where $\nu_1=\mathbb{P}[X_1=1\,|\,\theta]$. Note that $(X_n)_{n\in\mathbb{N}}$ is conditionally i.i.d. given ν_1 . Are θ and ν_1 different? How are they related?

Mixed i.i.d.: Let μ be the distribution of ν_1 . Taking expectations,

$$\mathbb{P}\{X_1 = x_1, \dots, X_n = x_n\} = \int_0^1 \vartheta^{s_n} (1 - \vartheta)^{n - s_n} \mu(\mathrm{d}\vartheta) \tag{31}$$

Equating expressions for $\mathbb{P}\{X_1=x_1,\ldots,X_n=x_n\}$ implies $\mu=\mathsf{Uniform}[\mathsf{0},\mathsf{1}]!$

DE FINETTI'S THEOREM IN THE CASE OF PÓLYA'S URN

Pólya's urn:

$$X_1 \sim \text{Bernoulli}(1/2)$$
 (32)

$$X_{n+1} \mid X_1, \dots, X_n \sim \text{Bernoulli}(\frac{S_n+1}{n+2}), \quad \text{for } n \in \mathbb{N}.$$
 (33)

Beta-Bernoulli process:

$$\nu_1 \sim \mu$$
 (34)

$$X_n \mid \nu_1 \stackrel{iid}{\sim} \operatorname{Bernoulli}(\nu_1), \quad \text{for } n \in \mathbb{N}.$$
 (35)

How are $X=(X_n)_{n\in\mathbb{N}}$, $\mathbb{P}[X]$ and ν_1 , $\mu=\mathbb{P}[\nu_1]$ related?

In what sense are ν_1 and μ uniquely determined by X and $\mathbb{P}[X]$?

By the law of large numbers, and the disintegration theorem,

$$\frac{1}{n} \sum_{j=1}^{n} X_j \longrightarrow \nu_1 \quad \text{as} \quad n \to \infty \quad \text{a.s.}$$
 (36)

- If θ renders X conditionally i.i.d., then $\nu_1 = g(\theta)$ a.s. for some function g.
- ullet If μ' is a measure such that

$$\mathbb{P}\{X_1 = x_1, \dots, X_n = x_n\} = \int v^{s_n} (1 - v)^{n - s_n} \, \mu'(\mathrm{d}v)$$
then $\mu' = \mathbb{P}[\nu_1].$ (37)

DE FINETTI'S THEOREM IN GENERAL

Let $X = (X_n)_{n \in \mathbb{N}}$ be an exchangeable sequence in a space S.

Let $\widehat{P}_n = \frac{1}{n}(\delta_{X_1} + \cdots + \delta_{X_n})$ be the empirical measure.

Define a random measure ν on S by

$$\nu(A) = \lim_{n \to \infty} \widehat{P}_n(A) \quad \text{a.s.} \quad A \subseteq S.$$
 (38)

Informally, $\nu = \lim_{n \to \infty} \widehat{P}_n$. Let $\mu = \mathbb{P}[\nu]$.

Then X is conditionally i.i.d.- ν given ν . That is

$$X_n \mid \nu \stackrel{iid}{\sim} \nu$$
 (39)

Uniqueness?

- If θ renders X conditionally i.i.d., then $\nu = g(\theta)$ a.s. for some function g.
- \bullet If μ' is a measure such that

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \int \prod_{i=1}^n v(A_i) \, \mu'(\mathrm{d}v)$$
 (40)

then $\mu' = \mathbb{P}[\nu]$.

Daniel M. Roy 18/54

EXCHANGEABILITY AND STATISTICS

Definition (Statistical inference base/model)

- 1. Sample space \mathcal{X} .
- 2. Parametric family $\mathcal{P}_0 := \{P_\theta\}_{\theta \in T}$ of probability distributions on \mathcal{X} indexed by elements of T called parameters. T is called the parameter space.
- 3. Observed data $x^* \in \mathcal{X}$.
- 4. Loss function $L: T \times T \to \mathbb{R}$.

The *risk* of an estimator $\delta: S \to T$ for $t \in T$, is

$$R(\delta, \theta) = \mathbb{E}_{X \sim P_{\theta}} \{ L(\theta, \delta(X)) \} := \int_{\mathcal{X}} L(\theta, \delta(x)) P_{\theta}(\mathrm{d}x) \tag{41}$$

Definition (Bayesian estimator)

Let θ be a random variable in T, with prior distribution π , and let $X \mid \theta \sim P_{\theta}$. The *Bayesian estimator* minimizes the posterior expected loss:

$$\delta_{\pi}(x) := \arg\min_{\theta^* \in T} \mathbb{E}_{\theta \sim \mathbb{P}[\theta|X=x]} \{ L(\theta, \theta^*) \}$$
 (42)

Daniel M. Roy 19/54

EXCHANGEABILITY AND STATISTICS: NOT JUST BAYESIAN!

Classic i.i.d. framework

Let $X_1, \ldots, X_n \overset{iid}{\sim} Q$, for an unknown distribution $Q \in \mathcal{Q}_0 := \{Q_\theta\}_{\theta \in T}$.

Say observations are \mathbb{R} -valued. We can formalize this as follows:

- 1. Sample space $\mathcal{X} = \mathbb{R}^n$
- 2. Parametric family $\mathcal{P}:=\{Q^n_\theta:\theta\in T\}$, where Q^n is the n-fold product.

Let $(X_1, \ldots, X_n) \sim Q_{\theta}^n$, for an unknown $Q_{\theta}^n \in \mathcal{P}$.

Exchangeable observation

Let $(X_1, \ldots, X_n) \sim P$ be conditionally i.i.d., for an unknown distribution P.

Conditionally i.i.d. observation

Let $(X_1,\ldots,X_n)\,|\,\nu\,\sim\,\nu^n$ and $\nu\,\sim\,\mu$, for an unknown distribution μ .

Even as $n \to \infty$, data reflects only one realization ν from μ . The problem of estimating μ is "ill-posed" to the frequentist. The Bayesian gets 1 data point.

Bayesian approach in the i.i.d. framework

Let θ be a random variable with some prior. Then Q_{θ} is a random measure, and X_1, X_2, \ldots is an exchangeable sequence.

Daniel M. Roy 20/54

"DE FINETTI'S THEOREM JUSTIFIES ..." NOT THE POINT.

de Finetti's philosophy

- de Finetti rejected the idea of a parameter and argued there was no need to assume their existence.
- 2. He thought that probabilities should be specified only on observable quantities.
- 3. de Finetti's theorem shows that conserved quantities (like the limiting frequency of 1's) arise from symmetries and are random variables.
- 4. One can then interpret this in the classic sense (specifying a parameter and placing a prior on it), but there's no need to do that. The underlying random measure ν is there whether you like it or not.

Subjectivism

- 1. Distribution represents subjective (personal) uncertainty.
- 2. Exchangeability \iff certainty that order of the data is irrelevant.
- 3. subjective distribution on data alone + exchangeability \implies conditionally i.i.d. distribution on ν is subjective as well.
- 4. Note: de Finetti's holds only for infinite sequences, but subjectivist need only be unwilling to posit an upper bound on the data size and projectivity.

Daniel M. Roy 21/54

CONNECTION WITH NONPARAMETRIC INFERENCE

What does exchangeability have to do with nonparametric Bayesian statistics?

Bayesian

- 1. Model: $X_1, X_2, \ldots \stackrel{iid}{\sim} Q$ for unknown $Q \in \mathcal{Q}_0$. Need prior on \mathcal{Q}_0 .
- 2. If $Q_0 = \{$ Gaussian distributions on $\mathbb{R} \}$ then $Q_0 \cong \mathbb{R}^2$. Finite-dimensional space, hence parametric.
- 3. If $Q_0 = \{$ All Borel probability measures on $\mathbb{R} \}$ then $Q_0 \cong \mathbb{R}^{\mathbb{N}}$. Infinite-dimensional space, hence nonparametric.
- 4. Hard. But if you have a specific question to ask (e.g., what is ${\cal Q}(A)$ for some set A?) then it's possible.
- 5. Dirichlet process, Polya trees, Normalized Completely Random Measures, etc.

Subjectivist

- 1. Need a model for our data X_1, X_2, \ldots
- 2. If we believe order is irrelevant, by exchangeability, it suffices to specify a prior measure μ on space of probability measures.

22/54

- 3. No further assumptions: support of μ must be all distributions.
 - Hence μ will be a nonparametric prior.

So far we have...

- 1. Reviewed exchangeability for sequences.
- Presented de Finetti's representation theorem.Exchangeable if and only if conditionally i.i.d.
- 3. Discussed how to interpret de Finetti's theorems in its various forms.
- Shown that probabilistic symmetries lead to statistical models.
 Exchangeability leads to a Bayesian approach to the classic i.i.d. framework.

Tutorial Outline

- 1. Exchangeable sequences.
- 2. Exchangeable graphs and arrays.

Daniel M. Rov 23/54

EXCHANGEABLE GRAPHS

Let $X=(X_{i,j})_{i,j\in\mathbb{N}}$ be the adjacency matrix of an undirected graph on \mathbb{N} .

Definition (jointly exchangeable array)

Call X (jointly) exchangeable when, for every permutation π of \mathbb{N} ,

$$(X_{i,j})_{i,j\in\mathbb{N}} \stackrel{\mathsf{d}}{=} (X_{\pi(i),\pi(j)})_{i,j\in\mathbb{N}}. \tag{43}$$

Most figures by James Lloyd (Cambridge) and Peter Orbanz (Columbia)

Daniel M. Roy 24/54

Definition (jointly exchangeable array)

Call X (jointly) exchangeable when, for every permutation π of \mathbb{N} ,

$$(X_{i,j})_{i,j\in\mathbb{N}} \stackrel{\mathsf{d}}{=} (X_{\pi(i),\pi(j)})_{i,j\in\mathbb{N}}. \tag{44}$$

equivalently

$$\begin{pmatrix} X_{1,1} & X_{1,2} & \cdots \\ X_{2,1} & X_{2,2} & \cdots \\ X_{3,1} & X_{3,2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} X_{\pi(1),\pi(1)} & X_{\pi(1),\pi(2)} & \cdots \\ X_{\pi(2),\pi(1)} & X_{\pi(2),\pi(2)} & \cdots \\ X_{\pi(3),\pi(1)} & X_{\pi(3),\pi(2)} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$
(45)

In the case $X_{i,j} \in \{0,1\}$, let $X^n = (X_{i,j})_{i,j \leq n}$. Then X is an exchangeable graph if for all $n \in \mathbb{N}$ and isomorphic graphs G, G' on [n], $\mathbb{P}\{X^n = G\} = \mathbb{P}\{X^n = G'\}$.

Daniel M. Roy 25/54

- ► Links between websites
- Proteins that interact
- ▶ Products that customers have purchased
- ► Relational databases

Daniel M. Rov 26/54

Are the following graphs exchangeable?

Example

$$X_{i,j} := 0 \qquad \text{for } i < j \in \mathbb{N}. \tag{46}$$

Yes.

Example

$$X_{i,j} := 1 \qquad \text{for } i < j \in \mathbb{N}. \tag{47}$$

Yes.

Daniel M. Roy 27/54

Is the following graph exchangeable?

Example

$$X_{i,j} := (j-i) \mod 2, \qquad \text{for } i < j \in \mathbb{N}. \tag{48}$$

$$\mathbb{P}\bigg\{X^3 = \boxed{1} - \boxed{2} - \boxed{3}\bigg\} \stackrel{?}{=} \mathbb{P}\bigg\{X^3 = \boxed{1} - \boxed{3} - \boxed{2}\bigg\}$$

No.

Daniel M. Roy 28/54

Is the following graph exchangeable?

Example

Consider the graph with vertex set $\mathbb N$ such that for every pair of vertices $i,j\in\mathbb N$, we include the edge $\{i,j\}$ independently with probability $p\in[0,1]$.

The adjacency matrix X is such that

$$X_{i,j} \overset{iid}{\sim} \operatorname{Bernoulli}(p) \quad \text{ for } i < j \in \mathbb{N}.$$
 (49)

Let G be a graph on [n]. Then $\mathbb{P}\{X^n=G\}=2^{-\binom{n}{2}^2}$.

Yes.

The resulting graph is a so-called "Erdös-Rényi graph".

Daniel M. Roy 29/54

Is the following graph exchangeable?

Example

Let $X_{1,2} \sim \text{Bernoulli}(1/2)$.

Otherwise, let

$$X_{i,j} := X_{1,2} \quad \text{for } i < j \in \mathbb{N}. \tag{50}$$

Yes.

Daniel M. Roy 30/54

Is the following graph exchangeable?

Example

Let Y_1,Y_2,\ldots be a Pólya urn. Let $\phi:\mathbb{N}^2\to\mathbb{N}$ be a bijection. Let

$$X_{i,j} := Y_{\phi(i,j)} \qquad \text{for } i < j \in \mathbb{N}. \tag{51}$$

Yes.

Daniel M. Roy 31/54

Is the following graph exchangeable?

Example

Consider the graph built one vertex at a time, adding a vertex to a clique with probability proportional to the size of the clique, and creating a new (singleton) clique with probability proportional to a constant $\alpha>0$.

Yes.

The process is just an graph version of the **Chinese restaurant process** and is very closely related to the **Infinite Relational Model** of Kemp et al. (2008).

Daniel M. Roy 32/54

Is the following graph exchangeable?

Example

Let $N = (N_1, N_2, \dots)$ be an i.i.d. sequence Gaussian vectors in \mathbb{R}^D .

Let $\langle \cdot, \cdot \rangle$ be the dot product.

Let $\operatorname{sigmoid}: \mathbb{R} \to [0,1]$ be a squashing function.

$$X_{i,j} \mid N \stackrel{ind}{\sim} \operatorname{Bernoulli}(\operatorname{sigmoid}(\langle N_i, N_j \rangle)) \quad \text{for } i < j \in \mathbb{N}.$$
 (52)

Yes.

This model is related to matrix factorization techniques, as well as the **eigenmodel** (Hoff 2008).

Daniel M. Roy 33/54

Let U_1, U_2, \ldots be i.i.d. uniform random variables in [0, 1].

Definition (⊖-random graph)

Let $\Theta:[0,1]^2\to[0,1]$ be a symmetric measurable function, and let

$$X_{i,j} := 1$$
 with probability $\Theta(U_i, U_j)$ (53)

independently for every $i < j \in \mathbb{N}$. By a Θ -random graph we mean an array with the same distribution as X.

Let $\mathcal W$ be the space of symmetric measurable functions from $[0,1]^2$ to [0,1]. Such functions Θ are called "graphons".

Daniel M. Roy 34/54

Let G be a graph on $[n] := \{1, \dots, n\}$.

$$\mathbb{P}\{X^n = G \mid U_1, \dots, U_n\} = \prod_{i \in I} \Theta(U_i, U_j)^{G_{i,j}} (1 - \Theta(U_i, U_j))^{1 - G_{i,j}} \text{ a.s.}$$
 (54)

Taking expectations,

$$\mathbb{P}\{X^n = G\} = \int_{[0,1]^n} \prod_{i,j} \Theta(u_i, u_j)^{G_{i,j}} (1 - \Theta(u_i, u_j))^{1 - G_{i,j}} du_1 \cdots du_n$$
 (55)

Daniel M. Roy 35/54

Theorem (Aldous, Hoover)

Let $X=(X_{i,j})_{i,j\in\mathbb{N}}$ be the adjacency matrix of an undirected graph on \mathbb{N} . The following are equivalent:

- 1. X is jointly exchangeable.
- 2. X is conditionally Θ -random, given a random graphon Θ .

Daniel M. Roy 36/54

Example 1 - empty graph Let $\Theta(u, v) = 0$.

Example 2 - complete graph Let $\Theta(u, v) = 1$.

Example 3 - Erdos-Renyi graph

For $p \in [0,1]$, let $\Theta(u,v) = p$.

Daniel M. Roy 37/54

Example

Let Y_1,Y_2,\ldots be a Pólya urn. Let $\phi:\mathbb{N}^2\to\mathbb{N}$ be a bijection. Let

$$X_{i,j} := Y_{\phi(i,j)} \quad \text{for } i < j \in \mathbb{N}. \tag{56}$$

What's Θ ?

Let $p \sim \text{Uniform. Let } \Theta(u, v) = p$.

Daniel M. Roy 38/54

Example

Let $X_{1,2} \sim \text{Bernoulli}(1/2)$. Otherwise, let

$$X_{i,j} := X_{1,2} \quad \text{for } i < j \in \mathbb{N}. \tag{57}$$

What's Θ ?

Let $p \sim \text{Bernoulli}(1/2)$. Let $\Theta(u, v) = p$.

Daniel M. Roy 39/54

Example

Let $N=(N_1,N_2,\dots)$ be an i.i.d. sequence Gaussian vectors in \mathbb{R}^D .

Let $\langle \cdot, \cdot \rangle$ be the dot product.

Let $\operatorname{sigmoid}: \mathbb{R} \to [0,1]$ be a squashing function.

$$X_{i,j} \mid N \stackrel{ind}{\sim} \text{Bernoulli}(\text{sigmoid}(\langle N_i, N_j \rangle)) \quad \text{for } i < j \in \mathbb{N}.$$
 (58)

What's Θ ?

Let $g:[0,1] o \mathbb{R}^d$ be such that $g(U) \ \sim \ \mathcal{N}_D(0,I_D)$ when $U \ \sim \ \mathrm{Uniform}.$

Let $\Theta(u,v) = \operatorname{sigmoid}(\langle g(u),g(v)\rangle)$. Implicitly, we've been dealing with graphons "defined" on the probability space $([0,1],\mathcal{B}_{[0,1]},\operatorname{Uniform})$.

Consider instead a graphon Θ' defined on $(\mathbb{R}^D, \mathcal{B}_{\mathbb{R}^D}, \mathcal{N}_D(0, I_D))$ given by $\Theta'(n, m) = \operatorname{sigmoid}(\langle n, m \rangle)$.

Daniel M. Roy 40/54

Example

Consider the graph built one vertex at a time, adding a vertex to a clique with probability proportional to the size of the clique, and creating a new (singleton) clique with probability proportional to a constant $\alpha>0$.

What's Θ ?

Let $p_1 \geq p_2 \geq \cdots$ be a draw from Poisson-Dirichlet distribution (limiting table size proportions in CRP), considered as a random distribution on \mathbb{N} .

Let $(\mathbb{N}, \mathcal{B}_{\mathbb{N}}, p)$ be the random probability space.

Consider a graphon Θ' on this random probability space, given by

$$\Theta'(n,m)=1$$
 if $n=m,=0$ otherwise.

On $([0,1], \mathcal{B}_{[0,1]}, \mathrm{Uniform})$?

$$\Theta(u,v) = \Theta'(g(u),g(v))$$
 where $g(u) = \sup\{n \in \mathbb{N} : u \le p_n\}$.

41/54

Daniel M. Roy

Example

$$X_{i,j} := (j-i) \mod 2, \qquad \text{for } i < j \in \mathbb{N}. \tag{59}$$

What's Θ ?

X is not exchangeable, so there is no such $\Theta!$

Daniel M. Roy 42/54

EXCHANGEABLE SEQUENCES

Theorem (Aldous, Hoover)

Let $X=(X_{i,j})_{i,j\in\mathbb{N}}$ be the adjacency matrix of an undirected graph on \mathbb{N} . The following are equivalent:

- 1. X is jointly exchangeable.
- 2. X is conditionally Θ -random, given a random graphon Θ .

Exchangeable:

$$(X_{i,j})_{i,j\in\mathbb{N}} \stackrel{d}{=} (X_{\pi(i),\pi(j)})_{i,j\in\mathbb{N}}, \qquad \text{for } \pi \in S_{\infty}$$

$$\tag{60}$$

Conditionally Θ -random: \exists random graphon Θ s.t., for all finite graphs G on [n],

$$\mathbb{P}[X^n = G \mid \Theta] = \int_{[0,1]^n} \prod_{i,j} \Theta(u_i, u_j)^{G_{i,j}} (1 - \Theta(u_i, u_j))^{1 - G_{i,j}} du_1 \cdots du_n \text{ a.s.}$$
(61)

Taking expectations, \exists distribution μ on graphons s.t. for all finite graphs G on [n],

$$\mathbb{P}\{X^n = G\} = \int \int_{[0,1]^n} \prod_{(i,j) \in G} \theta(u_i, u_j) \prod_{(i,j) \notin G} (1 - \theta(u_i, u_j)) du_1 \cdots du_n \mu(d\theta)$$

Daniel M. Roy 43/54

Θ as the limiting empirical graphon

Exchangeable sequences

Recall that if $Y=(Y_1,Y_2,\dots)$ is an exchangeable sequence then $\widehat{P}_n \to \nu$ a.s.

Exchangeable graphs

Let $X = (X_{i,j})_{i,j \in \mathbb{N}}$ is an exchangeable graph.

You can recover the graphon Θ underlying a graph by sampling larger and larger graphs. Suitably permuted, they converge in L^1 with probability one.

Daniel M. Roy 44/

Θ is not unique (as a function)

Exchangeable sequences and the uniqueness of $\mu = \mathbb{P}[\nu]$ If X_1, X_2, \ldots is an exchangeable sequence, there is a UNIQUE μ s.t.

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \int \prod_{i=1}^n v(A_i) \,\mu(\mathrm{d}v)$$
 (62)

Exchangeable graphs and the uniqueness of $\mu = \mathbb{P}[\Theta]$

Let X be a Θ -random graph.

Let $T:[0,1] \to [0,1]$ be a measure preserving transformation, and define

$$\Theta^{T}(x,y) := \Theta(T(x),T(y)). \tag{63}$$

X is Θ^T -random too! Θ^T and Θ induce the same distribution on graphs.

Theorem (Hoover)

The graphon Θ underlying a Θ -random graph is unique up to a measure preserving transformation.

Daniel M. Roy 45/54

We have now...

- 1. Reviewed exchangeability for graphs (i.e., symmetric $\{0,1\}$ -valued arrays representing adjacency).
- Presented Aldous-Hoover representation theorem in this special case.
 Graph is exchangeable if and only if conditionally Θ-random
- Discussed how to interpret Aldous-Hoover theorem.
 Meaning of ⊖-random. ⊖ as the limiting empirical graphon. ⊖-nonuniqueness.
- 4. Shown that probabilistic symmetries lead to statistical models.

Tutorial Outline

- 1. Exchangeable sequences.
- 2. Exchangeable graphs and arrays.

Daniel M. Roy 46/54

Let $X = (X_{i,j})_{i,j \in \mathbb{N}}$ be an infinite array of random variables.

No longer assuming $\{0,1\}$ -values or symmetry of X.

E.g., adjacency matrix for a directed graph, or matrix of user-movie ratings.

Definition (jointly exchangeable array)

We say that X is jointly exchangeable when

$$X \stackrel{\mathsf{d}}{=} (X_{\pi(i),\pi(j)})_{i,j\in\mathbb{N}} \tag{64}$$

for every permutation $\pi: \mathbb{N} \to \mathbb{N}$.

E.g., undirected graph, directed graph. Rows and columns are indexing "same set".

Definition (separately exchangeable array)

We say that X is $\ensuremath{\mathbf{separately}}$ exchangeable (aka row-column exchangeable) when

$$X \stackrel{\mathsf{d}}{=} (X_{\pi(i),\pi'(j)})_{i,j\in\mathbb{N}} \tag{65}$$

for every pair of permutations $\pi, \pi' : \mathbb{N} \to \mathbb{N}$.

E.g., user-movie ratings. Rows and columns indexing different sets.

Daniel M. Roy 47/54

Example

Elements $X_{i,j}$ i.i.d.

Separately exchangeable? Jointly exchangeable?

Example

 $X_{i,j} = 1$ if i = j and $X_{i,j} = 0$ otherwise.

Separately exchangeable? Jointly exchangeable?

Example

Let $U_{i,j}$ be i.i.d. Uniform random variables.

Let $X_{i,j} = f(U_{00}, U_{i,0}, U_{0,j}, U_{i,j})$ for a suitable function f.

Separately exchangeable? Jointly exchangeable?

Example

Let U_i be i.i.d. Uniform random variables.

Let $X_{i,j} = g(U_i, U_j)$ for a suitable function g.

Separately exchangeable? Jointly exchangeable?

Daniel M. Roy 48/54

Definition (Aldous-Hoover, separately exchangeable)

Let $U_{i,j}$ be i.i.d. Uniform random variables.

An infinite array X is separately exchangeable if and only if

$$X \stackrel{\text{d}}{=} (f(U_{00}, U_{i,0}, U_{0,j}, U_{i,j}))_{i,j \in \mathbb{N}}$$
(66)

for some measurable function f.

Definition (Aldous-Hoover, jointly exchangeable)

Let $U_{\{i,j\}}$ be i.i.d. Uniform random variables. That is $U_{\{i,j\}} = U_{\{j,i\}}$.

An infinite array X is separately exchangeable if and only if

$$X \stackrel{\text{d}}{=} (f(U_{\{0,0\}}, U_{\{i,0\}}, U_{\{0,j\}}, U_{\{i,j\}}))_{i,j \in \mathbb{N}}$$
(67)

for some measurable function f.

Daniel M. Roy 49/54

Example

Elements $X_{i,j}$ i.i.d.

Separately exchangeable: f(a, b, c, d) = g(d).

Example

 $X_{i,j}=1$ if i=j and $X_{i,j}=0$ otherwise.

Jointly exchangeable: f(a, b, c, d) = 1(b == c).

Example

Let X be Θ -random.

Jointly exchangeable: $f(a,b,c,d) = 1(d < \Theta(b,c))$.

Daniel M. Roy 50/54

Let Y_1, Y_2, \ldots be an exchangeable sequence. Define $X_{i,j} = Y_j$.

What does Aldous-Hoover tell us about Y?

Definition (de Finetti in Aldous-Hoover form)

Let U_i be i.i.d. Uniform random variables.

An infinite sequence Y_1, Y_2, \ldots is exchangeable if and only if

$$(Y_i)_{i\in\mathbb{N}} \stackrel{\mathsf{d}}{=} (f(U_0, U_i))_{i\in\mathbb{N}} \tag{68}$$

for some measurable function f.

Daniel M. Roy 51/54

EXCHANGEABILITY AND STATISTICS: NOT JUST BAYESIAN!

Exchangeable observation, version 1

Let $(f(U_{0,0},U_{i,0},U_{0,j},U_{i,j}))_{i,j\in\mathbb{N}}$ be a (partially-observed) exchangeable array, where f is unknown and $(U_{i,j})_{i,j\in\mathbb{N}}$ i.i.d. Uniform.

Define $F(b, c, d) = f(U_{0,0}, b, c, d)$. F is a random measurable function.

Exchangeable observation, version 2

Let $(F(U_{i,0},U_{0,j},U_{i,j}))_{i,j\in\mathbb{N}}$ and $F\sim \mu$, where μ is unknown and $(U_{i,j})_{i,j\in\mathbb{N}}$ i.i.d. Uniform.

Problem 1: Even observing entire array X reflects only one realization F from μ .

Solution: Dissociated arrays (F non-random). These are the ergodic measures.

Problem 2: Random functions of the form F(b,c,d)=G(b,c) are "dense".

Solution: Move to simple arrays, i.e., last parameter is not used.

Simple dissociated array observation

Let U_i, V_j be i.i.d. Uniform random variables.

Let $(F(U_i,V_j))_{i,j\in\mathbb{N}}$ be a simple dissociated array, unknown F.

Bayesian approach

Let ${\cal F}$ be a random measurable function with some prior.

Then X_1, X_2, \ldots is an exchangeable array.

Daniel M. Roy 52/54

In joint work with Orbanz [OR13], we show that many nonparametric models of graphs/networks can be recast as prior distributions on random functions ${\cal F}.$

- Infinite Relational Model (IRM) of Kemp et al. (2008) based on Chinese restaurant process (Dirichlet process).
- 2. IRM where the interaction probabilities are also an exchangeable array. [OR]
- 3. Infinite Feature Relational Model (IFRM) of Miller et al. (2010) based on Indian buffet process (Beta process).
- 4. Mondrian process-based relational model of R. and Teh (2009).
- Gaussian-process-based relational model. Lloyd et al. NIPS 2012 show how many factorization models fit into this framework.

Daniel M. Roy 53/54

We have...

- 1. Reviewed exchangeability for sequences, graphs, and arrays
- 2. Presented de Finetti and Aldous-Hoover representation theorems. X exchangeable if and only if $X \stackrel{d}{=} (F(...))$ for a random F.
- 3. Discussed how to interpret de Finetti and Aldous-Hoover. $\nu \ / \ \Theta \ / \ F \ \text{is the limiting empirical distribution/graphon/array.} \ \nu \ \text{unique.} \ \Theta \ \text{and} \ F \ \text{only unique up to a m.p.t.}$
- 4. Shown how probabilistic symmetries lead to statistical models.

More reading

- 1. Orbanz and Roy. Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
 - Preprint available at http://danroy.org
- 2. Aldous. Representations for partially exchangeable arrays of random variables.
- 3. Kallenberg. Probabilistic symmetries and invariance principles.

Daniel M. Roy 54/54