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Statistical Machine Learning

Given some data X1, Xo, ...
identify hidden structure/patterns

in order to predict future or missing data.
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1. (height, weight, age) of students
171cm  65kg 21

182cm 70kg 19

X= 170tm 2 20

2. daily average (temperature, humidity, rainfall) in Guanajuato

21°C  40% Ocm
27°C  50% Ocm

X= 30°c 0% 2

3. X = scores/ratings for movies by users

Is there structure in the data?

Daniel M. Roy
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What structure is in the data?

{6, 0 0 06 0

2.
O0—-0-0-0-—0
3.
movies
o 0O d

o 0O
users S
O
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Is there even more structure in the data?

Daniel M. Roy

171cm
182cm
170cm

21°C
27°C
30°C

65kg 21

70kg 19

? 20
40% Ocm
50% Ocm
60% ?
5 3 2
2 5 5
5 2 38

182cm 70kg 19
) 11?( 171cm  65kg 21 )
170cm ? 20
(Swapped top and middle row.)

27°C  50% Ocm
> éP( 21°C  40% Ocm )
30°C 60% 7
(Swapped top and middle row.)

(6]

2 1 2 5 5
)iIP‘< 5 5 3 2)
5 4 5 2 3

(Swapped top and middle row.)

1 2 2 5 5
£P< 5 5 3 2 >
5 5 2 3

(Swapped first and second columns.)

5 5 2 2 1
]P’<55532>
5 5 4 3 2

(Sorted each row.)

A~ O
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Probabilistic symmetries

1. Exchangeable sequence
]P)[(Xh X27 e >X’n)] - IP[(X47 XTL7 sy Xl)] = ]P)[(X‘n'(l)7 cee 7X7T(n))]
Invariance to permutation.

2. Stationary sequence
Pl(X1, X2,...)] = P[(X4, X5,...)] = P[(Xpt1, Xit2,...)]
Invariance to shift.

3. Exchangeable array

X1 Xi2 - Xa),r(1)  Xa(1),r(2)
X211 Xop .- Xr@),r()y  Xn@),r(2)

Pl Xs1 X320 --- =P Xemra) Xe@)re)

Invariance to separate permutation of rows and columns.

What is the most general way to model data assuming these
symmetries?
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Goals of this tutorial
1. Give a review of exchangeability in several forms.
Link each type of exchangeability to a representation theorem.

Explain how to interpret these representation theorems in their various forms.

ol

Convey that probabilistic symmetries are an important consideration when
constructing a statistical model.

Tutorial Outline

1. Exchangeable sequences.

2. Exchangeable graphs and arrays.
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A rigorous account requires measure theory.

1. All spaces are complete, separable metric spaces, equipped with their Borel
o-algebras.

2. All functions and sets are measurable.

3. Some necessary details will appear in a light gray color /ikc this. Ignore these for
now, and go back and study them later to understand the material at a greater
depth.

4. | will define the “naturals” to be N := {1,2,...}.
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Definition (exchangeable sequences)

Let X1, X2, ... be a sequence of random variables taking values in a space S. We
say the sequence is exchangeable when, for every permutation 7 of N,

(X1, X2, ) = (Xn(1y, Xn(2)s -+ ) 1)

What does Eq. (1) mean?

<= foralln € N,

(X1, 3 Xn) = (Xn(1)s s X)) )
<= foralln € N, and distinct k1, ..., k, € N,
(X1,...,X0) = (Xiy, ..., Xi,). 3)

<= foralln € N, and permutations 7 of [n] := {1,2,...,n},
(Xl)"'vX’ﬂ) = (Xﬂ'(l)v"'aXﬂ'(n))' 4)
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Definition (exchangeable sequences)
Let X1, X2,... be a sequence of random variables taking values in a space S. We
say the sequence is exchangeable when, for every n € N and permutation 7 of [n],

(X1, Xn) = (Xn(1)s e ey X)) 1)

What does Eq. (1) mean?

<= for all subsets A;,...,A4, C S,

P{X; EA;[,...,X An }:]P{X,r(l) EAl,...,X.,r(n) € An}. (2)
<= for all subsets Ai,...,A4, C S,

]P’{XleAl,...,X €A, }:]P{XlEA,r(l),...,XnEA.,r(n)}. (3)

Invariance of the distribution.

Daniel M. Roy
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EXAMPLES OF EXCHANGEABLE SEQUENCES

i.i.d. sequences are exchangeable
Recall that a sequence X1, X2, ... of random variables is independent when

]P){X1 €A1,...,Xﬂ, EAT,}:HP{XI EAZ'}7 (4)

i=1

foralln € N and subsets A;,..., A4, C S,
and is independent and identically distributed (i.i.d.) when

P{X1 € A1,...,Xn € An} = [[P{X1 € A} = [ [ u(A), (5)
i=1 i=1
where pn = P{X € -} is the marginal distribution of every element.

We will say that X1, Xo, ... isiid.-pu.

For every permutation 7 of [n] = {1,2,...,n}.

n n

[T (Ar) =TT w4 (6)

=1 i=1
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EXAMPLES OF EXCHANGEABLE SEQUENCES

conditionally i.i.d. sequences are exchangeable

Recall that a sequence X1, X2, ... of random variables is conditionally
independent when there is a random variable 6 such that

P[X1 € A,..., X € An| 0] = [[ PLX: € A 0], @)

i=1
forallm € Nand Ay,..., A, C S, and is conditionally i.i.d. given § when

PX1 € Ar,..., X, € An|0] = [[P[X1 € Ai|6] = [Tv(4),  ®
i=1 i=1
where v := P[X; € - | 0] is the (random) marginal distribution, conditioned on 6.
Note that the sequence is also conditionally i.i.d.-v given v.

Let X1, X, ... be conditionally i.i.d.-v given v. Let n € N, 7 a permutation of [n].

P{Xﬂ(l) € Ay,..., X1 € An} (9)
n

= B(P[Xrqr) € Ar, o, Xnpr) € An[]) = E([ (A1) (10)

=1
Daniel M. Roy



Pélya’s urn
Let S = {0,1}.
Let P{X; = 1} = P{X; = 0} = 1/2. In other words,
X1 ~ Bernoulli(1/2) (11)
Let Sp = X1+ + Xa.
Sn+1
P[Xns1 = 1| X1,...,Xn] = ) 12
[(Xn41 | X3 ] T2 (12)
In other words,
Xni1|X1,..., X ~ Bernoulli(Z24l) (13)

101107 P{1 next|seen 10110} = 5+2
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EXAMPLES OF EXCHANGEABLE SEQUENCES

Pélya’s urn
X1 ~ Bernoulli(1/2) (14)
Xnt1|X1,..., X, ~ Bernoulli(225L), forn € N. (15)

Note that each element X, 11 depends on all previous elements. No independence!

Letzi,...,zn € {0,1} and define s; = 1 + - - - + ;.
P{Xi =21,X2 =22,...,Xn =Tn} (16)

:P{Xlle}'P{X2:$2‘X1 ::rl}]P’{Xn:xn|X1 :$1,...,Xn_1 :fEn_1}
a7

B 1 s14+1\"2/2 -5\ Sne1 1N n—1—5,_1\  *"
B 2 3 3 n+1 n+1
\V-/

P{X1=z1} P{Xo=z2 | X1=21} P{Xpn=zn | X1=01,....Xpn_1=Tpn_1}

(18)

_ (sn)!(n — sp)!
(n+1)!

Daniel M. Roy 14754
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EXCHANGEABLE SEQUENCES

Theorem (de Finetti; Hewitt-Savage)

Let X = (X1, X2,...) be an infinite sequence of random variables in a space S.
The following are equivalent:

1. X is exchangeable.

2. X is conditionally i.i.d.

Exchangeable:

(X1, X2,...) = (Xp(1y, Xn(2)s---),  form € Sec (20)
Conditionally i.i.d.: 3 random variable 6 s.t., for all n and A;,

PX1 € A1,...,Xn € An|0] =TT, P[X1 € A; | 0] (21)
Equivalently, 3 random probability measure v s.t., for all n and A;,

PX1 € A1,...,Xn € An|v] =11, v(4) (22)
Taking expectations, P{ X, € A1,..., X, € A} = IE( A u(Ai)). (23)

Mixed i.i.d.: 3 distribution 1 (the de Finetti mixing measure) s.t., for all n and A;,

P{X1 € Ay,...,X, €A} = /Hv(Ai)p(dfu) (24)
=1
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X1 ~ Bernoulli(1/2) (25)
Xnt1|X1,..., Xy ~ Bernoulli(3231),  forn e N. (26)
Exchangeable:
sp)!(n—sn)!
P{X1=a1,..., Xn =z, } = (n)lneen)t 27)

Conditionally i.i.d.: There is a random variable 0 s.t. = .
PX1=a1,..., X0 =2 | 0] = [[P[X1 = 2: | 0] (28)
i=1

=P[X; =1|0]""P[X; =0]0]" " (29)
=" (1—w)" " (30)
where v1 = P[X; = 1|6]. Note that (X, )nen is conditionally i.i.d. given v.
Are 0 and v, different? How are they related?
Mixed i.i.d.: Let  be the distribution of v1. Taking expectations,
P{X1 = 21, ..., Xn = 20} = /1 9o (1 — 9)"* () 31

0
quating expressions for P{X; = z1, ..., X,, = z,} implies x = Uniform[0,1]!

Daniel M. ROE 16/54



DE FINETTI’S THEOREM IN THE CASE OF POLYA’S URN

Pélya’s urn:
X1 ~ Bernoulli(1/2)
Xnt1|X1,..., Xn ~ Bernoulli(3251),  forn € N.
Beta-Bernoulli process:
vy o~ WU

Xn |1 ud Bernoulli(v1), forn € N.

How are X = (X,,)nen, P[X] and vy, u = P[1,] related?

In what sense are v, and 4 uniquely determined by X and P[X]?
e By the law of large numbers,

1 n
— Z X; —un as n — 00
ni=
o If @ renders X conditionally i.i.d., then 1 = g(0) for some function g.

o If 1/’ is a measure such that
P{Xi=2z1,...,Xn=an} = /vs"(l — )" 4/ (dv)

Daniel M. Roy then /L/ = P[I/l].



Let X = (X, )nen be an exchangeable sequence in a space S.
Let P, = L(6x, + -+ + 0x,,) be the empirical measure.
Define a random measure v on S by

v(A) = lim P,(A) - ACS. (38)

Informally, v = lim,, .00 P. Let . = P[v].
Then X is conditionally i.i.d.-v given v. That is

X v &y (39)

Uniqueness?
e If § renders X conditionally i.i.d., then v = g(6) - . for some function g.
o If 1/’ is a measure such that

P{X1 € Ay, .., Xo € An} = /HU(A,-)M'(dU) (40)
i=1

then u’ = P[v].

Daniel M. Roy 18/54



EXCHANGEABILITY AND STATISTICS

Definition (Statistical inference base/model)

1. Sample space X.

2. Parametric family Po := {Ps }9cr of probability distributions on X
indexed by elements of T" called parameters. T is called the parameter space.

3. Observed data z* € X.
4. Lossfunction L : T'x T — R.

The risk of an estimator ¢ : S — T fort € T, is

R(5,0) = Expy {L(0,5(X))} := / L(0,6(x)) Py(da) (1)

X

Definition (Bayesian estimator)

Let 6 be a random variable in 7', with prior distribution 7, and let X |6 ~ P;.
The Bayesian estimator minimizes the posterior expected loss:

0x(x) := arg e@g% Eg ~ plojx =2 {L(6,607)} (42)

Daniel M. Roy



EXCHANGEABILITY AND STATISTICS: NOT JUST BAYESIAN!

Classic i.i.d. framework
Let X1,...,Xn ud Q, for an unknown distribution Q € Qo := {Qo }ocr.
Say observations are R-valued. We can formalize this as follows:

1. Sample space X = R"

2. Parametric family P := {Qy : 0 € T'}, where Q" is the n-fold product.

Let (X1,...,Xn) ~ Qp, foran unknown Qp € P.

Exchangeable observation
Let (X1,...,Xn) ~ P be conditionally i.i.d., for an unknown distribution P.

Conditionally i.i.d. observation

Let (X1,...,Xn)|v ~ v™andv ~ p,for an unknown distribution .
Even as n — oo, data reflects only one realization v from p. The problem of
estimating p is “ill-posed” to the frequentist. The Bayesian gets 1 data point.
Bayesian approach in the i.i.d. framework

Let 6 be a random variable with some prior. Then Qg is a random measure, and
X1, Xo, ... is an exchangeable sequence.

Daniel M. Roy 20/54



“DE FINETTI’S THEOREM JUSTIFIES ...” NOT THE POINT.

de Finetti’s philosophy

1.

de Finetti rejected the idea of a parameter and argued there was no need to
assume their existence.

He thought that probabilities should be specified only on observable quantities.

de Finetti’s theorem shows that conserved quantities (like the limiting frequency
of 1’s) arise from symmetries and are random variables.

One can then interpret this in the classic sense (specifying a parameter and
placing a prior on it), but there’s no need to do that. The underlying random
measure v is there whether you like it or not.

Subjectivism

Daniel M. Roy

. Distribution represents subjective (personal) uncertainty.

Exchangeability <> certainty that order of the data is irrelevant.

subjective distribution on data alone + exchangeability == conditionally i.i.d.
distribution on v is subjective as well.

Note: de Finetti’s holds only for infinite sequences, but subjectivist need only be
unwilling to posit an upper bound on the data size and projectivity.



CONNECTION WITH NONPARAMETRIC INFERENCE

What does exchangeability have to do with nonparametric Bayesian statistics?
Bayesian

1. Model: X1, Xo, ... (S Q for unknown @@ € Qg. Need prior on Qp.

2. If Qo = {Gaussian distributions on R} then Qy = R?.
Finite-dimensional space, hence parametric.

3. If Qo = {All Borel probability measures on R} then Qp = R".
Infinite-dimensional space, hence nonparametric.

4. Hard. But if you have a specific question to ask (e.g., what is Q(A) for some set
A?) then it’s possible.

5. Dirichlet process, Polya trees, Normalized Completely Random Measures, etc.

Subjectivist

1. Need a model for our data X1, Xo,....

2. If we believe order is irrelevant, by exchangeability, it suffices to specify a prior
measure 4 on space of probability measures.

3. No further assumptions: support of 1 must be all distributions.
Daniel M. Roy Hence p will be a nonparametric prior.




So far we have...

1. Reviewed exchangeability for sequences.

2. Presented de Finetti’'s representation theorem.
Exchangeable if and only if conditionally i.i.d.

3. Discussed how to interpret de Finetti’s theorems in its various forms.

4. Shown that probabilistic symmetries lead to statistical models.

Exchangeability leads to a Bayesian approach to the classic i.i.d. framework.

Tutorial Outline
1. Exchangeable-sequences:

2. Exchangeable graphs and arrays.

Daniel M. Roy
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Let X = (X, ;)i,jen be the adjacency matrix of an undirected graph on N.

34
A

Definition (jointly exchangeable array)
Call X (jointly) exchangeable when, for every permutation 7 of N,

(Xij)ijen = (Xn()n(i))irjeN- (43)

Most figures by James Lloyd (Cambridge) and Peter Orbanz (Columbia)
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Definition (jointly exchangeable array)
Call X (jointly) exchangeable when, for every permutation 7 of N,

d
(Xig)igen = (Xn(i),r())igen- (44)
equivalently
X1 Xi2 - Xr),r(1) Xr(1),7(2)
Xon Xoo | | Xe@r) Xr@)re)
(45)

Xz1 Xs2 | T | Xe@)r) Xx@)x(2)

Inthe case X;,; € {0,1},let X™ = (X, ;):,;<n.Then X is an exchangeable graph
if for all n € N and isomorphic graphs G, G’ on [n], P{X" = G} = P{X" = G'}.

25/54
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Links between websites
Proteins that interact

Products that customers have purchased

vV v.v Vv

Relational databases

=
PRSP
N
o
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Are the following graphs exchangeable?

Example

X;;:=0 fori < jeN. (46)
Yes.
Example

Xij:=1 fori<jeN. (47)
Yes.
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Is the following graph exchangeable?

Example

X;;:=(j—1) mod 2, fori <jeN. (48)

No.

Daniel M. Roy 28/54



Is the following graph exchangeable?

Example
Consider the graph with vertex set N such that for every pair of vertices 7, 7 € N, we
include the edge {%, j} independently with probability p € [0, 1].

The adjacency matrix X is such that

X;; % Bernoulli(p)  fori < j € N. (49)

n\2
Let G be a graph on [n]. Then P{X" = G} = 2-(5)",
Yes.

The resulting graph is a so-called “Erdds-Rényi graph”.
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Is the following graph exchangeable?

Example
Let X1,2 ~ Bernoulli(1/2).
Otherwise, let

Xiji=X1,2 fori < j €N. (50)

Yes.

Daniel M. Roy 30/54



Is the following graph exchangeable?

Example
Let Y1,Ya, ... be a Pélyaurn. Let ¢ : N* — N be a bijection.
Let
Xij=Yoay fori<jel. (51)
Yes.

Daniel M. Roy e



EXAMPLES OF EXCHANGEABLE GRAPHS
Is the following graph exchangeable?

Example

Consider the graph built one vertex at a time, adding a vertex to a clique with
probability proportional to the size of the clique, and creating a new (singleton) clique
with probability proportional to a constant o > 0.

VANt 2 AN

Yes.

The process is just an graph version of the Chinese restaurant process and is very
closely related to the Infinite Relational Model of Kemp et al. (2008).

Daniel M. Roy



Is the following graph exchangeable?

Example
Let N = (N1, Na, ... ) be an i.i.d. sequence Gaussian vectors in R”.

Let (-, -) be the dot product.
Let sigmoid : R — [0, 1] be a squashing function.

Xi.; | N "% Bernoulli(sigmoid((Ni, N;)))  fori < j € N. (52)

Yes.

This model is related to matrix factorization techniques, as well as the eigenmodel
(Hoff 2008).
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Let Uy, Us, ... bei.id. uniform random variables in [0, 1].
Definition (©-random graph)
Let © : [0,1]* — [0, 1] be a symmetric measurable function, and let
Xi,; := 1 with probability ©(U;, U;) (53)

independently for every ¢ < j € N. By a ©-random graph we mean an array with the
same distribution as X.

0 1 | -0
U -|-#----e--—7 ¢t Pr{X, =1}

:
f : 1 -1 "

Let W be the space of symmetric measurable functions from [0, 1]° to [0, 1].
Such functions O are called “graphons”.
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U, U,
02— i -0
I I
Ui -fr=#=--eo-o- tPr{X;, = 1}
I I
U, -
:
I
. 1 -1
1
Let G be agraphon [n] :={1,...,n}.
P{X" =G|Ui,...,Un) = H@(Ui,Uj)Gi’j(l_G(U“UJ)) Gi,j (54)
0,3
Taking expectations,
P{X" =G} = He wi,uy) 9 (1= O(ui,uy) "% dug -+ - dun, — (55)

(0,117
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Theorem (Aldous, Hoover)

Let X = (X;,;)i,jen be the adjacency matrix of an undirected graph on N. The
following are equivalent:

1. X is jointly exchangeable.

2. X is conditionally ©-random, given a random graphon ©.

Daniel M. Roy 36/54



Example 1 - empty graph
Let ©(u,v) = 0.

Example 2 - complete graph
Let ©(u,v) = 1.

Example 3 - Erdos-Renyi graph
For p € [0, 1], let ©(u,v) = p.

Daniel M. Roy 37/54



Example
Let Y3, Ya,... be aPdlya urn. Let ¢ : N> — N be a bijection.
Let
Xij=Youy fori<jeN (56)
What's ©?

Letp ~ Uniform. Let O(u,v) = p.

Daniel M. Roy e



Example
Let X1,2 ~ Bernoulli(1/2).
Otherwise, let
Xi,j = X1,2 fori < j c N. (57)
What's ©?

Letp ~ Bernoulli(1/2). Let O(u,v) = p.
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example

Let N = (N1, Na, ... ) be an i.i.d. sequence Gaussian vectors in R”.
Let (-, -) be the dot product.
Let sigmoid : R — [0, 1] be a squashing function.

Xi.; | N "% Bernoulli(sigmoid((Ni, N;)))  fori < j € N. (58)

What's ©?

Let g : [0,1] — R? be such that g(U) ~ Np(0,Ip)when U ~ Uniform.

Let ©(u,v) = sigmoid((g(u), g(v))).
Implicitly, we’ve been dealing with graphons “defined” on the probability space
([0, 1], Bio,1), Uniform).

Consider instead a graphon ©’ defined on (R”, Bgp, Np (0, Ip)) given by
©’(n,m) = sigmoid({n, m)).
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example

Consider the graph built one vertex at a time, adding a vertex to a clique with
probability proportional to the size of the clique, and creating a new (singleton) clique
with probability proportional to a constant o > 0.

H & TN

What's ©7?

Let p1 > p2 > --- be a draw from Poisson-Dirichlet distribution (limiting table size
proportions in CRP), considered as a random distribution on N.
Let (N, By, p) be the random probability space.
Consider a graphon ©' on this random probability space, given by
©'(n,m) = 1ifn = m, = 0 otherwise.
On ([0, 1], Bjo,1}, Uniform)?
O(u,v) = 0'(g(u), g(v)) where g(u) = sup{n € N: u < p,}.
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Example
X;j:=(j—1i) mod?2, fori<jeN. (59)

What's ©?

X is not exchangeable, so there is no such ©!
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EXCHANGEABLE SEQUENCES

Theorem (Aldous, Hoover)

Let X = (X;,;)s,jen be the adjacency matrix of an undirected graph on N. The
following are equivalent:

1. X is jointly exchangeable.

2. X is conditionally ©-random, given a random graphon ©.

Exchangeable:
(Xi,5)ijen = (Xn(iym(s) igens for T € Seo (60)

Conditionally ©-random: 3 random graphon © s.t., for all finite graphs G on [n],
PX" =G |0] = / [T©i,u)% 7 (1= Ous, uy))' =% dus - - dun
[071]71. .,j
(61)

Taking expectations, 3 distribution 1 on graphons s.t. for all finite graphs G on [n],

P{X":G}:// I 6uow) T (1—0(us uy))dus - - dunpu(d6)
01" (i jea (i.)€C
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© AS THE LIMITING EMPIRICAL GRAPHON

Exchangeable sequences
Recall that if Y = (Y1, Y2, .. .) is an exchangeable sequence then P, —v

n=

Exchangeable graphs

Let X = (X; ;)i jen is an exchangeable graph.

K= Slm " o

-3
You can recover the graphon © underlying a graph by sampling larger and larger
graphs. Suitably permuted, they converge in ! with probability one.
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© 1S NOT UNIQUE (AS A FUNCTION)

Exchangeable sequences and the uniqueness of 1 = P[]

If X1, X2,... is an exchangeable sequence, there is a UNIQUE p s.t.
P{X, € Ay,...,Xn€ A} = /Hv(Ai)/,L(dv) (62)
=1

Exchangeable graphs and the uniqueness of = P[O]

Let X be a ©-random graph.
Let T : [0,1] — [0, 1] be a measure preserving transformation, and define

0" (z,y) = O(T (), T(y)). (63)

X is ©7-random too! ©7 and © induce the same distribution on graphs.

Theorem (Hoover)

The graphon © underlying a ©-random graph is unique up to a measure preserving
transformation.
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We have now...

1. Reviewed exchangeability for graphs
(i.e., symmetric {0, 1}-valued arrays representing adjacency).

2. Presented Aldous-Hoover representation theorem in this special case.
Graph is exchangeable if and only if conditionally ©-random

3. Discussed how to interpret Aldous-Hoover theorem.

Meaning of ©-random. © as the limiting empirical graphon. ©-nonuniqueness.

4 S . " _

Tutorial Outline

1. Exchangeable-sequences:
2. Exchangeable graphs and arrays.

Daniel M. Roy
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EXCHANGEABLE ARRAYS

Let X = (X;,;)i,jen be an infinite array of random variables.
No longer assuming {0, 1}-values or symmetry of X.
E.g., adjacency matrix for a directed graph, or matrix of user-movie ratings.

Definition (jointly exchangeable array)
We say that X is jointly exchangeable when
X = (Xr(i),m())irjeN (64)
for every permutation 7 : N — N.
E.g., undirected graph, directed graph. Rows and columns are indexing “same set”.
Definition (separately exchangeable array)
We say that X is separately exchangeable (aka row-column exchangeable) when
X = (Xn(iy,n'(j))irjeN (65)

for every pair of permutations 7, 7’ : N — N.

E.g., user-movie ratings. Rows and columns indexing different sets.
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EXCHANGEABLE ARRAYS

Example

Elements X; ; i.i.d.
Separately exchangeable? Jointly exchangeable?

Example
Xi; =1if¢=jand X;; = 0 otherwise.
Separately exchangeable? Jointly exchangeable?

Example

Let U;,; be i.i.d. Uniform random variables.
Let X5 ; = f(Uoo, Us,0, Uo,;, Us,;) for a suitable function f.
Separately exchangeable? Jointly exchangeable?

Example

Let U; be i.i.d. Uniform random variables.
Let X; ; = g(Us, Uj;) for a suitable function g.
Separately exchangeable? Jointly exchangeable?
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Definition (Aldous-Hoover, separately exchangeable)

Let U;,; be i.i.d. Uniform random variables.
An infinite array X is separately exchangeable if and only if

X £ (f(Uoo, Us,0, Uo,, Ui )i, jen (66)
for some measurable function f.

Definition (Aldous-Hoover, jointly exchangeable)
Let Uy;, ;3 be i.i.d. Uniform random variables. Thatis Uy; j3 = Uy 4.

An infinite array X is separately exchangeable if and only if

X = (f(Uy0,03, Ugi,o1: Ugo,53 Ugi i3 ) isgen (67)

for some measurable function f.
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Example

Elements X ; i.i.d.
Separately exchangeable: f(a,b,c,d) = g(d).

Example
Xi,; = 1ifi=jand X;; = 0 otherwise.
Jointly exchangeable: f(a,b,c,d) = 1(b == c).

Example

Let X be ©-random.
Jointly exchangeable: f(a, b, c,d) = 1(d < (b, ¢)).
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Let Y7, Y2,... be an exchangeable sequence. Define X; ; = Y.

What does Aldous-Hoover tell us about Y?

Definition (de Finetti in Aldous-Hoover form)

Let U; be i.i.d. Uniform random variables.
An infinite sequence Y1, Ya, . .. is exchangeable if and only if

(Yi)ien = (f(Uo, Us))ien (68)

for some measurable function f.
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EXCHANGEABILITY AND STATISTICS: NOT JUST BAYESIAN!

Exchangeable observation, version 1

Let (f(Uo,0,Ui,0,Uo,j,Ui,;))i,ien be a (partially-observed) exchangeable array,
where f is unknown and (U; ;)i jen i.i.d. Uniform.

Define F'(b, ¢, d) = f(Uo,0,b, c,d). F is a random measurable function.

Exchangeable observation, version 2
Let (F(Ui,o0,Uo,5,Ui,;))ijen and F' ~ pu,
where i is unknown and (U ;)s,jen i.i.d. Uniform.

Problem 1: Even observing entire array X reflects only one realization F' from p.
Solution: Dissociated arrays (F non-random). These are the ergodic measures.
Problem 2: Random functions of the form F'(b, ¢, d) = G(b, ¢) are “dense”.
Solution: Move to simple arrays, i.e., last parameter is not used.

Simple dissociated array observation

Let U;, V; be i.i.d. Uniform random variables.
Let (F(Us, V}))s,jen be a simple dissociated array, unknown F'.

Bayesian approach

Let F' be a random measurable function with some prior.
Then X1, X2, ... is an exchangeable array.
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In joint work with Orbanz [OR13], we show that many nonparametric models of
graphs/networks can be recast as prior distributions on random functions F'.

Daniel M. Roy

Y,

. Infinite Relational Model (IRM) of Kemp et al. (2008) based on Chinese

restaurant process (Dirichlet process).

. IRM where the interaction probabilities are also an exchangeable array. [OR]
. Infinite Feature Relational Model (IFRM) of Miller et al. (2010) based on Indian

buffet process (Beta process).

. Mondrian process-based relational model of R. and Teh (2009).

. Gaussian-process-based relational model. Lloyd et al. NIPS 2012 show how

many factorization models fit into this framework.
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We have...

. Reviewed exchangeability for sequences, graphs, and arrays

Presented de Finetti and Aldous-Hoover representation theorems.
X exchangeable if and only if X = (F(...)) for a random F.

. Discussed how to interpret de Finetti and Aldous-Hoover.

v/ © / Fis the limiting empirical distribution/graphon/array. v unique. © and F'
only unique up to a m.p.t.

Shown how probabilistic symmetries lead to statistical models.

More reading

1.

Daniel M. Roy

Orbanz and Roy. Bayesian Models of Graphs, Arrays and Other Exchangeable
Random Structures.
Preprint available at http://danroy.org

Aldous. Representations for partially exchangeable arrays of random variables.

Kallenberg. Probabilistic symmetries and invariance principles.
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