Magnetic characterization of λ -MnO₂ and Li₂Mn₂O₄ prepared by electrochemical cycling of LiMn₂O₄ Young-Il Jang, Biying Huang, F. C. Chou, Donald R. Sadoway, and Yet-Ming Chiang^{a)} Department of Materials Science and Engineering and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 3 August 1999; accepted for publication 15 February 2000) Magnetic characterization has been performed on the cubic phases λ -Li_{0.07}Mn₂O₄, Li_{0.98}Mn₂O₄, and the tetragonal phase Li_{1.82}Mn₂O₄, prepared by electrochemical cycling of a single starting LiMn₂O₄ spinel. The magnitude of the negative Weiss constant increases with x in Li_xMn₂O₄, indicating that antiferromagnetic interactions increase in strength as the Mn⁴⁺ concentration decreases. Spin-glass behavior is observed in all three materials, as previously seen in nearly stoichiometric LiMn₂O₄ [Jang *et al.*, Appl. Phys. Lett. **74**, 2504 (1999)]. A short-range antiferromagnetic correlation is observed in Li₂Mn₂O₄ at temperatures below the paramagnetic temperature regime, which is ascribed to collective Jahn–Teller distortion causing a two-dimensional nearest-Mn-neighbors interaction. © 2000 American Institute of Physics. [S0021-8979(00)05910-7] #### INTRODUCTION $LiMn_2O_4$ spinel (space group Fd3m) is of interest as a low-cost, high energy density intercalation cathode material for rechargeable lithium batteries. 1,2 The Li and Mn ions are located on the 8a tetrahedral sites and the 16d octahedral sites, respectively, in the nearly cubic-close-packed oxygen sublattice (32e sites). Neighboring MnO₆ octahedra share a common edge. Extraction of Li from LiMn2O4 leads to formation of λ -MnO₂ (space group Fd3m),^{3,4} while insertion of Li toward the Li₂Mn₂O₄ composition gives rise to collective Jahn-Teller (JT) distortion resulting in a tetragonal symmetry (space group $I4_1/amd$) due to the high-spin Mn^{3+} $(t_{2g}^3 e_g^1)^4$ Li_xMn₂O₄ spinel has interesting magnetic properties as well. From the viewpoint of magnetic interactions, both direct $(Mn^{3+/4+}-Mn^{3+/4+})$ and superexchange (90° Mn^{3+/4+}-O²⁻-Mn^{3+/4+}) interactions are conceivable between the nearest Mn neighbors. According to Goodenough,5 only Mn⁴⁺-O²⁻-Mn⁴⁺ is in ferromagnetic coupling, while all other interactions are in antiferromagnetic coupling. The [Mn₂]O₄ spinel framework is retained while the average Mn valence changes upon Li insertion/extraction.² The magnetic properties are determined by interactions between the Mn ions, which in turn depend on the Mn valence distribution in the [Mn₂]O₄ framework.⁶ In the paramagnetic temperature regime, antiferromagnetic interactions predominate in $\text{Li}_x \text{Mn}_2 \text{O}_4$ (x = 0,1,2). $^{6-16}$ In λ -MnO₂ and $\text{LiMn}_2 \text{O}_4$, Greedan *et al.* 14 and Wills *et al.* 15 have obtained evidence for long-range antiferromagnetic ordering, resulting in magnetic unit cells containing 128 and 1152 spins below 32 and 65 K, respectively. 14,15 At the other concentration limit, $\text{Li}_2 \text{Mn}_2 \text{O}_4$, Wills *et al.* 16 reported two-dimensional short-range antiferromagnetic correlation, but no long-range ordering. The complexity of the magnetic structure has been attributed to geometrical frustration inherent in the Mn sublattice. 14-16 Figure 1 shows the structure of [Mn₂]O₄ spinel framework and the frustrated antiferromagnetic interaction between the nearest neighbor Mn ions forming the tetrahedron ABCD. Recently, we reported the observation of spin-glass behavior in LiMn₂O₄ at temperatures below the paramagnetic regime, indicating the presence of frozen spins below a freezing temperature T_f . The existence of frozen spins is consistent with the previous report that a significant fraction of spins remains disordered well below the Néel temperature. 15 In this case, the disordered spins undergo spin-glass ordering at T_f rather than remaining truly disordered (paramagnetic). Spin freezing was also observed in a neutron diffraction study by Oohara et al. 17 Possible explanations for the coexistence of spin-glass behavior and antiferromagnetic ordering were given in Ref. 1. The possible presence of disordered spins has not been explored in λ-MnO₂ and Li₂Mn₂O₄. ^{14,16} It has been unclear whether these phases also exhibit spin-glass behavior in addition to long- and short-range antiferromagnetic ordering, respectively. In this study, we characterized the magnetic properties of a single starting Li_xMn₂O₄ spinel in which the Li content (x) was varied solely by electrochemical extraction and insertion. As a result, the [Mn₂]O₄ sublattice remains unchanged except for changes in valence accompanying Li intercalation/deintercalation. Since the Li ions are nonmagnetic (diamagnetic), their effect on the magnetic properties is essentially through the Mn valence. This allows an ideal study of the effect of Mn valence on the magnetic properties of a fixed [Mn]₂O₄ spinel framework. We show that both the nearly fully delithiated and lithiated end members, λ-MnO₂ and Li₂Mn₂O₄, do exhibit spin-glass behavior. A possible effect of the JT distortion on the short-range antiferromagnetic interaction is discussed. a)Author to whom correspondence should be addressed; electronic mail: YCHIANG@MIT.EDU FIG. 1. Structure of [Mn₂]O₄ spinel framework. Arrows indicate the direction of the magnetic moment for Mn ions. #### **EXPERIMENT** Phase-pure LiMn₂O₄ spinel was synthesized by firing finely divided, freeze-dried LiOH and Mn₃O₄ precursors at 900 °C in air for 4 h.1 Details of the sample synthesis are reported elsewhere. 18,19 The oxide powders were characterized by x-ray diffraction (XRD) using $Cu K\alpha$ radiation at 60 kV, 300 mA (Rigaku RTP500RC). Delithiated and lithiated samples were prepared electrochemically using rechargeable Li cells. Cathodes were prepared by mixing together the spinel powder, carbon black (Cabot), graphite (TIMCAL America), and poly(vinylidene fluoride) in the weight ratio of 81:13:1:5. λ-MnO₂ samples were prepared by charging the LiMn₂O₄ cathodes to 4.4 V. Li₂Mn₂O₄ samples were produced by first charging to 4.4 V, followed by discharging to 2.0 V. A cycled spinel of ~LiMn₂O₄ composition was also produced by charging to 4.4 V and discharging to 3.0 V. Details of Li cell construction are given elsewhere. 20 After the electrochemical treatments, the cells were disassembled in a glove box. Part of each cathode was separated for XRD analysis. Magnetic measurements were carried out on the remaining cathode materials, using a Quantum Design superconducting quantum interference device magnetometer (He atmosphere). The specific magnetization was calculated based on the weight of the oxide alone, after correction for the diamagnetic contribution from the nonoxide components. ## **RESULTS AND DISCUSSION** Figure 2 shows the powder XRD pattern of the starting LiMn₂O₄ after firing at 900 °C in air for 4 h. Note that no impurity phase is detected. Magnetic measurements are sensitive to the presence of impurity phases, including ferrimagnetic Mn₃O₄. The saturation magnetization was determined to be 7.5×10^{-2} and 7.5×10^{-4} emu/g at 30 and 300 K, respectively, from the magnetization curves. A comparison of the magnetization at 30 K (below the Curie temperature for Mn₃O₄ of ~42 K) with literature data²¹ indicated a Mn₃O₄ content less than 0.2 wt %. The hkl indices labeled in Fig. 2 are based on the space group Fd3m. Note that the (220) peak is barely detectable at $2\theta = 30.7^{\circ}$, indicating that most Mn ions are located on the 16d sites, since the (220) peak intensity corresponds to the scattering power of atoms on the 8a sites. 22-24 The lattice parameter for the starting spinel was calculated from the XRD data by a least-squares method to be a = 8.233 Å, which corresponds to a slightly Li-excess FIG. 2. Powder x-ray diffraction pattern of LiMn₂O₄ spinel after firing at 900 °C in air for 4 h. Miller indices hkl are indexed according to the $Fd\overline{3}m$ space group. composition ($y\sim0.05-0.09$ in Li_{1+y}Mn_{2-y}O₄) according to Ref. 25. The Mn valence is determined by both the Li/Mn and (Li+Mn)/O ratios, which in turn depend on the starting raw materials, firing temperature, and cooling rate.^{25,26} The composition of the starting spinel will be indicated by its nominal composition, LiMn₂O₄, throughout this paper. Electrochemical treatments shown in Fig. 3 were used to prepare the phases λ -MnO₂, LiMn₂O₄, and Li₂Mn₂O₄, for magnetic characterization. The λ -MnO₂ sample was obtained by charging to 4.4 V [Fig. 3(a)], while LiMn₂O₄ and Li₂Mn₂O₄ samples were obtained by charging to 4.4 V and discharging to 3.0 and 2.0 V, respectively [Figs. 3(b) and 3(c)]. Table I shows for each phase the charge/discharge capacity and the final composition computed on the assumption that the charge/discharge capacity results from Li extraction/insertion only. As can be seen, the compositions approach the fully lithiated and delithiated limits. Hereafter, the samples will be referred to by their compositions in Table I. FIG. 3. (a) Electrochemical preparation of λ -Li_{0.07}Mn₂O₄ for magnetic characterization. LiMn₂O₄ was charged to 4.4 V against a Li metal anode at 8.2 mA/g rate. (b) Electrochemical preparation of Li_{0.98}Mn₂O₄ for magnetic characterization. LiMn₂O₄ was charged to 4.4 V and discharged to 3.0 V against a Li metal anode at 8.0 mA/g rate. (c) Electrochemical preparation of Li_{1.82}Mn₂O₄ for magnetic characterization. LiMn₂O₄ was charged to 4.4 V and discharged to 2.0 V against a Li metal anode at 9.7 mA/g rate. 7384 TABLE I. Specific capacity, current density, composition, lattice parameter, Weiss constant, and freezing temperature of λ -Li_{0.07}Mn₂O₄, Li_{0.98}Mn₂O₄, and Li_{1.82}Mn₂O₄ samples prepared by electrochemical cycling of LiMn₂O₄. | | Capacity (mAh/g) | | | | Lattice | | | |---|------------------------|------------------------------|------------------------------|------------------------------------|-----------------------------------|--------------------------|--------------------------------| | | 1st charge
(-4.4 V) | 1st discharge
(3.0-4.4 V) | 1st discharge
(2.0-3.0 V) | Specific current
density (mA/g) | parameter
(Å)
(space group) | Weiss
constant
(K) | Freezing
temperature
(K) | | λ-Li _{0.07} Mn ₂ O ₄ | 137.6 | _ | <u>-</u> | 8.2 | a=8.058 | -74 | 16 | | | | | | | $(Fd\overline{3}m)$ | | | | Li _{0.98} Mn ₂ O ₄ | 137.9 | 134.5 | _ | 8.0 | a = 8.230 | -250 | 25 | | | | | | | $(Fd\overline{3}m)$ | | | | Li _{1.82} Mn ₂ O ₄ | 127.0 | 100.7 | 147.6 | 9.7 | a = 5.654 | -770 | 70 | | | | | | | c = 9.202 | | | | | | | | | $(I4_1/amd)$ | | | Figure 4 shows the XRD patterns of the composite electrodes, from which the lattice parameters of the oxide phase have been calculated (Table I). The λ -Li_{0.07}Mn₂O₄ and Li_{0.98}Mn₂O₄ samples are cubic, while the Li_{1.82}Mn₂O₄ sample is tetragonal as expected.² Note that the Li_{1.82}Mn₂O₄ phase clearly shows (400) and (323) peaks at 2θ =66.1° and 67.0°, respectively, with the former being of higher intensity. As shown by diffraction simulations for the tetragonal phase,²⁷ this allows us to distinguish the tetragonal spinel from the monoclinic phase LiMnO₂ of a similar diffraction pattern. The dc magnetization of the λ -Li_{0.07}Mn₂O₄ sample was measured between 5 and 400 K in a magnetic field of 1000 Oe after zero-field cooling (ZFC) and field cooling (FC), respectively [Fig. 5(a)]. The inverse susceptibility is plotted FIG. 4. X-ray diffraction pattern of: (a) $\lambda - \text{Li}_{0.07} \text{Mn}_2 \text{O}_4$, (b) $\text{Li}_{0.98} \text{Mn}_2 \text{O}_4$, and (c) $\text{Li}_{1.82} \text{Mn}_2 \text{O}_4$ electrodes after electrochemical cycling of $\text{LiMn}_2 \text{O}_4$. Miller indices hkl are indexed according to the $Fd\overline{3}m$ space group for (a) and (b), $I4_1/amd$ space group for (c). The inset in (c) identifies the $\text{Li}_2 \text{Mn}_2 \text{O}_4$ phase as tetragonal. in Fig. 6(a), including a Curie-Weiss law fit to the data above 300 K. The extracted Weiss and Curie constants are $\Theta = -(74\pm 5)$ K and $C = (3.23\pm 0.03)$ emu K/mol, respectively. A negative Weiss constant indicates that antiferromagnetic Mn⁴⁺-Mn⁴⁺ direct interactions are dominant over ferromagnetic 90° Mn⁴⁺-O²⁻-Mn⁴⁺ superexchange interactions in the paramagnetic temperature regime. 13 From the Curie constant, the effective moment is determined to be μ_{eff} =(3.60±0.02) μ_B (μ_B being the Bohr magneton, 0.927 $\times 10^{-20}$ erg/Oe), which is smaller than the theoretical spinonly value of 3.87 μ_B for Mn⁴⁺. Previously, Goodenough et al. 13 reported $\Theta \approx -70$ K, 6 and $\mu_{\text{eff}} = 3.83 \,\mu_B$ for λ -MnO₂ prepared by electrochemical Li extraction from LiMn₂O₄, while Greedan et al. 14 reported $\Theta = -(104\pm4)$ K and C =(1.97±0.02) emu K/mol [corresponding to μ_{eff} =(3.97 ± 0.02) μ_B] for λ -MnO₂ prepared by the acid leaching of LiMn₂O₄ at pH=1. These differing values of Θ and μ_{eff} are FIG. 5. Zero-field-cooled and field-cooled dc magnetization of: (a) $\lambda - Li_{0.07}Mn_2O_4$, (b) $Li_{0.98}Mn_2O_4$, and (c) $Li_{1.82}Mn_2O_4$ as a function of temperature in a field of 1000 Oe. FIG. 6. Inverse zero-field-cooled and field-cooled dc magnetization of λ -Li_{0.07}Mn₂O₄, (b) Li_{0.98}Mn₂O₄, and (c) Li_{1.82}Mn₂O₄ as a function of temperature in a field of 1000 Oe. possibly due to slight differences in the composition or homogeneity of the samples, which are likely to be dependent on the sample preparation method. In Fig. 5(a), an abrupt increase of magnetization is noticeable with decreasing temperature below ~ 60 K, indicating the presence of a ferromagnetic component. The origin of the ferromagnetic component in λ -Li_{0.07}Mn₂O₄ is not clear. As ferromagnetism is not observed in the starting LiMn₂O₄ samples, ¹ a small amount of impurity phases, such as ferrimagnetic Mn₃O₄, is probably produced during electrochemical extraction of Li and/or during sample handling after disassembly of the cell. Ferromagnetism was previously observed in λ -MnO₂ samples prepared by electrochemical Li extraction from LiMn₂O₄, ^{13,14} and by the acid leaching of LiMn₂O₄ at pH=2. ¹⁴ However, at pH=1, acid-leached samples showed no ferromagnetism. ¹⁴ This suggests that the appearance of minor ferromagnetic phases again depends on the details of sample preparation. Figures 5(a) and 6(b) show the cooling history dependence of the magnetization, in which clear splitting of the ZFC and FC data occurs below the paramagnetic temperature regime. A sharp maximum appears at 16 K in the ZFC magnetization. Similar behavior was previously observed by Greedan *et al.*¹⁴ in their pH=2 sample. They attributed the maximum in ZFC magnetization to antiferromagnetic ordering, and the splitting of the ZFC and FC curves to the presence of a ferromagnetic component. However, their pH=1 sample also showed ZFC–FC splitting, even though it showed no ferromagnetism, ¹⁴ indicating that the splitting of the ZFC and FC data is not solely due to the presence of ferromagnetism. Irreversibility in the ZFC and FC magneti- FIG. 7. Time dependence of: (a) σ_{IRM} and (b) σ_{TRM} of λ -Li_{0.07}Mn₂O₄ at 5 K after a field of 1 T is set to zero. zation and a maximum in ZFC magnetization at T_f are characteristics of spin glasses. Therefore, we reasoned that the splitting of the ZFC and FC data in Figs. 5(a) and 6(b) is due to spin-glass behavior, even though the presence of ferromagnetism exaggerates the extent of the splitting. Spin glasses are also characterized by a slowly decaying remanent magnetization that depends on the thermomagnetic history.²⁸ To obtain the isothermal remanent magnetization σ_{IRM} , the λ -Li_{0.07}Mn₂O₄ sample was cooled in zero field from 300 to 5 K, at which point a field was applied for 5 min and then switched off. The thermoremanent magnetization σ_{TRM} was obtained by applying the field at 300 K and cooling in constant field to 5 K, at which point the field was switched off. Figures 7(a) and 7(b) show σ_{IRM} and σ_{TRM} , respectively, as a function of time after removing a field of 1 T. Both show a slow decay on the macroscopic time scale, which for spin glasses can be modeled as a power law (σ $=\sigma_0 t^{-a}$), exponential $(\sigma = \sigma_0 \exp[-t])$, or stretchedexponential type $(\sigma = \sigma_0 \exp[-(t/\tau)^{1-n}]) (0 < n < 1)$, where σ and σ_0 are the magnetization at time t=0 and t>0, respectively.²⁸ A plot of $\log\{-d/dt[\ln \sigma]\}$ vs $\log\{t\}$, shown in the insets of Figs. 7(a) and 7(b), yields slopes of n = 1.2 and 1.1 for $\sigma_{\rm IRM}$ and $\sigma_{\rm TRM}$, respectively, suggesting a power law dependence.²⁹ A second order exponential decay (σ = $\sigma_1 \exp[-t/\tau_1] + \sigma_2 \exp[-t/\tau_2] + \sigma_3$) has also been suggested by Reimer et al. for LiNiO₂. 30 In Figs. 7(a) and 7(b), this fit has been applied to give the curved lines, plotted for the values $(\sigma_1, \sigma_2, \sigma_3, \tau_1, \tau_2) = (40.9 \times 10^{-3} \text{ emu/g},$ 24.2×10^{-3} emu/g,276×10⁻³ emu/g,250 s,2590 s) and (41.0 $\times 10^{-3}$ emu/g,33.9 $\times 10^{-3}$ emu/g,538 $\times 10^{-3}$ emu/g,330 s, 3220 s), respectively. Regardless of the fitting model, the values of $\sigma_{\rm IRM}$ and $\sigma_{\rm TRM}$ are different and nonzero, showing that the remanent FIG. 8. Field dependence of σ_{IRM} and σ_{TRM} of λ -Li_{0.07}Mn₂O₄ at 5 K. Magnetization was measured 1 h after setting the field to zero. magnetization does depend on the thermomagnetic history, as is typical of spin glasses. The magnetic field dependence of $\sigma_{\rm IRM}$ and $\sigma_{\rm TRM}$ at 5 K is shown in Fig. 8 for data obtained at t=1 h after the field was switched off. For each condition, the time decay of the magnetization is similar to that shown in Fig. 7. Figure 8 shows that $\sigma_{\rm IRM}$ increases with increasing field and becomes saturated above 3 T, while $\sigma_{\rm TRM}$ reaches a maximum at 1.5 T and decreases with increasing field. The difference between $\sigma_{\rm IRM}$ and $\sigma_{\rm TRM}$ decreases with increasing field, as is observed in most spin-glass materials. ²⁸ From these results, it can be concluded that this λ-Li_{0.07}Mn₂O₄ material exhibits characteristics of spin-glass behavior in addition to long-range antiferromagnetic ordering. 14 Two possible explanations suggested for the coexistence of spin-glass behavior and antiferromagnetic ordering in LiMn₂O₄ (Ref. 1) may be applied to λ -MnO₂ as well. First, the fundamental freezing entities may be antiferromagnetic clusters with finite correlation length and not individual spins, forming a cluster spin glass below the freezing temperature.³¹ Second, spatial segregation of antiferromagnetic regions with either infinite or finite correlation length and spin-glass ordered regions may explain the coexistence of antiferromagnetism and spin-glass behavior. Such a complex magnetic structure can be attributed to the inherent geometrical frustration of the antiferromagnetic tetrahedral networks and magnetic disorder arising from a small fraction of randomly distributed residual Li⁺ ions causing a distribution of Mn³⁺ in the Mn⁴⁺ matrix. It is interesting to compare the magnetic properties of the once-cycled LiMn₂O₄ to previous results on the same, but uncycled spinel. Figure 5(b) shows the dc susceptibility of the Li_{0.98}Mn₂O₄ sample after the first cycle between 3.0 and 4.4 V [Fig. 3(b)], measured in a magnetic field of 1000 Oe between 5 and 300 K. Ferromagnetism is still observed, indicating the presence of magnetic impurities. Splitting of the ZFC and FC data is again clearly seen, and a sharp maximum appears at 25 K in the ZFC susceptibility, similar to the as-fired LiMn₂O₄ samples. Compared to λ -Li_{0.07}Mn₂O₄, the higher T_f of ~25 K is consistent with the observation by Endres *et al.* that T_f increases with decreasing Mn valence. For the present sample, a Curie constant $C = (4.1 \pm 0.1)$ emu K/mol [corresponding to $\mu_{eff} = (4.05 \pm 0.05)$ μ_B], and Weiss constant $\Theta = -(250 \pm 10)$ K were determined from the linear region in the inverse susceptibility in Fig. 6(b). These results suggest that spins freeze at higher temperatures as the strength of the antiferromagnetic interaction increases. An empirical measure of frustration in spin glasses is the ratio $f = |\Theta|/T_f$. ³² From literature data ^{1.6-15} and this study, a higher value of f is calculated for LiMn₂O₄ (f = 10-14) than for λ -MnO₂ (f = 5-6). The tetragonal spinel sample Li_{1.82}Mn₂O₄ also showed the characteristics of spin-glass behavior. Figure 5(c) shows the dc susceptibility after the first cycle between 2.0 and 4.4 V [Fig. 3(c)], measured in a magnetic field of 1000 Oe between 5 and 400 K. The sharp increase in FC susceptibility with decreasing temperature below ~60 K is again seen, indicating the presence of magnetic impurities. From the inverse susceptibility [Fig. 6(c)], the Curie constant is C= (7.6 ± 0.3) emu K/mol [corresponding to μ_{eff} = (5.5 ± 0.1) μ_B], and the Weiss constant is $\Theta = -(770 \pm 50)$ K. The latter is more negative compared to λ-Li_{0.07}Mn₂O₄ and Li_{0.98}Mn₂O₄, as expected from the reduced ferromagnetic Mn⁴⁺-O²⁻-Mn⁴⁺ coupling. The effective moment is larger than the theoretical spin-only value of 4.90 μ_R for Mn³⁺, which is attributed to the presence of some $\text{Mn}^{2+}(t_{2\rho}^3 e_{\rho}^2)$ with μ_{eff} =5.92 μ_B . Notice in Fig. 3(c) that a voltage plateau appears during discharge below 2.5 V, indicating that a Lirich phase is formed.^{2,33} Even though the overall composition is x < 2, a minor amount of overlithiated phase may form due to nonuniform Li insertion within the cathode. 24,34,35 The tetragonal Li_{1.82}Mn₂O₄ sample showed an upward deviation from the Curie-Weiss law in the inverse susceptibility at temperatures below the paramagnetic temperature regime [Fig. 6(c)], which was not present in the other two samples [Figs. 6(a) and 6(b)]. This is attributed to a shortrange antiferromagnetic spin correlation in the tetragonal phase. Similar behavior is seen in Wills et al.'s 16 ZFC data for Li₂Mn₂O₄ prepared by the lithiation of LiMn₂O₄ using "Bu-Li. Diffuse neutron diffraction peaks in the form of a Warren function were observed, indicating the presence of two-dimensional short-range antiferromagnetic correlations. 16 Two-dimensional spin correlation was ascribed to the Kagomé lattice corresponding to the (111) plane of the pyrochlore lattice in [Mn₂]O₄. However, it is not clear why Li₂Mn₂O₄ alone shows the two-dimensional correlation, since the [Mn₂]O₄ spinel framework can be deconstructed into Kagomé layers stacked parallel to the body diagonal in λ -MnO₂ and LiMn₂O₄ as well. Note that the two-dimensional short-range ordering is observed only in the JT distorted tetragonal phase. We suggest that the short-range spin correlation is due to the JT distortion in the tetragonal phase. Considering the [Mn₂]O₄ framework in Fig. 1, the inter-Mn distance is uniform throughout in cubic λ -MnO₂ and LiMn₂O₄ (e.g., AB=AC=AD=BD=BC=CD). However, JT distorted tetragonal Li₂Mn₂O₄ has two sets of inter-Mn distance (e.g., AC=BD < AB=AD=BC=CD, AB/AC=1.08). If antiferromagnetic correlation between the nearest neighbors (e.g., B-D and A-C) is energetically favored over frustration, two-dimensional antiferromagnetic correlation along the B-D and A-C directions is possible at temperatures below FIG. 9. Time dependence of σ_{IRM} of Li_{1.82}Mn₂O₄ at 5 K after a field of 1 T is set to zero. the paramagnetic temperature regime. Short-range, two-dimensional antiferromagnetic ordering due to the JT distortion has previously been reported for orthorhombic LiMnO₂, where the strongest antiferromagnetic exchange interaction is along the direction having the shortest inter-Mn distance.³⁶ The time dependence of remanent magnetization is quite similar to that of the other samples (Fig. 9). Fitting results for the stretched-exponential function are shown in the insets, plotted for the values $(\sigma_1, \sigma_2, \sigma_3, \tau_1, \tau_2) = (12.5 \times 10^{-3} \text{ emu/g}, 7.5 \times 10^{-3} \text{ emu/g}, 35.0 \times 10^{-3} \text{ emu/g}, 230 \text{ s}, 2730 \text{ s})$ in Fig. 9, respectively. Since a sharp maximum is not apparent in the ZFC susceptibility in Fig. 5(c), we determined T_f from the temperature below which σ_{IRM} shows relaxation behavior. Figure 10 shows the time decay of σ_{IRM} after a field of 1 T is set to zero at temperatures between 60 and 75 K. The slow decay disappears above 70 K, from which we determine that $T_f = 70 \pm 5$ K in Li_{1.82}Mn₂O₄. Clearly this tetragonal spinel phase also exhibits spin-glass behavior in addition to two-dimensional short-range antiferromagnetic ordering. FIG. 10. Time dependence σ_{IRM} of $Li_{1.82}Mn_2O_4$ after a field of 1 T is set to zero at temperatures between 60 and 75 K. Geometrical frustration remains present, although the antiferromagnetic tetrahedral network is now distorted due to the JT distortion. A distribution of Mn³⁺, Mn⁴⁺, and possibly Mn²⁺ can contribute to magnetic disorder. ## CONCLUSIONS By charging and discharging a single starting LiMn₂O₄ spinel, cubic phase λ-Li_{0.07}Mn₂O₄ and Li_{0.98}Mn₂O₄, and tetragonal phase Li_{1.82}Mn₂O₄ were obtained. Magnetic characterization of these samples showed a small contribution from ferromagnetic impurity phases produced by cycling. In the paramagnetic temperature regime, all three phases have a negative Weiss constant, indicating that antiferromagnetic interactions are dominant. The magnitude of the Weiss constant increases with x in Li_xMn₂O₄ between the three end members, as the decreasing Mn⁴⁺ concentration responsible for ferromagnetic Mn⁴⁺-O²⁻-Mn⁴⁺ interaction decreases. Spin-glass behavior is observed in all three samples. Geometrical frustration due to the antiferromagnetic tetrahedral network in the [Mn₂]O₄ spinel structure, combined with some magnetic disorder due to the presence of a valence distribution in the Mn ions, is believed to be responsible for the complex magnetic structure. In Li_{1.82}Mn₂O₄, a shortrange antiferromagnetic correlation is also observed, possibly due to JT distortion of the tetrahedral network favoring antiferromagnetic correlation between nearest Mn neighbors. ## **ACKNOWLEDGMENTS** 1936 (1999). This study was supported by NSF Grant No. 9400334-DMR, and used instrumentation in the Shared Experimental Facilities at MIT. Partial support (for B.H.) was provided by Intronics and the Office of Naval Research (Grant No. 00014-99-1-0565). MIT contributed matching funds from the MacVicar Foundation in the form of a faculty fellowship (for D.R.S.). ¹Y.-I. Jang, F. C. Chou, and Y.-M. Chiang, Appl. Phys. Lett. **74**, 2504 (1999). ²M. M. Thackeray, Prog. Solid State Chem. 25, 1 (1997). ³ J. C. Hunter, J. Solid State Chem. **39**, 142 (1981). ⁴A. Mosbah, A. Verbaere, and M. Tournoux, Mater. Res. Bull. 18, 1375 (1983). ⁵J. B. Goodenough, Magnetism and the Chemical Bond (Wiley, New York, 1963). ⁶C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, and J. B. Goodenough, J. Solid State Chem. **123**, 255 (1996). ⁷G. Blasse, J. Phys. Chem. Solids **27**, 383 (1966). ⁸L. Shütte, G. Cosmann, and B. Reuter, J. Solid State Chem. 27, 227 ⁹P. Endres, B. Fuchs, S. Kemmler-Sack, K. Brandt, F. Faust-Becker, and H.-W. Prass, Solid State Ionics 89, 221 (1996). N. Kumagai, T. Fujiwara, K. Tanno, and T. Horiba, J. Electrochem. Soc. ^{143, 1007 (1996).} Y. Shimakawa, T. Numata, and J. Tabuchi, J. Solid State Chem. 131, 138 ^{(1997). 12} J. Sugiyama, T. Hioki, S. Noda, and M. Kontani, Mater. Sci. Eng. B 54, ^{73 (1998).} ¹³J. B. Goodenough, A. Manthiram, A. C. W. P. James, and P. Strobel, Mater. Res. Soc. Symp. Proc. 135, 391 (1989). ¹⁴ J. E. Greedan, N. P. Raju, A. S. Wills, C. Morin, S. M. Shaw, and J. N. Reimers, Chem. Mater. **10**, 3058 (1998). A. S. Wills, N. P. Raju, and J. E. Greedan, Chem. Mater. 11, 1510 (1999). A. S. Wills, N. P. Raju, C. Morin, and J. E. Greedan, Chem. Mater. 11, - ¹⁷Y. Oohara, J. Sugiyama, and M. Kontani, J. Phys. Soc. Jpn. 68, 242 (1999). - ¹⁸ Y.-M. Chiang, Y.-I. Jang, H. Wang, B. Huang, D. R. Sadoway, and P. Ye, J. Electrochem. Soc. **145**, 887 (1998). - ¹⁹Y.-I. Jang, H. Wang, and Y.-M. Chiang, J. Mater. Chem. **8**, 2761 (1998). - ²⁰B. Huang, Y.-I. Jang, Y.-M. Chiang, and D. R. Sadoway, J. Appl. Electrochem. 28, 1365 (1998). - ²¹ K. Dwight and N. Menyuk, Phys. Rev. 119, 1470 (1960). - ²²D. G. Wickham and W. J. Croft, J. Phys. Chem. Solids 7, 351 (1958). - ²³ M. R. Richard, E. W. Fuller, and J. R. Dahn, Solid State Ionics 73, 81 (1994) - ²⁴H. Wang, Y.-I. Jang, B. Huang, D. R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc. **146**, 473 (1999). - ²⁵Y. Gao and J. R. Dahn, J. Electrochem. Soc. 143, 100 (1996). - ²⁶ J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc. 138, 2859 (1991). - ²⁷ Y.-I. Jang, B. Huang, Y.-M. Chiang, and D. R. Sadoway, Electrochem. Solid-State Lett. 1, 13 (1998). - ²⁸ K. Binder and A. P. Young, Rev. Mod. Phys. 58, 802 (1986). - ²⁹R. V. Chamberlin, J. Appl. Phys. **57**, 3377 (1985). - ³⁰ J. N. Reimers, J. R. Dahn, J. E. Greedan, C. V. Stager, G. Liu, I. Davidson, and U. von Sacken, J. Solid State Chem. 102, 542 (1993). - ³¹ J. L. Tholence and R. Tournier, J. Phys. (France) 35, C4-229 (1974). - ³² A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994). - ³³W. I. F. David, J. B. Goodenough, M. M. Thackeray, and M. G. S. R. Thomas, Rev. Chim. Miner. 20, 636 (1983). - ³⁴ Y.-I. Jang, B. Huang, H. Wang, D. R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc. **146**, 3217 (1999). - ³⁵ H. Wang, Y.-I. Jang, and Y.-M. Chiang, Electrochem. Solid-State Lett. 2, 490 (1999). - ³⁶J. E. Greedan and N. P. Raju, J. Solid State Chem. 128, 209 (1997).