MIT's 3.091 and NSDL Materials
Digital Library: Investigating the
Role of Digital Libraries in
Freshmen Introductory Science
Courses with No Lab Component

Laura M. Bartolo

College of Arts and Sciences Kent State University Kent, OH

Donald R. Sadoway

Dept. Materials Science & Engineering Massachusetts Institute of Technology Cambridge, MA

Outline of today's talk

- ➡ ABET colloquy, January 2002
- ⇒ dilemma facing classes
- hypothesis of this study

Sadoway

- **⇒** January 2005
- **next steps**

The Thirteen Objectives

- 1. Instrumentation
- Models
- 3. Experiment
- 4. Data Analysis
- 5. Design
- 6. Learn from Failure

Sadoway

7. Creativity

- 8. Psychomotor
- 9. Safety
- 10. Communications
- 11. Teamwork
- 12. Ethics (in Lab)
- 13. Sensory
 Awareness

Questions Asked of Panel:

- Are all of these Objectives necessary for Engineering Laboratory programs?
- Are those Objectives that are necessary currently in existing Laboratory programs?
- Could these Objectives be met remotely?
- What would it take to meet those that might not be able to be met currently?

Importance of Objective

• ESSENTIAL

Ethics

Data Analysis

Communication

Teamwork

Models

VERYIMPORTANT

Experiment

Instrumentation

Safety

Sensory

Psychomotor

IMPORTANT

Failure

Design

Outline of today's talk

- ⇒ ABET colloquy, January 2002
- dilemma facing classes
- hypothesis of this study

Sadoway

- **⇒** January 2005
- **next steps**

March 23, 2005

Snapshot of 3.091 Fall 2004

enrollment 630

lectures MWF (chalk & talk w/ AVs)

recitations TR (30 sections)

weekly problem set and quiz

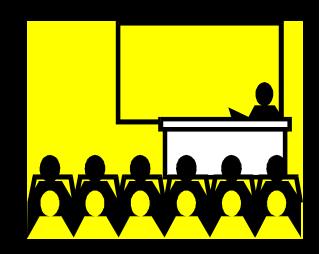
Sadoway

March 23, 2005

Outline of today's talk

- ⇒ ABET colloquy, January 2002
- ⇒ dilemma facing classes
- hypothesis of this study

Sadoway


- **⇒** January 2005
- **next steps**

hypothesis

the majority of objectives can be met by a virtual laboratory

⇒ if so, 6% 6% 6% 6% 6% 6% 6% 6%

the results are scalable

600 students

& broadly applicable

not restricted to chemistry

Outline of today's talk

- ⇒ ABET colloquy, January 2002
- ⇒ dilemma facing classes
- hypothesis of this study

Sadoway

- **January 2005**
- **⇒** next steps

IAP subject for credit

3.039 Solid State Chemistry Virtual Laboratory Donald R. Sadoway, Patrick E. Trapa Mon-Fri, Jan 10-14, 18-21, 10am-12:00m, 4-231 6 units

Part laboratory, part educational experiment, this subject will introduce laboratory practice without performing experiments. With the guidance of the professor and TA, students will plan three experiments, search for data in digital libraries, and analyze the results. Skill building will include technical writing and oral presentation including the preparation of effective slides.

IAP subject for credit

3.039 Solid State Chemistry Virtual Laboratory Donald R. Sadoway, Patrick E. Trapa Mon-Fri, Jan 10-14, 18-21, 10am-12:00m, 4-231 6 units

Part laboratory, part educational experiment, this subject will introduce laboratory practice without performing experiments. With the guidance of the professor and TA, students will plan three experiments, search for data in digital libraries, and analyze the results. Skill building will include technical writing and oral presentation including the preparation of effective slides.

March 23, 2005

Materials Digital Library

MatDL.org

NSDL Resources – Diverse Topics and Formats

Interactives

Maps

Data Sets

Documents

Communities

Images

Remotely Operated Instruments **Exhibits**

Videos

of Practice

Services

Teaching Resources

News

Professional Development

Visualization Tools

Tools

Animations

Materials Digital Library

MatDL.org

NSDL Resources – Diverse Topics and Formats

Interactives Documents

Maps

Data Sets

Exhibits

Videos

Communities of Practice

Images

Remotely Operated Instruments

Teaching Resources

Tools

Animations

Professional Development

Visualization Tools

MatDL.org

Materials Digital Library

MatDL Overview

MIT

Teaching Resources

- •Solid State Chemistry
- Modeling & Simulation
- •Transport Archive

MSEL/NIST

- Phase Diagrams
- •MALDI
- •CTCMS
- Combinatorial Methods
- •Green's Functions

MatDL.org Repository

University of Colorado at Boulder

 Metis Workflow **Technology**

University of Michigan

Teaching Resources

Computational

Nanoscience of Soft Matter

Research Resources

Soft Matter Repository

Kent State University

Tools

- Submission
- MatML grapher
- Course composition

- ⇒ 8 students
 ⇒ 2 "lab groups"
- two "experiments":
 - O Born-Haber cycle

Sadoway

2 structure-property relationships in polymers

- instruction by interactive presentation: skill building
 - data mining (MIT Libraries)
 - scientific writing (papers)
 - oral presentation (.ppt)
- **⇒** intensive coaching of teams

■ measured effectiveness by
 self assessment before & after:

1 3 5

worse no change better

■ measured effectiveness by self assessment before & after:

1

3

worse

no change

better

Self assessment of change in understanding

ABET Lab Objectives	N	Mean	Std. Deviation
Safety	8	3.00	.00000
Psychomotor	7	3.14	.37796
Sensory awareness	8	3.63	.74402
Instrumentation	8	3.63	.74402
Learn from failure	8	4.00	.75593
Design	8	4.13	.64087
Models	8	4.13	.64087
Analysis	8	4.25	.70711
Creativity	8	4.25	.46291
Experimental	8	4.50	.53452
Team work	8	4.50	.53452
Ethics in research	8	4.63	.51755
Communication	8	4.75	.46291

Importance of Objective

• ESSENTIAL

Ethics

Data Analysis

Communication

Teamwork

Models

VERYIMPORTANT

Experiment

Instrumentation

Safety

Sensory

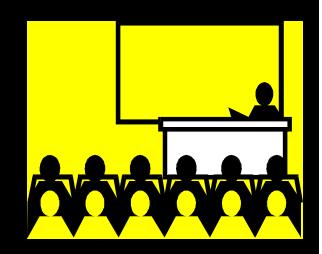
Psychomotor

IMPORTANT

Failure

Design

Self assessment of change in understanding


ABET Lab Objectives	N	Mean	Std. Deviation
Safety	8	3.00	.00000
Psychomotor	7	3.14	.37796
Sensory awareness	8	3.63	.74402
Instrumentation	8	3.63	.74402
Learn from failure	8	4.00	.75593
Design	8	4.13	.64087
Models	8	4.13	.64087
Analysis	8	4.25	.70711
Creativity	8	4.25	.46291
Experimental	8	4.50	.53452
Team work	8	4.50	.53452
Ethics in research	8	4.63	.51755
Communication	8	4.75	.46291

hypothesis validated

the majority of objectives can be met by a virtual laboratory

the results are broadly applicable

not restricted to chemistry

can we show the results to be scalable?

600 students

March 23, 2005

next steps

- ⇒ scale up to 3.091 (8 ≈ 600)
- => fall 2005 begin with MIT Libraries, i.e., databases & bibliography
- plan for companion VL subject exploiting more of MatDL

Materials Digital Library

MatDL.org

NSDL Resources – Diverse Topics and Formats

Interactives Documents

Maps

Data Sets

Remotely Operated Instrument Exhibits

Videos

Communities of Practice

Images

Instruments News

Professional Development

Services

Teaching Resources

Visualization Tools

Tools

Animations

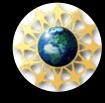
Sadoway

broader implications?

can the VL approach be adopted for large physics classes?

March 23, 2005

acknowledgments


Patrick Trapa

Angela Locknar

National Science Foundation

