Workshop on a "Drug Discovery" Approach to Breakthroughs in Batteries

Introduction

Nick Delgass School of Chemical Engineering Purdue University (Core expertise – heterogeneous catalysis)

1

The Problem with Discovery

- <u>NOT</u> business as usual
- Descriptor (search) space is huge 10⁶ 10¹⁸
 e.g. elements of the periodic table 4 at a time

- <u>NOT</u> only traditional scientific method
- Breakthrough means <u>NOT</u> an extrapolation from where you are. Need new approach. JRDUE

Navigating Descriptor Space

- Designed broad search statistical analysis Fast, helps identify descriptors
- Model-based search incorporate knowledge, including fundamental
- "Only" need better, not best, performance
- Intelligent search is an absolute necessity
- Need a lot of data (information)

Navigating Descriptor Space Experimental Data (parallel) - synthesis, performance, and materials characterization *Primary* (high throughput, 1or 2 parameters) *Secondary*(lower data rate, more parameters) *Tertiary* (lowest data rate, real conditions)

• Theory –

Guide or drive models, calculate descriptors, cover space not accessible to experiments

 Informatics – Handling and using data Searching, sharing, and archiving Tools for knowledge extraction, model building
 TEAMS – Success requires all of the above

Example Search for a new catalyst

W. Pryz, R. Vijay, J. Binz, Jochen Lauterbach, and D.J. Buttrey, "Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation", *Topics in Catalysis*, 2008, online

High-Throughput - Reactor

RJ Hendershot, et al, *Applied Catalysis A* (2003)

Truly Parallel Screening

C.M. Snively, G. Oskarsdottir, and J. Lauterbach, Angewandte Chemie, 40(2001)
 Snively, C.M. and J. Lauterbach *Applied Spectroscopy* 59 (2005)
 R. Hendershot, P. Fanson, C.M. Snively, and J. Lauterbach, Angewandte Chemie, 42(10); (2003).

The Next Step: Promotion of Ru/γ-Al₂O₃ Catalysts

Promotion of Ru Catalyst

K-Promotion: Effect on Morphology

4Ru / γ -Al₂O₃

4Ru-12K / γ -Al₂O₃

W. Pyrz, R. Vijay, J. Binz, J. Lauterbach, and D. Buttrey, *Topics in Catalysis*

Our Research Philosophy - HT Catalytic Science

R. J. Hendershot, C.M. Snively, and J. Lauterbach, <u>Chemistry –</u> <u>A European Journal,</u> 11; 806-814, 2005

Modeling + UHV + Spectroscopy + Synthesis

v/cm

1- Hexene Polymerization by Titanium Catalysts with Phenoxy based ligands A large number of available substituted phenols allow tunability of steric and electronic variation of the catalyst. Steric

Structure-Activity Correlation in Single-Site, Aryl-Oxide, Olefin Polymerization Catalysts

<u>DFT-Based Structure Model</u>: The solid-angle available for monomer approach ($4\pi\gamma$) to Ti-center is related to the OAr- and Cp'-ligand exclusion cone-angles (θ) and a steric factor (f) related to the counter-anion exclusion.

$$\gamma = 1 - \sin^2(\theta_{\text{Cp'}}/4) - \sin^2(\theta_{\text{OAr}}/4) - f$$

The propagation rate constant correlates with ion-pair separation energy (E_{IPS}) in a universal manner:

$$k_{\rm pred} = k_0 e^{-E_{\rm a}/RT} = \gamma a_0 e^{-E_0/RT} e^{-\alpha E_{\rm IPS}/RT}$$

T.A. Manz, K. Phomphrai, G. Medvedev, B.B. Krishnamurthy, S. Sharma, J. Haq, K.A. Novstrup, K.T. Thomson, W.N. Delgass, J.M. Caruthers, M.M Abu-Omar, *J. Am. Chem. Soc.* 2007, 129, 3776.

- Forward Problem: Prediction
 - Estimate Product Performance from Descriptors
 - Quantitative forward model
- Inverse Problem: Design
 - Determine a set of products that satisfy desired performance criteria
 - Guided stochastic search (e.g. genetic algorithm)

Search for New Surfactant Molecules Forward model: First-Principles Model of Additive Degradation + neural net model of engine performance

The first-principle model tracks the structural distribution of fuel-additive with time due to reactive degradation

Results of GA Inverse Search

	Run	Rank/Identifier	Fitness	Predicted IVD (PLS-NN Model)	Structural Description
Objective: Determine a structure with IVD < 10 mg	I	1, I-1	0.997	11.4 mg	Novel Structure. Infrequently used linker.
		2, I-2	0.996	11.5 mg	Novel Structure. Same tails as best structure, different heads and linkers
		6, I -6	0.993	12.0 mg	Variant of structure found in the BMW database. Same head and linkers, different tails
Population Size: 25; Generations: 25	=	1, II-1	0.999	10.1 mg	Novel Structure. Different fromI-1Infrequently used linker component.
		2, II-2	0.989	12.6 mg	Slight variant of additive structure found in BMW and HONDA databases. Different tails but same head and linker
		<i>4, 11-4</i>	0.983	13.2 mg	Minor variation of structure <i>II-2</i> above.Slight modification of the head
	Ш	1, 111-1	1.00	8.9 mg	Novel Structure. Different from <i>I-1</i> and <i>II-1</i> . Commonly used components
		2, III-2	0.994	11.9 mg	Variant of III-1 . One linker and tail modified.
		3, III-3	0.993	12.1 mg	Variant of structure <i>II-2</i> above. Slightmodification of head. A linker and tailinserted.
		1	7 (III (I III III III III I I I I I I I	2000	

Norskov d-band Center Descriptor (DFT)

E. Christoffersen, P. Liu, A. Ruban, H.L. Skiver, and J. K. Norskov, "Amode Materials for Low-Temperature Fuel Cells: A Density Functional Theory Study". *J. Catal.*, **199**, 123-131 (2001).

Correlation of ΔH_{ads} with d-Band Center

E. Christoffersen, P. Liu, A. Ruban, H.L. Skiver, and J. K. Norskov, "Amode Materials for Low-Temperature Fuel Cells: A Density Functional Theory Study". *J. Catal.*, **199**, 123-131 (2001).

Drug Discovery Approach to Breakthroughs in Batteries

Informatics in Drug Discovery Ernst R. Dow, Eli Lilly

Electrochemical energy storage and extended-range electric vehicles Mark Verbrugge, GM

Data handling and informatics tools for model-based discovery James Caruthers, Purdue

New High Energy/Power Devices Ralph J. Brodd, Broddarp

High-throughput ab-initio computing and data mining methods for the prediction of crystal structure Gerbrand Ceder, MIT

Materials Informatics: An "omics" approach to materials based design for battery technology Krishna Rajan, Iowa State

Discussion at dinner tonight

Breakout Groups (Tuesday)

- Two discussion sessions
- One writing session

Objective

• Report:

Define and justify opportunities for significant advancement in battery technology.

- Suggest guidelines for program structure
- Website: Maintain as a resource for the community. Start by uploading slides of talks

Computed surface segregation energies

E. Christoffersen, P. Liu, A. Ruban, H.L. Skiver, and J. K. Norskov, "Amode Materials for Low-Temperature Fuel Cells: A Density Functional Theory Study". *J. Catal.*, **199**, 123-131 (2001).