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Workshop on a “Drug Discovery”
Approach to Breakthroughs in Batteries
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The Problem with Discovery
• NOT business as usual
• Descriptor (search) space is huge – 106 – 1018

e.g. elements of the periodic table 4 at a time

• NOT only traditional scientific method
• Breakthrough means NOT an extrapolation 
from where you are.  Need new approach.

You are here
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Navigating Descriptor Space

• Designed broad search – statistical analysis
Fast, helps identify descriptors

• Model-based search – incorporate knowledge, 
including fundamental

• “Only” need better, not best, performance
• Intelligent search is an absolute necessity
• Need a lot of data (information)
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Navigating Descriptor Space
• Experimental Data (parallel) - synthesis,  

performance, and materials characterization
Primary (high throughput, 1or 2 parameters)

Secondary(lower data rate, more parameters)
Tertiary (lowest data rate, real conditions)

• Theory –
Guide or drive models, calculate descriptors, 
cover space not accessible to experiments

• Informatics – Handling and using data
Searching, sharing, and archiving
Tools for knowledge extraction, model building

• TEAMS – Success requires all of the above
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Example
Search for a new catalyst

W. Pryz, R. Vijay, J. Binz, Jochen
Lauterbach, and D.J. Buttrey, 
“Characterization of K-Promoted Ru
Catalysts for Ammonia Decomposition 
Discovered Using High-Throughput 
Experimentation”, Topics in Catalysis, 2008, 
online
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High-Throughput - Reactor
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Truly Parallel Screening

FTIR
Spectrometer

MCT
FPA
MCT
FPA

C.M. Snively, G. Oskarsdottir, and J. Lauterbach, Angewandte Chemie, 40(2001)
Snively, C.M. and J. Lauterbach Applied Spectroscopy 59 (2005)

R. Hendershot, P. Fanson, C.M. Snively, and J. Lauterbach, Angewandte Chemie, 42(10);  (2003). 
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The Next Step: Promotion of Ru/γ-Al2O3
Catalysts
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Promotion of Ru Catalyst
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K-Promotion: Effect on Morphology

0

20

40

60

80

%
 N

H
3 C

on
ve

rs
io

n

 4Ru   
 4Ru/12K

4Ru / γ-Al2O3

W. Pyrz, R. Vijay, J. Binz, J. Lauterbach, and D. Buttrey, Topics in Catalysis 

T = 
350oC

1 μm 1 μm

4Ru-12K / γ-Al2O3

KRu4O8



11

Our Research Philosophy - HT Catalytic 
Science

R. J. Hendershot, 
C.M. Snively, 
and J. Lauterbach,
Chemistry –
A European Journal,
11; 806-814, 2005 

Catalyst  Characterization
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Design of Experiment
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1- Hexene Polymerization by Titanium 
Catalysts 

with Phenoxy based ligandsA large number of available substituted phenols allow 
tunability of steric and electronic variation of the catalyst.
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Structure-Activity Correlation in Single-Site, 
Aryl-Oxide, Olefin Polymerization Catalysts

FamilyFamily--dependent correlation of dependent correlation of 
propagation rate versus Epropagation rate versus EIPSIPS

Universal Universal 
correlationcorrelation

DFTDFT--Based Structure ModelBased Structure Model: The solid: The solid--angle available for angle available for 
monomer approach (monomer approach (44πγπγ) ) to Tito Ti--center is related to the OArcenter is related to the OAr-- and and 
CpCp’’--ligand exclusion coneligand exclusion cone--angles (angles (θθ) and a steric factor (f) ) and a steric factor (f) 
related to the counterrelated to the counter--anion exclusion.anion exclusion.

θθCpCp’’

θθOArOAr

““ff””

The propagation rate constant correlates with ionThe propagation rate constant correlates with ion--pair pair 
separation energy (Eseparation energy (EIPSIPS ) in a univeral manner:) in a univeral manner:

T.A. Manz, K. Phomphrai, G. Medvedev, B.B. Krishnamurthy, S. ShaT.A. Manz, K. Phomphrai, G. Medvedev, B.B. Krishnamurthy, S. Sharma, J. Haq, K.A. rma, J. Haq, K.A. 
Novstrup, K.T. Thomson, W.N. Delgass, J.M. Caruthers, M.M AbuNovstrup, K.T. Thomson, W.N. Delgass, J.M. Caruthers, M.M Abu--Omar, Omar, J. Am. Chem. Soc. J. Am. Chem. Soc. 
2007, 129, 3776.2007, 129, 3776.
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Computer-aided Product 
Formulation/Design

(Discovery Informatics)

• Forward Problem: Prediction
– Estimate Product Performance from Descriptors

– Quantitative forward model
• Inverse Problem: Design

– Determine a set of products that satisfy desired 
performance criteria

– Guided stochastic search (e.g. genetic algorithm)

Forward Problem
Prediction

Design

P1, P2, P3, ...Pn

Inverse Problem

Product Descriptors Product Performance
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Component “length” directly
indicative of stability of additive

Breakage of this bond 
removes “dirt” carrying 
capacity totally

Chemical nature of this component 
(polar/non-polar) controls “dirt” removing
capacity

Breaking of these bonds control “length”

The first-principle model tracks the structural distribution of fuel-additive with time due to reactive 
degradation

Search for New Surfactant Molecules
Forward model: First-Principles Model of Additive 

Degradation + neural net model of engine performance
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19thNAM May 26, 2005

Run Rank/Identifier Fitness
Predicted IVD

(PLS-NN Model)
Structural Description

1, I-1 0.997 11.4 mg Novel Structure. Infrequently used linker.

2, I-2 0.996 11.5 mg
Novel Structure. Same tails as best
structure, different heads and linkersI

6, I-6 0.993 12.0 mg
Variant of structure found in the BMW
database. Same head and linkers, different
tails

1, II-1 0.999 10.1 mg
Novel Structure. Different from I-1 .
Infrequently used linker component.

2, II-2 0.989 12.6 mg
Slight variant of additive structure found
in BMW and HONDA databases.
Different tails but same head and linker

II

4, II-4 0.983 13.2 mg
Minor variation of structure II-2 above.
Slight modification of the head

1, III-1 1.00 8.9 mg Novel Structure. Different from 
I-1 and II-1 . Commonly used components

2, III-2 0.994 11.9 mg
Variant of III-1 . One linker and tail
modified.III

3, III-3 0.993 12.1 mg
Variant of structure II-2 above. Slight
modification of head. A linker and tail
inserted.

Results of GA Inverse Search

Objective:
Determine a 
structure with IVD < 
10 mg

Population Size: 25; 
Generations: 25
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E. Christoffersen, P. Liu, A. Ruban, H.L. Skiver, and J. K. Norskov,  “Amode Materials for Low-Temperature Fuel 
Cells: A Density Functional Theory  Study”. J. Catal., 199, 123-131 (2001).

Norskov d-band Center Descriptor (DFT)
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E. Christoffersen, P. Liu, A. Ruban, H.L. Skiver, and J. K. Norskov,  “Amode Materials for Low-Temperature Fuel Cells: A Density 
Functional Theory  Study”. J. Catal., 199, 123-131 (2001).

Correlation of ΔHads with d-Band Center
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Drug Discovery Approach to Breakthroughs in 
Batteries

Informatics in Drug Discovery Ernst R. Dow, Eli Lilly 

Electrochemical energy storage and extended-range electric 
vehicles Mark Verbrugge, GM

Data handling and informatics tools for model-based discovery 
James Caruthers, Purdue 

New High Energy/Power Devices Ralph J. Brodd, Broddarp

High-throughput ab-initio computing and data mining 
methods for the prediction of crystal structure Gerbrand Ceder, 
MIT 

Materials Informatics: An “omics” approach to materials 
based design for battery technology Krishna Rajan, Iowa State
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Discussion at dinner tonight
Breakout Groups (Tuesday)

• Two discussion sessions
• One writing session

Objective
• Report: 

Define and justify opportunities for significant   
advancement in battery technology.

Suggest guidelines for program structure
• Website: Maintain as a resource for the 
community.  Start by uploading slides of talks
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E. Christoffersen, P. Liu, A. Ruban, H.L. Skiver, and J. K. Norskov,  “Amode Materials for Low-Temperature Fuel Cells: A 
Density Functional Theory  Study”. J. Catal., 199, 123-131 (2001).

Computed surface segregation energies
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