#### Data Handling and Informatics Tools for Model-Based Discovery

Jim Caruthers, Nick Delgass, Sam Midkiff, Venkat Venkatsubramanian and Gary Blau with

Stephen Stamatis, Leif Delgass Bala Krishnamurthy, Tanu Malik, Jun Cao, Hongang Wang, Shou-Huan Hsu, Sumo Nandi, Seza Orcun and Steve Dunlop

and

Tom Manz, Grisha Medvedev, Jesmin Haq, Krista Novstrup, Ayush Goyal, Gowri Krishnamurthy, Abhijit Phatak, Shalini Sharma, Khamphee Phomphree, Fabio Riberio and Mahdi Abu Omar

Chemical Engineering, Chemistry, Computer Graphics Technology, Computer Science, Electrical & Computer Engineering, Industrial Engineering, ITaP, Cyber Center, Envision Center and Center for Catalyst Design

Supported by: DOE Office of Basic Science, Indiana's 21<sup>st</sup> Century Research and Development Fund ExxonMobil Cummins Equistar Chemicals Purdue University

# Current Data Archiving Methods PURDUE



James M. Caruthers

NSF Bettery Workshop, MIT, Cambridge, MA

Current situation is barely manageable, but just think about scaling-up with high throughput data



- How we can one integrate data from different groups?
- How does one ensure data persistence?
- How does one assign intellectual ownership of group data?
- How can this be done for a small research effort like the battery community?

# CyberInfrastructure for Chemical Research

- PURDUE
- How can CyberInfrastructure aid in the extraction of useful knowledge from the flood of data ?
- Requirements
  - Single time of ingress
  - Databases, not folders, that are ontologically enabled
    - (i.e. can be searched with words/concepts that have chemical meaning)
  - Analysis programs integrate with database
  - Advanced visualization tools for human processing of information
  - Must be low friction the researcher can focus on chemistry not IT tools

Science: the process of systematically generating knowledge from data

**SciAether**<sup>TM</sup>

**Aether:** the magical substance postulated by the late 19<sup>th</sup> century physicists that supported all physical processes





#### •Data Ingress – e-Lab Notebook

## •Database – ontologically enabled

### •Integrated analysis environment

# •Analysis tools

### •Visualization

## •Computer-aided discovery

# Requirements of e-Lab Notebook

- 1. Intuitive interface that creates connections in the database
- 2. Ability to easily create new templates
- 3. eLN has to be able to work offline
- 4. Interface should allow integration with 3rd party software (e.g. Chemsketch, etc.)
- 5. Ability to attach raw/binary data from instruments
- 6. Interface should have ability to enter symbols and equations
- 7. The e-Lab Notebook should freeze all data at the end of the day and time stamp the data legal IP protocol
- 8. Data provenance must be archived

Data must only be ingressed a single time – no copying from paper notebook



| ELN Client: Introduction                                                                                                         |              |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|
| CATALYSTDESIGN                                                                                                                   |              |
| Welcome to the ELN Client<br>1. Use the Browse button to select your template file                                               |              |
| 2. Click on the Load Data button     1. File for template     N:\Personal\ELN Archives\CCD_template1_blank_aryloxide_expV2.2.zip | b.cpt Browse |
| Load Data                                                                                                                        | Exit Client  |



| 🖳 ELN Client                  |                                                                       |                              |
|-------------------------------|-----------------------------------------------------------------------|------------------------------|
| File Options Tools About      |                                                                       |                              |
|                               | CATALYSTDESIGN                                                        |                              |
| Sir                           | gle Site Polymerization Project                                       | Save Locally Save and Upload |
| Overview Catalyst Structure   | Computational Method   Results   Comments (last 10)                   |                              |
| Request Date and Time         |                                                                       |                              |
| Template Unique<br>Identifier | template2                                                             |                              |
| Template Name                 | Single Site Polymerization Project                                    |                              |
| Template Version              | 2.1                                                                   |                              |
| Template Description          | Single Site Polymerization Computation Template designed for Tom Manz |                              |
| Requester                     | offline_test_user                                                     |                              |
| Request Type                  | Edit                                                                  |                              |
| Requester ID                  | 0                                                                     |                              |
| Title                         |                                                                       |                              |
| Keywords                      |                                                                       |                              |
| Name(s) of Owner(s)           | offline_test_user                                                     |                              |
| Date Modified/Created         | 11/1/2006 1:07 PM                                                     |                              |
| Record Number                 | new                                                                   |                              |
| Parent Record Number          | N/A                                                                   |                              |
|                               |                                                                       |                              |
|                               |                                                                       |                              |

Ready

Tabbed layout for Easy Navigation

Color Coded fields tell user what is required



| header     Catalyst Synthesis     Catalyst Characterization     Polymerization     Comments       Performed on     12/1/2006     1:07 PM     1:07 PM |                                                                          |                                                                              |                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--|--|
| Performed by                                                                                                                                         | Cornel Stanciu                                                           |                                                                              |                 |  |  |
| Catalyst Name                                                                                                                                        | anti-(C2H4(1-Ind)2)ZrMe2                                                 | Several ways of                                                              |                 |  |  |
| Catalyst InChI String                                                                                                                                | InChl=1/C20H16.2CH3.Zr/c1-3-7-19-15(5-1)9-11-17(19)13-14-18-             | identifying the catalyst                                                     | 16Zr/c1-3-7-    |  |  |
| Catalyst SMILES string                                                                                                                               | [Zr]11 2 4 5 7 8 9 %10 %11(C([H])([H])(H])(C([H])([H])[H])[C]:6(:[C]3 1: | Including InChI and                                                          | [H]):[C] 9(:[C] |  |  |
| Also Known As                                                                                                                                        | Brintzinger's catalyst; (EBI)ZrMe2                                       | SMILES                                                                       |                 |  |  |
| Catalyst Batch Name                                                                                                                                  |                                                                          |                                                                              |                 |  |  |
| Structure Figure                                                                                                                                     | anti-(C2H4(1-Ind)2)ZrMe2.gif                                             |                                                                              |                 |  |  |
|                                                                                                                                                      |                                                                          | Catalyst structure<br>drawing made with                                      |                 |  |  |
|                                                                                                                                                      | ZrCH <sub>3</sub>                                                        | chemsketch                                                                   |                 |  |  |
|                                                                                                                                                      | CH <sub>3</sub>                                                          | Catalyst structure also<br>attached in chemsketch<br>format for easy editing |                 |  |  |
| Structure as CML                                                                                                                                     | anti-(C2H4(1-Ind)2)ZrMe2.sk2                                             |                                                                              | - 🖉 💆           |  |  |

NSF Bettery Workshop, MIT, Cambridge, MA

### e-Lab Notebook

# PURDUE

#### Kinetic Data from NMR Performed on 5:09 PM 0 2/9/2007 Performed by Nicholas Travia Metadata and other Catalyst Batch Name details about the Instrument Inova 300 experiment Internal Standard PH2CH2 Solvent Toluene-d8 Temperature (C) 25 Raw data Kinetic Data MQ-NET-1240.csv 🚽 🖉 💆 attached ▼ 🖉 💆 Image of Kinetic Data MQ-NET-1240.PNG NET-1240 0.83m M Brintzinger Cat. 1M 1-heitene following 5.8ppm monomer peak going away, 0 degrees C 1.2 1 0.8 Short Summary 0:00:0 0.6 Graph Image 0.4 0.2 0 n ണ 1000 1500 2000 2500 3000

James M. Caruthers

NSF Bettery Workshop, MIT, Cambridge, MA

Ime, seconds



| -                                                                |                                                                         |                      |                             |                  |
|------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|-----------------------------|------------------|
| 🖶 ELN Client                                                     |                                                                         |                      |                             |                  |
| File Options Tools About                                         |                                                                         |                      |                             |                  |
|                                                                  | CATALYSTDESIGN                                                          |                      |                             |                  |
| Single                                                           | e Site Polymerization Project                                           | Save Lo              | cally Save and Upload       |                  |
| header Catalyst Structure Computa                                | tional Method Results Comments (last 10)                                |                      |                             |                  |
| Partition Function                                               |                                                                         |                      |                             |                  |
| Solvation Energie                                                | S                                                                       |                      |                             |                  |
| Electrostatic Contributions<br>to Solvation Energy [kcal/mol]    | -6.38                                                                   |                      |                             |                  |
| Nonelectrostatic Contributions<br>to Solvation Energy [kcal/mol] | 31.84                                                                   |                      |                             |                  |
| SCF Energy in Solvent<br>[kcal/mol]                              | -3.950062786651948E+03                                                  |                      |                             |                  |
| Job Files                                                        |                                                                         |                      |                             |                  |
| Input(.com) File                                                 | D:\Test files for script\a1_2_138_1_2_2_0_0_0_0_0_12_55_0_0_0_0_toluena | a1_2_138_1_2_2_0_0   | 0_0_0_12_55_0_0_( 👻 🖉 💆     |                  |
| Script Generated File                                            |                                                                         |                      |                             | Custom Parser    |
| Fcheck (.fchk) File                                              | cript\a1_2_138_1_2_2_0_0_0_0_12_55_0_0_0_0_toluene\a1_2_138_1_2         | _2_0_0_0_0_12_55_    | 0_0_0_0_toluene.fchk 💌 🖉 💆  | automatically    |
| Computation (.log) File                                          | script\a1_2_138_1_2_2_0_0_0_0_12_55_0_0_0_0_toluene\a1_2_138_1_         | 2_2_0_0_0_0_12_55    | 5_0_0_0_0_toluene.out 💌 🖉 💆 | fills out fields |
| Sequencer (.hst) File                                            | D:\Test files for script\a1_2_138_1_2_2_0_0_0_0_12_55_0_0_0_toluene     | >\a1_2_138_1_2_2_0_( | 0_0_0_0_12_55_0_0_( 🗾 🖉 💆   | from Gaussian    |
| NCSA history (.out) File                                         | D:\Test files for script\a1_2_138_1_2_2_0_0_0_0_12_55_0_0_0_0_toluene   | >\a1_2_138_1_2_2_0_( | 0_0_0_12_55_0_0_( 🔽 🖉 💆     | Log files        |
|                                                                  | Run Script                                                              |                      | •                           |                  |
| Computation (.log) File field_188                                |                                                                         | Ready                |                             |                  |

James M. Caruthers

#### NSF Bettery Workshop, MIT, Cambridge, MA

Parser





- •Database ontologically enabled
- •Integrated analysis environment
- •Analysis tools
- •Visualization

#### •Computer-aided discovery

# **Ontologically Enabled Database PURDUE**

- Consider a database with 10,000 or more records
- Example Query: Find all polymerization data for all non-styrenic olefin monomers for which the kinetics were measured via NMR in toluene for bridged Group IV catalysts.

|                   | A                                   | Β                                                            |                   |                          |                            |                               |
|-------------------|-------------------------------------|--------------------------------------------------------------|-------------------|--------------------------|----------------------------|-------------------------------|
| 102               | Polymer Common<br>Name(s)           | polyhexene                                                   | 138               | Kinetic Data from NMR    | [                          |                               |
| 103               | Solvent(s)                          | Toluene                                                      | 139               | Performed on             | <mark>10/27/05 12:0</mark> | SQL needs to                  |
| 108               | i Monomer(s)                        | 1-hexene                                                     | 141<br>142        | Performed by             | bkrishna                   | understand that Ti            |
| 108<br>109        | Activator(s)                        | SQL needs to                                                 | 143<br>144        | Kinetic Data             | Specified                  | and Zr are Group              |
| 110<br>111        | Co-Activator(s)                     | understand that 1-                                           | 145               |                          | -                          | IV metals & what              |
|                   |                                     | hexene is a                                                  | 146               | Raw Data File 1 @ Time 1 | fid                        | is a bridged ligand           |
|                   | Reaction Scheme Figure              | nonstyrenic olefin                                           | 147               | Raw Data File 2 @ Time 1 | log                        |                               |
| 112               | 2                                   | $\bigcirc$                                                   | 149<br>150<br>151 | Raw Data File 3 @ Time 1 | procpar                    |                               |
| 114               | Reaction Scheme as CML              | F:\users\bala\reaction.cml                                   | 152               | Raw Data File 4 @ Time 1 | text                       |                               |
| 118               | Reaction Scheme as SVG              | \users\bala\work\e-lab-notebook\Cp(s)Ti(OC6H3Et2-2,6)Me2.svg | 153<br>154<br>155 | lmage @ Time 1           | au au                      | 212.201<br>212.201<br>212.201 |
| 118               | Monomer 1 to Catalyst<br>Mole Ratio | 200                                                          | 156               |                          | m g m                      |                               |
| 119               | Duration of Reaction<br>(sec)       | 1200                                                         | 158<br>159        |                          | ъĒ                         |                               |
| 121<br>122<br>123 | Temperature (K)                     | 273                                                          | 160               |                          |                            |                               |

James M. Caruthers

NSF Bettery Workshop, MIT, Cambridge, MA

# Ontology:Defines relationships between vocabulary words PURDUE



# **Ontological-SQL Query Engine PURDUE**

# Design: A semantic analysis layer interacts with a data retrieval layer



ANTLR = ANother Tool for Language Recognition : Parser generator Racer, Jess: classification of concepts and instances in ontology OWL = Web Ontology Language





- •Database ontologically enabled
- •Integrated analysis environment
- •Analysis tools
- •Visualization

#### •Computer-aided discovery



P

۶.

SciAether



Ô

- 6

di de

















3

B

....



3

C

....







### •Data Ingress – e-Lab Notebook

- •Database ontologically enabled
- •Integrated analysis environment
- •Analysis tools

Commercial Packages (MatLab, JMP, etc.) Personal Codes (MatLab, C++, Fortran, etc.) Nonlinear Bayesian Statistics Domain specific tools

•Visualization

•Computer-aided discovery

# **Parameter Estimation**

• Expert knowledge (Prior probability distribution)



• Likelihood function,  $L(data|\theta)$ 



X  $L(\text{data} | \boldsymbol{\theta}) = p(e_1) p(e_2) \cdots p(e_n)$ 

• Both expert knowledge and data fitting are important

PURDUE

• How to compromise these two different types of information to obtain the most reasonable parameter estimates?

The larger, the better

NSF Bettery Workshop, MIT, Cambridge, MA



James M. Caruthers

NSF Bettery Workshop, MIT, Cambridge, MA

September 8-9, 2008





- •Database ontologically enabled
- •Integrated analysis environment
- •Analysis tools

•Visualization

### •Computer-aided discovery

# **Rich Graphics**

# PURDUE



NSF Bettery Workshop, MIT, Cambridge, MA



# Natural Representation of Data







- SciAether prototype cyberinfrastructure
  - Initially developed for catalysis science
  - Can be expanded to include a wide range of chemistry/materials/biology research
- Scaleable components







- •Database ontologically enabled
- •Integrated analysis environment
- •Analysis tools
- •Visualization

•Computer-aided discovery



# Does it work?

**1- Hexene Polymerization by Titanium Catalysts with Phenoxy based ligands** 

A large number of available substituted phenols allow tunability of steric and electronic variation of the catalyst. Steric



#### Effect of Aryloxide Ligand on Propagation Rate for Titanium Catalyst

#### **Batch Polymerization**



# Micro-Kinetic Analysis of Olefin Polymerization

 $C + M \xrightarrow{k_i} R_i$ 

 $R_i + M \xrightarrow{k_p} R_{i+1}$ 

#### Homo-polymerization Kinetics

\* For active sites

$$\frac{dC}{dt} = -k_i \cdot C \cdot M + k_{t\beta} \cdot \left(\sum_{1}^{\infty} R_i + \sum_{2}^{\infty} P_i\right)$$

\* For living chains of unit length  $\frac{dR_1}{dt} = k_i \cdot C \cdot M - (k_p + k_{p_{2,1}}) \cdot M \cdot R_1 + k_{tM} \cdot M \cdot \left(\sum_{2}^{\infty} R_i + \sum_{2}^{\infty} P_i\right) - k_{t\beta} \cdot R_1$ 

**Population Balances** 

PURDUE

- \* For living chains with length i $\frac{dR_i}{dt} = k_p \left( R_{i-1} R_i \right) \cdot M k_{p2,1} \cdot R_i \cdot M + k_{p2,1 \rightarrow 1,2} \cdot P_{i-1} \cdot M$  $-(k_{tM} \cdot M k_{t\beta}) \cdot R_i$
- \* For monomer

$$\frac{dM}{dt} = -k_i \cdot C \cdot M - (k_p + k_{p_{2,1}}) \cdot M \cdot \sum_{1}^{\infty} R_i - k_{p_{2,1} \to 1,2} \cdot M \cdot \sum_{2}^{\infty} P_i$$
$$-k_{tM} \left(\sum_{2}^{\infty} R_i + \sum_{2}^{\infty} P_i\right) \cdot M + k_{t\beta} \cdot R_1$$

- \* For living chains after 2,1-misinsertion with length i $\frac{dP_i}{dt} = k_{p_{2,1}} \cdot R_{i-1} \cdot M k_{p_{2,1} \rightarrow 1,2} \cdot P_i \cdot M (k_{tM} \cdot M k_{t\beta}) \cdot P_i$
- \* For terminated chains of length i

$$\frac{dD_i}{dt} = k_{tM} \cdot M \cdot (R_i + P_i) + k_{t\beta} \cdot (R_i + P_i)$$

<sup>•</sup> Initiation

\* Propagation

\* Propagation after 2,1-misinsertion

\* β hydride chain transfer  $P_i + M \xrightarrow{k_{p_2, 1 \to 1, 2}} R_{i+1}$ 

 $R_i + M \xrightarrow{k_{p_{2,1}}} P_{i+1}$ 

- $R_i + M \xrightarrow{k_{tm}} D_i + R_1$  $P_i + M \xrightarrow{k_{tm}} D_i + R_1$
- $R_{i} \xrightarrow{k_{t\beta}} D_{i} + C$   $P_{i} \xrightarrow{k_{t\beta}} D_{i} + C$
- where C activated catalyst
  - M monomer
  - Ri living polymer chain
  - Pi dormant polymer chain
  - Di terminated polymer chain ( i = 1,2.....)

James M. Caruthers

NSF Bettery Workshop, MIT, Cambridge, MA

#### September 8-9, 2008

# DFT Simulation of Propagation Step **PURDUE**

 Backside insertion of 1-hexen into [CpTi(OC<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)Me<sup>+</sup>][MeB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub><sup>-</sup>]; OLYP/LALNL2DZ level calculation



I – Reactants  $E_I=0$ II – TS1  $E_{II}=17.9$ III – Coordinated  $\pi$ -complex  $E_{III}=12.0$ IV – TS2  $E_{IV}=13.2$ V – Products  $E_V=-18.8$ 

Rx

#### Conclusion: adsorption is the rate determining step



James M. Caruthers

NSF Bettery Workshop, MIT, Cambridge, MA

angle = 91.0 deq

ArO ligand cone angle = 93.1 deg.

# $k_{pred} = k_{0}e^{-Ea/RT} = \gamma a_{0}e^{-E0/RT}e^{-\alpha EIPS/RT}$ $k_{pred} = k_{0}e^{-Ea/RT} = \gamma a_{0}e^{-E0/RT}e^{-\alpha EIPS/RT}$ $\gamma = 1 - \sin^{2}(\theta_{Cp'}/4) - \sin^{2}(\theta_{OAr}/4) - f$ *Predictive Model*



NSF Bettery Workshop, MIT, Cambridge, MA

# Future Plans

- System has been designed and implemented using commercial software development tools/practices/people
- Expanding usage of SciAether to other groups at Purdue
- Additional capabilities under-development

   Template Designer for eLN
   Drop down menus for eLN
   Expanded ontologies with user GUI for addition of terms
   Connect to other databases like PubChem via Web Services
   Direct connection to eLN from analysis environment
   3D visualization inside of linked analysis environment
- Looking for a few development partners WWW.sciaether.org

caruther@ecn.purdue.due