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The group

Applied Problems in Energy
Electrode materials for Li batteries
Protons in oxides
Nanoparticle catalysts
Thermoelectrics
Hydrogen Storage
Nano particle stability and self-assembly

Fundamental
Phase stability of materials
Phase transitions and transport
Electronic Structure of Metal Oxides
Length scale bridging dynamics
High-Throughput computation and Data
Mining

From basic science, to
applications …
in the fastest possible
way
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Materials research has traditionally been slow

Computation is the most scalable research tool



Radical acceleration can only come from high-throughput
predictive computational approaches

All components are in place
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• Equations that describe matter can be solved accurately and stable

• Increase in computing/dollar is unparalleled in any other field

Increase in of 10 million !Performance
     Price
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An example of “ab initio” computational materials
design



Example:  Design of high power Li battery materials

Li + Metal-Oxide  ->  Li-Metal-Oxide

Cathode needs to host and
exchange large amounts of Li+

and electrons at high rate and
remain stable

Extract Li+

Extract e-



Many properties of the electrode materials can now
be predicted with ab initio methods before the

material is ever made

Phase diagram

3.713.75LiNiO2

3.453.5LiFePO4

4.254.2LiCoO2

Calcul.Exp

Li diffusivity

Voltage energy density

powerlifetime



Track record of ab-initio predictions that were
confirmed later with experiment

Predict Interesting materials

LiNiPO4:   5.1 V

Predicted Spring 2004; Confirmed by
experiment [Wolfenstine and Allen, J.
Power Sources, 142, 389 2005 ]

H1-3 phase of LiCoO2 at high charge High rate Li(Ni0.5Mn0.5)O2

LiCoO2

50% Al doping

25% Al
doping

Al-doping effect in LiCoO2



 LiFePO4 designed for extreme rate behavior

Along the a-axis:  Ea > 1 eV
Along the c-axis:  Ea > 1 eV
Along the b-axis:  Ea is low

Li migration barrier calculation Electron migration barrier calculation



LiFePO4 with optimized surface structure

Li can only penetrate particle through these sides

On other surfaces Li has to move over surface to the sides

Optimize particle shape (surface energies !)

Platelet shape

Modify surface chemistry so that Li
ions can move rapidly over surface

Make nanoparticles



 

Very high rate material developed

Full charge/discharge in
15 minutes

Full charge/discharge in
75 seconds

perfect cycle life
even at 20 C !



With some electrode modification can obtain highest rate
ever observed in a battery material

400 C is full battery
charge/discharge in 9
seconds

Power density:

175 kW/liter
90kW/kg

 

Full charge/discharge in
20 sec

Full charge/discharge in
10 sec + =



If you can compute it   -> automate it -> scale it

1. Automated run-time environment:  automate everything
from setting up the job, queing it, checking it, and
import into database

2. The database

3. Mining the data

Components to automation



Created a fully automated environment to do
thousands of quantum mechanical calculations

Automated the quantum
mechanical energy
computation of > 15,000
structures

File and Error Handling

Automatic k-point mesh generation

Input file translated from Crystmet

Error Checking and Final convergence
run automated

Automated symmetry checking
implemented

Computational

Run on Beowulf cluster

Developed AFLOW:  scripts to run large
numbers of these computations in
parallel environment

We can now ask “meta” questions



The database

Database is a relational
database (PostgreSQL)

Information stored in
tables, data
represented as rows



putting the ’relation’ in relational

Links between tables are
relations

Prevent data redundancy



The Up-Front (BIG) Numbers

~3500 voltage data points

Complete Voltage Analysis of most known
compounds

***

Picture removed
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Data mining -– Li insertion Cathodes

Picture removed



Data mining - Li insertion Cathodes

5V

4V

3V

2+ 3+ 4+ 5+ 6+

Picture removed



Substantial added value of data

We have run and converged ~30,000
Ab-initio calculations

How much of unique ICSD calculated?

elements 94%
(255)

binaries 81%
(4949)

ternaries 80%
(10247)

[still in

progress]



Substantial added value of data

Can now evaluate phase stability of
hypothetical new compounds against
separation in binaries, ternaries, etc.

 Identified several hundred potentially new
ternary oxide compounds

Working with LBNL to identify radiation
detector materials from these



Learn chemistry and physics ...

which elements can substitute for each other ?

very powerful for materials design



An example of datamining experimental data

funded by NSF-DMR



Example of data mining experimental data:  The
crystal structure prediction problem

funded by NSF-DMR and DOE-BES

•1988 Maddox (Nature) described the inability to predict
crystal structure as “scandalous”  – Not much has changed

• As first principles methods for properties become better,
and computers faster, structure problem becomes more
limiting to materials design

Without knowing where the atoms are,
can’t compute much



Energy + Optimization
Ab-initio approach

    Energy model
  LDA/GGA
  potentials, …

Molecular Dynamics

Simulated Annealing

Genetic Algorithms (e.g.
Abraham and Probert, PRB 2006;
Oganov & Glass, J. Chem Phys
2006)

Trial and Error

…

Direct Optimization of E({R})

Ground states only

Smart searching ?

•Minima in energy space are not
random.  They result from
underlying physical and chemical
principles

•Can we learn about underlying
physics in nature without making
it explicit ? Do so in
mathematically rigorous way

Mathematical “intuition”

•Statistical learning

•Data mining

•Artificial intelligence



Concept

    Energy model
  LDA/GGA
  potentials, …

Knowledge driven optimization

Computed
Data

Experimental
Data

Knowledge
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Knowledge
Extraction

Prediction

Curtarolo S, Morgan D, Persson K, Ceder G. Data Mining of Quantum Mechanical Calculations.
Phys. Rev. Lett 2003;91:135503 1.

Knowledge driven search

Fischer, C., et al., Predicting Crystal Structure by merging data mining with Quantum
Mechanics. Nature Materials, 2006. 5: p. 641.



at each composition i variable
xi = prototype at i

X= ( x1, x2, x3, … , xn ) ground state set of the alloy

x1 = element A
x2 = element B

P(X) = knowledge of all Nature

Probability model describes how likely prototypes
occur together in system



A first success:  Data Mining to Predict Crystal
Structure

95% probability to
get correct structure
by investigating 10
structures

P(X)
approximation
from exp data

List of
candidate
structures First

Principles
Computation

Correct Structure

DATABASE:

ALL KNOWN
CRYSTAL
STRUCTURE
ASSIGNMENTS



Probabilistic Model Prediction Capability

Cross-validation prediction on > 5000 structures

how many
structures need to
keep on list to
have correct
ground state …

… with a given probability

95% probability to
get correct structure
by investigating 10
structures

Fischer, C., Tibetts, K., Morgan, D. & G, C. Predicting Crystal Structure by merging data mining
with Quantum Mechanics. Nature Materials, 5, 641(2006).



Note:  Solution came from changing
the question, not throwing more effort
at conventional way of thinking of the

problem



Synergy between applications when data is
preserved

recently completed search for potential materials for Hg
adsorption from high-temperature coal gasification streams

trying to build capability to include calculated properties
relevant to photo-voltaics, photo-synthesis, and
thermoelectrics



Vision: Materials Genome Concept
“To rapidly develop data on all materials in nature, relevant to a problem, so that
informed and effective choices can be made in research and development programs”

Center for High throughput,
computational property
prediction and data mining

Solar Storage Hydrogen Thermoelectrics Catalysts Others

Technology
requirements

Materials
Properties

Theory method
development

Computer
Science

Field specific expertise

Do for materials development what genome sequencing has done for biology



Issues

Experimental data

•Data not standardized or without proper specification (e.g. many
different copper materials when it comes to conductivity)

•No central data reporting

•Most databases proprietary -> often inhibits data mining

•Can we follow the biology model ?  NIH demands entry of protein
structures in database ?

Computed data

•not all properties can be computed

•accuracy issues

•pollution from poorly converged calculations

•large computing centers sponsored by DOE/NSF/DoD prefer large
calculations - not many small ones.



Thank you


